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ABSTRACT 

Enhancing Ballast Performance through Geocell Confinement 

Ben Adam Leshchinsky 

 

In past years, railroad transportation has been of growing interest due to its efficiency and 

advancement in railway technologies. However, many issues arise due to the variability in 

subsurface conditions along the sizeable lengths of track that exist. One very important issue is 

the need for significant upkeep and maintenance for railways passing over areas of poor soil 

conditions due to continuous deformation and a lack of stiffness from the ballasted foundation. 

One general solution for lack of substructure integrity has been confinement, applied through a 

variety of reinforcement types, including geocell. To investigate the effectiveness of geocell 

confinement on ballasted substructure integrity, a series of embankment model tests with 

different configurations of geocell placement (one layer and two layers of geocell) were 

constructed and loaded monotonically and cyclically for comparison to unreinforced, control 

tests. Upon the completion of these tests, the model embankments were simulated numerically 

using finite element procedures. The results were then used as validation for a parametric study, 

observing the effects of less competent geocell material, ballast and foundation conditions and 

their implications. Further numerical simulations were then performed on railroad embankments 

reinforced with and without geocell to model realistic railroad conditions and the effects of 

confinement on performance. 

The tests and numerical simulations demonstrate that geocell confinement effectively increased 

stiffness and strength of a ballast embankment, while reducing vertical settlement and lateral 

spreading. Additionally, the parametric study shows that the use of geocell provides a composite, 



“mattressing” effect that distributes subgrade stress more uniformly than without reinforcement, 

increasing bearing capacity and reducing settlement, especially on soft foundations or when 

using weaker ballast. The results suggested that in some site conditions, use of geocell might be 

an economical alternative to frequent maintenance and/or lower train speeds. Additionally, it 

implies that geocell might be cost-effective when used in combination withed degraded, weaker 

ballasts, i.e. inferior local or recycled materials. The use of geocell in ballast stabilization could 

prove to a sustainable solution for a common and expensive problem. 
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CHAPTER 1: INTRODUCTION 

 

 

 

1.1 Objective and Scope 

 

 

The objective of this study is to observe the behavior of ballast reinforced with geocell and its 

effects on the performance and behavior of a railroad substructure. The implications of this 

project should provide insight into future design methods for railroad and geotechnical 

engineers. In order to make assertions on the behavior of such a geotechnical structure, 

experimental results followed by a series of numerical investigations would be employed.  

 

In this study, laboratory experiments simulated the benefits of geocell on stiffness, strength and 

displacement under monotonic and cyclic loading in a controlled environment.  

 

1.2 Background 

In the past few decades, geosynthetics have been increasingly popular in construction and 

geotechnical ground improvement applications due to its ease of use and cost-efficiency. Their 

ease of installation and significant benefits has been a major factor in their increased use since 

the 1970’s, especially in a variety of geotechnical structures, including earth retention, slopes, 

roadway construction, landfill lining, and coastal protection. To cater to this broad variety of 

geotechnical functions, geosynthetics have been developed in a multitude of forms and material 

combinations. These include geogrids, geomembranes, geotextiles, geonets, geocomposites and 

geocells (Koerner, 2005).  
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Geocell has long been used as means for improving soil conditions. It was originally developed 

by the US Army Corps of Engineers to increase vehicular mobility over loose, sandy subgrade 

through cellular confinement (Webster and Alford, 1977). Geocell has been shown to increase 

soil strength by confinement, reducing lateral spreading and causing the confined composite to 

behave as a more rigid mattress (Zhou and Wen, 2008). The higher stiffness of the geocell 

system reduces the stress applied to the subgrade due to bending stiffness of the mattress 

composite, similar to a slab (Pokharel et al., 2011). Several studies have shown that utilization of 

the cellular confinement mechanism significantly improves the strength and stiffness of a 

granular material; however a lack of generic design methodology has inhibited its 

implementation (Han et al., 2008). 

 

 

 
Figure 1.1 Common shape of geocell, when shipped (top) and outstretched (bottom), (credit, 

Koerner, 2005). 

 

Geocell is generally sold in folded form, whereupon it can be outstretched into its three-

dimensional shape and infilled with soil (figure 1.1). The soil, generally weaker at lower 

confining pressures has added strength due to the confinement effects of the reinforcement cells 
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surrounding it, providing a higher bearing capacity and stiffness. Geocell significantly increases 

the shear strength of the soil as shown by past triaxial tests (Koerner, 2005).The geocell also 

prevents excessive displacements of the infilled soil because of the cell confinement and the 

redistribution of stresses to the underlying soil. The composite action of the geocell and its fill is 

known as the “mattressing” effect and allows the reinforced soil to distribute loads much more 

uniformly to its subgrade, contributing to the aforementioned increase in bearing capacity, 

stiffness and reductions in displacements. These benefits are especially pronounced when used 

on soft subgrades.  

 

Various shapes and sizes of geocell exist (figure 1.2), and they can be found in a multitude of 

materials. They are commonly found with heights varying from 75 mm to 200 mm, and with cell 

sizes ranging from 17 cm x 17 cm to 35 cm x 35 cm. Geocell is commonly made with High 

Density Polyethylene (HDPE), but can made with other polymers, including Novel Polymeric 

Alloy (NPA). In fact, the original geocell was made with Aluminum (Koerner, 2005). Geocell 

commonly has perforations along its walls to allow for rapid drainage laterally through the 

material, especially in soil reinforcement applications where water can initiate failure. 

Additionally, the holes can allow for further interlocking with granular materials, although the 

reduced nominal width of the cell walls does cause the wall tensile strength to be lower. This 

multitude of product specifications allows extreme versatility in its applications to soil 

reinforcement. This suggests that geocell could be beneficial in a ballasted railroad foundation as 

well. 
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Figure 1.2. Various Geocells: Strataweb (left, copyright: Strata Systems), Geoweb (middle, 

copyright: Presto), and Neoweb (right, copyright: PRS Mediterranean. 

 

 

Despite the use of geocell reinforcement in a variety of geotechnical applications for decades, 

there is limited study on its use in railway engineering, possibly due to a combination of the 

sensitive, conservative nature of the field and a lack of design methodology for such an 

application, specifically for railroad embankments. Although the reinforcement has shown to 

improve performance under static and cyclic loading, optimal placement of geocell and its 

performance in a challenging environment such as train ballast is not well-studied, but has 

significant promise. Further insight into geocell and ballast behavior in a railroad application 

could provide incentive for the development of design methods in such an application. Such an 

application could have economical and environmental implications for future railroad design and 

track rehabilitation. Ballast functions as a base that absorbs energy, drains easily and resists 

forces acting vertically and laterally, providing a stiff, competent foundation for the repeated 

loading exerted by train passes (Selig and Waters, 1994). However, these important roles face 

significant technical issues that challenge the function of a working railroad. The pressures 

resulting from train loading can result in rearrangement and degradation of ballast over many 

loading cycles, reducing grain interlocking and facilitating lateral movement of particles 

(Lackenby et al., 2007). Track stability can decrease with the lateral spreading of ballast particles 
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due to decreasing frictional strength (Selig and Waters, 1994). Vertical and lateral deformations 

as a result of spreading or foundation problems result in loss of track geometry. Retention of 

ballasted foundation geometry is important; the cost of track maintenance due to geotechnical 

issues is significant when compared to other track expenses (Indraratna et al., 1998). 

 

Ballasted railway foundations are supposed to be thick enough to ensure uniform loading of the 

subgrade at an acceptable intensity (Indraratna et al., 2006). Geocell confinement increases 

strength and stiffness of the infill, which in turn distributes the stress to a larger area, especially 

upon soft subgrades (Chrismer; 1997; Zhou and Wen, 2008; Yang, 2010). It is possible that 

geocell-ballast composite action could enhance this mechanism, which is especially 

advantageous under the high loading intensity of moving trains. In addition to the redistribution 

of vertical stresses (Chrismer, 1997), the confining behavior provided by reinforcements has 

been shown to reduce and/or re-disbribute shear stresses at the subgrade interface (Giroud and 

Han, 2004). Since ballast is generally a highly frictional material while the subgrade is often 

inferior, the reduction of shear stresses is highly beneficial. Some studies have suggested that use 

of geocell can improve ballast performance and stability, including a reduction in deformation 

(Raymond, 2001), sustained track geometry (Chrismer, 1997) and an increase in strength and 

resilience under cyclic loading (Indraratna et al., 2006). The increase in the confinement in the 

ballast due to geosynthetics would reduce the strains encountered in the foundation as well 

(Indraratna et al. 2010).  

 

1.3 Organization of Dissertation 

 

This dissertation is organized into six different chapters and two appendices that outline different 

phases of this work. Following this introductory chapter, a chapter describing preliminary 
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material testing and laboratory work is presented. Then, chapter three describes laboratory 

testing of large-scale ballast models. Chapter four describes numerical simulation of the 

laboratory tests and a parametric study based on the same model geometry. Chapter 5 consists of 

numerical modeling of geocell applied to an actual ballasted railway geometry. Finally, Chapter 

6 consists of conclusions and recommendations based upon the study, as well as proposed areas 

for future research. 
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CHAPTER 2: MATERIAL CHARACTERIZATION 

 

 

2.1 Introduction  

It is vital to characterize materials before using them in laboratory tests, such as the ballast 

embankment models. Knowledge of material properties allows a better understanding of 

behavior and constraints that are relevant to the testing that will be performed. Therefore, various 

material tests were applied to both the ballast and geocell that were used in further 

experimentation.  

A series of triaxial tests were performed to determine the strength and deformation properties of 

the ballast that was used in testing. In these tests, samples were loaded both monotonically and 

cyclically, since ballast is generally exposed to cyclic loads resulting from many train passes. 

The ballast specimens were loaded to shear failure in order to determine the material strength 

properties for use in further analyses.   

During these tests, a variety of data was recorded, including axial stress, axial strain, volumetric 

strain and confining pressure. Before and after each test was performed, the material was put 

through a series of sieves in order to determine its gradation. The level of breakage and abrasion 

resulting from the triaxial loading was then evaluated. After each gradation analysis, any 

material passing a #4 sieve (equivalent aperture of 4.75 mm; retained material is defined as 

gravel) was removed from the sample.  

In addition to determining the material properties of the ballast used in testing, the tensile 

strength and Young’s Modulus of the geocell was determined. A series of tension tests were run 
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in both monotonic and cyclic loading conditions, where axial load and strain were recorded.  The 

test specimen used was 6 inches in length, had a nominal width of 1 inch and maintained a 

“dogbone” shape in accordance with ASTM standards (ASTM D638). 

2.2 Large-Scale Triaxial Specimen 

A series of minimum and maximum density tests were performed on the ballast, composed of red 

granite, according to ASTM standards to attain its unit density. The maximum and minimum unit 

densities were 1535 kg/m
3
 and 1330 kg/m

3
, respectively. For poorly-graded materials, the 

difference between the minimum and maximum unit densities is usually small, as the material 

often reaches a higher relative density with placement alone. 

Due to the large grain size of the ballast used in testing (figure 2.1), a traditional triaxial testing 

apparatus for normally-sized and medium-sized specimen (Diameter = 7 cm and Height = 14 cm, 

Diameter = 3.5 cm and Height = 7 cm, see figure 2.2) could not be used. This limitation is due to 

the interference caused by the gravel grain size compared to the actual specimen size. In order to 

effectively test the material strength properties and attain reliable data, a custom triaxial 

apparatus was constructed with larger dimensions to ensure no boundary interference and allow 

the ballast to behave as a continuum. Using a MTS loading actuator with a capacity of 450 kN, a 

triaxial specimen with a diameter of 30.5 cm and height of 61 cm was used. The specimen was 

confined by 1 cm thick latex membrane. Confining pressure was applied using a vacuum pump 

that applied negative pressure within the membrane, allowing confining pressures up to 1 

atmosphere. The membrane was sealed and connected to the upper and lower platen using 

several hose clamps and high-quality vacuum grease (see figure 2.3). The use of these 
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precautions allowed for the confining pressure to remain constant throughout testing, ensuring 

reliable data and results.  

 

 

Figure 2.1. Gradation of ballast used in experimentation. 
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Figure 2.2. Comparison of large-scale triaxial specimen to commonly used triaxial test 

specimens. 
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Figure 2.3. Preparation of large-scale triaxial specimen.  
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2.2.1 Results of Monotonic Triaxial Tests 

A series of four (4) large triaxial specimens were loaded monotonically at confining pressures of 

95, 81, 91, and 61 kPa (figure 2.4). The strength properties for the material were determined 

from the triaxial test results. Additionally, degradation of the gravel was studied by performing a 

gradation analysis before and after the series of tests. Results are shown in table 2.1. 

 

 

 

 

 

 

 

Table 2.1. Results of monotonically loaded triaxial tests. 

  

 Test 1 Test 2 Test 3 Test 4 

Confining Pressure, σ3 (kPa) 95 81 91 61 

Axial Stress at 15% Strain,σ1 (kPa) 420 360 420 300 

     

     

Internal Angle of Friction 45°    

Dilation Angle 15°    
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Figure 2.4. Monotonically loaded triaxial tests, Stress vs. Strain (top) and Volumetric Strain vs. 

Axial Strain (bottom) behavior. 
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2.2.2 Material Degradation under Monotonic Loading 

It is evident that in addition to the abrasion and crushing that resulted from the series of tests 

(2.97%), there was a shift in the gradation curve (see figure 2.5). This indicates that in addition 

to the degradation of the small particles, the larger pieces of gravel are fracturing into smaller, 

yet still coarse fragments. Qualitatively, one could see the change in shape of the gravel as the 

tests progressed. The undamaged gravel was rather angular, but several repeated heavy loadings 

caused the angular portions to fracture, creating rounder particles of gravel. It is apparent that the 

largest disparity in the gradation curves occurs within grains between 2.5 mm to 13 mm in 

diameter, suggesting that larger grains are crushing. Further testing under cyclic loading was 

pursued to obtain additional data on the material degradation when subject to limited repeated 

load cycles. 

Table 2.2. Degradation of ballast from monotonic loading. 

 

 

 

 

Degradation, % of Total Specimen Weight 2.97% 

  >#4 Sieve 2.58% 

  >#100 Sieve 0.11% 

  >#200 Sieve 0.11% 

  <#200 Sieve 0.27% 
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Figure 2.5. Gradation after 4 Monotonic Tests. 

 

2.2.3 Results of Cyclic Triaxial Tests 

A series of four (4) cyclic triaxial tests were performed. In each test specimens at varying 

confining pressures were loaded cyclically, and then failed monotonically. The confining 

pressures were 95, 95, 60, and 60 kPa for each respective test. Tests of either 100,000 or 250,000 

loading cycles were chosen for each of different confining pressures. Degradation of the gravel 

was studied by performing a gradation analysis after each cyclic test. The testing began with 

unloaded, virgin material and a 100,000 cycle triaxial test confined at 95 kPa. The next loading 

included 250,000 cycles with a specimen confined at 95 kPa. Virgin material was then provided 

and the trials that followed were 100,000 and 250,000 cycles with specimens confined at 60 kPa.  

Test Specifications 
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Any material passing a #4 sieve (opening size of 0.187 inches) was removed prior to the initial 

test and after each test. Material that was removed after each test was attributed to 

abrasion/crushing. The specimen was repeatedly loaded between 50 kPa and approximately 50% 

of the failure stress determined from monotonic testing. The loading frequency was 10 Hz. 

Table 2.3. Test Results from Cyclically Loaded Triaxial Test 

 

Test 1 Test 2 Test 3 Test 4 

Confining Pressure, σ3 (kPa) 95 95 60 60 

Stress at Failure, σ1 (kPa) 450 440 350 300 

Loading Cycles 250,000 100,000 100,000 250,000 

Minimum Axial Stress, kPa 50 50 50 50 

Maximum Axial Stress, kPa 280 280 170 170 

Stress Amplitude, kPa 230 230 120 120 

Relative Density, % 51% 35% 90% 95% 

Abrasion, % of Total Specimen Weight 1.71% 1.60% 2.35% 0.70% 

 

 

As evidenced in the following axial stress vs. axial strain curves, the load amplitude seemed to 

have an influence on the displacement over the course of the cyclic loading. Within the first few 

thousand cycles, the material densifies and the gravel matrix of the specimen becomes 

restructured and in turn, much stiffer. Note that due to a high frequency, the cyclic load 

amplitude stabilized when the material stiffened. This was dependent of the test conditions 

(figures 2.6-2.9) This is demonstrated by the fact that both 100,000 and 250,000 cycles of 

loading still cause the material to approach a constant strain (approximately 5% for confining 

pressure of 95 kPa; approximately 1.8% for confining pressure of 60 kPa). The possible reason 

for the different constant strains between the two different confining pressures is due to the load 

amplitudes. For non-linear materials, the amplitude has an effect on the strain resulting from 

cyclic loading. 
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Figure 2.6. Cyclic Test 1, Axial Stress vs. Axial Strain, Confining Pressure of 95 kPa. 250,000 

cycles loaded with a stress amplitude of 230 kPa. 

 

Figure 2.7. Cyclic Test 2, Axial Stress vs. Axial Strain, Confining Pressure of 95 kPa. 100,000 

cycles loaded with a stress amplitude of 230 kPa. 
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Figure 2.8. Cyclic Test 3, Axial Stress vs. Axial Strain, Confining Pressure of 60 kPa. 100,000 

cycles loaded with a stress amplitude of 120 kPa. 

 

Figure 2.9. Cyclic Test 4, Axial Stress vs. Axial Strain, Confining Pressure of 60 kPa. 250,000 

cycles loaded with a stress amplitude of 120 kPa. 
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2.2.4 Material Degradation under Cyclic Loading 

 

The gradation analyses for the cyclic triaxial specimens indicated some interesting trends. From 

observation, it seems as if the confining pressure and corresponding stress amplitudes did not 

have a large influence on the abrasion rate. The specimen would always yield material passing a 

#4 sieve, with actual abrasion rates ranging between 0.7-2.35% by weight. However, despite no 

apparent trend for abrasion, the gradation curves indicate that most of degradation in the coarse 

grains happens rapidly, possibly within the first 100,000 cycles. This could be attributed to either 

the angularity of the untested material, or inherent cracks and weaknesses within the stone that 

fracture quickly under loading. This phenomenon is illustrated by the near-congruent curves for 

tests 1 and 2, and tests 3 and 4, respectively (figure 2.10). The first two tests used the same 

material, and then there was new, unloaded granite provided for the last two tests. When new 

material was used, the shift in the gradation curve is larger, especially for coarse grains. This 

seemed independent of the number of cycles or confining pressure. Generally, there is negligible 

damage to the ballast, as it is made of granite which is quite strong. 
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Figure 2.10. Grain size distribution for cyclically loaded triaxial tests. 
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2.3 Geocell Tensile Tests 

The geocell was made of a material called Novel Polymeric Alloy (NPA), which was an alloy 

with a higher stiffness and resistance to creep than polyethylene. In order to attain its mechanical 

properties, several tests were performed, including tensile tests under both monotonic (0.025 

mm/second loading rate) and cyclic conditions. The specimens used in tensile tests were 

“dogbone” shaped cutouts of the geocell walls, with a nominal width of 2.5 cm and nominal 

length of 12.5 cm. The material was found to have a higher stiffness (2.07 GPa) than HDPE (0.8-

1.2 GPa). Its yield tensile strength was found to be approximately 26 MPa, and occurred at an 

approximate strain of 8% (see figure 2.11). However, it was found that the seams had 

significantly lower yield strength than the cell walls, rupturing at approximately 6.8 MPa and 

15% strain (see Figure 2.12). This meant that the seams had only 25% of the strength of the 

walls, suggesting that they might be critical, especially when subjected to shear load. 

The cyclically loaded tests showed significant creep in the geocell, especially under higher 

repeated load. Three tests were performed with 1000 loading cycles, each one having a load 

amplitude that went from 0 to 25% of tensile strength, 50% of tensile strength, or 75% of tensile 

strength (see figure 2.13). When the geocell encountered 25% of its load strength, it exhibited 

significantly less plastic strain, especially under repeated load. More of the strain occurred in the 

initial loading cycles as opposed to the final cycles. Under the higher loading amplitudes, 

significant plastic strain occurred. Additionally, the initial hundred cycles caused a significant 

amount of plastic strain before a gain of resilience. Generally, the geocell material would be safe 

under lower levels of repeated loading. 
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Figure 2.11. Tensile test results of NPA material used in Geocell. 

 

Figure 2.12. Tensile test results of welded seams in Geocell. 
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Figure 2.13. Cyclic tensile test results of NPA material used in Geocell. 

 

2.4 Conclusions 

The characterization of materials and their behavior is essential prior to full-scale testing. It 

allows for a better understanding of experimental constraints and expected behavior during 

testing. Characterization of ballast and geocell materials was performed and provided necessary 

data for full-scale models. The following conclusions were reached: 

 Ballast degradation was limited under both monotonic and cyclic triaxial loading, as 

evidenced by the near congruent gradation curves provided. However, there is a slight 

shift, especially among medium sized to small grains, suggesting that there is some 

fracturing occurring among D50 grains (12.5 mm).  
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 The ballast stiffened up considerably after the first few cycles of loading, as one would 

expect for a poorly-graded granular material. This was also dependent on the confining 

pressure of the ballast. 

 The geocell had a similar strength to HDPE, but a slightly higher Young’s modulus. The 

seams of the geocell were much weaker than the walls of the geocell, as welds in 

geotextiles often are. Under cyclic loading, the geocell endured little plastic strain under 

lower loading (25% of capacity), but endured considerably more plastic strain under 

higher loading (75% of capacity). 
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CHAPTER 3: LABORATORY MODEL TESTS 

 

 

 

3.1 Introduction 

 

A series of six (6) loading tests were performed on the previously studied Granite ballast (see 

Chapter 2). These tests consisted of constructing an embankment, with and without 

reinforcement, and studying its behavior under loading. The reinforcement of choice was PRS 

Neoweb geocell. The reinforced model tests consisted of two different reinforcement 

configurations: a single, central reinforcement layer and a double-layer reinforcement. Each 

configuration was tested under two loading conditions: monotonic (static) and cyclic loading.  

The test results are provided and interpreted herein.  

3.2 Test Setup 

 

An H-frame was constructed to provide a reaction for the MTS actuator that loaded the 

constructed embankment. The test setup is shown schematically in figure 3.1. The MTS actuator 

had a 900 kN capacity and could load under both monotonic and cyclic conditions. The H-frame 

consisted of two 8 cm diameter steel rods, bolted to a meter-thick concrete floor for stability. The 

loading beam consisted of two steel channels, fastened together with 32 bolts. 

The behavior that was studied during each test included lateral spreading, vertical deformation 

under the loading plate, bearing capacity of embankment, and strain in the reinforcement. 

Afterwards, a grain size distribution was performed to determine the degradation of the ballast 
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that may have taken place. The reinforcement was removed after testing and inspected for 

damage. After the tests were complete, data was compiled and analyzed.  

 

 

 

Figure 3.1. Model Test Schematic.  



27 
 

3.3 Unreinforced Model Tests 

 

The control portion of the testing consisted of a model embankment that was constructed of the 

red granite ballast without any type of reinforcement (figure 3.2). This phase of the 

experimentation consisted of two tests: one monotonically loaded and one cyclically loaded.  

 

Figure 3.2. Schematic of embankment for tests 1 and 4. 

 

3.3.1 Monotonic Loading: Test 1 

 

The unreinforced ballast embankment was loaded monotonically under displacement-control 

conditions. That is, a displacement rate of 2.5 mm/minute was specified and the full loading was 

paused for every 6.35 mm of vertical displacement so measurements could be taken and data 

collected. This explains the “spikes” or seeming discontinuities in the loading curve (figure 3.3). 

Despite these jumps, the curve is rather unaffected, thus affording an estimate of apparent 
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stiffness. It seemingly required about 4.5 kPa of vertical stress to cause 1 mm of vertical 

displacement in the initial, elastic portion before “yield” occurs.  

The test was stopped when it was apparent that a constant load was still causing displacement, 

which is classified as failure. This occurred at a vertical stress of 175 kPa.  

Measurements of lateral deformation were made as the test was in progress. Considerable lateral 

deformations occurred at all heights, but the largest spreading occurred at the crest of the 

embankment (figure 3.4). The increase in cross-sectional widths at the recorded heights and main 

results are summarized in Tables 3.1 and 3.2. 

Table 3.1. Lateral spreading of unreinforced, monotonically loaded embankment. 

Height from Floor Percent Increase in Width (%) 

Top, 21.5” (54.6 cm) 31.5 % 

Upper Middle, 18” (45.7 cm) 6.6 % 

Lower Middle, 12” (30.5 cm) 3.0 % 

 

Table 3.2. Summary of notable test results. 

Failure Stress / Load 175 kPa (25.4 psi) / 22.1 kN (5000 lbf) 

Yield Vertical Displacement 65 mm (2.56 in) 

Apparent Stiffness 4.5 kPa/mm 

Max. Lateral Spreading 31.5 % (Top) 
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Figure 3.3. Load-Displacement Curve for unreinforced, monotonically loaded test.  

 

 

 

Figure 3.4. Schematic of initial shape and deformed shape of embankment after testing, all units 

in centimeters. 
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3.3.2 Cyclic Loading: Test 2 

 

The unreinforced ballast embankment was loaded cyclically in load-control conditions. That is, a 

loading amplitude between 35 and 175 kPa was specified, and measurements of displacement 

were taken at 1000, 5000, 10000, 20000, 30000 and 50000 cycles (figure 3.5). The loading 

frequency was 10 Hz, simulating rapid loading. 

The test was stopped when the load actuator reached its goal of 50,000 loading cycles. A 

considerable amount of vertical displacement occurred, totaling 118 mm, which is close to the 

maximum stroke allowed by the actuator. Much of the significant deformation occurred in the 

initial few hundred cycles. Although the material did seem to stiffen during the cyclic loading, 

the vertical displacement continued with every cycle. 

As would be expected for such large vertical displacements, lateral spreading continued 

throughout the test and created a considerably different shape of the embankment (figure 3.6). 

Some of the most significant lateral spreading occurred in the upper-middle portion of the 

embankment, although there was also a very large amount of displacement at the crest. The 

increase in cross-sectional widths at the recorded heights and main results are summarized in 

Tables 3.3 and 3.4. 
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Table 3.3. Lateral spreading of unreinforced, cyclically loaded embankment. 

Height from Floor Percent Increase in Width (%) 

Top, 21.5” (54.6 cm) 10.5 % 

Upper Middle, 18” (45.7 cm) 12.1 % 

Lower Middle, 12” (30.5 cm) 3.5 % 

 

Table 3.4. Summary of notable test results. 

Final Vertical Displacement 118 mm (4.65 in) 

Vertical Displacement during Cyclic Loading 74 mm (2.91 in) 

Max. Lateral Spreading 12.1% (Upper Middle) 

 

 

Figure 3.5.  Cyclic Displacement Curve for unreinforced, cyclically loaded test.  
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Figure 3.6. Schematic of initial shape and deformed shape of embankment after testing, all units 

in centimeters. 

 

 

 

3.4 Reinforced Model Tests: One Layer of Geocell 

 

The reinforced portion of the testing consisted of a model embankment constructed from granite, 

reinforced by a central layer of geocell placed 14.6 cm below the crest (figure 3.7). This section 

of the experimentation consisted of two tests: one monotonically loaded and one cyclically 

loaded. These tests were used to observe the behavior and strength of the ballast model and 

geocell (figure 3.8) under different loading conditions. The behavior that was observed was the 

apparent stiffness, deformation (laterally and vertically), and failure load. Strain gauges were 

place in the center and off-center cells to observe vertical and lateral strains in the geocell, 

Afterwards, its strength was quantified and a gradation analysis was performed.  
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Figure 3.7. Schematic of embankment for tests 3 and 4. 

 

 

Figure 3.8. Schematic of strain gauge configuration in Geocell. 

 

3.4.1 Monotonic Loading: Test 3 

 

The reinforced ballast embankment was loaded monotonically in displacement-control 

conditions. That is, a displacement rate of 2.5 mm/minute was specified and the full loading was 

paused for every 6.35mm of vertical displacement so measurements could be taken and data 
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collected. This explains the “spikes” or seeming discontinuities in the loading curve. Despite 

these jumps, the curve is still rather linear, allowing an estimate of apparent stiffness (figure 3.9). 

It seemingly required about 10.9 kPa of vertical stress to cause 1 mm of vertical displacement. 

This apparent stiffness is higher than the unreinforced model, as expected. 

In addition to a higher apparent stiffness, the reinforced model had much more strength than the 

unreinforced, likely due to the confinement and stiffening of the ballast from the geocell 

reinforcement. The test was stopped when the loading frame neared its allowable loading 

capacity (approximately 16,350 lbf, or 72.7 kN) of about 575 kPa. It seemed evident that the 

reinforced model could mobilize more strength before failure, but had already evidenced its 

effectiveness by doing more than tripling the carried load without excessive vertical deformation.  

The confinement of the single reinforcement layer was also very effective in preventing lateral 

spreading. This lateral displacement was greatly reduced and mostly limited to the crest of the 

embankment, where no reinforcement existed (figure 3.10). This is very evident from the results, 

which indicate very little lateral deformation from the level of the reinforcement and below. The 

vertical displacement that occurred within the 175 kPa range of the single reinforcement test was 

31% of the displacement that occurred in the same range for the unreinforced, monotonically 

loaded test.  The increase in cross-sectional widths at the recorded heights was effectively 

reduced by geocell confinement. The main results are summarized in Tables 3.5 and 3.6. 
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Table 3.5. Lateral spreading of single-reinforced, monotonically loaded embankment. 

Height from Floor Percent Increase in Cross-Sectional Area (%) 

Top, 21.5” (54.6 cm) 18.5 % 

Upper Middle, 18” (45.7 cm) 3.0 % 

Lower Middle, 12” (30.5 cm) 1.8 % 

 

Table 3.6. Summary of notable test results. 

Final Stress / Load 575 kPa (83.4 psi) / 72.7 kN (16350 lbf) 

Final Vertical Displacement 60 mm (2.36 in) 

Apparent Stiffness 10.9 kPa/mm 

Max. Lateral Spreading 18.5 % (Top) 

 

 

 

Figure 3.9. Load-Displacement Curve for single-reinforced, monotonically loaded test.  
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Figure 3.10. Schematic of initial shape and deformed shape of embankment after testing, all 

units in centimeters. 

 

3.4.2 Cyclic Loading: Test 4 

 

The reinforced ballast embankment was loaded cyclically under load-control conditions. That is, 

a loading amplitude between 75 and 350 kPa was specified and measurements of displacement 

were taken at 1000, 5000, 10000, 20000, 30000 and 50000 cycles. The loading frequency was 10 

Hz, simulating rapid loading. 

The reinforced model had much more strength than the unreinforced one, likely due to the 

confinement and stiffening of the ballast from the geocell reinforcement. The test was stopped 

when the actuator reached its goal of 50,000 loading cycles. The test indicated that it prevented 

almost 60% of the total vertical displacment that would have occurred if the ballast had been 

unreinforced (figure 3.11). This reduction could possibly have been much more if the cyclic 

amplitude for the reinforced test was the same as the lower loading amplitude used in the 

unreinforced test. 
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The confinement of the single reinforcement layer was also very effective in the preventing of 

lateral spreading (figure 3.12). This lateral deformation was greatly reduced and mostly limited 

to the crest of the embankment, where no reinforcement existed. This is evident from the results, 

which indicate that very little lateral deformation from the level of the reinforcement and below. 

The increase in cross-sectional widths at the recorded heights was effectively reduced by geocell 

confinement.The main results are summarized in Tables 3.7 and 3.8. 

Table 3.7. Lateral spreading of single-reinforced, cyclically loaded embankment. 

Height from Floor Percent Increase in Cross-Sectional Area (%) 

Top, 21.5” (54.6 cm) 10.7 % 

Upper Middle, 18” (45.7 cm) 3.3 % 

Lower Middle, 12” (30.5 cm) 1.3 % 

 

Table 3.8. Summary of notable test results. 

Final Vertical Displacement 62 mm (2.44 in) 

Vertical Displacement during Cyclic Loading 36 mm (1.41 in) 

Max. Lateral Spreading 10.7 % (Top) 

 

 

 

Figure 3.11. Cyclic Displacement Curve for single-reinforced, cyclically loaded test.  
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Figure 3.12. Schematic of initial shape and deformed shape of embankment after testing. Shape 

shown in centimeters. 

 

3.4.3 Behavior of Geocell during Tests 3 and 4 

 

Despite the success in preventing lateral spreading, significant damage occurred to the geocell at 

the seams under and around the center of the loading plate. Strain gauges placed on the geocell 

seem to suggest excessive deformation and possible rupture due to sudden shifts between 

compression and extension.  

Upon dismantling the model after testing, the geocell was examined for damage. It was damaged 

significantly, with tearing and rupture at all 4 of the seams beneath the loading plate. 

Unfortunately, the strain gauge data beneath the center of the plate cuts off approximately 28 

minutes into the test. This prevents any observation of sudden shifts or changes from 

compression to extension. These shifts are an effective means of determining any events within 

geocell during the test. 
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The off-center strain gauges managed to capture data throughout the course of the test. It seems 

to imply that there was increasing tension laterally and compression vertically in the near off-

center gauges (1 and 2) as the load was increased. The further off-center strain gauges showed 

little to no reaction to the load. However, all gauges indicate strains within the elastic range of 

the geocell loading (figures 3.15 and 3.16). 

The geocell encountered some damage during the cyclic loading test, but not nearly as much 

tearing at the seams as during the monotonic test (figure 3.14). In fact, most of the damage 

occurred as bending and compression of the top portion of the Geocell walls. This lack of tearing 

could possibly be a result of the lower load amplitude. 

More problems occurred with the on-center strain gauges, as they only started recording at about 

2 hours and 20 minutes into the test. However, there are no sudden shifts and the strain is 

relatively constant, suggesting that the previous data was likely similar. Further supporting this 

notion is the strain gauge data from the off-center cell (figures 3.18 and 3.19). It shows a 

relatively constant strain throughout the test, suggesting that no serious failures or localizations 

occurred within the geocell. 
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Figure 3.13. Damage in the Geocell after test 3.  

 

Figure 3.14. Condition of Geocell after test 4.  
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Figure 3.15. Limited strain data for on-center strain gauges.

 

Figure 3.16. Full strain data for off-center strain gauges. 
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Figure 3.17. Limited strain data for on-center strain gauges. 

 

Figure 3.18. Full strain data for off-center strain gauges.  
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3.5 Reinforced Model Tests: Two Layers of Geocell 

 

The reinforced portion of the testing consisted of a model embankment constructed from granite 

ballast, reinforced by a two layers of geocell: a top layer and a bottom layer. This section of the 

experimentation consisted of two tests: one monotonically loaded and one cyclically loaded. 

Similar to previous tests the strength of the ballast model under different loading conditions was 

observed, along with apparent stiffness, deformation (laterally and vertically), and failure load. 

Again, a gradation analysis was performed before and after testing. 

 

Figure 3.19. Schematic of embankment for tests 5 and 6. 
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Figure 3.20. Schematic of strain gauge configuration in layers of Geocell. 

 

3.5.1 Monotonic Loading: Test 5 

 

The reinforced ballast embankment was loaded monotonically in displacement-control 

conditions. The loading curve is rather linear, allowing an estimate of apparent stiffness (figure 

3.21) with its loading rate of 2.5 mm/minute. It seemingly required about 11.9 kPa of vertical 

stress to cause 1 mm of vertical displacement. This apparent stiffness is higher than the 

unreinforced model and the model with a central reinforcement layer. This increase in stiffness is 

expected as the whole model is a reinforced composite. 

This model test was able to support more load than the unreinforced case and possibly the case 

of just the central reinforcement. Like the test with a single reinforcement, this test was stopped 

when the loading frame reached its allowable loading capacity (approximately 17,780 lbf, or 

79.1 kN) of about 625 kPa. This model handled more load because no significant damage in the 

geocell occurred and the composite model was significantly stiffer.  
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The confinement of the double reinforcement layer was also very effective in the prevention of 

lateral spreading. This lateral deformation was greatly reduced throughout the height of the 

model as the top layer of reinforcement prevented spreading at the crest (figure 3.22). The 

vertical displacement that occurred within the 175 kPa range of the double-reinforcement test 

was 28% of displacement that occurred in the same range for the unreinforced, monotonically 

loaded test. The increase in cross-sectional widths at the recorded heights was effectively 

reduced by geocell confinement and the main results are summarized in Tables 3.9 and 3.10. 

Table 3.9: Lateral spreading of double-reinforced, monotonically loaded embankment. 

Height from Floor Percent Increase in Cross-Sectional Area (%) 

Top, 21.5” (54.6 cm) 6.5 % 

Upper Middle, 18” (45.7 cm) 3.4 % 

Lower Middle, 12” (30.5 cm) 1.8 % 

 

 

Table 3.10: Summary of notable test results. 

Final Stress / Load 625 kPa (90.7 psi) / 79.1 kN (17780 lbf) 

Final Vertical Displacement 53 mm (2.08 in, calibrated) 

Apparent Stiffness 11.9 kPa/mm 

Max. Lateral Spreading 6.5 % (Top) 
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Figure 3.21. Load-Displacement Curve for double-reinforced, monotonically loaded test.  

 

 

 

Figure 3.22. Schematic of initial shape and deformed shape of embankment after testing. 

Dimensions given in centimeters. 
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3.5.2 Cyclic Loading: Test 6 

 

The double-reinforced ballast embankment was loaded cyclically in load-control conditions. 

That is, a loading amplitude between 75 and 350 kPa was specified and measurements of 

displacement were taken at 1000, 5000, 10000, 20000, 30000 and 50000 cycles (figure 3.23). 

Similar to before, the loading frequency was 10 Hz. 

The test was stopped when the actuator reached its goal of 50000 loading cycles.  

The confinement of the double-reinforcement layer was very effective in the prevention of lateral 

spreading (figure 3.24). This lateral deformation was greatly reduced and mostly limited to the 

crest of the embankment, where no reinforcement existed. This is evident from the results, which 

indicate very little lateral deformation from the level of the reinforcement and below. The final 

vertical displacement was 48% of displacement that occurred in the unreinforced, cyclic test. The 

increase in cross-sectional widths at the recorded heights was effectively reduced by geocell 

confinement. The main results are summarized in Tables 3.11 and 3.12. 

Table 11: Lateral spreading of double-reinforced, cyclically loaded embankment. 

Height from Floor Percent Increase in Cross-Sectional Area (%) 

Top, 21.5” (54.6 cm) 7.4 % 

Upper Middle, 18” (45.7 cm) 2.5 % 

Lower Middle, 12” (30.5 cm) 0.9 % 

 

 

Table 12: Summary of notable test results. 

Final Vertical Displacement 57 mm (2.24 in) 

Vertical Displacement during Cyclic Loading 34 mm (1.34 in) 

Max. Lateral Spreading 7.4 % (Top) 
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Figure 3.23. Cyclic Displacement Curve for Double-Reinforced, Cyclically Loaded test.  

 

 

 

 

Figure 3.24. Schematic of initial shape and deformed shape of embankment after testing. 

Dimensions given in centimeters. 
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3.5.3 Behavior of Geocell during Tests 5 and 6 

 

Both layers of geocell were essentially undamaged from the monotonic loading of the model. 

Both encountered no tearing at the seams and joints, unlike in the single reinforcement layer test 

(figure 3.25). This could likely be due to a higher stiffness of the embankment acting as a 

composite and in turn, a lower deformation of the geocell. The only observed consequence, 

which was negligible, was slight superficial bending and compression of the geocell walls. 

Further problems occurred with the strain gauges as no data was recorded in the bottom layer, 

but was not critical. Full data was available for the top layer (figure 3.27), which indicated 

increasing strain correlating to each increasing load, as expected. The general return of the 

strains to the initial level after the test was completed suggests that strain was elastic and 

minimal damage (plastic strain) occurred.  

Both layers of geocell were undamaged from the cyclic loading of the model. Both encountered 

no tearing at the seams and joints (figure 3.26). 

To avoid some of the issues with the strain gauges that had been previously encountered, both 

data collection devices were connected to both layers for redundancy. As expected, one of the 

devices failed during the test, but the other collected data throughout, giving an accurate 

representation of what was occurring in both layers. As expected, the lower layer encountered 

less lateral, tensile strain than the top layer (figure 3.28). However both were relatively constant 

throughout the test, suggesting that no rupture occurred. The vertical, compressive strain was 
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rather similar throughout the test, suggesting that the compressive stresses were transferred 

rather evenly through the model, possibly due to the high stiffness of the model. 

 

 

Figure 3.25. Condition of geocell layers after test 5. They were relatively undamaged. 

 

Figure 3.26. Condition of geocell layers after test 6.  
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Figure 3.27. Full strain data for top, on-center strain gauges. 

 

Figure 3.28: Full strain data for top and bottom, on-center strain gauges. 
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3.6 Summary and Discussion 

 

The monotonic and cyclic tests performed demonstrate that the geocell is very effective in 

increasing ballasted embankment bearing capacity, increasing embankment stiffness and 

preventing excessive deformation (laterally and vertically). The reinforcement seems to handle 

cyclic loading well under sustainable load amplitudes and could be a cost-effective method for 

strengthening granular embankments under an optimized configuration and loading.  

Geocell increased the strength of the embankment considerably, as evidenced by the much 

higher loads sustained by the reinforced models (Table 3.13. and 3.14). In the unreinforced 

model, vertical displacement of the loading plate at failure (175 kPa) was about 65 mm. For the 

same load in both the single- and double-reinforced tests, the displacements were much smaller 

(20 mm and 18 mm, respectively). Hence, the single- and double-reinforcements prevented about 

69% and 72%, respectively of the vertical displacement of the load-bearing footing. This 

difference in vertical displacement between the reinforced configurations is negligible, 

suggesting that perhaps one layer of reinforcement is more cost-effective than two. However, 

before making this conclusion, it is important to consider what the working load of the 

embankment or foundation would be. Both configurations could easily support the load from the 

unreinforced test, but when exposed to much higher loads, damage can occur in the geocell, 

affecting the structural integrity of the embankment.  Both of the reinforced configurations were 

exposed to loads in excess of 575 kPa, but the single-reinforcement configuration resulted in 

geocell with torn seams. This is possibly the result of excessive deformation and very high lateral 

stresses in each cell due to stiffening of the confined material below it. The confining behavior of 

the geocell causes a concentration of lateral stresses that places the reinforcement in tension.  
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The double-reinforcement configuration negated nearly all of the damage, possibly because more 

strength was mobilized from the entire embankment. That is, the vertical/lateral stresses were 

likely distributed more evenly throughout the whole model, as opposed to being heavily 

concentrated in a single layer of reinforcement. The high concentration of lateral stresses in 

conjunction with the large vertical stresses in the center of the embankment could very possibly 

have caused the rupture in test 3 (single-reinforcement, monotonically loaded). It seems evident 

that the cyclic load amplitude for the single reinforcement test was not enough to cause tearing at 

the seams, although long-term strength of the geocell should be a design concern. 

The application of geocell reinforcement to the monotonically loaded tests was very effective in 

preventing lateral spreading with increased load. When compared to the unreinforced case, the 

single-reinforcement reduced the lateral spreading at the crest by 45%. This reduction is 

significant, but the lateral spreading still occurs since the ballast above the reinforcement is 

shearing. Similarly, the double-reinforced configuration reduced lateral spreading at the crest by 

82%. This highly effective prevention of lateral spreading is due to the whole model being 

reinforced and confined by the geocell.  

Table 3.13. Summary of Monotonically Loaded Tests in All Reinforcement Setups. 
 Test 1 Test 3 Test 5 

 Unreinforced Single-Layer Double-Layer 

Failure Stress / Load 175 kPa / 22 kN 575 kPa / 72.7 kN 625 kPa / 79.1 kN 

Yield Vert. Disp. 65 mm 60 mm 53 mm 

Apparent Stiffness 4.5 kPa/mm 10.9 kPa/mm 11.9 kPa/mm 

Max. Lateral Spreading 72.78 % of Area 

(Top) 

40.46 % of Area 

(Top) 

13.38 % of Area 

(Top) 

 

 Displacement (mm) Percent Increase in Width
2
 

 Test 1 Test 3 Test 5 Test 1 Test 3 Test 5 

Top, 54.6 cm
1
  108.0 63.5 22.2 31.48 % 18.52 % 6.48 % 

Upper Middle, 45.7 cm
1
 30.0 12.2 13.6 6.56 % 3.00 % 3.35 % 

Lower Middle, 30.5 cm
1
 20.1 10.2 10.2 3.04 % 1.82 % 1.83 % 

1
Height measured from concrete strongfloor. 

2
Percentage increase as compared to initial width. 
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In addition to strengthening the monotonically-loaded models, the geocell was very effective in 

strengthening the cyclically loaded embankments. Vertical displacement of the loading place 

occurred continuously when the unreinforced model was loaded cyclically (between 35 and 175 

kPa). In fact, during the 50,000 cycles of loading, over 74 mm of vertical displacement occurred. 

The cyclic loading for the reinforced models was double the amplitude (between 75 and 350 

kPa) due to the higher strength of the model. Despite the higher loads in the single- and double-

reinforced models, only 36 and 34 mm of vertical displacement occurred during the cyclic 

loading, respectively. The difference in vertical displacements between the two reinforcement 

configurations was negligible. In both configurations, the damage to the geocell was very light, 

suggesting that the single reinforcement might be more cost-effective for cyclic loading of this 

amplitude. However, for larger loads, the double-reinforcement might be necessary. It is evident 

that the seams in the single-reinforcement configuration rupture under larger loading, as 

witnessed in the monotonically loaded test.  

Table 3.14. Summary of Cyclically Loaded Tests in All Reinforcement Setups. 
 Test 2 Test 4 Test 6 

 Unreinforced Single-Layer Double-Layer 

Final Vert. Disp. 118 mm  62 mm  57 mm  

Cyclic Vert. Disp.  74 mm  36 mm  34 mm  

Max. Lateral Spreading 25.69 % of Area 

(Upper Middle) 

22.43 % of Area 

(Top) 

15.36 % of Area 

(Top) 

 

 Displacement (mm) Percent Increase in Width
2
 

 Test 2 Test 4 Test 6 Test 2 Test 4 Test 6 

Top, 54.6 cm
1
  36.1 36.5 25.4 10.52 % 10.65 % 7.41 % 

Upper Middle, 45.7 cm
1
 55.3 13.3 10.2 12.11 % 3.27 % 2.52 % 

Lower Middle, 30.5 cm
1
 23.4 7.0 4.9 3.54 % 1.25 % 0.88 % 

1
Height measured from concrete strongfloor. 

2
Percentage increase as compared to initial width. 
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The application of geocell reinforcement to the cyclically loaded tests was effective in 

preventing lateral spreading. The spreading at the crest was similar for the unreinforced and 

single-reinforced models because the spreading was largely local, being confined to above the 

reinforcement. This is evidenced by the significant reduction is lateral deformation in the center 

(reduction from 25.7% to 6.6%) and base (reduction from 7.2% to 2.5%) of the embankment. In 

the case of the double-reinforced configuration, lateral spreading was reduced throughout the 

model due to the confinement from the geocell. Both reinforced cases prevented significant 

lateral spreading by reducing the vertical deformation that could occur.  

Unfortunately, recurring problems with the strain gauges restricted inferences that could be made 

during the tests. The geocell did strain during the tests, but the strain level was not critical during 

most of the tests, as it never exceeded the elastic range. Generally, compressive strain occurred 

vertically in the geocells and tensile strain occurred laterally. This tensile strain was due to the 

confining nature of each cell, as expected. Buckling in the geocell wall was not noted. 

The durability of the geocell was impressive, but was dependent on the configuration of the 

embankment. In the monotonically loaded case with single reinforcement, the damage was 

considerable due to high lateral stresses within the confined cells. However, the geocell only 

encountered light damage in the cyclically loaded test of 50,000 repetitions, possibly due to the 

lower load amplitude. In the double-reinforcement configuration, damage was insignificant for 

both monotonic and cyclic loading applications, monotonic and cyclic. This is due to the more 

even distribution of stresses and the composite behavior of the model and confining 

reinforcements. The double-reinforcement configuration could handle a higher load, or likely 

sustain the cyclic load for a longer time with less damage at the seams. Load, and expected 
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cycles of the life of the embankment should be important considerations when designing with the 

geocell. 

Gradation analyses performed after each model test suggested that the geocell had little impact 

on the degradation of the ballast due to loading. The grain size distribution of the ballast 

remained relatively constant throughout each of tests, although considerable dust was created as 

a by-product of abrasion between particles (figure 3.29). Quality ballast and a limited number of 

cycles could explain the lack of degradation. Testing of inferior ballast could provide more 

insight into the deteriorative properties of the ballast under loading. 

 

Figure 3.29: Comparison of gradation analyses for each test.  
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3.7 Conclusions 

 

A series of laboratory tests were performed on ballast embankments with and without geocell 

reinforcement. During these tests, actuator load, vertical displacement, lateral displacements 

along side slopes, and strain in the geocell were measured. There were three different 

configurations for embankment construction: no geocell, a single, centrally placed layer of 

geocell, and two layers of geocell. The application of confinement to the model embankment was 

very effective in improving its behavior under loading. The following conclusions are drawn 

from the experiments: 

1) The monotonically loaded tests indicated that application of geocell to the gravel 

embankment significantly increased the effective apparent stiffness under loading. The 

apparent stiffness of the embankment under loading from the MTS actuator was 

increased by 140% and 165% for the single- and double-layer reinforced embankments, 

respectively. The vertical settlement that occurred during cyclic loading was reduced by 

48% and 52% for the single- and double-layer reinforced embankments.  

 

2) Geocell confinement effectively reduced the vertical settlement that occurred under the 

loading plate. In comparison to the unreinforced embankment, the reinforced 

embankments reduced vertical settlement at a monotonic actuator load of 175 kPa by 

69% and 72% for the single- and double-layer reinforced embankments, respectively. 

 

3) Geocell confinement effectively reduced lateral spreading of ballast, especially in 

material below or at level with the reinforcement. Lateral displacements at the crest of the 
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embankment were 38% and 79% for the single- and double-layer reinforced 

embankments, respectively.  

 

4) Under cyclic loading, the reinforced embankments attained stabilization and exhibited 

structural resilience more rapidly than without reinforcement. When geocell was absent, 

vertical settlement and lateral settlement continued despite a lower stress amplitude than 

that applied in the reinforced cases. With geocell confinement, a stable and final 

settlement and lateral spreading was attained quite rapidly, which implies mobilization of 

the reinforcement. 

 

5) Strain gauges placed on the walls of the geocell showed low tensile and compressive 

strains during loading, both monotonically and cyclically. The strains remained within 

the elastic range for the geocell, rarely exceeding 1%. Upon removal of loads, the strain 

in the geocell wall returned back to its initial state, suggesting negligible plastic strain or 

creep during the loading phase. 

 

6) Generally, the condition of the geocell upon exhumation after testing was good, with only 

minor, superficial damage. However, in the monotonically loaded case, where high loads 

and bending occurred in the cells below the loading plate, rupture occurred at the cell 

seam. Despite relatively low tensile strains in the material, the significantly weaker seams 

yielded. Therefore, excessive stress concentrations, especially at the welded seams of the 

cell are more of a structural concern than the tensile strength of the cell walls. Due to this 
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issue, it is suggested that clearance be provided between the area of load application and 

geocell location. 
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CHAPTER 4: NUMERICAL SIMULATION OF LABORATORY TESTS  

 

4.1 Introduction 

A commercially available finite element (FE) software, ABAQUS (Hibbit et al., 2007) was used 

in the analysis. The 6 model tests were simulated using material properties obtained from 

laboratory tests and the actual geometry and boundary conditions, and the stress and deformation 

behavior was compared. Similar to the laboratory tests, these simulations consisted of 3 static 

and 3 cyclic loading conditions. Validation through numerical modeling adds credibility for 

further analyses simulating more practical applications. A 3-dimensional (3-D) analysis is 

necessary to accurately simulate the confining mechanism of geocell reinforcement as well as 

ballasted railroad foundations.   

4.2 Numerical Simulation of Model Tests 

4.2.1 Material Properties 

In order to correctly characterize the materials used in testing and attain reasonable results in the 

FE analysis, reliable material data must be used. The data was obtained from prior laboratory 

material testing.  

The ballast was modeled as a non-associative elastic-plastic material, obeying a 3-D Drucker-

Prager yield criterion (see Appendix B), which is commonly used to simulate granular materials 

as its strength and yield is dependent on volumetric strain. Although the ballast is a cohesionless 

material, it was given a small cohesion (1 kPa) to assist with convergence issues, while not 

critically affecting the results (Table 4.1). The Drucker-Prager model was chosen for simplicity 

in modeling the elastic-plastic behavior of the ballast using a rounded yield surface as opposed to 
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the sharp, drastic yield surface that exists in the stress space when using Mohr-Coulomb failure 

criteria. Additionally, the material parameters for the Drucker-Prager model can be determined in 

a straight-forward manner. Material models exist that could capture the behavior of the ballast 

with slightly more accuracy, especially under cyclic conditions, but would require considerably 

more parameters (some difficult to attain), introducing potentially less accurate results. The 

circumscribed, circular Drucker-Prager yield surface was used for the compressive strength  

properties of the ballast. The inscribed circle is used to describe extensive properties of soil  

under triaxial extension 

The geocell was modeled as an elastic material since only minimal damage and plastic strain was 

encountered during the tests (Table 4.1). The shape of the geocell was modeled with a 

rhomboidal shape as opposed to the actual pseudo-sinusoidal shape that is used in the tests. This 

was done to simplify meshing, while still maintaining the basic mechanical function of 

confinement. Other 3-D FE models of multiple cells of geocell have represented the cells in a 

diamond, rhomboidal shape (Yang, 2010). The loading plate was modeled as a rigid material 

because the stiffness of the steel is orders of magnitude larger than the ballast. 

 

 

 

 

 

 

Table 4.1. FE properties of ballast and geocell. 

Ballast Value 

Mass Density, ρ (kg/m
3
) 1520 

Elastic Modulus, E (kPa) 2000 

Poisson’s Ratio, ν 0.35 

Internal Angle of Friction, ϕ 45° 

Angle of Dilation, ψ 15° 

Cohesion, c’ (kPa) 1 

Geocell Value 

Elastic Modulus, E (GPa) 2.07 

Poisson’s Ratio, ν 0.35 

Mass Density, ρ (kg/m
3
) 2000 
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4.2.2 Boundary Conditions 

A quarter of the embankment was modeled to simulate the deformations as accurately as 

possible, while only requiring reasonable computational time. To ensure that the geometrical 

symmetry can allow this computational advantage, boundary conditions must be modeled 

correctly. Several displacement restrictions were applied to the embankment. Both of the 

interior, side faces were restrained from moving laterally, but allowed to move vertically since 

they lie in the center of the symmetrical embankment, where no lateral deformation is expected 

(Figure 4.1). Also, the base of the embankment was fixed from displacing in the z-direction, 

modeling the rigid concrete foundation underlying the ballast in the model tests.   

 

Figure 4.1. Boundary conditions for quarter embankment geometry. 
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4.2.3 Elements/Mesh 

The baseline tests (1 and 2) were meshed using a structured pattern made up of 9500, hexahedral, 

8-noded, reduced integration elements (C3D8R). Coarser meshes generally provided large 

underestimates in displacement. The general simplicity of the embankment shape, in addition to 

the absence of a complex embedded 3-dimensional reinforcement allowed for the use of a simple 

meshing pattern (figure 4.3a).  

The single-reinforced tests (3 and 4) were meshed using a semi-structured pattern that consisted 

of 17520, tetrahedral, 4-noded, reduced integration elements (C3D4R), which modeled both the 

gravel and geocell (figures 4.2 and 4.3b). The irregular geometry that arises from the use of a 3-

dimensional reinforcement with a complex structure requires tetrahedral elements due to the 

wide variety of angles and dimensions encountered. The shape of this element serves a 

competent alternative to the 8-noded brick element used in the unreinforced test, but requires 

many more nodes in the mesh and subsequently more computational time. 

The double-reinforced tests (5 and 6) were also meshed using a semi-structured pattern that 

consisted of 14630, tetrahedral, 4-noded, reduced integration elements (C3D4R), which modeled 

both the gravel and geocell (figures 4.2 and 4.3c). Again, similar to the previous simulations with 

one layer of geocell, the irregular geometry that arises from the use of a 3-dimensional 

reinforcement with a complex structure requires tetrahedral elements due to the wide variety of 

angles and dimensions encountered. 

Despite the lack of perfectly congruent meshes used for the three reinforcement configurations, 

all of the elements were generally meshed to a similar size (about 1.5 cm in diameter). This is an 
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important consideration since meshing too finely might misrepresent the coarse gravel used in 

the actual test (D50 ≈ 1.5 cm), while meshing coarsely could have a similar, detrimental effect. 

The geocell was initially modeled with shell elements due to its high aspect ratio. However, due 

to significant meshing difficulties, it was eventually modeled using solid elements. 

Planar interface elements were assigned to the surfaces where ballast and geocell were in 

contact, including the inside, outside, top and bottom of the geocell-ballast interface. They were 

modeled as a contact surface where tangential properties were frictional (i.e. δ=(2/3Φ)=30°) and 

normal contact was “hard”, that is the walls of geocell could not be penetrated. Contact was 

defined by contact pairs using a penalty kinematic constraint algorithm. Consequently, contact 

surfaces were defined, then normal and tangential stresses were determined based on nodal pairs. 

 

Figure 4.2. Discrete meshing of quarter of Geocell. 
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Figure 4.3a. Meshing of unreinforced embankment. 

 

Figure 4.3b. Meshing of single-reinforced embankment. 

 

Figure 4.3c. Meshing of double-reinforced embankment. 

 

4.2.4 Loading Stages 

4.2.4.1 Static Loading 
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Two loading stages were applied to the embankment quarter to simulate the loading conditions. 

First, gravity was applied to simulate construction and in-situ conditions of model test. It also 

allows the ballast to gain frictional strength as overburden pressure enables mobilization of its 

internal strength.  

The next loading stage consisted of applying pressure to the crest of the model using a steel 

loading plate. ABAQUS/Explicit was used to simulate the static loading applied to the 

embankment in displacement-control conditions, while maintaining computational stability. 

ABAQUS/Explicit was an important choice since it is used to model highly non-linear behavior 

of materials (like soil) in a stable and efficient manner. An Implicit analysis 

(ABAQUS/Standard), cannot capture the yield behavior of soil, often having convergence errors 

and infinitesimally small time increments. In this stage, the displacement was slowly and steadily 

increased at a rate of 0.1 mm/second to those attained in the actual experiments. The vertical 

stress/displacement behavior was monitored throughout the simulation for comparison.  

4.2.4.2 Cyclic Loading 

Two loading stages were applied to the embankment quarter to simulate the cyclic loading 

conditions. First, gravity was applied to simulate construction and in-situ conditions of lab test, 

in a manner identical to the static case.  

Next, dynamic conditions were simulated using ABAQUS/Explicit in order to expedite the 

simulation by reducing computational time and to account for the inertial effects of the ballast. In 

this situation, a vertical pressure was applied to a loading plate placed on top of the crest, similar 

to static conditions. However, the load was applied cyclically, with the same load amplitudes and 
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frequency as used in the lab tests. The simulations required approximately 30 hours to run on 

32GB RAM, 2.66 GHz server. 

4.3 Numerical Modeling of Experiments 

4.3.1 Monotonically Loaded Tests 

The three statically loaded embankment tests were simulated using similar loading conditions 

and model geometry. Two geocell configurations were used: a single, centrally placed layer of 

geocell, and two layers of geocell placed within the embankment. The actual experiment and the 

FE simulation were run in displacement-control conditions. Throughout the duration of these 

simulations, the vertical displacement and stress under the loading plate, as well as the lateral 

displacement along the profile of the embankment were compared with the actual test results.  

While comparing the vertical displacement to the vertical load, it is shown that the results match 

reasonably well (Figure 4.4a, 4.6a,b,c). This is likely due to the use of quality laboratory data 

(triaxial tests results for the ballast, tensile tests results for the geocell) to characterize the 

material properties required by the FE analysis. These tests allowed an accurate determination of 

properties such as the internal friction angle, ballast stiffness, and geocell stiffness which are 

necessary for analyzing this behavior.  

However, the lateral displacements did not match entirely. This could be due to the difficulties in 

predicting the plastic deformation behavior in anisotropic cohesionless materials that are subject 

to low confinement pressures, such as much of the ballast at the crest or along the profile where 

much of the lateral spreading occurred. Often, numerical models yield acceptable results, 

especially when considering lateral displacements. Despite the imperfect modeling of the lateral 
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spreading occurring along the profile of the embankment, the general trends matched, and the 

displacement simulations were all within the same order of magnitude of the experimental results 

(Figure 4.5a,b,c). 

Preliminary modeling was done using Mohr-Coulomb plasticity for ballast, but was neglected as 

ABAQUS would not accept the material model for cyclic loading. The monotonic testing 

matched reasonably well (figure 4.4b), but was ignored for consistency in modeling throughout 

all phases of study. Additionally, Mohr-Coulomb plasticity has convergence errors stemming 

from the shape of its yield surface, further justifying the choice of Drucker-Prager as a material 

model. 
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Figure 4.4a. Comparison of vertical displacement from experiments and FE simulations for 

monotonically loaded tests using Drucker-Prager plasticity. 

 

Figure 4.4b. Comparison of vertical displacement from experiments and FE simulations for 

monotonically loaded tests using Mohr-Coulomb plasticity.  
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Figure 4.5a. Comparison of lateral 

displacement at crest of 

embankment from laboratory 

experiments and FE simulations for 

monotonically loaded tests. 

 

Figure 4.5b. Comparison of lateral 

displacement at center of embankment 

slope from laboratory experiments and 

FE simulations for monotonically 

loaded tests. 

 

Figure 4.5c. Comparison of lateral 

displacement at toe of embankment 

slope from laboratory experiments and 

FE simulations for monotonically 

loaded tests. 
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Figure 4.6a. Displacement in unreinforced case at end of loading. 

 

Figure 4.6b. Displacement in single-reinforced case at end of loading. 

 

Figure 4.6c. Displacement in double-reinforced case at end of loading. 
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The FE analysis is particularly useful in observing the stresses and strains in the geocell in order 

to examine possible weaknesses. As observed during the experiment and afterwards, when the 

geocell was exhumed, the highest concentrations of stresses and strains occurred at the bottom 

corners of the diamond-shaped cells, under the loading plate. Intuitively, this makes sense since 

the bending of the ballast-geocell composite places significant tensile stresses on the lower part 

of the geocell, especially in the center region that happens to be some depth under the loading 

plate.  This observation is important because although the geocell underwent mainly elastic 

deformations during the testing, the polymer material can yield throughout the cell wall or the 

seam under higher loading. The stress concentration observed at the cell corners accentuates the 

need for higher seam strength, which is often critically weak in comparison to the tensile strength 

of the walls forming the cells. Despite these concerns, strain gages used in the geocell during 

experimentation implied that the geocell exhibited mostly elastic strain (i.e., recoverable strains), 

allowing the assumption of elastic behavior in the geocell for the FE analysis. The strains 

encountered in the critical regions of the geocell during the simulation were in the same range of 

magnitude as those found in the experiments. In the single-layer reinforced test, the strains 

encountered in the geocell under the loading plate were 3.5% and 2.1% at bottom corner seam 

and central cell wall, respectively. Computed at the same geocell locations in the double-layer 

reinforced test, the strains encountered in the geocell under the loading plate in the top layer 

were 2.4% and 1.4%, and 1.8% and 1.1% in the bottom layer (Figure 4.7).  
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Figure 4.7. Strain in Geocell from FE simulation (single-layer, top; double-layer, bottom). 
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Excluded from the analysis of the geocell was any simulation of creep, which can be a very 

complex and difficult process to simulate or predict. The material used for the geocell is an alloy 

that contains materials to inhibit creep behavior over time. However, the long-term creep might 

be a key concern, depending on material properties or a specific geocell application.  

Although some of the simulated displacements did not match very well, the simulations and 

experiments were a good indicator to the advantages attained from using geocell confinement, 

including lower deformations and higher strength and stiffness. The lack of accurate matching 

for lateral displacements was not deemed critical since similar advantageous trends were still 

observed due to the confining mechanism in the geocell. 

4.3.2 Cyclic Tests 

The three cyclically loaded embankment tests were simulated using similar loading conditions 

and model geometry. That is, the pressure was applied to the plate under load-control conditions, 

using a specified maximum and minimum load. An unreinforced control test and two 

reinforcement configurations were used: a single, centrally placed layer of geocell, and two 

layers of geocell placed within the embankment. Throughout the duration of these simulations, 

the vertical displacement and stress under the loading plate, as well as the lateral displacement 

along the profile of the embankment, were compared with the actual test results.  

Again, it was shown that the comparison of vertical displacement to vertical load matched 

reasonably well, at least for the unreinforced configuration (Figure 4.8). However, the high 

stiffness of the geocell yielded relatively low estimates for vertical settlements encountered in 

either of the geocell model simulations. Generally, the cyclic hardening encountered by both of 

the reinforced models in the later loading stages was captured (as implied by the flattening of the 
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curves in the later cycles), while the unreinforced configuration still underwent some cyclic 

deformation in both the experiment and the simulation. However, the magnitudes of the final 

vertical settlements simulated for both of the reinforced cyclic tests were not accurate. The fact 

that both Tests 4 and 6 encountered the same vertical displacement at the end of the test, a 

counterintuitive observation, was difficult to account for in the simulation. Despite this 

disagreement for the reinforced tests, the experimental results and simulations still demonstrate 

the benefits of using the geocell confinement in the ballast. 

 

Figure 4.8. Comparison of vertical displacement from experiments and FE simulations for 

cyclically loaded tests, unreinforced (test 2), single-layer (test 4), and double-layer (test 6).
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Figure 4.9a. Comparison of lateral 

displacement at crest of embankment 

from laboratory experiments and FE 

simulations for cyclically loaded tests. 

 

Figure 4.9b. Comparison of lateral 

displacement at center of embankment 

slope from laboratory experiments and 

FE simulations for cyclically loaded 

tests. 

 

Figure 4.9c. Comparison of lateral 

displacement at toe of embankment 

slope from laboratory experiments and 

FE simulations for cyclically loaded 

tests. 
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Regardless of some numerical discrepancies, the FE analysis did capture the advantageous trend 

that the single- reinforcement configuration prevented further lateral spreading throughout the 

embankment profile, and even more so with the double-reinforcement configuration. The actual 

simulated amounts of lateral displacement from the FE analysis did not match entirely, although 

they were reasonable (Figure 4.9a,b,c). Despite this, the simulated and experimental results 

indicate the significant reduction in deformation attained by using geocell confinement.  

Strains observed in the geocell during experimentation were in the same range (<4%) with those 

found in the FE analysis, both of which exhibited elastic behavior. Similar to the monotonic 

testing, the highest stresses and strains were found in the lower corners of the geocell that were 

located beneath the loading plate. In the single-layer reinforced test, the strains encountered in 

the geocell under the loading plate were 3.6% and 2.3% at bottom corner seam and central cell 

wall, respectively. Measured at the same geocell locations in the double-layer reinforced test, the 

strains encountered in the geocell under the loading plate in the top layer were 1.2% and 1.1%, 

and 1.1% and 0.8% in the bottom layer. Creep was not modeled.   It would be difficult to observe 

creep under the limited amount of loading cycles applied and the duration of the experiment.  

 

4.3.3 Summary of Numerical Modeling of Experiments 

 

In order to validate further full-scale finite element simulations using more relevant geometry, 

materials and scenarios, the experimental results were simulated and calibrated using data from 

the model tests and material testing in the lab. Using the Drucker-Prager elastic-perfectly plastic 

model for the ballast and modeling the appropriate geometry and boundary conditions of the 
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embankment, numerical simulations were performed to attain acceptable results in both 

monotonic loading and cyclic loading. 

1) Although the agreement between the actual and simulated lateral displacements was not 

perfect in either the monotonic or cyclic cases, the simulations still effectively 

demonstrated a trend of reduced deformation as a result of geocell confinement. In the 

cyclically loaded, reinforced tests, the vertical displacements did not match exactly, but 

again indicated the reduced deformations due to use of geocell while still matching the 

loading curve for the unreinforced case.  

 

2) The lateral deformations that occurred in the experiments were difficult to simulate with 

FE analysis, especially with a simplified plasticity model using Drucker-Prager yield 

criterion. This could be due to the anisotropy and low confinement pressures encountered 

outside the geocell confinement (i.e. crest of embankment, outer profile of slope). 

However, many of the benefits attained from geocell are captured using the material 

model, including the confining mechanism, the ‘mattressing effect” and expedited 

resilience under cyclic loading. This is demonstrated by reduced lateral spreading and 

settlements as well as increased loading capacity. 

 

3) Observations of stresses and strains in the geocell in both the experiments and 

simulations generally agreed, especially in indicating the elastic behavior and low strains 

in the geocell. Additionally, the highest concentrations of stress and strain were found to 

be in the lower corners of the cell underlying the loading plate, likely due to high tensile 

stresses in the reinforcement as a result of the significant vertical settlement under the 

loading plate and resultant bending behavior of the geocell/ballast composite. This 
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suggests the importance of strong geocell seams, which could be critical under increased 

loading and/or more loading cycles. 

 

4) General matching between the monotonic loading curves and acceptable matching for the 

cyclically loaded curves was promising and warrants further analyses studying the effects 

of various scenarios and material properties. However, significant discrepancies were 

noted when comparing lateral spreading between laboratory tests and numerical 

simulations. These in turn, warrant further study of accurate modeling of lateral 

displacements. 

 

5) The greatest discrepancies in displacement behavior occurred in the double-layer case, as 

well as lateral displacements in many cases, likely due to shortcomings in the chosen 

constitutive model (Drucker-Prager). Some possible sources of these shortcomings could 

be a lack of consideration for anisotropy and an overestimate in angle of dilation and lack 

of consideration of anisotropy, causing excessive lateral displacements as well as the 

inability to capture degradation or fatigue. 
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4.4 Parametric Study 

A numerical parametric study was performed on the model geometry to observe its performance 

under varying geocell stiffness, ballast strength, and overlying over a soft foundation (Figure 

4.10). Each time a parameter was varied; the model was in three configurations: an unreinforced 

control test, one layer of centrally placed geocell confinement, and two layers of geocell 

confinement. The model meshes were the same as used in the FE simulations for each respective 

setup, with the exception of an additional 8603 C3D4 tetrahedral elements used to model the 

underlying foundation in all the cases. Insight into the resulting behavior demonstrates the 

benefits of using geocell confinement in ballasted foundations. Under each condition, the vertical 

settlement under the loading plate and the maximum stress at the ballast-subgrade interface (to 

demonstrate the improvement in the stress distribution) was monitored when vertical load of the 

plate had reached 150 kPa. The settlement and subgrade stress behavior for each reinforced case 

(under each changed parameter) was normalized to using the related, unreinforced case through 

the following relationships: 

 

  
                       

 

  
                           

S and q is the vertical settlement under the loading plate and the maximum stress at the ballast-

subgrade interface, respectively. Similarly, Su and qu is the vertical settlement and the maximum 

stress at the ballast-subgrade interface for the unreinforced model embankment, respectively 

(Figure 4.11).  
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Figure 4.10. Geometry of model used for parametric study. 
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Figure 4.11. Observed behavior in parametric study. 

 

The effects of geocell stiffness were demonstrated by placing the model over a 2 m deep, soft 

foundation (simulated by a stiffness of 1 MPa). Then, all three embankment setups were run 

using geocell stiffness of 0.1, 1, 2.07, and 200 GPa to demonstrate a variety of materials 

including HDPE, NPA, and structural steel (Figure 4.12). Use of HDPE, NPA and steel in test 2 

and 3 displayed significant added performance as the results show a significant reduction in 

settlement (75% and 82%, respectively) and maximum subgrade stress (35% and 40%, 

respectively) with the increasing geocell stiffness (Figure 4.12).  

The effects of foundation stiffness were demonstrated by placing the model (reinforced with 

NPA geocell) over a 2 m deep foundation with varying stiffness. The foundation stiffnesses of 1, 
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10, 100, and 100 MPa were used to demonstrate a range from soft to very stiff subgrades. The 

subgrade was modeled as an elastic material. The generation of pore pressure and consolidation 

behavior was ignored. The benefit of confinement was significant upon a soft foundation as it 

decreased settlement and maximum stress at the subgrade significantly. As the foundation 

stiffness increased, the uniformity in stress distribution was lost (reductions of 3% and 20% for 

tests 2 and 3, respectively), but settlement was still greatly reduced (87% and 90% for tests 2 and 

3, respectively) by preventing lateral spreading (Figure 4.13). This is likely because the 

foundation stiffness was higher than that of the ballast, and the geocell-ballast composite action 

due to confinement provides a more competent soil structure. Geocell reinforcement was 

beneficial on both soft and stiff foundations as it reduces settlement. 

After many loading cycles, ballast deteriorates, becoming rounded, contaminated by fines and 

losing some of its strength (Indraratna and Salim, 2002) eventually, requiring replacement or 

maintenance. Thus, it was important to study the effects of ballast quality by altering the angle of 

internal friction (the governing strength parameter for a cohesionless material like ballast) 

between 25° and 55°, representing both very weak and very strong ballast. The embankment was 

placed above a 2 m deep, soft foundation (stiffness was 1MPa).  
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Figure 4.12. Results of varying Geocell stiffness.

 

Figure 4.13. Results of varying subgrade compressibility. 
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The vertical settlement with a soft subgrade (1 MPa) is greatly reduced (between 60-75%) using 

a single layer of geocell and even more so with two layers. This benefit is attained for a range of 

frictional strengths in the ballast for double layer configuration and above approximately 33 

degrees for single layer (Figure 4.14). However, it did not vary greatly as the use of geocell 

confinement allowed the embankment to act as a composite, providing dimensional stability that 

is less dependent on ballast strength properties. Considering that all of these simulations occurred 

on a soft subgrade as opposed to a rigid subgrade, the benefit of geocell is shown by the great 

disparity between unreinforced and the reinforced cases.  

The ballast friction angle had a significant effect on the subgrade stress distribution. At higher 

strengths, both geocell configurations provided a similar decrease in maximum subgrade stress 

(28% and 33% for Tests 2 and 3, respectively) in comparison to the unreinforced case. At lower 

strengths, there was little change in maximum stress at the subgrade interface (3% and 25% 

reduction for Tests 2 and 3, respectively). As expected, the double reinforced case yields a 

significant benefit here as it maintains a more uniform distribution even under very low strength 

because the entire embankment acts a composite. However, the plot suggests that it may not be 

an economical choice to use two layers of geocell as opposed to a single layer for reasonable 

ballast properties (40° and above) as the two reinforcement cases have similar benefits over the 

unreinforced case (Figure 4.12). Despite this, both reinforcement configurations demonstrate a 

considerable gain in performance due to geocell confinement under several different conditions. 



86 
 

 

Figure 4.14. Results of varying ballast strength. 

 

The strains in the geocell were in the recoverable, elastic range of values in the models discussed 

at a vertical load of 150 kPa. The compressibility of the foundation had a marginal effect on 

strain, yielding a range of maximum strain between 0.4% to 0.6% and 0.4% to 0.6% for the 

single- and double-reinforced configurations, respectively. Changing the stiffness of the geocell 

had a larger effect, as expected. Lowering the stiffness of the material allows much more strain 

for the same load. The range of strains varied between 4.5% to 0.02%, 3.2% to 0.01% for the 

single- and double-reinforced configurations, respectively. However, for HDPE and NPA, the 

maximum strain was in 0.6% range, well within elastic behavior for both materials. The strength 
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of the ballast had an effect on the strain in the geocell, although it was not critical. Larger strains, 

1.1% and 0.7% for the single and double-reinforced tests, respectively, occurred when using 

weaker ballast (ϕ=25°). When using stronger ballast that mobilized less confinement from the 

geocell, smaller strains occurred in the geocell (0.4% and 0.3%, single- and double-reinforced). 

Table 4.2. Tabulated Results of Parametric Study. 

Unreinforced Tests: Foundation Stiffness Varied 

Efoundation  [MPa] 1 10 100 1000 

qu  [kPa] 26.8 39.1 38.3 38.1 

Su  [mm] 98.9 98.6 97.8 97.6 

Unreinforced Tests: Geocell Stiffness Varied 

Egeocell  [GPa] 0.1 1 2.07 200 

qu [kPa] 26.8 26.8 26.8 26.8 

Su [mm] 98.9 98.9 98.9 98.9 

Unreinforced Tests: Ballast Strength Varied 

ϕballast [°] 25
°
 35

°
 45

°
 55

°
 

qu [kPa] 34.1 32.8 26.8 26.5 

Su [mm] 142.8 126.2 98.9 43.6 

 

 

4.4.1 Implications of Numerical Analysis 

Reasonable matching between the actual and simulated tests warrants further studies, such as 

behavior in a ballasted foundation for railways. Additionally, the effects of geocell stiffness or 

soil strength and stiffness can be observed, which could have significant economic implications 

in design. Future simulation of geocell confinement applied to actual railroad ballasted geometry 

could provide some useful predictions and insight on the effectiveness of such an application.  

In the case of railroad construction, geocell would be installed no closer than 150 mm from the 

base of the tie in order to facilitate ballast construction and tamping. This clearance also assists 
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in the maintenance process. Additionally, the upper portion of the ballasted foundation is 

exposed to high dynamic loads that could be damaging in proximity to the geocell. The 

minimum clearance between the geocell and the tie is reliant on maximum ballast grain size 

(typically below 63.5 mm in diameter according to industry standards). This constraint needs to 

be considered when modeling a ballasted railway foundation accurately, an aspect that further FE 

simulation could elucidate.  

Actual field testing of such an application of geocell would also allow for observation of other 

relevant concerns, like creep, installation damage, higher amounts of loading cycles, ballast 

degradation, and foundation/subgrade effects. With actual field data, a FE analysis can again be 

validated and applied to a larger variety of applications with confidence.   

 

4.4.2 Conclusions of Parametric Study 

 

In order to demonstrate the effects of various factors on the performance of the embankment, a 

parametric study was performed on geometry similar to that used in the experiment and 

simulation, except that foundation was no longer modeled as rigid. Various material properties 

were changed in order to observe their influence on the behavior of the model. These properties 

included geocell stiffness, ballast strength, and foundation compressibility. Implications of the 

simulations included: 

1) This study demonstrates that implementation of geocell confinement demonstrates a 

significant benefit by distributing subgrade stresses more uniformly, as supported by 

previous field tests (Chrismer, 1997). This is due to the “mattress” effect that the geocell 
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composite displays when under loading (Zhou and Wen, 2008). The reduction in 

maximum stress was especially pronounced in situations where the embankment was 

placed upon a softer foundation. This reduction in maximum stress reduces settlement 

and increases bearing capacity.  

 

2) The application of geocell significantly reduced vertical settlement under the loading 

plate. This was especially true when the embankment overlaid softer foundations or was 

applied to weaker ballast. Upon stiffer foundations, vertical settlement was also reduced 

due to a prevention of lateral spreading applied to the ballast due to the confining effects 

of the geocell. The behavior of the geocell-ballast composite also prevents excessive 

settlement and shear from occurring when inferior material is used, like recycled, 

deteriorated or rounded ballast. 

 

3) The use of one layer of geocell as opposed to two (whole embankment reinforced) 

generally provides similar benefits in a more cost-efficient manner. Generally, the single-

layer reinforcement geometry performed similarly to the double-layer scenario, if only 

providing 15% less strength improvement and/or deformation reduction, a benefit 

unlikely to justify application of such a considerable additional amount of geocell. In 

addition to constructability issues and economics, it is recommended that use of a single 

layer of geocell in ballasted foundation applications as opposed to excessive 

reinforcement for little benefit. 

 

4) The strains that occurred in the geocell under the various ballast strengths and foundation 

stiffnesses were well within the elastic, recoverable range for the material. This suggests 
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that the geocell would have remained in working conditions under the adverse conditions 

presented in the parametric study. 

 

5) Generally, for materials commonly used as geosynthetic reinforcements, the benefit of 

using superior geocell materials are not pronounced, suggesting that the confinement 

mechanism does not necessitate expensive, top-grade polymers or alloys to function 

adequately.  
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CHAPTER 5: NUMERICAL MODELING OF RAILWAY WITH GEOCELL 

 

 

5.1 Introduction 

 

General validation of experimental results from Finite Element modeling and intriguing 

implications from parametric studies intuitively led to the numerical modeling and simulation of 

geocell reinforcement with actual ballasted railway foundation geometry and conditions.  

Future work and correspondence with AMTRAK (National Railroad Passenger Corporation) 

engineers, in addition to consultation of current AREMA (American Railway Engineering and 

Maintenance-of-Way Association) code has resulted in standard railroad ballast design and 

geometry specifications, allowing numerical studies of the effects of Geocell on track settlement, 

lateral spreading, squeeze and subgrade stress distribution under various conditions.  

Since the 3-dimensional modeling procedures have been validated by full-scale experimental 

testing, it is acceptable to apply it to the parametric studies conducted in this chapter. A plane-

strain slice of the cross-section of a half of a ballasted railway substructure was modeled with a 

finite element mesh refined to observe important behavior of the foundation under loading, with 

or without geocell reinforcing the subgrade-ballast interface. Behavior observed during the 

numerical simulation included vertical displacement, lateral displacement, vertical stress, 

subgrade stress and strain in the geocell. The parametric studies examined the effects of subgrade 

stiffness, geocell stiffness, and ballast strength. 
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5.2 Geometry and Cross-Section 

 

5.2.1 Cross-Section 

 

The embankment was 5.2 meters in width at the base, 2.7 meters at the crest, and 0.6 meters in 

height (see figure 5.1a). The slopes did not exceed the specified slope of 2:1 as indicated by 

various rail design manual (i.e. USACE track design manual, 2000). Based to on proposed 

constructability issues and prior research, the geocell would have to be placed in the 

ballast/subballast layer at a minimum of 25 centimeters below the ties in order to avoid 

construction damage and stress concentrations from heavy axle loads from trains (see figure 

5.1b). Additionally, design specifications provided by AMTRAK for standard railway 

substructure geometry with and without geocell provided a basis for a parametric study, where 

the benefits of the confining mechanism could be explored. 

The simulated tie was assumed to be made of concrete, had a width of 2.7 meters and was 

beveled with a maximum height of 0.2 meters at the ends and 0.15 meters at its center. They 

were spaced at every 0.5 meters on-center.  

The rail head had a width of 7.5 cm, the web a width of 1.75 cm and the base had a width of 15 

cm. 
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Figure 5.1a. Railway geometry without geocell. 

 

Figure 5.1b. Railway geometry with geocell confinement. 
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5.2.2 Selection of Three- Dimensional Model Geometry 

Due to the computational requirements of running a larger or more refined mesh, the width of the 

plane-strain slice was limited to 1.8 meters in thickness; that is, enough width to have three ties 

with the full thickness of ballast infill in between each. The boundary effects were generally 

considered small due to the symmetry, even loading and large depth of the foundation. The 

USACE railroad design manual assumes that the point load attained from the wheel of the railcar 

is distributed among 5 ties, emphasizing the highest load on the tie below the wheel (figure 

5.2a). The FE simulation is modeled with three ties that is slightly more conservative, 

contributing higher loads on the two adjacent ties, but not allowing a stress higher than 40% of 

the wheel load for a tie, which is representative of the assumptions in the manual (figure 5.2c) 

and the conclusions stated in literature (figure 5.2d, Selig and Waters, 1994). However, these 

slightly more adverse conditions still demonstrate the advantages of geocell reinforcement 

because the conditions and stress distributing behavior of the ties assumed are not as favorable as 

assumed in the the manual. Additionally, the deflection profile of track subject to a wheel load 

from Selig and Waters (1994) suggests that only three ties carry the load, while the further ties 

are actually suspended due to the deflection of the track. 

In order to assure that the boundary effects of the model used are not vastly unconservative or 

misrepresentive of realistic distributions, a FE model with 5 ties was analyzed for comparison 

(figure 5.2b). It was shown that the distribution was more even and hence, unconservative, while 

the “three-tie” system matched the assumed distribution in a conservative fashion. That is, the 

five-tie model had a maximum stress underlying the point load, as expected, however it was only 

25% of the applied load, which is significantly less than the manual suggests. Such an under-
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representation of loading only impedes demonstrating the effects of geocell confinement within 

the embankment. The wheel load was applied statically as a point load (due to the small area of 

stress application and large load). 

 

Figure 5.2a. Assumed ballast-tie reaction from wheel load. 

 

Figure 5.2b. Ballast-tie reaction from wheel load using FE analysis and 5 ties. 
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Figure 5.2c. Ballast-tie reaction from wheel load using FE analysis and 3 ties. 

 

 

Figure 5.2d. Rail deflection and stress distribution profile (Selig and Waters, 1994). 
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5.3 Finite Element Analysis 

 

5.3.1 Mesh/Elements 

 

5.3.1.1 Unreinforced 

 

The unreinforced model consisted of 19946 elements and 7387 nodes (figure 5.4a). Greatly 

coarser meshes provided lower, more conservative settlements. 

A large majority of these elements were placed in the railway substructure, as its behavior was of 

utmost interest and the most deformation was expected in the area. It was modeled with 17318 

tetrahedral, 4-noded reduced integration elements (C3D4R), which are necessary to mesh the 

relatively irregular geometry of the ballasted embankment. This implies that the element size 

would have an approximate diameter of approximately 4.4 cm (1.75”), which falls within the 

range for ballast grain sizes commonly used according to standard AREMA gradation 

specifications.  

5.3.1.2 With Geocell 

The reinforced model consisted of 41388 elements and 11075 nodes.  

A large majority of these elements were placed in the railway substructure and geocell, as its 

behavior was of utmost interest and the most deformation was expected in the area. It was 

modeled with 17318 tetrahedral, 4-noded reduced integration elements (C3D4R), which are 

necessary to mesh the relatively irregular geometry of the ballasted embankment infilled with 

diamond-shaped geocell (figure 5.4b, 5.4c). This implies that the element size would have an 
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approximate diameter of approximately 3.7 cm (1.5”), which falls within range for ballast grain 

sizes commonly used according to standard AREMA gradation specifications.  

5.3.1.3 Railroad and Ties 

The railroad/tie instance was meshed with only 378 hexahedral, 8-noded reduced integration 

elements (C3D8R) because it’s deformation was not of concern due to its much higher stiffness 

in comparison to the ballast and foundation soils. The foundation was also modeled coarsely to 

focus computational memoryon the ballast embankment, containing 2250 C3D8R elements. 

Higher mesh density was specified for the area closest to the ballast embankment-subgrade 

interface in order to study subgrade stresses resulting from wheel loads. 

5.3.1.4 Interaction 

Planar interface elements were assigned to the surfaces where ballast and geocell were in 

contact, including the inside, outside, top and bottom of the geocell-ballast interface. They were 

modeled as contact where tangential properties were frictional (i.e. δ=(2/3Φ)=30°) and normal 

contact was “hard”, that is the walls of geocell could not be penetrated. The same type of 

interface was assigned for contact between the railroad ties and ballast. 

5.3.1.5 Symmetry 

Due to the symmetry of the model, the simulated half was then mirrored in both the X and Y 

directions to show the full structure for visualization purposes (figure 5.5). 
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Figure 5.4a. Mesh of ballasted railway track and foundation. 

 

Figure 5.4b. Mesh of rail, geocell and foundation (ballast removed for illustration). 

 

Figure 5.4c. Mesh of embedded geocell. 
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Figure 5.5a. Various views of the unreinforced railroad embankment (top left) and components 

of the reinforced railroad embankment when mirroring symmetry. 

 

Figure 5.5b. The model is mirrored due to its symmetry and can therefore allow visualization of 

embankment behavior (displacement shown) in a more intuitive way. 
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5.3.2 Boundary Conditions 

 

The plane strain slice of half of the ballasted railroad embankment and foundation was assigned 

several boundary conditions meant to reduce boundary effects, take advantage of symmetry and 

simulate reality. The vertical planes under the centerline of the railroad and along the outer edge 

of the foundation were constrained from displacing laterally in the X-direction (figure 5.6). The 

same constraint was affixed to the the Z-X planes to prevent lateral displacement in the Y-

direction. The base of the model was restricted from any displacement.   

 

 

Figure 5.6. Boundary conditions of the FE model. 
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5.4 Material Properties 

The material properties used in the analysis were based on results of experimental data from 

previous tests, well-established properties and demonstrative parametric data (Table 5.1).  

The ballast and subballast were modeled using the same models (Drucker-Prager, Appendix B) 

and techniques as used to simulate the laboratory tests. The circumscribed circle of the model, 

based on the compressive strength properties of the soil, was used. Again, the model was chosen 

due to its simplicity, a possible drawback, but deemed acceptable in order to ignore multiple, 

complicated parameters necessary for more complex models. 

The foundation was modeled as an elastic material to simply demonstrate the effects of a soft or 

loose soil that has settled greatly without any pore pressure or time-related behavior (undrained  

and/or consolidation). 

The geocell was modeled as an elastic material again since experimental results suggested that 

the geocell rarely underwent large strain during testing. Additionally, the geocell has essentially 

failed when it has begun to undergo large plastic strain. 

Both the concrete and steel were modeled as elastic materials as their stiffness values are well-

defined. However, the high magnitude of these material properties in comparison to those of the 

ballast, foundation or geocell material simulated near-rigidity for the track structure. 

Properties Ballast Subballast Foundation Geocell Rail/Tie Plates Ties 

Mass Density, ρ (kg/m3) 1520 1520 1700 1500 2000 2000 

Elastic Modulus, E (MPa) 2 2 20 2070 200000 30000 

Poisson’s Ratio, ν 0.35 0.35 0.35 0.35 0.3 0.25 

Internal Angle of Friction, ϕ 45° 45° - - - - 

Angle of Dilation, ψ 15° 15° - - - - 

Cohesion, c’ (kPa) 1 1 - - - - 

       

Table 5.1. FE material properties. 
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5.5 Loading 

The wheel load chosen for the geometry was very conservative in order to demonstrate track 

behavior under the worst conditions possible. That is, the load corresponds to two wheels, each 

having a wheel load representative of a double stack of containers on a flatcar, equivalent to a 

wheel load of 50,000 lbs, or 25 tons (USACOE Railroad Design Manual). Therefore, the 

equivalent load is 100 kip (450 kN), placed on a small area of the steel railroad track to represent 

approximate point-loading of a wheel on a rail. The loading was applied monotonically above 

the central tie in the 1.8 meter-wide, plane-strain slice as it provides the most conservative 

representation by distributing the loads over a slightly smaller group of ties, in turn, applying a 

larger load generally encountered. The choice of width for the slice is based on the element 

allowance (20,000 elements maximum) and necessary geometry to demonstrate the behavior of 

the ballast embankment, with and without geocell. The density of the mesh did not show extreme 

variations when the number of elements was greater (approaching 20,000), but showed 

significant differences when the meshing was coarse (<5,000 elements). 

5.6 Parametric Study 

A series of simulations were performed on the railway geometry in order to determine the effects 

of foundation compressibility, ballast strength and geocell stiffness. In order to compare the 

results, each scenario was run with both geocell reinforcement and no reinforcement for 

comparison. During the simulation, displacements, stresses and strains were observed throughout 

the rail substructure in order to determine the behavior and improvement due to geocell 

reinforcement. 
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5.6.1 Foundation Compressibility 

The effects of foundation compressibility were studied by varying the elastic modulus of the 

subgrade from very soft foundation, 2 MPa, to very stiff material at 1 GPa. As previous studies 

implied, geocell confinement is particularly useful when the railway substructure overlies a soft 

foundation. The “mattressing” effect of the geocell/ballast composite allows for a more even 

distribution of stress, increasing bearing capacity and reducing settlement.  

It is essential to mention that the soft foundation was modeled as simply an elastic, which is not a 

perfect representation of the very complex, coupled flow-time consolidation problem that may 

occur. It is meant to demonstrate how the use of geocell may change the distribution of vertical 

subgrade stresses and thus reduce settlements. Further analyses are necessary to study the effects 

of the coupled time-pore pressure (or undrained) problem that occurs when considering 

consolidation. In such analyses the foundation soil would be idealized by a robust clay model 

such as the Modified Cam-Clay model. 

One great advantage of the geocell was its redistribution of stress over a wider area (figures 5.7a 

and 5.7b). Not only did use of geocell over a very soft foundation (2 MPa) distribute the stress 

more evenly; it reduced the magnitude of the subgrade stresses. The peak stress was reduced by 

approximately 15% when using geocell. Additionally, the difference between the middle and 

peak stresses under the tie was reduced significantly; that is, by 33 KPa (16%) and 15 KPa (10%) 

for the peak and middle stresses, respectively. The distribution of the rail loads over a wider area 

is also advantageous as it mobilizes more of the subgrade’s strength and resistance, unlike the 

singular peak loads that induce shear when no reinforcement is present.  
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The use of geocell confinement reduced the vertical settlement, although it was not as significant 

as expected (table 5.2). This is likely due to the large stresses transferred to the subgrade, with or 

without the geocell. The geocell, however, does assist in redistributing the stresses more evenly, 

possibly preventing development of high shear strains and failure. The largest reduction in 

settlement occurred when the ballast embankment overlaid a very stiff subgrade, where much of 

the vertical settlement was due to lateral spreading and squeeze in the ballast. The confinement 

mechanism of the geocell was effective in preventing this occurrence, reducing the geocell 

settlement by about 23% (from 2 cm to 1.6 cm). However, the effects of the reinforcement were 

demonstrated in all cases of varying subgrade stiffness by reduction of settlement.  

Intuitively, lowering the magnitude of vertical stresses occurring on the subgrade, especially 

when composed of soft, loose soils, reduces vertical and lateral displacements of the railway 

structure. Use of geocell in the base of the ballasted embankment reduced the magnitude of 

lateral spreading by 67% and also caused the largest lateral spreading to occur just by the crest, 

near the ties (figures 5.8a and 5.8b). The use of the geocell confinement contributes resistance to 

spreading above the reinforcement itself, likely through restraint by the composite mattress. The 

prevention of lateral spreading is especially pronounced when the railroad substructure overlies 

softer subgrades. 

The geocell encountered small strains in all of the cases, generally within the elastic range of its 

material properties, varying between 0.8% and 2.5% for the stiffest and softest foundations, 

respectively. The highest concentrations of strain generally occurred in the region of geocell 

underlying the tie plates and outer edge of the ties. The portion of geocell lying outside of this 
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area generally encountered lower strains and stresses, suggesting that it may not be necessary to 

attain the benefits of the ballast-geocell composite. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7a. Vertical subgrade stress distribution below geocell-reinforced embankment. 

Table 5.2. Results of parametric study varying foundation stiffness. 

 

Settlement under Tie (m) 

 Young’s Modulus (MPa) Geocell None Reduction (%) 

2 0.268 0.285 5.6 

10 0.069 0.076 8.0 

20 0.043 0.048 10.7 

100 0.021 0.026 18.1 

200 0.018 0.023 20.3 

1000 0.016 0.020 22.4 
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Figure 5.7b. Vertical subgrade stress distribution below unreinforced embankment. 

 

 

 

Figure 5.8a. Lateral displacement at slope of geocell-reinforced embankment. 
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Figure 5.8b. Lateral displacement at slope of unreinforced embankment. 

 

5.6.2 Ballast Strength 

Over many loading cycles, often measured in Millions of Gross Tons (MGT), ballast can 

deteriorate through abrasion and fracture due to asperities and faults (Inraratna, 2003). This 

“rounding” of particles and loss of resistance due to a reduction in angularity reduces the critical 

strength property of ballast, i.e., its internal friction angle. Therefore, it is relevant to see what 

benefits geocell would provide the railway substructure, especially when deteriorated, perhaps 

representing old ballast or even showing promise for recycled ballast. To simulate the effects of 

confinement for a variety of materials with varying strengths, the internal friction angle of the 

ballast and subballast varied from 25° to 55°, representing the peak friction angle of fresh ballast 

(Indraratna, 2006). The subgrade stiffness was kept constant at 20 MPa throughout the different 

simulations. 



109 
 

The confinement of the ballast using geocell was quite effective in reducing vertical and lateral 

deformations, especially when low-quality material was used (Table 5.3). This is very 

encouraging, especially considering that ballast with strength properties less that are sub-

standard could be used for the substructure, potentially at a lower cost. When the strength of the 

gravel was very low (ϕ=25°), the use of geocell reinforcement reduced vertical settlement by 

almost 23%, from 6.6 cm to 5.1 cm below the tie. Also, a more realistic strength value of ϕ=35° 

demonstrates similar behavior with a reduction in tie settlement from 5.1 cm to 4.4 cm, a decline 

of 13%. Higher shear strength of the ballast reduces the need for reinforcement, eliminating the 

need for substructure improvement as demonstrated by the similar settlement values for the 

reinforced and unreinforced scenarios. 

In addition to reducing vertical displacement below the track structure, the lateral spreading and 

“squeeze” effects on the substructure profile were greatly affected by application of the geocell. 

This was demonstrated by the significant reduction in horizontal displacements along the slope 

of the ballasted foundation, especially at or below the level of the confined layer (figures 5.10a 

and 5.10b). As expected, the larger displacements occurred in weaker materials (i.e. ϕ < 45°), but 

were greatly reduced in magnitude as the spreading was diminished by almost 44% (2.25 cm to 

1.25 cm) and 50% (4.9 cm to 2.4 cm), for the ϕ =35° and ϕ =25° cases, respectively. Intuitively, 

this prevention of spreading consequentially reduces vertical settlements as well, especially when 

the ballast overlies a stiff foundation, as the substructure materials will not squeeze horizontally 

under heavy loads. The effect of the geocell is demonstrated by not only the reduction in lateral 

deformations in comparison to the unreinforced ballast foundation, but also the location of the 

spreading along the embankment profile. The most spreading occurs above the layer of geocell 

placed at a safe, constructible clearance below the railroad ties. When the confinement is absent, 
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the center of the embankment displays much more spreading behavior along the middle and 

lower portions of slope near the toe, in addition to significantly larger magnitudes of 

deformation. An added advantage of the prevention of displacements is the increase in strength 

and stiffness of the railroad substructure due to the confinement of the geocell.  

Another factor that preserves the structural integrity of the ballasted embankment is a more 

uniform transmission of train loads to the subgrade underlying the substructure (figures 5.9a and 

5.9b). The use of geocell confinement adds this advantageous behavior through its “mattressing” 

effect, as demonstrated by the subgrade stress distributions from the analysis. The use of geocell 

in conjunction with weaker ballast results in a significant decrease in vertical stress upon the 

subgrade, reducing its peak by almost 18% in magnitude (290 kPa to 240 kPa) and 10% (240 kPa 

to 215 kPa) for ϕ =25° and ϕ =35°, respectively. Additionally, the area that the elevated vertical 

stresses are distributed to is wider than that found without application of geocell, increasing the 

width of the transmitted load in the subgrade from approximately 1.4 meters to 1.9 meters for the 

ϕ =25° case, a gain of 26%. The increase in the area of this effective subgrade reaction results in 

the mobilization of more shear resistance and strength in the foundation and reduces the 

probability for “punching” failure in underlying foundation. 

The geocell encountered small strains in all of the cases, generally within the elastic range of its 

material properties, varying between 0.9% and 1.3% for the strongest and weakest ballast friction 

angles, respectively. The highest concentrations of strain generally occurred in the region of 

geocell underlying the tie plates and outer edge of the ties. Similar to the previous study, the 

portion of geocell lying outside of this area generally encountered lower strains and stresses, 

suggesting that it may not be necessary to attain the benefits of the ballast-geocell composite. 
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Table 5.3. Results of parametric study varying ballast strength. 

 

 

 

 

 

 

Figure 5.9a. Vertical subgrade stress distribution below geocell-reinforced embankment. 

 

Figure 5.9b. Vertical subgrade stress distribution below unreinforced embankment. 

 

Settlement under Tie (m) 

 Internal Angle of Friction (°) Geocell No Geocell Reduction (%) 

25 0.05096 0.06571 22.4 

35 0.044269 0.05086 13.0 

45 0.04286 0.047971 10.7 

55 0.042312 0.046721 9.4 
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Figure 5.10a. Lateral displacement at slope of geocell-reinforced embankment. 

 

 

Figure 5.10b. Lateral displacement at slope of unreinforced embankment.  
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5.6.3 Geocell Stiffness 

An important factor in the behavior of ballasted railway embankments that use geocell 

confinement is the effects of the stiffness of the geocell material. Geocell is made with a variety 

of materials, including High Density Polyethylene (HDPE) and Novel Polymeric Alloy (NPA), 

which both have Young’s Moduli in the same order of magnitude. The implications of being able 

to utilize significantly inferior materials for geocell while still attaining the same benefits is 

enticing, especially from an economical viewpoint. In order to address this issue, similar FE 

analyses to those previously simulated were performed on the same ballasted embankment with 

geocell confinement. However, the stiffness of the geocell was altered using a variety of values 

that ranged from the very low Young’s Modulus of rubber, 0.1 GPa, to very high values like that 

of Structural Steel, 200 GPa and in between (0.5, 1, 2.07, and 100 GPa). To demonstrate its 

effects in varying foundation conditions, this study was performed on both a very soft foundation 

(2 MPa) and a soft foundation (20 MPa). The study of the effects of geocell material on the 

embankment behavior demonstrates that the stiffness of the reinforcement does not have a 

significant effect on the performance of the substructure.  

The reduction in vertical settlement under the ties and lateral deformation along the slope of the 

embankment are not highly affected by reasonable geocell materials, as demonstrated by the 

relatively similar vertical settlements and lateral deformations attained from the numerical 

simulations (Tables 5.4 and 5.5). In fact, the reduction of settlement when comparing a 

reinforced embankment to an unreinforced embankment is only 2.4% and 5.6% when overlying 

a 2 MPa foundation and 4% and 10.6% when overlying a 2 MPa foundation for rubber geocell or 

NPA geocell, respectively. Additionally, the use of varying reinforcement materials 
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demonstrates little practical gain in the prevention of lateral spreading, one of the main additions 

to structural and performance integrity for the railroad substructure. The range in magnitudes for 

peak lateral displacements on the slope of the ballasted embankment only varies between 0.25 

cm and 1 cm as well as 0.35 cm and 0.65 cm when comparing steel and rubber overlying a 2 

MPa foundation 20 MPa foundation, respectively (figures 5.12a and 5.12b). These differences 

are not exceptionally significant in practical terms. Even during use of less stiff reinforcement 

materials, the benefit of the geocell was still significant and likely more cost-efficient and 

practical than using very stiff materials like steel. Although use of structural steel did almost 

eliminate lateral deformations, fabrication, installation and economics of such a material in 

geocell would likely by prohibitive. Additionally, its effectiveness may not be completely 

utilized due to a lack on strain in the geocell and inability to allow easy filling of pockets with 

infill.  

The effect of geosynthetic stiffness yields little effect on the vertical subgrade stress distribution 

(figures 5.11a and 5.11b). Intuitively, the confining effect causes the geocell-ballast infill 

composite to act as a stiffer, yet flexible “mattress”, allowing a reduced and more uniform stress 

distribution to be transmitted to the subgrade. Little variation in vertical and lateral deformations 

as well as near-congruent subgrade stress distributions suggests that the stiffness of the geocell 

has little effect on the effectiveness of the confining mechanism. Comparison of subgrade stress 

distributions when using NPA (the material used in experiments) and low stiffness materials like 

rubber show increases of only 9% and 4% for peak stresses when overlying 2 MPa and 20 MPa 

foundations respectively.  Such differences may not be considered significant, especially when 

account for cost-effectiveness of material choice. Actually, simulations suggest that use of more 
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rigid materials like steel yield less uniform stress distributions due to the stiffness of the geocell-

ballast composite.  

Materials that are commonly used in geosynthetic reinforcements like HDPE and NPA have 

Young’s Moduli that lie in the same order of magnitude. Simulations make it evident that they 

yield near-identical results, suggesting that development of ultra-stiff and strong materials for 

geocell confinement are not necessary as the confining mechanism does not heavily rely on high 

stiffness. However, it is important to indicate that the simplified analysis that occurred only 

accounts the geocell as an elastic material since the strains that occurred in the experimental 

phase were mostly elastic and the condition of geocell after loads was generally good. Certain 

materials might encounter plasticity at higher/lower strains and have different creep, temperature 

and electro-chemical properties than those tested in laboratory experiments.  

As expected, the geocell encountered a large range of strains, depending on the stiffness of the 

chosen reinforcement material. As expected, for a low-stiffness, hyper-elastic material (0.1 GPa), 

the strain was 8.8% and 5.9% overlying a 2 MPa and 20 MPa foundation, respectively. When the 

stiffness was representative of HDPE, the strains encountered were 4.8% and 1.3% for a 2 MPa 

and 20 MPa foundation, respectively. This suggest behavior within the elastic range of HDPE 

when overlying a stiffer foundation, but mobilizing the geocell confinement more when a soft 

subgrade was present. When the geocell was made of “steel”, the strain was negligible, 

remaining around 0.05% for both subgrades. Again, The highest concentrations of strain 

generally occurred in the region of geocell underlying the tie plates and outer edge of the ties. 

Similar to the previous study, the portion of geocell lying outside of this area generally 
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encountered lower strains and stresses, suggesting that it may not be necessary to attain the 

benefits of the ballast-geocell composite. 

 

Table 5.4. Results of parametric study varying geocell stiffness overlying very soft foundation (2 

MPa). 

 

 

 

 

 

 

 

Table 5.5. Results of parametric study varying geocell stiffness overlying soft foundation (20 

MPa). 

 

 

 

 

 

 

 

  

 

Settlement under Tie (m) 

 Geocell Stiffness (MPa) Geocell None Reduction (%) 

100 0.277602 0.284536 2.4 

500 0.273676 0.284536 3.8 

1000 0.271319 0.284536 4.6 

2070 0.268476 0.284536 5.6 

100000 0.25799 0.284536 9.3 

200000 0.257586 0.284536 9.5 

 

 

Settlement under Tie (m) 

 Geocell Stiffness (MPa) Geocell None Reduction (%) 

100 0.04605 0.047971 4.0 

500 0.044335 0.047971 7.5 

1000 0.043577 0.047971 9.1 

2070 0.04286 0.047971 10.6 

100000 0.039879 0.047971 16.9 

200000 0.039662 0.047971 17.3 
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Figure 5.11a. Subgrade stress distribution below geocell-reinforced embankment overlying very 

soft foundation (2 MPa). 

 

 

Figure 5.11b. Subgrade stress distribution below geocell-reinforced embankment overlying soft 

foundation (20 MPa). 
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Figure 5.12a. Lateral displacement at slope of geocell-reinforced embankment overlying very 

soft foundation (2 MPa). 

 

Figure 5.12b. Lateral displacement at slope of geocell-reinforced embankment overlying soft 

foundation (20 MPa). 
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5.7 Conclusions and Summary 

Experimental data and validation and calibration through FE analysis allowed for further studies, 

including a parametric study on the experimental geometry which had implications on design 

and performance of geocell placed within ballast. Further simulations and practical inferences 

could be made from applying the geocell to the actual geometry of a ballasted railroad 

substructure. Performing a parametric study on realistic geometry and applications could allow 

insight into its performance in actual railroads. Again, analyses were performed by varying 

ballast strength to simulate inferior track material, foundation stiffness to simulate soft 

subgrades, and geocell stiffness to observe the effect of reinforcement material on overall 

performance. Conclusions made from numerical modeling of geocell applied to a railroad 

scenario include: 

1)  The confinement of the ballast using geocell was quite effective in reducing vertical 

deformations, especially when low-quality material was used. Higher shear strength of 

the ballast reduces the need for reinforcement, eliminating the need for substructure 

improvement. This is promising when considering the possibility for using weaker ballast 

materials like recycled ballast or well-graded particles. 

 

The use of geocell confinement reduced the vertical settlement, although it was not as 

significant as expected. This is likely due to the large stresses transferred to the subgrade, 

with or without the geocell. The geocell, however, did assist in redistributing the stresses 

more evenly, possibly preventing development of high shear strains and failure. Upon 
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stiffer foundations, the geocell prevents vertical settlement by reducing lateral squeeze of 

the ballast due to high loading.  

 

2) Lateral spreading along the slope of the railroad substructure was greatly reduced with 

application of confinement to the ballast. The prevention of lateral spreading is especially 

pronounced when the railroad substructure overlies softer subgrades and when weaker 

ballast materials are used. This was demonstrated by the significant reduction in 

horizontal displacements along the slope of the ballasted foundation, especially at or 

below the level of the confined layer. The use of the geocell confinement likely 

contributes resistance to spreading above the reinforcement through frictional resistance 

of the composite mattress.  

 

3) The geocell allowed for a more uniform subgrade stress distribution. In addition to being 

more uniform, the magnitudes of stresses were reduced significantly in addition to 

distribution of stresses to a wider area, in turn, mobilizing more of the subgrade’s shear 

strength and preventing shear failure. Not only did use of geocell distributed the stress 

more evenly; it reduced the magnitude of the subgrade stresses when placed over a very 

soft foundation or in an embankment consisting of weak ballast. 

 

4) Again, for materials commonly used as geosynthetic reinforcements, the benefit of using 

superior geocell materials are not pronounced, suggesting that the confinement 

mechanism does not necessitate expensive, top-grade polymers or alloys to function 

adequately. In fact, even use of materials with low Young’s Moduli like rubber 
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demonstrate an improvement of performance likely because the stiffness of ‘weak’ 

reinforcement materials are still orders of magnitude stiffer than the ballast surrounding 

it. However, it is important to note that certain materials might encounter plasticity at 

higher/lower strains and have different creep, temperature and electro-chemical 

properties than those tested in laboratory experiments. 
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CHAPTER 6: CONCLUSION 

 

 

6.1 Conclusions and Recommendations 

In this study, tests were performed on gravel embankments with and without geocell 

reinforcement in monotonic and cyclic loading conditions to observe the stress, stiffness and 

deformation behavior. The experimental results from these tests were used to validate numerical 

models on ballast structures confined by geocell. Acceptable agreement between the vertical 

load-deformation behavior in the FE simulation of experimental data necessitated further studies 

of the effects of various material properties involved in the testing. Lateral deformation was not 

especially accurate due to numerical modeling deficiencies. A series of parametric studies is 

performed on similar geometry to that used in experimental load testing and FE simulation, 

except properties like ballast strength, geocell stiffness, and compressibility of foundation were 

altered to demonstrate the effects of geocell confinement on embankment behavior. Finally, 

another series of parametric studies was performed on realistic ballasted railroad embankment 

geometry with and without geocell reinforcement. This study provided implications of use of 

geocell in various practical situations in a railroad substructure. These phases of study were able 

to demonstrate several important trends. 

 Lateral and vertical displacements were reduced due to geocell confinement.  Lateral 

displacements were especially reduced at, and below the level of geocell placement. This 

phenomenon was captured in both laboratory experiments and various scenarios using 

numerical modeling, although it was less accurately modeled using finite element 
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analysis due to model deficiencies and complex soil behavior (e.g. anisotropy, dilation, 

etc.) that was not necessarily properly accounted for by the constitutive models used. 

 

 The bearing capacity and effective stiffness increases due to the use of geocell, likely due 

to the composite, “mattressing” effect and the prevention of lateral spreading, subgrade 

shear and vertical settlement.  

 

 Numerical modeling demonstrates that use of geocell helps to distribute stresses to the 

subgrade more uniformly, both reducing its peak stress and distributing the the load to a 

wider area, hence mobilizing more subgrade soil strength. Such effects are especially 

apparent when weaker ballast is used or the ballast structure overlies a soft subgrade. 

 

 Cyclic deformation was reduced when geocell was used to confine the ballast. A 

stabilization effect and gain of resilience was reached in embankments reinforced with 

geocell, unlike those without, which was demonstrated in both laboratory testing and 

Finite Element modeling. 

 

 The geocell walls were generally within low tensile strains that were recoverable during 

all stages of loading. Such strains suggest that most of the loading in laboratory testing 

and numerical simulations was within a working load for the geocell material, as shown 

by strain gauges placed on geocell.  However, this does not account for weaknesses in the 

seam connecting cells. 
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 The elastic nature of the geocell material did not have a significant effect on the 

performance of the ballast structure, as demonstrated by a variety of numerical 

simulations. Young’s Moduli for a variety of materials commonly used in geosynthetics 

all generally performed similarly, suggesting use of higher grade material is not 

necessary in all situations. 

 

These implications are valuable to the nature of the study, but are based on a few assumptions 

and drawbacks. The anisotropic nature of the material used in experimentation, prevented perfect 

matching of some displacements under loading. Additionally, the behavior of polymers is 

complex as it involves many factors that are difficult to model, including behavior under creep, 

high or low temperatures, UV exposure and electrochemical resistance. Therefore, the following 

assumptions and drawbacks are addressed. 

 The behavior of granular materials, especially under low confinements is very complex. 

However, the general benefits of geocell can be demonstrated with the simplicity of the 

non-linear, Drucker-Prager plasticity conditions, which was considered acceptable for 

this numerical study. The application of plasticity to the ballast provides basic insight into 

geocell confinement, as it is reliant on the material friction angle, which governs the 

behavior of the infill within the geocell and the confinement mechanism. However, the 

model had significant drawbacks that must be considered for future analyses, including a 

possible overestimate of lateral displacements due to anisotropy and higher dilation 

angles, and inability to capture the true hysteretic, cyclic nature of ballast behavior. 
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 The plastic behavior of geocell is reliant on too many factors to simulate very complex 

mechanisms (e.g. creep, temperature) in this analysis, but such factors may not be 

relevant to show the beneficial nature of geocell in such an application, especially when 

considering the non-plastic strains endured in the material during experimental testing. 

Therefore, the geocell was modeled as an elastic material as it generally does not 

encounter very high strains under realistic loading of the surrounding soil. 

 Further model tests should be performed to ensure consistency in results. Single tests in 

each configuration/loading scheme were performed due to time and laboratory 

constraints, but additional model testing would allow for more confidence in the 

experimental data. 

 In the parametric studies, a basic design geometry was provided based on design 

constraints commonly used by AMTRAK for construction of unreinforced ballast 

foundations. There is no design critieria for railway substructures reinforced with geocell, 

but according to AMTRAK and literature, a minimum clearance between the ties and top 

lip of the geocell was recommended. 

6.2 Practical Issues 

One practical concern about the use of geocell is the installation of the material in the 

substructure. Commonly, such reinforcement requires workers to spread the material out to its 

specified length, and drive stakes into the outer cells, keeping the geocell honeycomb structure in 

tension. Then, ballast must be place within by means of pouring the granular material from a 

specified height, and ensuring that a layer of at least 25 cm overlies the top lip of the infilled 

geocell. This provides a cushion for tamping and compaction of the ballast. Due to the poorly-

graded nature of ballast and subballast (for drainage reasons), the ballast often reaches a high 
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relative density with very little more than placement, suggesting the compaction of infill may not 

be a critical issue. When placing the ballast on soft foundations, construction can also be a 

concern with geocell. In such cases, a sacrificial geogrid or membrane could be placed above the 

soft layer to facilitate compaction and construction upon problem soils. 

Related and important to the construction issues with geocell is the concern of maintenance 

problems with installation of geocell. If the geocell were installed just below the railroad ties, 

removal and replacement or cleaning of the fouled ballast would be an issue as it would interfere 

with maintenance equipment. However, placement of the geocell at a minimum of 25 cm below 

the ties allows safe removal of fouled ballast overlying the geocell-ballast composite, while 

leaving the confined ballast undisturbed. However, such technicalities may not be of concern if 

the geocell manages to extend the lifespan of the railroad substructure long enough to justify 

fewer maintenance cycles, a possible justification for its application to ballast railroad 

embankments. 

The cost of geocell can also certainly play a role of whether it is a sustainable solution for 

railway substructure reinforcement. Depending on the material used for the reinforcement, cost-

effectiveness should be a concern. However, lower-grade geocell materials can still serve a 

purpose effectively, as suggested by the implications of the parametric study. Therefore, geocell 

may still be a sustainable and economic solution, especially relevant to railroad right-of-way 

with high traffic, high wheel loads, poor soil conditions and sensitive surroundings. Geocell 

generally helps distribute subgrade stresses more evenly and prevents deformation, so it could 

prolong the lifespan of a railway embankment that sustains high traffic and therefore cannot 

encounter frequent service. It also assists performance for ballast embankments overlying soft 
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foundations, which can result in recurring and expensive maintenance issues for railways. The 

increased deformation performance that geocell adds to a ballasted embankment could be 

beneficial in situations where space is limited and surroundings are sensitive (roadway 

overpasses, near utilities, drainage canals, retaining walls). Use of such a solution could possibly 

be beneficial in cost-effectiveness considering the reduced maintenance cycles, or prolonged 

lifespan that could provide to railways, especially in sensitive or problem areas.  

The material used to manufacture is also a concern not just economical reasons, but for 

performance requirements. One of the main concerns in design with such materials in railway 

substructure application would be that of creep. Millions of train passes and high stresses 

resulting from these loads could contribute to significant creep strains and deterioration. These 

are especially relevant in places that are prone to higher temperatures, where often heat can 

induce lower strengths, plastic strains and creep. Alternatively, some materials are prone to 

different deteriorations of the electro-chemical variety, including deterioration due to exposure to 

acids, bases, UV radiation or other environmental conditions. Such aspects should be a concern 

of the designer and geosynthetic manufacturer, however, the addition of very modest 

confinement can still be advantageous despite these concerns, which may not be relevant anyway 

depending on the design life of the substructure. 

6.3 Suggested Further Studies 

The implications of these experiments and simulations are promising, but could use further 

justification from real field testing. The performance of such an application of geocell in actual 

railroad foundations would be an essential step in demonstrating the various benefits provided by 

the geocell-ballast composite. This is especially true for railroad overlying soft foundations and 
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railroads in sensitive or constrained right-of-ways. These tests would need to be compared to 

identical track geometry and similar site conditions for appropriate comparison. Field testing is 

in the process of being arranged in conjunction with FRA and AMTRAK. 

Further studies could provide insight upon the effects of placement and dimensions of geocell 

within a ballast embankment. Practical constraints like construction and maintenance should be 

considered, but more complex railroad foundations could be consider in addition to applying the 

material to the subgrade or in wider or narrower cases. 

One important aspect of geocell that could be investigated and has significant implications on 

performance is the effects of aspect ratio of the pocket size and effects of ratio of ballast size to 

pocket size of the geocell. Use of geocell pockets that are not large enough in comparison to the 

grain size of the infill would not provide the advantageous “confining” effect that the geocell 

applies to the ballast. Further parametric studies on these effects and its optimization would be 

insightful and have economic implications. 

Further complex analyses that could be performed is effects of geocell on degradation of ballast. 

Also, further studies could elucidate the important observations on the creep behavior of geocell 

over time and its effects on the behavior of the railroad embankment.  

Material modeling of both the ballast and geocell material using more advanced plasticity 

models could simulate more accurate railway behavior at the expense of more elaborate 

laboratory tests. These tests could also include full-scale railway geometry and loading patterns 

representative of exact train wheel passes. Some possible added factors for these models are to 

capture the deterioration, anisotropy or angularity of the ballast.  
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APPENDIX A: LINEAR ELASTICITY CONSTITUTIVE MODEL 

 

 

Linear-elastic behavior was used in the analysis since it is the simplest elasticity model available 

and would suffice to simulate their material. This material model is dependent on several 

parameters, including Poisson’s Ratio (ν) and Young’s Modulus (E), which were assigned to 

every material in the analysis based on real experimental data. Using these parameters and 

Generalized Hooke’s Law, the stress-strain relationship based on this model can be defined as: 

 

    
 

 
                 

    
 

 
                 

    
 

 
                 

    
   

  
 

    
   

  
 

    
   

  
 

 

 

This model simulates strains as recoverable, that is, when load is removed, the strain returns to 0 

as well unless any model for plasticity is applied to the material as well and yield criteria are 

reached. One such example is soil, which does not act as solely an elastic material. 
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APPENDIX B: DRUCKER-PRAGER PLASTICITY CONSTITUTIVE MODEL 

 

 

The constitutive model chosen to simulate the plasticity behavior of soils in the numerical 

analyses was the Drucker-Prager elastic-perfectly plastic material law. This material law is 

advantageous because of its general simplicity and dependence on similar material properties 

than those used for Mohr-Coulomb Failure criteria (ϕ, c), yet its yield surface is rounded, 

avoiding the anomalous behavior that could arise from the Mohr-Coulomb yield surface (see 

figure B.1). Drucker-Prager Yield Criteria, also known as “Extended Von Mises” plasticity, is 

defined as: 

            

 

Where the yield surface is dependent upon the second invariant of deviatoric stress, J2, the first 

invariant of deviatoric stress, J1, as well as α and k, which are dependent on the friction angle 

and cohesion of the material as follows: 

      
    

  
     

    
  

     
    

  
  

 

               
 

Conventional Triaxial compression: 

  
     

          
 

 

  
      

          
 

 

Plane Strain compression: 
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The yield surface is also dependent upon a flow rule, which uses a differential equation a 

constant of proportionality that describes the relationship of the stress increment to the yield 

function. However, since the material model was kept simplified due to limitations in material 

testing, the flow stress ratio, the constant of proportionality, was kept as unity, implying isotropy. 

 

 

 
 

Figure B.1: Comparison of Drucker-Prager yield surfaces to Mohr-Coulomb yield surfaces. 

 


