Articles

The number of metabolic syndrome risk factors predicts alterations in gut microbiota in Chinese children from the Huantai study

Sun, Jiahong; Ma, Xiaoyun; Yang, Liu; Jin, Xuli; Zhao, Min; Xi, Bo; Song, Suhang

Background
Evidence on the effect of gut microbiota on the number of metabolic syndrome (MetS) risk factors among children is scarce. We aimed to examine the alterations of gut microbiota with different numbers of MetS risk factors among children.

Methods
Data were collected from a nested case–control study at the baseline of the Huantai Childhood Cardiovascular Health Cohort Study in Zibo, China. We compared the differences in gut microbiota based on 16S rRNA gene sequencing among 72 children with different numbers of MetS risk factors matched by age and sex (i.e., none, one, and two-or-more MetS risk factors; 24 children for each group).

Results
The community richness (i.e., the total number of species in the community) and diversity (i.e., the richness and evenness of species in the community) of gut microbiota decreased with an increased number of MetS risk factors in children (P for trend < 0.05). Among genera with a relative abundance greater than 0.01%, the relative abundance of Lachnoclostridium (PFDR = 0.009) increased in the MetS risk groups, whereas Alistipes (PFDR < 0.001) and Lachnospiraceae_NK4A136_group (PFDR = 0.043) decreased in the MetS risk groups compared to the non-risk group. The genus Christensenellaceae_R-7_group excelled at distinguishing one and two-or-more risk groups from the non-risk group (area under the ROC curve [AUC]: 0.84 − 0.92), while the genera Family_XIII_AD3011_group (AUC: 0.73 − 0.91) and Lachnoclostridium (AUC: 0.77 − 0.80) performed moderate abilities in identifying none, one, and two-or-more MetS risk factors in children.

Conclusions
Based on the nested case–control study and the 16S rRNA gene sequencing technology, we found that dysbiosis of gut microbiota, particularly for the genera Christensenellaceae_R-7_group, Family_XIII_AD3011_group, and Lachnoclostridium may contribute to the early detection and the accumulation of MetS risk factors in childhood.

Geographic Areas

Files

  • thumnail for 12887_2023_Article_4017.pdf 12887_2023_Article_4017.pdf application/pdf 506 KB Download File

Also Published In

More About This Work

Published Here
November 20, 2024

Notes

Metabolic syndrome, Children, Gut microbiota, 16S rRNA