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A B S T R A C T

Models of atmospheric composition rely on fire emissions inventories to reconstruct and project impacts of
biomass burning on air quality, public health, climate, ecosystem dynamics, and land-atmosphere exchanges.
Many such global inventories use satellite measurements of active fires and/or burned area from the Moderate
Resolution Imaging Spectroradiometer (MODIS). However, differences across inventories in the interpretation of
satellite imagery, the emissions factors assumed for different components of smoke, and the adjustments made
for small and obscured fires can result in large regional differences in fire emissions estimates across inventories.
Using Google Earth Engine, we leverage 15 years (2003–2017) of MODIS observations and 6 years (2012–2017)
of observations from the higher spatial resolution Visible Imaging Infrared Radiometer Suite (VIIRS) sensor to
develop metrics to quantify five major sources of spatial bias or uncertainty in the inventories: (1) primary
reliance on active fires versus burned area, (2) cloud/haze burden on the ability of satellites to “see” fires, (3)
fragmentation of burned area, (4) roughness in topography, and (5) small fires, which are challenging to detect.
Based on all these uncertainties, we devise comprehensive “relative fire confidence scores,” mapped globally at
0.25° × 0.25° spatial resolution over 2003–2017.

We then focus on fire activity in Indonesia as a case study to analyze how the choice of a fire emissions
inventory affects model estimates of smoke-induced health impacts across Equatorial Asia. We use the adjoint of
the GEOS-Chem chemical transport model and apply emissions of particulate organic carbon and black carbon
(OC + BC smoke) from five global inventories: Global Fire Emissions Database (GFEDv4s), Fire Inventory from
NCAR (FINNv1.5), Global Fire Assimilation System (GFASv1.2), Quick Fire Emissions Dataset (QFEDv2.5r1),
and Fire Energetics and Emissions Research (FEERv1.0-G1.2). We find that modeled monthly smoke PM2.5 in
Singapore from 2003 to 2016 correlates with observed smoke PM2.5, with r ranging from 0.64–0.84 depending
on the inventory. However, during the burning season (July to October) of high fire intensity years (e.g., 2006
and 2015), the magnitude of mean Jul-Oct modeled smoke PM2.5 can differ across inventories by> 20 μg m−3

(> 500%). Using the relative fire confidence metrics, we deduce that uncertainties in this region arise primarily
from the small, fragmented fire landscape and very poor satellite observing conditions due to clouds and thick
haze at this time of year. Indeed, we find that modeled smoke PM2.5 using GFASv1.2, which adjusts for fires
obscured by clouds and thick haze and accounts for peatland emissions, is most consistent with observations in
Singapore, as well as in Malaysia and Indonesia. Finally, we develop an online app called FIRECAM for end-users
of global fire emissions inventories. The app diagnoses differences in emissions among the five inventories and
gauges the relative uncertainty associated with satellite-observed fires on a regional basis.

https://doi.org/10.1016/j.rse.2019.111557
Received 18 October 2018; Received in revised form 11 September 2019; Accepted 23 November 2019

⁎ Corresponding author.
E-mail address: tianjialiu@g.harvard.edu (T. Liu).

Remote Sensing of Environment 237 (2020) 111557

Available online 09 December 2019
0034-4257/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2019.111557
https://doi.org/10.1016/j.rse.2019.111557
mailto:tianjialiu@g.harvard.edu
https://doi.org/10.1016/j.rse.2019.111557
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2019.111557&domain=pdf


1. Introduction

1.1. Global fire emissions inventories: role in modeling studies and
methodological differences

Models of atmospheric composition depend on global fire emissions
inventories to reconstruct and project the impacts of biomass burning
on air quality (Cusworth et al., 2018), public health (Crippa et al., 2016;
Koplitz et al., 2016), climate (Rogers et al., 2015; Tosca et al., 2013),
ecosystem dynamics (Yi et al., 2014), and land-atmosphere exchanges
(Prentice et al., 2011). Many regional and global modeling studies
consider only one global fire emissions inventory as input primarily to
limit computational cost (Crippa et al., 2016; Kim et al., 2015; Koplitz
et al., 2016; Maasakkers et al., 2016; Marlier et al., 2019). End-users
may simply choose an inventory based on spatio-temporal resolution,
near-real-time availability, or keep the default inventory imposed in
some chemical transport models (CTM). However, disagreements in the
magnitude and temporal variability of emissions among inventories can
significantly impact model estimates of variables relevant to air quality
(Cusworth et al., 2018), public health (Koplitz et al., 2018b), or the
budgets of atmospheric species (Heymann et al., 2017; Li et al., 2019;
Shi et al., 2015; Zhang et al., 2014). Thus, it is important to understand
the underlying causes for differences in both the magnitude and spatio-
temporal variability of fire emissions in order to better inform fire
prediction (Chen et al., 2017), land management decisions (Marlier
et al., 2019), and other applications. While previous studies have
identified regional discrepancies among various global fire emissions
inventories (e.g., Li et al., 2019; Shi et al., 2015), here we also construct
metrics to diagnose such discrepancies, and we present the online app
FIRECAM to allow end-users to rapidly compare inventories across the
globe and view the metrics.

Five global fire emissions inventories are widely used in modeling
studies: (1) Global Fire Emissions Database (GFED; van der Werf et al.,
2017), (2) Fire Inventory from NCAR (FINN; Wiedinmyer et al., 2011),
(3) Global Fire Assimilation System (GFAS; Kaiser et al., 2012), (4)
Quick Fire Emissions Dataset (QFED; Darmenov and da Silva, 2013),
and (5) Fire Energetics and Emissions Research (FEER; Ichoku and
Ellison, 2014) (Table 1). Estimates of fire emissions generally follow the
“bottom-up” (e.g. GFED, FINN) or “top-down” approach (e.g. QFED,
GFAS, FEER). In this study, we broadly define “bottom-up” as burned
area-based and “top-down” as fire energy-based. The bottom-up burned
area approach in GFED and FINN is based on MODIS burned area
(MCD64A1) and/or active fire (MOD14, MYD14) products. It is im-
portant to note that even the bottom-up approach relies on active fire
data: GFED has essentially become a hybrid product that ingests active
fire locations for its small fire boost (Randerson et al., 2012), and the
MCD64A1 algorithm itself is coupled with active fire data (Giglio et al.,
2009). Fuel loadings, combustion completeness, and emissions factors,
which are dependent on region and land use and land cover (LULC), are
then used to convert burned area to fire emissions. Fuel loadings are
derived from biogeochemical models (Hoelzemann et al., 2004; van der
Werf et al., 2010), and combustion completeness is estimated as a
function of soil moisture (van der Werf et al., 2017) or tree cover
(Wiedinmyer et al., 2011). Emissions factors are compiled from lab
experiments and vary by LULC (Akagi et al., 2011; Andreae and Merlet,
2001). The top-down approach in QFED, GFAS, and FEER uses fire
energy from MODIS-derived fire radiative power (FRP), which is re-
motely sensed at top-of-atmosphere. Fire radiative energy (FRE), or the
temporal integral of FRP, approximately linearly scales with the mass of
dry matter (DM) consumed as fuel due to combustion (Wooster et al.,
2005). Besides correcting for fires obscured by clouds in the top-down
approach, GFAS, QFED, and FEER also use MODIS aerosol optical depth
(AOD) to determine scaling factors for emissions of organic carbon
(OC), black carbon (BC), and particulate matter< 2.5 μm in diameter
(PM2.5), which includes OC and BC (Darmenov and da Silva, 2013;
Ichoku and Ellison, 2014; Kaiser et al., 2012).

To understand the causes for differences in fire emissions estimates,
we first devise five “relative fire confidence metrics” based on major
methodological differences between the five global inventories and
factors that can affect satellite observing conditions: (1) type of input
satellite fire dataset (i.e., burned area versus active fires), (2) cloud/
haze obscuration of land surface, (3) burn extent and fragmentation, (4)
variance in topography, and (5) additional small fires from VIIRS. We
combine the five relative fire confidence metrics to map the relative fire
confidence score for bottom-up emissions inventories primarily based
on burned area (e.g. GFED) or active fire area (e.g. FINN). For top-down
inventories, we estimate an FRP-based score to estimate the potential
FRP enhancement from small fires below the MODIS detection limit,
large fires not well-captured by the MODIS active fire product, and fires
obscured by clouds and thick haze.

1.2. Regional case study: smoke exposure from fires in Indonesia

We then focus on Indonesia as a regional case study, as Indonesia
can contribute a substantial fraction of annual global fire emissions. By
some estimates, fires in Equatorial Asia, which mostly occur in
Indonesia, account for 8% of carbon emissions from global fire activity
on average, but as much as over a third during high fire intensity years
(van der Werf et al., 2017). From incomplete combustion, fires release
greenhouse gases and aerosols, including PM2.5, and such emissions can
trigger haze events, impacting visibility, air quality, climate, ecosystem
services, and human health (Harrison et al., 2009; Page et al., 2009).
Three main factors exacerbate haze episodes over Equatorial Asia: (1)
synoptic meteorology, (2) fire-driven deforestation and agricultural
management, and (3) carbon-rich peatlands in Indonesia (Marlier et al.,
2019). First, during years with a strong El Niño and positive Indian
Ocean Dipole phase, such as 2006 and 2015, suppression of convection
over Indonesia leads to drought conditions (Crippa et al., 2016;
Fernandes et al., 2017; Koplitz et al., 2016). Chen et al. (2017) found
that a temporal cascade of pan-tropical fires, including large fires in
Indonesia, is driven by the El Niño Southern Oscillation (ENSO) and
changes in precipitation and terrestrial water storage. Second, small-
holder farms and industrial concessions (oil palm, pulpwood, and
rubber) are typically managed by fire to clear residues; forests are also
cleared for agriculture and new plantations via burning (Dennis et al.,
2005; Hoscilo et al., 2011; Marlier et al., 2015). Third, if the water table
is low, peat fires can burrow underground and become extremely dif-
ficult to extinguish. Such fires can smolder for days to weeks, releasing
substantial amounts of smoke into the atmosphere (Gras and Jensen,
1999; Hayasaka et al., 2014; Rein et al., 2008; van der Werf et al.,
2008). Although fires occur every year in Indonesia (e.g., Koplitz et al.,
2018a), the combination of these three natural and human-induced
factors leads to especially severe haze over Equatorial Asia, such as in
1997, 2006, and 2015.

The high concentrations of PM2.5 generated by fires in Equatorial
Asia pose adverse health risks, leading to increased premature mor-
tality. For example, Koplitz et al. (2016), Crippa et al. (2016), and
Marlier et al. (2019) estimate 75,600–100,300 long-term premature
adult deaths from cardiovascular and respiratory disease in Equatorial
Asia due to the 2015 severe haze event. However, each of these studies
differ in methodology, and specifically, in the global fire emissions
inventory used: GFASv1.0 in Koplitz et al. (2016), FINNv2.0 in Crippa
et al. (2016), and GFEDv4s in Marlier et al. (2019). In this study, we
diagnose the impact of using different emissions inventories on esti-
mates of population-weighted smoke exposures for Singapore, In-
donesia, and Malaysia, following Koplitz et al. (2016) and Marlier et al.
(2019).

1.3. Google Earth Engine: online platform for rapid geospatial analysis

In this study, we leverage Google Earth Engine (GEE; https://
earthengine.google.com), an online platform for rapid geospatial
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analysis (Gorelick et al., 2017). Recently, GEE has been used in studies
that require ease of access to satellite datasets and high computational
power, such as for mapping crop yields (Azzari et al., 2017; Azzari and
Lobell, 2017), trends in land use change (Kennedy et al., 2018), travel
distance to cities (Weiss et al., 2018), and smoke exposure from fires
(Marlier et al., 2019). Some of these studies also incorporate GEE's user
interface capabilities, including Earth Engine Apps (https://www.
earthengine.app) into online apps. Our use of GEE is two-fold: (1) to
apply the relative fire confidence metrics at the global scale and (2) to
use Earth Engine Apps to build the FIRECAM online tool.

The main objective of this study is to identify the methodological
differences between five global fire emissions inventories and for end-
users, show how these differences may lead to biases in results. To do
so, we first use GEE to develop five relative fire confidence metrics to
quantify some of the uncertainties. Next, we isolate the impact of using
different inventories to estimate smoke exposure in Equatorial Asia
from fires in Indonesia. Finally, we develop an online tool to help end-
users to rapidly gauge the regional differences in emissions estimates
and reduce potential biases in model results.

2. Methods

In this study, we use GEE to access and analyze satellite-derived
datasets, many of which are already included in the GEE public data
catalog. GEE couples a multi-petabyte-scale data catalog with cloud
computing to make rapid geospatial analysis possible at scale (Gorelick
et al., 2017). Use of GEE is thus critical to this study in order to apply
the relative fire confidence metrics at a global scale and build the
FIRECAM online tool.

2.1. Satellite fire datasets

We primarily use the Collection 6 (C6) satellite fire datasets from
the MODIS sensors aboard the Terra and Aqua satellites, which have
daily overpasses at ~10:30 am/pm and ~1:30 am/pm local time, re-
spectively. These datasets are used in the construction of the five global
fire emissions inventories considered here and publicly available from
the NASA Earthdata catalog (https://earthdata.nasa.gov/). We analyze
15 years (2003–2017) of data from Collection 6 MCD64A1 burned area
at monthly, 500-m spatial resolution (Giglio et al., 2018, 2009), MOD/
MYD14A1 FRP and fire mask at daily, 1-km resolution (Giglio et al.,
2016, 2003), and MCD14ML active fire geolocations also at daily, 1-km
resolution. We hereafter refer to the Level-3 gridded active fire products
MOD14A1 (Terra) and MYD14A1 (Aqua) collectively as MxD14A1 and
Level-2 swath products as MxD14. We also use Collection 1
VNP14IMGML active fire geolocations, available since 2012, from the
VIIRS sensor aboard the Suomi National Polar-orbiting Partnership (S-
NPP) satellite. VNP14IMGML is analogous to MCD14ML, but provides
data at higher spatial resolution (375 m) and only during the Aqua
overpass times (Schroeder and Giglio, 2017).

2.2. Relative fire confidence metrics

We devise five simple fire confidence metrics (ϕ) to assess the
overall spatial variability and relative bias in global fire emissions in-
ventories at 0.25° × 0.25° spatial resolution and aggregated across
15 years (2003–2017) from monthly timesteps, as described below.
Table 2 describes the satellite-derived datasets used. Then, as an ex-
ample to end-users, we integrate the five metrics into more compre-
hensive “scores” to independently evaluate the spatial variability in
uncertainty for bottom-up and top-down inventories. That is, we
identify regions where each inventory may capture fire emissions either
well or poorly, based on the five metrics.

(1) Spatial discrepancy between burned area and active fire area
(ϕarea): we classify two main types of bottom-up emissions

inventories, based on the observations used to derive these in-
ventories. For example, both GFED and FINN estimate burned area,
but GFED uses the MCD64A1 burned area product, and FINN relies
on MCD14ML active fire geolocations. MODIS burned area is typi-
cally classified based on the difference in the surface reflectance, or
Normalized Burn Ratio (NBR), of pre-burn and post-burn images,
while MODIS active fires are detected as “hotspots,” or thermal
anomalies, each of which can be associated with areal extent to
estimate burned area. To avoid confusion, we refer to burned area
derived from MCD64A1 as BAMCD64A1 or burned area (BA; as in
GFED) and that from MxD14A1 as BAMxD14A1 or “active fire area”
(AFA; as in FINN). In contrast to the high threshold for the
MCD64A1 burned area product, which reliably classifies burn
scars> 1.2 km2 (Giglio et al., 2006), the MxD14A1 active fire
product can detect cool, smoldering fires more consistently and
fires as small as 100 m2 under clear-sky conditions (Giglio et al.,
2003). However, burned area products may better capture short-
lasting fires (sub-daily) and fires obscured by thick haze or clouds,
since the burned area pre-burn versus post-burn algorithm is not
limited by satellite overpass times (Giglio et al., 2009). The per-
sistence of burn scars enables satellites to detect fires after clouds
and haze have dissipated. To gauge the relative areal discrepancy of
BAMCD64A1 and BAMxD14A1, we first aggregate BAMCD64A1 to the 1-
km spatial resolution of BAMxD14A1. We then estimate total
BAMCD64A1 outside BAMxD14A1 (BAβ) and BAMxD14A1 outside
BAMCD64A1 (BAα), over 2003–2017, and calculate the normalized
difference index of BAβ and BAα at 0.25° × 0.25° spatial resolution:

=

−

+

ϕ
BA BA
BA BA

Σ Σ
Σ Σarea

α

β α

β

(1)

where

= − ∩BA BA BA BA( )β MCD A MCD A MxD A64 1 64 1 14 1 (2)

= − ∩BA BA BA BA( )α MxD A MCD A MxD A14 1 64 1 14 1 (3)

The range of the normalized difference index (−1 to +1) for the
BA-AFA discrepancy indicates whether grid cells are either dominated
by burned area (> 0) or active fire area (< 0). If either burned area or
active fire area dominates (near −1 or +1), the datasets will not agree,
and uncertainty is high. If the index is ~0, the discrepancies between
the datasets are minimal, wherein BAβ ≈ BAα; in this case, however, the
magnitude of BAβ and BAα can vary while yielding similar index values.

(2) Cloud/haze effect on the ability of satellites to “see” fires
(ϕcloud_haze): persistent cloud coverage and thick haze limit the op-
portunities for satellites to detect active fires or retrieve usable
scenes for burned area classification. This metric diagnoses the
fractional monthly cloud/haze burden at 500-m spatial resolution,
weighted by FRP, but does not distinguish between smoke and
cloud or varying cloud thickness and opacity. We use FRP rather
than burned area since FRP is linearly related to DM emissions and
more readily captures small fires (Wooster et al., 2005). We use the
Collection 6 MODIS daily surface reflectance products MxD09GA
and follow the algorithm proposed by Xiang et al. (2013) in each
pixel, with “pixel” defined as one satellite observation in the native
MODIS sinusoidal projection:

=
−

+

> >p
ρ ρ
ρ ρ

ρ_ 0 or 0.3cloud haze
1 7

1 7
1 (4)

where pcloud_haze refers to pixels designated as cloudy/hazy, ρ1 indicates
the MODIS surface reflectance in the 620–670 nm band (Red) and ρ7,
the 2105–2155 nm band (SWIR-2). Cloudy and hazy pixels tend to be
saturated in the visible bands relative to SWIR bands (Xiang et al.,
2013). Pixels are classified as cloudy/hazy if either of the two criteria in
Eq. (4) is met. We consider only those pixels with one or more active
fire or burned area observations over the 2003–2017 timeframe to
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exclude misclassification of cloud/haze in snow, ice, and desert regions.
After averaging the fraction of clouds and haze across 0.25° × 0.25°
grid cells, we weight the monthly fractional cloud/haze burden by FRP
aggregated by month and satellite, over 2003–2017, to place more
emphasis on the observing conditions during the months and hours of
the diurnal cycle when fires are more likely to occur.

Like Xiang et al. (2013), MODIS also diagnoses clouds and haze but
at coarser, 1-km resolution, which can result in overestimates of the
cloud/haze fraction since clear pixels are mixed with cloudy or mixed
cloudy pixels. However, the MODIS algorithm is better able than Xiang
et al. (2013) to separate clouds or haze from bright surfaces such as
snow/ice, desert, and built-up areas. We therefore use the FRP-
weighted cloud/haze fraction derived from the MODIS algorithm to
identify grid cells that may be misclassified as clouds due to the un-
derlying bright surfaces. We assume that those pixels that MODIS
characterizes as “cloudy” or having “mixed” clouds, cloud shadow, or
high aerosol content are pixels obscured by cloud or haze. Then, for
these grid cells, we check whether the FRP-weighted cloud/haze frac-
tion derived from the Xiang et al. (2013) algorithm is positive. If yes, we
use the FRP-weighted cloud/haze fraction from the MODIS algorithm
for our metric.

(3) Fragmentation and size of contiguous burned area (ϕfragment):
burned area products can better capture large, contiguous fires than
small, fragmented fires due to the greater difference in NBR from
pre-fire to post-fire and the persistence of burn scars on the land
surface. On croplands, the small drop in NBR due to small fires can
be conflated with harvest or masked by timely sowing of the next
crop or by regrowth (e.g. Hall et al., 2016; Liu et al., 2019). In
contrast, active fire products can generally detect such small,
fragmented fires more accurately, so long as they occur during the
satellite overpasses and are not obscured by clouds or haze. Dense
clusters of small fires within a pixel can also increase the detection
probability by enhancing the thermal anomaly or the NBR differ-
ence relative to background. For this metric, we estimate the total
burned area and number of burn scar fragments over 2003–2017,
using the average burned area per contiguous burn scar patch as a
proxy for burn scar size and fragmentation. The con-
nectedComponents function in GEE allows us to estimate the number
of contiguous burn patches on a monthly basis at 500-m spatial
resolution (Gorelick et al., 2017). To determine the connectivity of
burn scars, we apply a circle kernel with a radius of 1 pixel; this
assumes a “half neighbors” scheme, in which each pixel has 4
neighbors, and only pixels that share an edge are merged. One
limitation of connectedComponents is that the algorithm limits the
maximum number of pixels per patch at 256 pixels and identifies
larger patches as background. We account for this limitation by
increasing the total number of burn scar fragments in a grid cell by
one if the MCD64A1 burned area is larger than the size of the patch
derived by connectedComponents. Additionally, the 0.25° × 0.25°
grid used to extract the contiguous burn scars sets an upper bound

on burned area per patch for those large fires extending across
multiple grid cells. Values> 2 km2 per burn fragment indicate
large, contiguous fires, while small values represent small, frag-
mented fires.

(4) Roughness in topography (ϕtopography): rough terrain, or large
variances in local elevation, can inhibit active fire detection or
burned area classification by introducing shadows, leading to in-
sufficient background control pixels and artificial variations in
surface reflectance (Fornacca et al., 2017). We estimate the
neighborhood variance of terrain elevation as an indication of
rough terrain. We use the U.S. Geological Survey (USGS) Global
Multi-resolution Terrain Elevation Data 2010 (GMTED2010) at
7.5 arc sec (~250 m) spatial resolution, derived primarily from the
Shuttle Radar Topography Mission (SRTM) Digital Terrain Eleva-
tion Data from the National Geospatial-Intelligence Agency (NGA).
For each pixel, we estimate the neighborhood variance using a
square kernel with a radius of 2 pixels. We then mask out water
bodies using the 250-m MODIS/Terra land/water mask (MOD44W
C6) and upscale the topography variance to 0.25° × 0.25° spatial
resolution by calculating the mean. Values close to 0 indicate flat
topography, while values> 1000 m2 indicate rough, mountainous
terrain. One limitation of this simple metric is that it does not ac-
count for terrain curvature, whose calculation is not yet supported
by GEE.

(5) Additional small fires detected by VIIRS (ϕVIIRS_sf): VIIRS aboard
S-NPP detects active fires at 375-m (I-bands) and 750-m (M-bands)
spatial resolution in comparison to the 1-km spatial resolution of
MODIS active fire detections (Schroeder and Giglio, 2017). The
difference in spatial resolution suggests that VIIRS can detect
smaller and cooler fires than MODIS. However, global fire emis-
sions inventories have historically depended on MODIS since VIIRS
is available only since 2012, or over a decade less than MODIS.
While these additional small fires may comprise only a small por-
tion of the global carbon budget, they can be important local point
sources that contribute to regional air pollution. We approximate
additional FRP observed by VIIRS at 375-m spatial resolution as the
fractional FRP of VIIRS fires outside MODIS active fire and burned
area pixels during the time period when the two satellite records
overlap (2012–2017). Values range from 0 (no additional VIIRS
FRP outside MODIS burn extent) to 1 (only VIIRS FRP).

2.2.1. Bottom-up inventories: relative fire confidence scores (BA-score,
AFA-score)

Taken together, the five metrics described above capture the pri-
mary reliance on MODIS burned area (e.g., GFED) versus active fire
(e.g., FINN) products as the base input satellite-derived fire dataset in a
bottom-up approach and difficulty in the satellite detection of fires due
to cloud/haze obscuration and limited spatial and temporal resolution.
Using these five metrics, we estimate a relative fire confidence score for
the two bottom-up emissions inventories, which are based on either
burned area (as in GFED) or active fire area (as in FINN). For each

Table 2
Satellite-derived datasets used for the five relative fire confidence metrics, which are described in Section 2.2.

Dataset Description Resolution Satellite Sensor GEE ID

MCD64A1 Burned area Monthly, 500 m Terra/Aqua MODIS MODIS/006/MCD64A1
MOD14A1 Active fires Daily, 1 km Terra MODIS/006/MOD14A1
MYD14A1 Aqua MODIS/006/MYD14A1
MOD09GA Surface reflectance Daily, 500 m Terra MODIS/006/MOD09GA
MYD09GA Aqua MODIS/006/MYD09GA
MCD12Q1 Land cover Yearly, 500 m Terra/Aqua MODIS/006/MCD12Q1
MCD14ML Active fire geolocations Daily, 1 km Terra/Aqua projects/GlobalFires/MCD14ML
VNP14IMGML Daily, 375 m S-NPP VIIRS projects/GlobalFires/VNP14IMGML
GMTED2010 Terrain elevation 2010 only, 7.5 arc sec NGA's SRTM Digital Terrain Elevation Data USGS/GMTED2010

NGA = National Geospatial-Intelligence Agency.
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metric and each grid cell, we assign an initial integer confidence score
ranging from 0 to 10, with 10 as highest confidence score, based on the
decile distribution of all grid cells. Grid cells with only MODIS active
fire, only MODIS burned area, or only VIIRS active fire observations are
assigned the lowest confidence score of 0. We then average the scores
from the fire confidence metrics in each grid cell and adjust the scale by
setting the median score for the final relative fire confidence score for
that grid cell to 0. This score represents the relative degree to which we
can be confident in fire emissions for these inventories. We associate
low cloud/haze burden, low variance in elevation, and low fraction of
additional VIIRS fires with high confidence. To assess inventories based
on burned area (e.g., GFED), we calculate a “BA-score,” in which high
burned area outside active fire area (metric 1) and low burn fragmen-
tation (metric 3) denote high confidence. For inventories based on ac-
tive fires (e.g., FINN), we calculate an “AFA-score,” in which we reverse
the scales for metrics 1 and 3 and place more relative confidence in grid
cells dominated by active fire area over burned area and fragmented
burn landscapes.

2.2.2. Top-down inventories: adjusted potential FRP adjustment (pFRP)
Top-down FRP-based inventories often include statistical cloud-gap

adjustment and/or smoke AOD constraints, making them difficult to
directly compare against the bottom-up inventories. Cloud-gap adjust-
ments correct for fires blocked from satellite detection due to clouds or
thick haze. These adjustments rely on data assimilation of previous
observations and assumptions regarding fire persistence (Darmenov
and da Silva, 2013; Kaiser et al., 2012). As an additional top-down
constraint, fire emissions are scaled to match smoke-aerosol emissions
derived from AOD observations (Ichoku and Ellison, 2014). We thus
devise a separate score, the adjusted potential FRP enhancement
(pFRP), or “FRP-score,” to assess the three top-down inventories (GFAS,
QFED, FEER). The pFRP score diagnoses additional fire energy, un-
accounted for by the MODIS active fires product but indicated by large
burn scars from the MODIS burned area product or very small fires from
the 375-m VIIRS active fires product. We first estimate the potential
FRP enhancement as the sum of (1) fractional FRP inside MCD64A1
burned area extent but outside active fire area, over 2003–2017, and
(2) fractional VIIRS FRP outside the combined extent of both MODIS
burned area and active fire area, or metric 5, over 2012–2017. To ob-
tain the adjusted potential FRP enhancement, we then multiply the
potential FRP enhancement by the complement of the cloud/haze ob-
scuration fraction, or metric 2. High pFRP values suggest low con-
fidence in top-down inventories under clear-sky conditions.

2.3. Global fire emissions inventories

To convert burned area or FRP into emissions, fire emission in-
ventories rely on estimates and assumptions regarding an array of
variables as land cover type, fuel load, or emissions factors. Here we
summarize these estimates and assumptions across five inventories
(GFEDv4s, FINNv1.5, GFASv1.2, QFEDv2.5r1, and FEERv1.0-G1.2)
over 2003–2016 and at both global and regional scale (Table 1). The
versions of the inventories considered here are current as of 2018. We
then compare the resulting emissions of carbon dioxide (CO2), carbon
monoxide (CO), methane (CH4), OC, BC, and PM2.5 emissions from five
global fire emissions inventories. Each inventory is described in more
detail in Supplementary Section S2.

2.4. Modeling smoke PM2.5 from regional fire emissions

Following Kim et al. (2015) and Koplitz et al. (2016), we use the
adjoint of the GEOS-Chem CTM to estimate the influence of upwind
fires on smoke exposure at population-weighted receptors. We define
smoke PM2.5 as the enhancement in PM2.5 due to fire activity. As used
here, the GEOS-Chem adjoint maps the sensitivities of smoke PM2.5 at
particular receptors to fire emissions in grid cells across a source region,

creating a footprint of such sensitivities. These footprints depend on the
transport pathways from the source to the receptor and vary with me-
teorology. By multiplying these sensitivities by the different fire emis-
sions inventories, we can easily compare estimates of monthly smoke
PM2.5 exposure in Indonesia, Singapore, and Malaysia, from 2003 to
2016. We thus apply monthly adjoint sensitivities, which span a range
of meteorology from 2005 to 2009, to the sum of OC and BC emissions,
the main components of smoke PM2.5. Due to the high computational
cost of the GEOS-Chem adjoint, we match existing 2005–2009 sensi-
tivities to each emissions year from 2003 to 2016 by determining the
closest meteorological year in terms of rainfall (Kim et al., 2015; Koplitz
et al., 2016). To do so, we use daily rainfall rates from Climate Hazards
Group Infrared Precipitation with Station Data (CHIRPS; Funk et al.,
2015), averaged temporally over the fire season and spatially over
Sumatra and Kalimantan, Indonesia (Fig. S3). CHIRPS is a daily,
0.05° × 0.05° dataset that integrates both observational and satellite
data to provide quasi-global rainfall data since 1981. As in Fernandes
et al. (2017) and Marlier et al. (2019), we define the fire season in
Indonesia as July to October.

Following Marlier et al. (2019), we further validate modeled smoke
PM2.5 with ground observations in Singapore. We first extend the daily
PM2.5 observations, available from 2014 to 2016, from the Singapore
National Environment Agency (NEA) to 2010 by converting Pollution
Standards Index (PSI) observations to PM2.5. As used by the Singapore
NEA, PSI is an air quality index that incorporates concentrations of six
pollutants: CO, sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone
(O3), PM10, and PM2.5 (https://www.haze.gov.sg/). To further extend
the record back to 2003, we train a multi-variate regression model of
monthly mean NEA PM2.5 observations using visibility, air temperature,
wind speed, and rainfall observations from the Singapore Changi air-
port, available from NOAA Global Summary of the Day (GSOD). The
model yields an adjusted r2 with observations of 0.94 (Fig. S5). We then
reconstruct monthly PM2.5 for 2003–2016 and subtract the background
PM2.5, or the median PM2.5 (13.77 μg m−3) during non-fire season
months (January to June and November to December), to obtain smoke
PM2.5 for our validation. Validation for Malaysia and Indonesia is de-
scribed in Supplementary Section S3.2.

3. Results

3.1. Spatial patterns in relative fire confidence metrics and scores

Overall, the five relative fire confidence metrics broadly differ-
entiate: (1) large, continuous versus small, fragmented landscapes, (2)
cloudy/hazy versus clear satellite observing conditions during the fire
season, and (3) flat versus mountainous or rugged terrain. First, the
map of BA-AFA discrepancies (metric 1) reveals the regions where the
burned area BAβ and active fire area extent BAα disagree. Regions
dominated by high burned area outside the active fire area extent
(BAβ ≫ BAα) include the western Australia shrublands, sub-Saharan
Africa savannas, and Kazakhstan and eastern Mongolia grasslands.
Regions dominated by active fire area outside burned area extent
(BAβ ≪ BAα) are more widespread and primarily cover agricultural
and/or mountainous areas (Fig. 1). Additionally, this metric highlights
artificial discontinuities in the MODIS burned area product, most pro-
minently north of the Black Sea, likely due to separate data processing
for each MODIS tile (Giglio et al., 2018). Second, the FRP-weighted
cloud/haze fraction (metric 2) shows that tropical and boreal forest
regions, as well as eastern China, are conducive to poor satellite ob-
serving conditions due to cloud or haze during the fire season, with
index values> 0.5 (Fig. 2). These areas with persistent cloud/haze
burden are consistent with independent estimates of high mean cloud
frequency (Wilson and Jetz, 2016) and are also co-located with high
MODIS burn date uncertainty, indicating that many retrieved satellite
scenes are unusable (Fig. S9). Third, the pattern of burn size and
fragmentation (metric 3) is similar to that of the BA-AFA discrepancy:
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areas with large, contiguous fires are better captured by burned area,
while areas with small, fragmented fires are better represented by ac-
tive fire detections (Fig. 3). Our method for burn size/fragmentation
yields spatial patterns consistent with fire size from the Global Fire
Atlas, a catalog that characterizes over 13 million individual fires de-
tected by MODIS (Andela et al., 2019). Fourth, topographical variance
(metric 4) differentiates mountainous or rugged terrain, such as in
western U.S. and southeast Asia, versus flat terrain, such as in northern
India and western Australia (Fig. 4). Fifth, the map of VIIRS fires out-
side the MODIS burn extent (metric 5) reveals locations dominated by

small fires that are not well-detected by a coarser resolution sensor like
MODIS (Fig. 5). In total, 38% of total VIIRS FRP does not overlap with
the MODIS burn extent, revealing the importance of very small fires.

Taken together, the five metrics compose the relative fire con-
fidence scores for bottom-up emissions inventories primarily derived
from either burned area (BA-score; Fig. S1a), such as GFEDv4s, or ac-
tive fire area (AFA-score; Fig. S1b), such as FINNv1.5. While the
mapped BA-score and AFA-score mostly track the patterns of the large,
contiguous fires versus small, fragmented fires, some areas exhibit low
relative confidence (e.g., croplands in eastern China, tropical forests in

Fig. 1. Metric 1 for relative fire confidence score (ϕarea): discrepancy between MCD64A1 burned area (BA) and MxD14A1 active fire area (AFA) based on the
normalized difference of BA outside AFA and AFA outside BA. Values are averaged over 2003–2017 and mapped at 0.25° × 0.25° spatial resolution. High values
(darker red) indicate relatively more confidence in BA than AFA, and low values (darker blue) the opposite. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Metric 2 for relative fire confidence score (ϕcloud_haze): cloud/haze fraction based on MxD09GA surface reflectance and weighted by FRP. Values are averaged
2003–2017 and mapped at 0.25° × 0.25° spatial resolution. High FRP-weighted cloud/haze fraction indicates fewer opportunities for satellite observation of the land
surface during the fire season.
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the Democratic Republic of Congo) or high relative confidence (e.g.,
tropical forests in central-southern Amazon, savannas in Botswana and
Namibia) for both scores due to the effects of cloud/haze cover and/or
topographical variance. Some caveats apply here. While we take the
BA-score to apply to GFEDv4s, this inventory also boosts burned area
using active fire counts to account for small fires. Additionally, for AFA-
score, we assume an active fire area of 1 km2 for all fires, while
FINNv1.5 uses 0.75 km2 for savanna and grassland fires and further
scales the active fire area for all fires by the fractional vegetation cover
of a given 1-km pixel (Wiedinmyer et al., 2011). Both GFEDv4s and
FINNv1.5 rely on outdated MODIS products: GFEDv4s on MCD64A1

C5.1 burned area and FINNv1.5 on MCD14DL C5 active fires; however,
for all our metrics, we use updated satellite products from MODIS C6
(MCD64A1 and MxD14A1). Despite our simplified approach and use of
different versions of the satellite fire products, the normalized differ-
ence between GFEDv4s burned area and FINNv1.5 active fire area is
spatially well-correlated with the BA-AFA discrepancy (r = 0.59,
p < 0.01), or metric 1. We also find that the normalized difference
between GFEDv4s and FINNv1.5 emissions for all six species is also
moderately correlated with the BA-AFA discrepancy (r = 0.53–0.57,
p < 0.01), confirming that the difference between GFEDv4s and
FINNv1.5 emissions is related to the satellite fire input dataset used.

Fig. 3. Metric 3 for relative fire confidence score (ϕfragment): average burned area (km2) per “fragment,” or contiguous patch of burned area, averaged over 2003–2017
and mapped at 0.25° × 0.25° spatial resolution. High values indicate dominance of large, contiguous fires; low values denote dominance of small, fragmented fires.

Fig. 4. Metric 4 for relative fire confidence score (ϕtopography): roughness in topography, expressed as variance in elevation (m2), averaged over 2003–2017 and
mapped at 0.25° × 0.25° spatial resolution. High values in topography variance indicate steep gradients in elevation, or mountainous terrain, whereas low values
indicate relatively flat terrain.
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The pFRP metric assesses top-down FRP-based emissions in-
ventories (GFAS, QFED, and FEER; Fig. S2). In total, we estimate 24%
and 38% potential FRP enhancement from large fires (using MODIS BA)
and very small fires (using VIIRS FRP), respectively, from 2003 to 2017.
Put another way, the FRP-based inventories may be missing nearly two-
thirds of fires under clear-sky conditions. Regions with low pFRP, and
thus high uncertainty, include India and sub-Saharan Africa. In these
regions, the low pFRP implies that either the satellite overpasses are
missing a large number of short-lived or fast-spreading fires or the fires
are too small to detect at coarse resolution. For example, the satellite
overpasses at 10:30 am and 1:30 pm likely underestimate fire energy in
the sub-tropics, where fire activity generally peak in the late afternoon
(Giglio, 2007). Regions characterized by high cloud/haze cover during
the fire season, such as tropical and boreal forests, have low pFRP due
to our assumption that the cloud-gap corrections in these inventories
successfully capture the fires obscured by clouds/haze.

3.2. Comparison of global fire emissions inventories: speciation and
emissions factors

We find inconsistencies in the speciation of the overall emissions
budget for CO2, CO, CH4, OC, BC, and PM2.5 across the five global fire
emissions inventories. For example, QFEDv2.5r1 and FEERv1.0-G1.2
estimate ~2–3 times as much OC, BC, and PM2.5 emissions than the
other inventories, with QFEDv2.5r1 higher than FEERv1.0-G1.2
(Table 3). Mean annual OC + BC emissions, from 2003 to 2016, among
inventories differ by 5–126% in coefficient of variation (CV; Fig. 6). In
regions with a high CV, such as temperate North America (102%) and
the Middle East (126%), QFEDv2.5r1 OC + BC emissions are much
higher than those from other inventories. These discrepancies shed light
on the impact of the different algorithms that convert burned area or
fire energy into aerosol emissions. For example, QFED and FEER apply
top-down constraints on aerosol emissions to match smoke AOD, while
such adjustments are absent in GFED, FINN, and GFAS. FEER uses
smoke AOD to directly calculate TPM, which is then broken down into
aerosol species, while QFED enhances aerosol emissions with a constant
global scaling factor for each LULC (Darmenov and da Silva, 2013;
Ichoku and Ellison, 2014). This global, rather than regional, AOD-based

scaling in QFED may explain the large CV in the Middle East and North
America. Indeed, using MODIS/Aqua AOD, Darmenov and da Silva
(2013) find significant variation in these scaling factors across each
LULC – e.g., from 2–3 in tropical forest, 3–5 in extratropical forests, and
1–3 in grasslands and savannas.

To better understand the discrepancies across inventory emissions,
we examine the emissions factors used in GFEDv4s and in earlier ver-
sions of FINN, GFAS, and QFED: FINNv1.0, GFASv1.0, and QFEDv2.4.
We assume that emissions factors for the current versions of these three
inventories do not deviate significantly from those in previous versions
(Darmenov and da Silva, 2013; Kaiser et al., 2012; Wiedinmyer et al.,
2011). First, we assess the impact of LULC classification on emissions
factors by deriving a globally averaged emissions factor for each
emitted species in each inventory, weighted by the total DM emissions
for each LULC. To isolate the differences in LULC classification among
inventories, we use the GFEDv4s DM emissions partitioned by LULC for
the weighting. Since FINN subdivides the GFED4s savanna, grasslands,
and shrublands LULC into two smaller LULC, we derive weights for
these LULC using FINNv1.5 emissions. We find that the coefficients of
variation in emission factors across the four inventories are relatively
small for CO2, CO, OC, and BC (1.75–6.67%), compared to those for
CH4 and PM2.5 (20.3–26.7%; Table 4). On average, GFEDv4s and GFAS,
which consider peatlands as a separate LULC, have about 60% higher
weighted mean emissions factors for CH4 than FINN and QFED. This
discrepancy arises because the peat emissions factor (20.8 g CH4 kg−1

DM) is ~2.5–14 times as high as CH4 emissions factors for other LULC
(Table S1), and only GFEDv4s and GFAS consider peatlands separately.
In contrast to Li et al. (2019), we do not consider that FEERv1.0-G1.2
accounts for peatlands (Table 1), since FEER only uses the “permanent
wetland” classification from the MODIS land cover product, which
misses much of the peatland cover in Indonesia compared to the Olson
et al. (2001) dataset used by GFED (van der Werf et al., 2017) and GFAS
(Heil et al., 2010; Kaiser et al., 2012). The high CH4, as well as CO,
emissions factors for peat fires can be attributed to incomplete com-
bustion from smoldering fires, which are common in boreal and tropical
peatlands (Kasischke and Bruhwiler, 2002; Stockwell et al., 2016).
Additionally, the PM2.5 emissions factors used in FINN for woody sa-
vanna/shrubland and savanna/grassland (8.3–15.4 g PM2.5 kg−1 DM)

Fig. 5. Metric 5 for relative fire confidence score (ϕVIIRS_sf): additional fires detected by VIIRS. Values are the areal fraction of VIIRS FRP occurring outside MODIS
burned area and active fire pixel area, averaged over 2003–2017 and mapped at 0.25° × 0.25° spatial resolution. A value of 0 indicates that all VIIRS active fires
overlap MODIS active fires, and a value of 1 indicates the presence of VIIRS active fires but no MODIS burned area or active fire observations.
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are 16–214% higher than those used in GFEDv4s, GFAS, QFED
(4.9–7.17 g PM2.5 kg−1 DM) for the broader savanna, grassland, and
shrubland LULC, which may explain the high PM2.5 weighted mean
emissions factor for FINN (Table S1).

3.3. Modeling monthly smoke PM2.5 from Indonesia fires

We use monthly GEOS-Chem adjoint sensitivities, from 2005 to
2009, with the five global fire emissions inventories to model smoke
PM2.5 in Singapore, Malaysia, and Indonesia from 2003 to 2016,

focusing on the impact of upwind Indonesian fires (Figs. 7–8, S7–8).
According to GFEDv4s, peat fires contributed almost half of total
OC + BC emissions in Indonesia from 1997 to 2016. Modeled monthly
mean smoke PM2.5 is moderately to strongly correlated with observa-
tions (r = 0.64 to 0.84, p < 0.01), with GFASv1.2 smoke PM2.5 most
closely matching the temporal variability of observed PM2.5 enhance-
ment from smoke (Fig. 8a). We find similarly strong correlations for
population-weighted smoke PM10 in Malaysia (r = 0.54 to 0.89,
p < 0.01) and satellite AOD in Indonesia (r = 0.63 to 0.93, p < 0.01;
Figs. S7–S8). While the correlation of modeled and observed smoke

Table 3
Average annual global CO2, CO, CH4, organic carbon (OC), black carbon (BC) and fine particulate matter (PM2.5) emissions (Tg yr−1,± 1σ) by inventory, from 2003
to 2016. The percent difference in emissions relative to GFEDv4s is in brackets. For each species, the inventory with the highest emissions is denoted in bold font. The
coefficient of variation (CV; %) indicates the spread of values, normalized by the mean, across the five inventories.

Species Mean Annual Global Emissions (Tg) CV (%)

GFEDv4s FINNv1.5 GFASv1.2 QFEDv2.5r1 FEERv1.0-G1.2

CO2 6986 (595)
–

6362 (1025)
[−9%]

7083 (604)
[+1%]

7449 (665)
[+7%]

13,205 (1044)
[+89%]

34

CO 336 (39)
–

334 (54)
[−1%]

366 (43)
[+9%]

348 (31)
[+4%]

609 (52)
[+81%]

30

CH4 15 (3)
–

16 (3)
[+8%]

20 (3)
[+35%]

15 (1)
[+2%]

30 (3)
[+103%]

33

OC 16 (2)
–

20 (3)
[+26%]

19 (2)
[+21%]

47 (5)
[+199%]

30 (3)
[+91%]

48

BC 1.8 (0.2)
–

1.9 (0.3)
[+8%]

2.1 (0.2)
[+15%]

5.3 (0.5)
[+196%]

3.9 (0.3)
[+119%]

52

PM2.5 35 (3)
–

35 (6)
[+2%]

31 (3)
[−11%]

74 (7)
[+112%]

51 (4)
[+47%]

39

Fig. 6. Mean annual OC + BC emissions (Tg yr−1, ± 1σ), over 2003–2016, from five global fire emissions inventories (GFEDv4s, FINNv1.5, GFASv1.2, QFEDv2.5r1,
and FEERv1.0-G1.2) for the 14 GFEDv4s basis regions (Fig. S12; van der Werf et al., 2017). Acronyms for the 14 basis regions are given in Fig. S12. The fraction of OC
emissions is denoted by darker shades, and that of BC emissions by lighter shades. Vertical bars show one standard deviation of the means over time. The coefficient
of variation across inventories (CV, %) is shown for each region.
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PM2.5 in Singapore is consistent across inventories, the magnitude of
modeled smoke PM2.5 can differ by> 20 μg m−3 for the Jul-Oct
average during extreme smoke episodes, such as in 2006 and 2015
(Fig. 8b). For example, the models yield mean Jul-Oct smoke PM2.5

concentrations in 2006 that differ from observed smoke by −64% to
+70%. For the 2006, 2009, and 2015 high fire intensity years, modeled
Jul-Oct smoke PM2.5 using GFASv1.2 yields the smallest mean absolute
error relative to the observations (16%), compared to such errors from
the other four inventories (39–66%).

3.3.1. 2006 and 2015 severe haze events
Koplitz et al. (2016) used GFASv1.0 and the GEOS-Chem adjoint to

investigate the public health effects of smoke from Indonesian fires in
2006 and 2015. These authors estimated over 150% higher premature
mortality over Equatorial Asia in 2015 (100,300 excess deaths) than in
2006 (37,600 excess deaths). This suggests higher exposure to smoke
and more prolonged fire activity, as well as drier El Niño conditions, in

Table 4
Average emissions factors (g species kg−1 dry matter) for CO2, CO, CH4, OC, BC
and PM2.5, weighted by fractional emissions over GFEDv4s land use and land
cover (LULC). The coefficient of variation (CV; %) gives the variation, nor-
malized by the mean, across inventories by species.

Species Mean emissions factors (g species kg−1 dry matter), weighted by
GFEDv4s LULC

CV (%)

GFEDv4s FINNv1.0 GFASv1.0 QFEDv2.4

CO2 1648 1660 1611 1601 1.75
CO 95 87 91 84 5.45
CH4 6.67 4.43 7.1 4.2 26.7
OC 5.73 6.43 5.77 6.09 5.38
BC 0.47 0.46 0.49 0.53 6.67
PM2.5 9.65 12.46 8.29 8.29 20.3

Fig. 7. Indonesia fires, smoke exposure in Singapore, and AOD in Equatorial Asia during July–October in 2006. (a) Total organic carbon (OC) and black carbon (BC)
emissions from GFASv1.2. Sum of OC + BC fire emissions over Indonesia is shown inset. (b) Sensitivity of mean July–October smoke concentrations in Singapore to
the location of fire emissions, calculated by the GEOS-Chem adjoint. (c) Contribution of smoke PM2.5 in Singapore from fires in individual grid cells over Indonesia,
modeled using GFASv1.2 fire emissions. Average, calculated smoke PM2.5 exposure in Singapore, which is the sum of these contributions, is shown inset. (d) Average
MODIS Terra and Aqua aerosol optical depth (AOD) in Equatorial Asia. (e) Distribution of peatlands in Sumatra and Kalimantan, Indonesia. The approximate total
peatland area in these regions is shown inset.
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2015 compared to 2006. In this study, we first compare relative
changes in modeled Jul-Oct mean smoke exposure in Singapore be-
tween the 2006 and 2015 fire seasons. In addition, the strong negative
exponential relationship between rainfall and metrics of fire activity
(e.g., active fire count, burned area) in Indonesia is well-established
(Fernandes et al., 2017; van der Werf et al., 2017). However, Eck et al.
(2019) suggest that thick smoke may obscure fires from satellite de-
tection. To determine whether fire activity in Equatorial Asia is under-
detected in 2015 due to haze, we first model the linear relationship
between rainfall and fire activity, as well as with satellite AOD, in the
log-log space for the 2003–2016 period. We use Jul-Oct rainfall rates
from CHIRPS and MxD08_M3 AOD. As measures of seasonal mean fire
activity, we use the MxD14A1 active fire mask, MxD14A1 FRP, and
MCD64A1 burned area, averaged over the Indonesian provinces of
Sumatra and Kalimantan, where most fires are concentrated. We then
predict 2015 fires in the context of the log-log linear regression of
rainfall and fires, modeled excluding 2015 observations. If fires are
under-detected due to haze in 2015, then active fire counts, FRP, and
burned area should deviate negatively from the modeled log-log rain-
fall-fire relationships, compared to AOD, which should not deviate
significantly.

Several phenomena indicate a more severe haze episode in 2015
than in 2006. The Niño 3.4 index, which is a proxy for ENSO and based
on anomalies in tropical Pacific sea surface temperatures, suggests a
stronger El Niño in 2015 than in 2006 (Koplitz et al., 2016). In addition,
lower rainfall rates (−29%) and higher AOD (+31–34%) over Sumatra
and Kalimantan in 2015 suggest drier and hazier conditions over these
fire-prone regions, relative to 2006. In contrast, minimal increases in
active fire count (+6%) and FRP (+10%) in 2015 relative to the long-
term MODIS record, and even decreases in burned area (−35%) suggest
that increased haziness in 2015 may have obscured many fires, making
satellite detection of fires challenging. During the Indonesia fire season
(Jul-Oct), satellite-observed smoke AOD and indicators of fire activity
strongly correlate with rainfall in log-log space over 2003–2016 when

2015 is excluded (r = −0.87 to −0.98, p < 0.01; Fig. 9). Given these
relationships with rainfall, the 2015 fire activity appears severely un-
derestimated, with active fire 60% less than expected, burned area 93%
less, and FRP 62% less. In contrast, AOD in 2015 does not deviate
significantly (−12%) from the modeled log-log relationship with
rainfall.

The observed AOD and FRP in 2015 are within the 95% prediction
interval for these variables, but both burned area and active fire counts
are outside this interval. We now examine how these potential under-
estimates in 2015 fire activity may have affected the fire emissions
inventories. We find that GFEDv4s, which includes a small fires boost,
and FINNv1.5, which uses active fires to estimate burned area, less
severely underestimate (63–76%) burned area in 2015 than the MODIS
burned area product (Fig. S4). Inventories that make cloud-gap ad-
justments for obscured fires are better able to discern the more severe
haze event in 2015 and match the observed enhancement of 183% in
smoke PM2.5 in Singapore: GFASv1.2 shows a 155% increase in smoke
PM2.5 relative to 2006, and QFEDv2.5r1 and FEERv1.0-G1.2 yield in-
creases of 96–137% (Fig. 8b). In contrast, GFEDv4s and FINNv1.5 do
not capture the enhanced smoke PM2.5 in Singapore in 2015. Overall,
GFASv1.2 most accurately captures both the magnitude and temporal
variability of observed smoke PM2.5, while FINNv1.5 consistently un-
derestimates smoke PM2.5 in high fire intensity years and most poorly
captures the temporal variability of observed smoke PM2.5.

4. Discussion and conclusion

4.1. Relative fire confidence metrics: spatial patterns

The goal of this study has been to quantify and interpret differences
across five bottom-up and top-down global fire emission inventories.
While it is difficult to directly compare bottom-up and top-down in-
ventories, end-users may use the relative confidence indicated by the
BA-score, AFA-score, and FRP-score (pFRP) to select a “best” inventory

Fig. 8. Smoke PM2.5 exposure in Singapore,
from 2003 to 2016. (a) Timeseries of monthly
mean observed (black dots) and modeled (co-
lored lines) smoke PM2.5 concentrations.
Observed smoke PM2.5 is reconstructed from
meteorological observations from the Singapore
Changi Airport; only non-zero monthly smoke
PM2.5 observations are shown. Modeled values
are from the GEOS-Chem adjoint using different
global fire emissions inventories: GFEDv4s,
FINNv1.5, GFASv1.2, QFEDv2.5r1, and
FEERv1.0-G1.2. Correlations between observed
and modeled smoke PM2.5 are shown inset for
each inventory and are statistically significant
(p < .01). (b) Jul-Oct mean smoke PM2.5 by
inventory, with observed smoke PM2.5 indicated
by dashed horizontal lines. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this ar-
ticle.)
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if limited by computing resources. Nevertheless, these simple scores
represent just one way for end-users to evaluate the metrics together;
end-users, for example, may choose to assess the five relative fire
confidence metrics individually. One important limitation is that the
relative fire confidence metrics are time-averaged and therefore do not
fully account for interannual or seasonal variability in fire activity.
However, in constructing these metrics, we have placed greater weight
on high fire intensity years and the dominant fire-prone months in
order for end-users to diagnose the overall spatial biases among in-
ventories. Another caveat is that we do not investigate in as much detail
the spatial differences in inventory-specific LULC, which affect the fuel
consumption and emissions factors imposed.

We first find that two fire landscapes – large and cohesive versus
small and fragmented – account for broad differences in the bottom-up
fire emissions inventories, GFED and FINN. GFED, which relies pri-
marily on observed burned area, better captures emissions from large,
cohesive fires, while FINN, which depends on observed active fires,
better captures emissions from small, fragmented fires. Second, the
presence of thick cloud/haze during peak fire activity makes satellite
fire detection more difficult in equatorial regions, boreal regions, and
eastern China. Third, fires located in mountainous regions are also
challenging to detect, especially by moderate-resolution sensors, such
as MODIS (500 m or 1 km) or VIIRS (375 m or 750 m). For top-down
fire emissions inventories (e.g., GFAS, QFED, and FEER), we calculate a
pFRP score, which indicates potential underestimates in FRP under
clear-sky conditions. We find high pFRP scores suggest that areas
dominated by fast-spreading, large fires or short-lived, small fires under
clear-sky conditions are not well-captured by MODIS due to limited

overpasses or moderate spatial resolution.

4.2. Regional application: validation of modeled smoke PM2.5 across
Equatorial Asia from Indonesia fires

Here we discuss the application of the relative fire confidence me-
trics for Indonesia fires. (Additional examples for the contiguous United
States and northwestern India are discussed in Supplementary Section
S6.) We do not explicitly consider the influence of spatial resolution in
applying these fire emissions datasets. We focused on regional scale, so
this influence is likely diluted. However, we acknowledge that spatial
resolution may be important at local scale.

We can first deduce that fire-prone regions in Indonesia generally
follow the small, fragmented fire landscape pattern (metrics 1, 3, and 5)
and that high cloud cover and/or haze (metric 2) may impede ob-
servation during the fire season. While metric 4 shows rough terrain in
parts of Indonesia (e.g., western Sumatra, Java, and northern
Kalimantan), most fires occur on flat terrain. However, smoldering peat
fires even on flat land may also be difficult to detect.

First, we find that thick haze in very high fire intensity years, such
as 2015, likely leads to lower-than-expected fire activity derived from
satellite observations. The AFA-score suggests high relative confidence
for FINN, in contrast to the low relative confidence by BA-score for
GFED; pFRP shows low potential FRP enhancement over Indonesia,
primarily because of the presence of thick clouds or haze. Our results
suggest that the 93% burned area underestimate in Indonesia arises
primarily due to thick haze, an effect greater than the effect of such
haze on active fire count (−60%) or FRP (−62%). For Singapore, as

Fig. 9. Under-detection of 2015
Indonesia fires in MODIS active fire and
burned area products relative to the
2003–2016 period. CHIRPS rainfall rates
(mm day−1) are plotted against MODIS
(a) aerosol optical depth, (b) active fire
count, (c) burned area (km2), and (d)
FRP (GW) in log-log space. All variables
are averaged temporally over
July–October and spatially over Sumatra
and Kalimantan, Indonesia. Colors de-
note different years from 2003 to 2016,
with later years depicted by redder
shades; values for 2015 are circled. Inset
shows the correlation (r, p < 0.01),
slope of the linear regression (gray da-
shed line), and slope with 2015 removed
(black line) for each pair of observations.
Standard errors for the slopes are shown
in parentheses. There is no statistically
significant linear trend in any variable
over time. Blue arrows in (b), (c), and (d)
show that observed fires are lower than
expected based on prediction from the
linear regression of rainfall and fires that
excludes 2015 observations. Percent un-
derestimate of each fire variable based
on these predictions is shown in blue.
(For interpretation of the references to
color in this figure legend, the reader is
referred to the web version of this ar-
ticle.)
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well as for Malaysia and Indonesia, we find that top-down inventories
yield modeled smoke PM2.5 concentrations that are more consistent
with observed PM2.5 than bottom-up inventories, with r = 0.78–0.84
for top-down versus r = 0.64–0.73 for bottom-up inventories. This
result is likely due to the cloud-gap adjustments in the top-down in-
ventories.

Second, only GFAS and GFED consider peatlands as a separate
LULC, while in other inventories, peatlands may be classified as sa-
vanna, tropical forest, or cropland. These discrepancies have implica-
tions for emissions since the carbon-rich peatlands are associated with
high fuel load (van der Werf et al., 2010). While the moderate to strong
correlation of observed and modeled smoke PM2.5 is consistent across
inventories, the magnitude of mean Jul-Oct smoke PM2.5 in the high fire
intensity years of 2006 and 2015 can vary by> 20 μg m−3, with
GFEDv4s and GFASv1.2 best capturing the magnitude of observed
smoke PM2.5 and yielding higher smoke PM2.5 than the other three
inventories. Additionally, estimated ratios of peat OC/BC emissions
factors ratios are ~150 compared to just 3–39 for other LULC types,
thereby affecting the composition of smoke PM2.5. Indeed, GFEDv4s
and GFASv1.2 show 78–380% higher Jul-Oct OC/BC ratios over Su-
matra and Kalimantan during 2003–2016 than the other three in-
ventories. In summary, GFASv1.2, which adjusts for cloud gaps in sa-
tellite observations of fires and considers peatlands as a separate LULC
class, performs best in terms of modeling smoke PM2.5 that is consistent
with observations in both temporal variability and magnitude.

4.3. Uncertainties in global fire emissions inventories

The uncertainties in global fire emissions inventories influence es-
timates of emissions budgets, the spatio-temporal variability of fires,
and fire trends, with different inventories leading to different conclu-
sions (Supplementary Section S7). Here we discuss the main sources of
uncertainty in inventories: small fires, cloud gap adjustments, aerosol
emissions enhancements, and emissions factors and LULC classification.
Sole reliance on burned area from MCD64A1 may capture large, con-
tiguous fires well but not the spatial allocation of small fires in frag-
mented burn landscapes. This is demonstrated by the moderate spatial
correlation (r = 0.36, p < 0.01) between the BA-AFA discrepancy
(metric 1) and burn size/fragmentation (metric 3). Additional VIIRS
FRP detected outside the MODIS active fire extent (metric 5) also im-
plies low confidence in areas dominated by small fires. As an example of
low confidence in small fires, we find that many grid cells in GFEDv4s
would not have any emissions without the small fires boost.
Approximately one-fourth of grid cells with nonzero GFEDv4s fire
emissions from 2003 to 2016 persistently show 100% spatial coverage
by small fires, and the small fire boost alone contributes all the emis-
sions in 57% of GFEDv4s grid cells, on average. Zhang et al. (2018)
recommended that grid cells with only small fire contribution, or no
MCD64A1 burned area input, be treated with caution. For example,
these authors found that GFEDv4s significantly overestimates DM fuel
consumption and emissions for areas with infrequent but small fires in
eastern China during summer months. Under such conditions, when no
burned area is detected, the scaling parameters applied to the total
active fire count are not specific to individual grid cells and instead are
averaged across regions, seasons, and land cover types (van der Werf
et al., 2017).

On the other hand, because MODIS retrieves thermal anomalies
only during satellite overpass times, use of MCD14ML active fires in the
bottom-up inventories, as well as MxD14 FRP in the top-down in-
ventories, may lead to underestimates of burned area and fire energy
from large, contiguous fires. In addition, the FINN emissions inventory
may overrepresent small fire emissions due to the assumption that at
least 75% of the nominal pixel area is burned (Wiedinmyer et al.,
2011). The active fire product also has coarser resolution and a lower
detection threshold compared to the burned area product. Using FRP
may address this overestimate since small fires are cooler and exhibit

lower FRP. Nonetheless, the dependence of the top-down inventories on
GFED to convert FRP to DM burned may lead to underestimates of small
fire emissions, as seen in the case of agricultural fire emissions in
northwestern India (Cusworth et al., 2018).

The cloud/haze fraction (metric 2) indicates that regions with per-
sistent cloud cover or thick haze during the fire season, such as boreal
and tropical regions, degrade the quality of satellite observations of fire
activity. By adjusting for cloud gaps and scaling with observed AOD,
the top-down inventories – GFASv1.2, QFEDv2.5r1 and FEERv1.0-G1.2
– may be better able to match observations than the bottom-up in-
ventories in these regions (Koplitz et al., 2018b). However, the scaling
factor of 3.4 recommended by Kaiser et al. (2012) for GFAS aerosol
emissions, as well as the simple global QFED scaling by LULC, may bias
regional smoke exposure estimates (e.g., Koplitz et al., 2016) due to
spatial variations in AOD scaling (Darmenov and da Silva, 2013; Ichoku
and Ellison, 2014). We thus recommend comparison of aerosol emis-
sions from QFEDv2.5r1 to FEERv1.0-G1.2, which directly estimates
TPM using smoke AOD by region. Further, QFED calibrates the coeffi-
cient β relating FRP to DM globally, while GFAS uses LULC-specific β
coefficients, which vary from 0.13 to 5.87 kg DM MJ−1 FRP (Kaiser
et al., 2012). We also show that certain species, such as CH4, are greatly
affected by LULC classification within the inventories, and in particular,
by the treatment of peatland emissions. In our case study of Indonesian
fires, GFEDv4s and GFASv1.2, both of which account for peatlands,
yield much higher smoke PM2.5 more in line with observations than the
other three inventories. Finally, coarse-resolution LULC maps (0.5°-1°),
which are used in GFASv1.2 and FEERv1.0-G1.2, may also bias emis-
sions due to differences in fuel loadings in regions with more hetero-
genous LULC, such as in Southeast Asia (Fig. S10b).

4.4. Future directions and recommendations

Integration of both burned area and active fire products into fire
emission inventories may reduce underestimation of fires in small and
fragmented or large and contiguous fire regions, respectively. Similar to
the hybrid approach of using active fires for the small fire boost in
GFEDv4s, incorporation of burned area in FINN could retroactively
improve emissions estimates for large fires. For the top-down in-
ventories of GFAS, QFED, and FEER, use of burned area as a secondary
input satellite fire dataset may yield emissions more closely matched
with observations compared to the current dependence on assumptions
of fire persistence across cloud gaps and satellite overpasses.
Standardization of emissions factors, in particular in the partitioning of
LULC, could help reduce inconsistencies between inventories. In par-
ticular, the peatland maps used, if any, are incomplete and could be
improved using more comprehensive global peatland datasets, such as
PEATMAP (Xu et al., 2018). We also expect that the updated MODIS
MCD12Q1 land cover dataset from C5 to C6 will lead to some differ-
ences between current and future emissions estimates (Sulla-Menashe
et al., 2019). Further, access to high spatial resolution surface re-
flectance datasets from Landsat (30 m, every 16 days) and Sentinel-2
(20 m, every 5 days) in the GEE data catalog makes feasible both
ground truth validation and improvement of burned area estimates and
LULC classifications (Casu et al., 2017). Recent studies have shown
overall improvement in accuracy and small burn scar detection using
Landsat and Sentinel, but low revisit times may limit this improvement
in areas with high cloudiness and rapid land use change (Crowley et al.,
2019; Goodwin and Collett, 2014; Hawbaker et al., 2017; Roteta et al.,
2019).

For end-users, we recommend use of multiple bottom-up and top-
down inventories, if possible. Further, end-users should be aware that
outdated emissions estimates can persist in models, leading to biases
and errors in model results (Supplementary Section S8). We present
here an online tool, “Fire Inventories: Regional Evaluation,
Comparison, and Metrics” (FIRECAM; https://globalfires.earthengine.
app/view/firecam), that allows users to compare regional monthly and
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yearly emissions, from 2003 to 2016, from the five global inventories
for six species (CO, CO2, CH4, OC, BC, and PM2.5) and to interpret the
regional differences between fire emissions by using the five relative
fire confidence metrics (Fig. S11, Supplementary Section S5). FIRECAM
will be updated regularly in the foreseeable future as new versions of
the inventories and underlying datasets become available. We identify
three key factors that should influence the end-user's inventory selec-
tion and can also significantly affect the results of modeling studies:
input satellite fire dataset, statistical adjustments, and LULC classifi-
cation and emissions factors. For example, in our case study on
Indonesian fires, we find that the cloud-gap adjustment and re-
presentation of peatland emissions are two important factors that dis-
tinguish different inventories in the regional validation of smoke PM2.5;
both factors are included in the GFAS inventory. FIRECAM allows users
to rapidly assess such differences in regional fire emissions.

Code availability

R and Google Earth Engine code for the FIRECAM tool and relative
fire confidence metrics can be accessed from https://github.com/
tianjialiu/FIRECAM.
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