Theses Doctoral

Nonlinear elastic behaviour of infrastructure materials with configurational forces

Teka, Linda Getachew

The nonlinear elastic behavior of infrastructure materials is a critical factor in the design and performance of various structural systems. This research introduces a novel approach to enhance the flexural rigidity and deflection control of large-spanned beams, aerial personal rapid transit (PRT) structures, and packed parallel wire cables by leveraging configurational forces, such as horizontal constraints and wrapping forces. These forces produce prestress over the structure members, but the prestress changes with the configuration, and therefore, the effective stiffness can be tailored by these configurational forces.

In the first part of this research, the governing equation considering the horizontal force is formulated to address the large deflections commonly encountered in beams subjected to transverse loading with horizontal constraints. The study demonstrates that deflection can be significantly reduced, thereby increasing the effective flexural rigidity without necessitating larger cross-sections. Green’s functions for various boundary conditions are derived, and the theory is validated through a series of experimental tests on Building Integrated Photovoltaic (BIPV) panels and PRT guideways. The case studies show that horizontal prestress enhances beam stiffness, reducing deflection by up to 87% within the elastic load range.

The research further extends to the mechanical behavior of packed parallel wire cables arranged in hexagonal patterns and wrapped with bands. The wrapping force is shown to modify the effective stiffness of the cables, a phenomenon modeled using the Singum model and Hertz contact theory. This approach simulates the stress transfer between wires under transverse loading, introducing an elastoplastic contact model that accounts for yielding in the contact zones. The study presents a methodology for predicting the development length and critical axial load in cables with broken wires, providing a robust tool for the design and maintenance of suspension bridge cables.

In the final part of this research, the focus shifts to the mechanical performance of a fivelayered mullion design for energy-efficient building facades. Comprising three aluminum layers sandwiched between two polyamide cores, the beam is analyzed using linear and nonlinear elastic sandwich beam theory to derive expressions for effective stiffness. These theoretical predictions are compared with finite element method simulations and validated against experimental data from three-point and four-point bending tests. The results confirm the accuracy of the analytical models presented, demonstrating their potential for enhancing the structural performance of modern building facades.

A significant contribution of this research is the development of a comprehensive framework for understanding and predicting the nonlinear elastic behavior of infrastructure materials under complex loading conditions, which the superposition principle may not be simply applicable even though the material behavior is elastic. By integrating configurational forces into the design process, this work offers a novel approach to improving the structural integrity and performance of beams, cables, and facade systems, with wide-ranging implications for the fields of structural engineering and material science.

Files

This item is currently under embargo. It will be available starting 2026-10-15.

More About This Work

Academic Units
Civil Engineering and Engineering Mechanics
Thesis Advisors
Yin, Huiming
Degree
Ph.D., Columbia University
Published Here
October 30, 2024