Theses Doctoral

Using toxin-producing bacteria to treat explants and autochthonous mouse models of pancreatic cancer

Decker, Amanda R.

Pancreatic cancer is the 10th most common cancer diagnosis and 4th most common cause of cancer mortality in the United States, highlighting a disparity between disease prevalence and outcome. Ineffective drug delivery to these tumors contributes to the poor prognosis for this disease, as intravenous drug delivery is hampered by poor vascularity within these tumors. Bacterial therapy, or the use of bacterial components to treat disease, is thought to be able to overcome such drug delivery challenges; through a combination of tumor homing and long-term colonization, bacteria can be utilized to produce anti-cancer molecules directly within the cores of tumors. As such, here, we interrogate the feasibility of bacterial cancer therapy for pancreatic ductal adenocarcinoma (PDAC).

Before delving too deeply into bacterial therapy design, it was important to first address one major limitation in therapeutic screening models. As a therapeutic should be effective against the entirety of the tumor, without a specific emphasis on the malignant epithelia, we developed and characterized a novel protocol for culturing ex vivo (explant) murine PDAC tissue with a corresponding protocol for human PDAC tissue. We demonstrated that these tumor slice explants retain the complex cellular architecture and population complexity throughout culture, making them a useful resource for not only therapeutic screens, but also paracrine interactions, which are infeasible to explore with in vitro and in vivo models.

Use of these murine and human PDAC explant models assisted in the selection of a potent, bacterial-derived cytotoxin, theta toxin, as a potential therapeutic candidate for PDAC, in both bacteria lysate and live bacteria contexts. Ultimately, we employed a strain of a probiotic bacteria, E. coli Nissle 1917, as a ‘living drug’ to selectively produce theta toxin within the confines of a PDAC tumor in a mouse model of pancreatic cancer.

In in vivo studies, we demonstrated that live bacteria preferentially colonize tumor tissue following a single, direct, intratumoral injection into the primary PDAC tumor. We found that not only did the bacteria colonize the injected tumor, but also translocated to distant regions of metastasis and secondary tumors such as anogenital papillomas. However, the long-term efficacy of this strategy is in question, as bacterial colonization and therapeutic capability waned after several weeks.

Despite the limited time scale of the bacterial colonization, treatment with a single dose of live, theta toxin-producing bacteria provided a nearly 3-fold improvement in overall survival compared to vehicle and standard of care chemotherapy (gemcitabine) treatment arms. Preliminary evidence suggests that this improvement is due to a combination of the direct cytotoxic effect of the theta toxin and an inherently immunostimulatory capacity of these bacteria, resulting in an influx of anti-tumor immune cells and an overall reduction in immunosuppression phenotype markers. These findings suggest that bacterial therapy could be a useful tool for the treatment of pancreatic cancer, not solely due to the direct cytotoxic effect on the tumor, but with the potential for a combination treatment with immunotherapies.


This item is currently under embargo. It will be available starting 2024-06-24.

More About This Work

Academic Units
Cellular, Molecular and Biomedical Studies
Thesis Advisors
Olive, Kenneth
Danino, Tal
Ph.D., Columbia University
Published Here
June 28, 2023