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Abstract

Ultracold dipolar gases of NaCs ground state molecules

Aden Zhen Hao Lam

Ultracold bialkali polar molecules present a wealth of opportunities in quantum science

research and technology; including fields such as quantum simulation, quantum chemistry,

quantum metrology, precision measurement and quantum computation. A great deal of interest

lies in their rich internal rotational and vibrational state structure and their large electric dipole

moment. However, the additional complexity also provides significant challenges. To date, only a

limited number of molecular species are available at ultracold temperatures below 1 microkelvin.

The assembly of heteronuclear ground state molecules from ultracold atoms has emerged as a

promising approach for creating ultracold molecules. In this thesis, I will present the creation of

the first ultracold gases of NaCs ground state molecules. First, we produce an ultracold mixture of

Na and Cs. Second, we associate weakly bound molecular pairs from the Na-Cs mixture. Finally,

we apply a two-photon stimulated Raman adiabatic passage (STIRAP) pulse to transfer the

weakly bound NaCs molecules into the deeply bound rovibrational ground state.

I report on the construction of a new apparatus that produces ultracold mixtures of Na and

Cs. We use this apparatus to assemble weakly bound NaCs molecules and successfully transfer up

to 20,000 ultracold dipolar NaCs molecules to their rovibrational ground state in each

experimental run. On the way to these results, we demonstrated a pathway towards creating the

first quantum degenerate mixtures of Na and Cs. We identified and characterized an interspecies

Feshbach resonance at 864.12(5) G, adiabatically sweeping across it to form weakly bound NaCs



Feshbach molecules. We characterized the Feshbach molecule formation in various parameter

regimes. Next, we performed a study of accessible NaCs excited states and identified a pathway

to the rovibrational ground state using one- and two-photon spectroscopy. Finally, we

demonstrated STIRAP to the rovibrational ground state, and investigated basic properties of the

ground state molecules.
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3.6 Loading of the 3D MOT. (a) Atom number in the 3D MOT as a function of time.
The gray dashed line indicates the loading time constantg. (b) 3D MOT loading
rate (gray circles) and Cs vapor pressure (white squares) as a function of dispenser
current. The dispenser is run continuously during measurement. Each data point
for the loading rate is the mean of two measurements. The red data point indicates
the dispenser current used in normal operation. . . . . . . . . . . . . . . . . . . . 84
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point is the mean of three measurements. Error-bars correspond to the standard
deviation of the mean. Dashed lines show the capture ef�ciency calculated from
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Raw �uorescence measurement from time-of-�ight measurement (gray points) and
�t (red) using Eq. (3.11). (b) Corresponding 1D Maxwell-Boltzmann velocity dis-
tribution (red). The vertical gray line is the calculated 3D MOT capture velocity,
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3.9 Schematic of a 2D MOT setup with suggested improvements. (a) and (b) show
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4.1 (a) 3D MOT, optical dipole trap beams, plug beam, accordion lattice beam and their
relative locations around the main chamber. Titles indicate the direction of propa-
gation of the various beams, except for the 3D MOT which is counter-propagating.
(b) Image of the dark SPOT on a glass slide (top), the Na 3D MOT (bottom left)
and the Cs 3D MOT (bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



4.2 Properties of the magneto-optical trap. (a) Absorption images of the Na and Cs 3D
MOTs, as well as a �uorescence image of the Na dark SPOT 3D MOT, where the
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Cs due to the large number disparity. (c) shows an image of the photodetectors
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images onto the photodetectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Evaporation in the optical dipole trap. (a) the 1D integrated OD �t for progressive
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region corresponds to the condensed fraction from the �t. (b) Series of absorption
images corresponding to atom pictures of the data shown in (a). . . . . . . . . . . . 104

5.1 (a) Interatomic potential and states giving rise to a Feshbach resonance. The closed
channel (red) has a bound state near the open channel (blue) scattering threshold.
As the binding energy� 1 of the closed channel bound state approaches zero, a
Feshbach resonance arises. (b) Scattering length (grey) and binding energy (red)
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5.3 Association of NaCs Feshbach molecules with a magnetic �eld ramp. (a) Schematic
of the magnetic �eld ramp for molecule association, dissociation, and subsequent
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6.10 Rabi frequency calibration. Exposure time was �xed at 20` s for both measure-
ments. (a) Stokes laser Rabi frequency measured as a function of laser power. (b)
EIT measurement using 2.6 mW of Ti:Sa power, 260` W of 633 nm power. . . . . 139
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Chapter 1: Introduction

In this chapter I provide a brief context of the state-of-the-art investigations in ultracold quan-

tum matter, and how dipolar interactions have become an important tool for many-body physics. I

then provide a discussion of the context of my thesis and the topics that it includes.

1.1 Introduction to quantum simulation

Simulating models of the world around us is integral to advancing scienti�c knowledge, and

developing exciting new technologies that can better society. When the models are too dif�cult to

be solved by analytical techniques, numerical calculations can often �ll the gaps. Unfortunately,

this solution is only practical if the numerical model can be done ef�ciently with the computational

resources available. This is doubly so for simulating quantum systems in a variety of scienti�c

�elds [1], due to the exponential scaling of the Hilbert space with the size of the quantum system.

There are numerous important questions such as high temperature superconductivity to which

calculations could provide answers, but where progress remains slow due to current technological

capabilities limiting the ability to test models or make predictions.

Recent solutions have turned towards developing quantum simulators as a solution �rst pro-

posed by Feynman in 1982 [2], and further developed by Lloyd in 1996 [3]. The idea is simple:

Instead of using a classical system to simulate a quantum model, we want to use a tunable quan-

tum system to "test" quantum models. This involves the creation of an experimental analogue of a

theoretical model, to explain a physical system.

In most condensed matter systems, the sheer complexity of the systems involved forces the sci-

enti�c investigator to make many approximations in order to �nd a tractable model of the system.

The appropriate model developed is often chosen by experience, intuition or luck (or a mixture
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of the three), and its ability to accurately describe the physical properties of a material are only

veri�able after its development. The hope of quantum simulation, is that the knowledge we gain

from testing these theories in a real quantum system can aid in the development of better theories

and models for the long-term development of new quantum materials.

The main focus of this thesis is in the development of a new quantum simulator using ultracold

dipolar sodium-cesium (NaCs) molecules. As part of a team of experimental physicists build-

ing a new apparatus for producing ultracold molecules, we aim to create a unique playground to

study and observe exotic universal quantum physics that can describe the phenomena seen in more

complicated quantum systems seen in nature.

1.2 Quantum simulation with ultracold systems

An ultracold gas of atoms or molecules is a highly tunable system that allows us to study a wide

range of quantum behavior. A cloud of ultracold atoms obeys the same quantum mechanics that

governs fundamental particles such as electrons, protons or photons. Ever since the creation of the

�rst atomic Bose-Einstein condensates (BECs) in 1995 [4, 5], and the production of a degenerate

atomic Fermi gas in 1999 [6], the �eld has exploded with investigations into a plethora of unique

directions. Most research being pursued has been focused in one of the following categories (1)

collective phenomena [7, 8], (2) vortex formation [9, 10, 11, 12], (3) soliton dynamics [13], (3) the

BCS-BEC (Bardeen-Cooper-Schrieffer to Bose-Einstein Condensate) crossover [14, 15, 16, 12],

(4) dynamics in optical lattices [17, 18, 19] and (5) out-of-equilibrium dynamics [20].

For most ultracold atomic systems, the interaction between the particles is typically dominated

by van der Waals forces called contact interaction [21], which can be expressed as

* contact¹r º =
4c\ 20

<
X¹rº– (1.1)

where\ is Planck's constant divided by2c, < is the mass of the atom, and0 is theB-wave scattering

length which can be varied using a Feshbach resonance [22]. The delta function implies that two
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Figure 1.1: Illustration of interactions of atoms and polar molecules.®Ais the displacement between
two molecules,®3 is the dipole moment.

atoms will only interact if they are on top of one another, i.e. have wavefunction overlap (see

Fig. 1.1). While there have been great success with investigating models that are restricted to short-

range interactions, fundamentally, we know that this is an inadequate representation of electrons in

a material which also interact strongly via long-range interactions such as the Coulomb potential

that scales with1•A, whereA is the distance between electrons. Thus, quantum simulators have

been moving towards adding additional long-range forces into their toolkit, such as magnetic or

electric dipole-dipole (dipolar) interaction which is the subject of the next section.

1.3 Dipole-dipole interactions in ultracold gases

In particles possessing magnetic dipole moments or electric dipole moments (or both), two

dipoles that are polarized along a direction with an angle\ with respect to their relative position®A,

the mutual dipole-dipole interaction can be written as [23]

* dd¹®Aº =
� dd

4c
1 � 3 cos2 \

A3
– (1.2)

where the coupling constant� dd = ` 0` 2 for magnetic dipoles wherè is the magnetic dipole

moment, and� dd = 32•n0 for electric dipoles where3 is the elctric dipole moment, with̀ 0
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Table 1.1: Summary of bi-alkali experiments' progress and molecular properties. The dipole mo-
ments were calculated by Ref. [33], and chemical stability calculated by Ref. [34].

Species
Dipole Moment

(Debye)
Chemically
reactive?

Feshbach Molecules Ground State

6LiNa 0.6 Y Y [35] Y [36]
6Li40K 3.6 Y Y [37] N [38]

40K87Rb 0.6 Y Y [39, 40] Y [31]
Na39K 2.8 N Y [41] Y [42]
Na40K 2.8 N Y [43] Y [44]
Na87Rb 3.3 N Y [45] Y [46]
NaCs 4.6 N Y [47], This work Y [48], This work

87RbCs 1.2 N Y [49, 50] Y [51, 52]

being the vacuum permeability andn0 the vacuum permittivity. As can be seen, the dipole-dipole

interaction is long-range, and proportional to1•A3 and spatially anisotropic. Classically, one can

imagine them being like magnets, where the interaction head-to-tail (\ = 0°, see Fig. 1.1), and

repulsive for side-by-side (\ = 90°) fashion. A quantum description follows that the dipole-dipole

interaction mixes the lowest orderB-wave scattering channel, with higher order partial waves with

the same parity that contribute the "long-range" nature of the interaction.

Dipolar interactions would enable the investigation of strongly correlated novel phases [24,

25]. Recent investigations using magnetic atoms have investigated properties of supersolids [26,

27, 28]. With stronger dipolar interactions, we may be able to see the production of a dipolar

crystal [24].

Dipolar interactions can be generated from three popular quantum architectures; highly mag-

netic atoms [29, 30], polar molecules [31] and highly excited Rydberg atoms [32]. We focus on

the implementation of polar molecules, and the creation of a bulk gas of dipolar NaCs molecules

in this thesis.

1.4 Dipolar sodium-cesium (NaCs) molecules

Polar molecules in their absolute ground state can possess large permanent electric dipole

moments that can be accessed by applying an external electric �eld in the laboratory frame.
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Polar molecules have signi�cantly stronger dipolar interactions as compared to magnetic atoms

(� ` 0` 2•¹ 32•n0º � 10� 4), and can be much longer-lived (� s) [53] than Rydberg atoms (� ` s) [32].

However, ef�cient cooling methods for polar molecules are still an active area of research.

There are two main strategies for generating ultracold polar molecules, the �rst is direct laser

cooling of molecules [54, 55], however the largest molecular phase-space densities are still limited

at 10� 6 [56]. The second strategy is via associating ultracold mixtures of atoms. This creation

strategy has been successfully demonstrated �rst at JILA with ultracold40K87Rb molecules in

2008 [31]. Since then, the list has expanded to include87RbCs (2014) [51, 52], Na40K (2015) [44],

Na87Rb (2016) [46],6LiNa (2017) and Na39K (2020) [42]. Recently, ground state NaCs molecules

have also been formed in optical tweezers using two photon Raman transfer [48] instead of STI-

RAP. To date, degenerate polar molecules have only been achieved via associating ultracold atomic

mixtures, such as fermionic ground state40K87Rb [57] and23Na40K molecules [58]. Achieving

the same for bosons, a heteronuclear molecular Bose-Einstein condensate is still an outstanding

goal for the community. We chose to pursue NaCs for the following reasons:

• Chemical stability: Among the ten bialkali heteronuclear molecules that can be associated

from two different alkali-metal atoms of lithium (Li), sodium (Na), potassium (K), rubidium

(Rb) and cesium (Cs), not all are chemically stable even in their rovibrational ground states.

Only �ve (see Table. 1.1) are stable against the reaction2XY 9 X2¸ Y2 when two molecules

collide [34]. This protection is only restricted in the rovibrational ground state. On the other

hand with internal state control, we can prepare NaCs molecules in vibrationally excited

states to induce and study chemical reactions.

• Largest dipole moment: The ground-state NaCs molecules studied in our system have the

largest permanent electric dipole moments (4.6 Debye) among the stable ultracold molecular

species [33]. We are able to realize strong dipole-dipole interactions even at moderate elec-

tric �elds (1 Debye at� 0.5 kV/cm). For a Bose gas of dipolar molecules, the strength of the

dipolar interaction energy is� d = 32=0•¹ 4cn0º. Here,=0 is the peak molecule density and3

is the electric dipole moment. Since� d scales quadratically with the dipole moment, choos-
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Figure 1.2: Three-step pathway to ground state bialkali molecules �rst demonstrated by JILA. (1)
Initial laser cooling from Na and Cs sources will be via Zeeman slower for Na (orange), and a 2D
MOT for Cs (red) before loading into 3D MOTs. After 3D MOT cooling and optical molasses,
we perform evaporative cooling �rst in an optically plugged magnetic trap, followed by optical
dipole traps to (near) quantum degeneracy. (2) We magneto-associate ultracold atoms into weakly
bound molecules called Feshbach molecules. (3) We perform a coherent two-photon transfer of
Feshbach molecules into the rovibrational ground state. Arrows on the bottom illustrate the process
of reducing the translational energy followed by the internal energy of the system.

ing a molecule with a large dipole moment is highly advantageous in observing strongly

correlated physics dominated by dipolar interactions.

• Long lifetimes: Bosonic molecules often suffer from short lifetimes due to unsuppressed

collisions [59, 60, 61]. Using the large dipole moments it may be possible to access certain

regimes such as a Forester resonance [62] to suppress losses.

• New mixture physics: Of the available bialkali combinations, Na-Cs stood out as an excit-

ing combination that has not been investigated in the ultracold regime as of 2016 when we

started. We could study Bose polaron physics using a Na Bose-Einstein condensate and Cs

in the dilute limit and explore the new possibilities enabled with a Na-Cs mixture.

1.5 Path to NaCs ground state molecules

To produce ground state NaCs molecules, we follow the three-step method pioneered by JILA [63,

31] starting with preparing an ultracold mixture of Na and Cs atoms illustrated in Fig. 1.2. Both
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laser cooling and evaporative cooling of atoms are well-established techniques in the �eld (recog-

nized by Nobel prizes in 1997 and 2001, respectively) which we utilize in our approach and adapt

in the context of the Na-Cs mixture.

First, we trap and cool a mixture of Na and Cs atoms in well-de�ned hyper�ne states to ul-

tracold temperatures (� nK) in an optical dipole trap (ODT) [64] near an interspecies Feshbach

resonance [22] near 864 G. To create a quantum degenerate mixture of Na-Cs atoms, we evapora-

tively cool Na, while sympathetically cooling Cs to create dual Bose-Einstein condensates.

Next, we magneto-associate unbound atoms into a weakly bound molecular state. For ultracold

atomic gases, magnetic Feshbach resonances are the key to controlling the interspecies interactions

and for creating weakly-bound Feshbach molecules. These resonances arise from the coupling

between the scattering state between a pair of atoms and an energetically near degenerate bound

molecular state. We can tune the two states into resonance using the differential Zeeman shift

between the two states, which we control via applying a uniform magnetic �eld. We apply an

adiabatic magnetic �eld sweep across the resonance to transfer atoms into the Feshbach molecular

state.

Lastly, a two-photon Raman process called Stimulated Raman Adiabatic Passage (STIRAP) [65]

is applied to coherently and ef�ciently transfer the molecules to their absolute rovibrational ground

state. Note that the typical size of a Feshbach molecule is hundreds of Bohr radii (00), whereas the

size of a bialkali molecule in the absolute rovibrational ground state is close to 2 Bohr radii. Since

electric dipole moments of molecules arise from the deformation of the electronic cloud of the

constituent atoms in the presence of Coulomb interactions, for loosely bound Feshbach molecules,

the induced dipole moment is negligibly small. By transferring the Feshbach molecules down to

the rovibrational ground state, not only do we enhance the lifetime of the molecular gas against

radiative decay processes, but we can also drastically enhance the magnitude of the permanent

dipole moment. STIRAP allows for the transfer of Feshbach molecules to deeper bound states

without heating the molecular gas. The difference in the molecular binding energy between the

two molecular states is removed by the two Raman lasers. For NaCs, this corresponds to about
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Figure 1.3: Timeline of experiment milestones.

: B � 7000K worth of energy per molecule that is removed, while the molecular ensemble stays at

sub-microkelvin temperatures.

Fig. 1.2 might show a conceptually straightforward procedure for creating ground state molecu-

les. In reality, it is not simple at all. This is largely because the construction of an ultracold

molecule experiment lies at the interface of the three sectors of AMO physics: atomic, molecular

and optical (AMO) physics and requires the development of expertise in all three �elds to be

successful. In addition, we faced additional challenges working with a new unproven mixture.

Despite the challenges, I am pleased to say that we have had remarkably fast progress, producing

ground state molecules in a span of three years from the day we obtained our laboratory space. Our
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timeline can be seen in Fig. 1.3. Typically, ultracold molecule experiments would achieve similar

milestones in twice the time, and I credit the fast progress to the hard work of all team members

involved. This work has led to the following publications:

• A. Z. Lam, C. Warner, N. Bigagli, S. Roschinski, W. Yuan, I. Stevenson, and S. Will,

“Compact two-dimensional magneto-optical trap for ultracold atom setups”, arXiv preprint

arXiv:2012.06688 (2020). [66]

• C. Warner,A. Z. Lam, N. Bigagli, H. C. Liu, I. Stevenson, and S. Will, "Overlapping Bose-

Einstein condensates of23Na and 133Cs", Phys. Rev. A 104, 033302 (2021).Editors'

suggestion. [67]

• A. Z. Lam, N. Bigagli, C. Warner, W. Yuan, S. Zhang, E. Tiemann, I. Stevenson, and S. Will,

“A high phase-space density gas of NaCs Feshbach molecules”, Phys. Rev. Res. (Accepted)

(2022). [68]

• I. Stevenson,A. Z. Lam et al., “Ultracold gases of dipolar NaCs ground state molecules”,

(in preparation). [69]

I hope that my thesis will serve as a helpful resource for others working on ultracold molecule

experiments (in particular NaCs molecules), and the relevant experimental tips, tricks and tools to

be successful.

1.6 Thesis outline

The outline of this thesis is as follows; I will describe in depth the NaCs experimental setup in

Chapter 2. As the �rst graduate student on this experiment, it is important for me to lay out the

details of the design and construction of the experiment. Much of the work was done in collabo-

ration with Claire Warner and Niccolò Bigagli, and I will highlight important details that will be

found in their theses as well. Additional (potentially) useful details on the laboratory infrastruc-

ture is contained in Appendix A, cleaning and assembling ultrahigh vacuum (UHV) chambers in

Appendix B and bakeout to UHV in Appendix C.
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In Chapter 3, I will describe in detail the setup of the Cs 2D MOT based on our work in [66].

In Chapter 4, I will cover the preparation of a quantum degenerate mixture of Na and Cs based

on the work done in [67].

In Chapter 5, I will cover the characterization of the Feshbach resonance, and the production

of weakly bound NaCs Feshbach molecules based on the work done in [68].

In Chapter 6, I will cover our work on NaCs molecule ground state and excited state spec-

troscopy, as well as the identi�cation of a STIRAP pathway to the rovibrational ground state.

In Chapter 7, I will cover the production of NaCs ground state molecules and initial characteri-

zation of ground state molecule properties based on preliminary data. Work is in progress towards

a future paper [69].

Finally in the Conclusion and outlook, we provide a conclusion and an outlook for future

directions.

Ultracold atomic mixtures and molecules are a rich and interesting area of physics that have

been studied extensively. Relevant theoretical concepts to understand different parts of the thesis

are included brie�y in each chapter. We recommend the reader read the many review articles

available for a more complete treatment [70, 71, 72, 73, 64, 74, 22].
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Chapter 2: The NaCs machine

2.1 Overview of the experimental cycle

Unlike the experimental samples used in condensed matter experiments, an ultracold atom or

molecule sample is created and destroyed in every experimental cycle. A key component of sam-

ple preparation is attaining temperatures of the order of hundreds of nanokelvin (nK), achieved

with a succession of two techniques: laser cooling and evaporative cooling as shown in Fig. 1.2.

To achieve quantum degeneracy places additional requirements, include starting out with atomic

samples of suf�cient number and having ef�cient cooling at each stage to achieve quantum de-

generacy. Our experiment cycle exists as a multi-stage sequence, taking place in a sequence of

magnetic and optical traps suited to the kinetic energy of the atom, and to the internal state of the

desired quantum gas.

Our strategy for producing ultracold Na and Cs mixtures, and NaCs molecules is similar to that

of other bialkali molecule laboratories around the world, but is unique in that our laboratory was

�rst to demonstrate production of dual Na and Cs condensates [67], as well as a bulk gas of NaCs

Feshbach molecules [68], and �nally ground state molecules [69]. In this chapter, we provide a

short introduction to the "life cycle" of an ultracold atomic or molecular sample here to provide

context for the work described in the following chapters of this thesis.

Our typical molecule lifetime spans approximately 20 s (see Fig. 2.1), and covers the following

steps:

1. We generate separate cold atomic beams using a Zeeman slower [75] for Na, and a 2D

magneto-optical trap (MOT) [76] for Cs, that is sent into the main chamber where both

beams overlap. Additional details on both the Zeeman slower and the 2D MOT can be found

in Section 2.7.1 and Chapter 3 respectively.
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Figure 2.1: Typical experimental sequence for producing NaCs molecules. Each experimental run
takes about 20 s.
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