Articles

Black hole scattering and partition functions

Law, Y. T. A.; Parmentier, Klaas

When computing the ideal gas thermal canonical partition function for a scalar outside a black hole horizon, one encounters the divergent single-particle density of states (DOS) due to the continuous nature of the normal mode spectrum. Recasting the Lorentzian field equation into an effective 1D scattering problem, we argue that the scattering phases encode non-trivial information about the DOS and can be extracted by “renormalizing” the DOS with respect to a reference. This defines a renormalized free energy up to an arbitrary additive constant. Interestingly, we discover that the 1-loop Euclidean path integral, as computed by the Denef-Hartnoll-Sachdev formula, fixes the reference free energy to be that on a Rindler-like region, and the renormalized DOS captures the quasinormal modes for the scalar. We support these claims with the examples of scalars on static BTZ, Nariai black holes and the de Sitter static patch. For black holes in asymptotically flat space, the renormalized DOS is captured by the phase of the transmission coefficient whose magnitude squared is the greybody factor. We comment on possible connections with recent works from an algebraic point of view.

Files

  • thumnail for 13130_2022_Article_19401.pdf 13130_2022_Article_19401.pdf application/pdf 603 KB Download File

Also Published In

Title
Journal of High Energy Physics
DOI
https://doi.org/10.1007/JHEP10(2022)039

More About This Work

Published Here
July 22, 2024

Related Items

Notes

Black Holes, Models of Quantum Gravity, Thermal Field Theory