2020 Articles
Experimental study of the proton-transfer reaction C + H2+ → CH+ + H and its isotopic variant (D2+)
We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. , We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.
Subjects
Files
- Hillenbrand et al. - 2020 - Experimental study of the proton-transfer reaction.pdf application/pdf 1.11 MB Download File
Also Published In
- Title
- Physical Chemistry Chemical Physics
- DOI
- https://doi.org/10.1039/D0CP04810K
More About This Work
- Academic Units
- Astronomy and Astrophysics
- Published Here
- March 15, 2023