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Abstract

Advancements in Computational Small Molecule Binding Affinity Prediction Methods

Pierre Alexandre Devlaminck

Computational methods for predicting the binding affinity of small organic molecules to

biological macromolecules cover a vast range of theoretical and physical complexity. Generally,

as the required accuracy increases so does the computational cost, thereby making the user choose

a method that suits their needs within the parameters of the project. We present how WScore, a

rigid-receptor docking program normally consigned to structure-based hit discovery in drug

design projects, is systematically ameliorated to perform accurately enough for lead optimization

with a set of ROCK1 complexes and congeneric ligands from a structure-activity relationship

study. Initial WScore results from the Schrödinger 2019-3 release show poor correlation

(R2 �0.0), large errors in predicted binding affinity (RMSE = 2.30 kcal/mol), and bad native pose

prediction (two RMSD ¡ 4Å) for the six ROCK1 crystal structures and associated active

congeneric ligands. Improvements to WScore’s treatment of desolvation, myriad code fixes, and a

simple ensemble consensus scoring protocol improved the correlation (R2 = 0.613), the predicted

affinity accuracy (RMSE = 1.34 kcal/mol), and native pose prediction (one RMSD ¡ 1�5Å). Then

we evaluate a physically and thermodynamically rigorous free energy perturbation (FEP) method,

FEP+, against CryoEM structures of the Machilis hrabei olfactory receptor, MhOR5, and

associated dose-response assays of a panel of small molecules with the wild-type and mutants.

Augmented with an induced-fit docking method, IFD-MD, FEP+ performs well for ligand

mutating relative binding FEP (RBFEP) calculations which correlate with experimental log(EC50)



with an R2 = 0.551. Ligand absolute binding FEP (ABFEP) on a set of disparate ligands from the

MhOR5 panel has poor correlation (R2 = 0.106) for ligands with log(EC50) within the assay

range. But qualitative predictions correctly identify the ligands with the lowest potency. Protein

mutation calculations have no log(EC50) correlation and consistently fail to predict the loss of

potency for a majority of MhOR5 single point mutations. Prediction of ligand efficacy (the

magnitude of receptor response) is also an unsolved problem as the canonical active and inactive

conformations of the receptor are absent in the FEP simulations. We believe that structural

insights of the mutants for both bound and unbound (apo) states are required to better understand

the shortcomings of the current FEP+ methods for protein mutation RBFEP. Finally,

improvements to GPU-accelerated linear algebra functions in an Auxiliary-Field Quantum Monte

Carlo (AFQMC) program effect an average 50-fold reduction in GPU kernel compute time using

optimized GPU library routines instead of custom made GPU kernels. Also MPI parallelization of

the population control algorithm that destroys low-weight walkers has a bottleneck removed in

large, multi-node AFQMC calculations.
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work (Ref. 6) which he collaborated on with implementation improvements.
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Chapter 1: WScore Enhancements and Ensemble Docking with ROCK1

Congeneric Series of Inhibitors

1.1 Introduction

The advent of increased computational power and progressively more accurate computational

methods for small molecule drug design since the turn of the 21st century have paved the way for

computer-aided drug design (CADD) to emerge from the arena of academic research to the fore-

front of prospective drug design programs.7,8 One class of computational methods for structure-

based drug design is small molecule docking. These docking programs generally treat a known

target protein structure rigidly and try to �exibly dock small molecules into a chosen binding site

and then estimate the binding free energy of the docked ligand-protein complex with a scoring

function.8–15 Docking methods are frequently used in virtual screening and hit discovery stud-

ies in order to enrich large ligand library searches with potentially active compounds.8 One such

docking program is Schrödinger's WScore16 which builds upon the Glide docking programs9–11

to incorporate a number of new scoring terms, the most important of which are the terms that deal

with the treatment of desolvation effects of the ligand and protein by incorporating explicit bind-

ing site water information from a WaterMap calculation. Desolvation is de�ned “as the creation

of an environment around a polar or charged protein or ligand group which is unable to satisfy

the complementary polar interactions of the group in question. While hydrogen bonds will most

often be used to satisfy such interactions, it should be noted that there are cases where alternative

favorable interactions such as aromatic C–H interactions, orc–cation interactions, can effectively

avoid desolvation as well”.16 WaterMap uses inhomogeneous solvation theory17 (IST) to calcu-

late quasilocalizations and thermodynamics of water sites at the protein-solvent interface. Scoring

functions have long treated solvation with continuum solvent models and/or solvent accessible area
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(SAS) estimations of solvation free energy.18 Solvation effects are a signi�cant portion of ligand

binding free energy and contribute primarily enthalpically or entropically depending on the nature

of the ligand-protein interaction.19,20 Polar ligand-protein interactions (e.g. hydrogen bonds) are

dominantly enthalpic while hydrophobic/lipophilic interactions are entropic and a consequence of

the solvent. A more realistic treatment of solvation has been shown to be fundamental to a variety

of protein-ligand binding af�nities and selectivities.21–24 To that end a variety of new methods,

WaterMap included, have been developed to calculate the explicit water network and its thermody-

namics at the binding site24,25and incorporate it into docking algorithms and scoring functions.26

Docking programs have been a mainstay in virtual screening for hit discovery programs that

seek to �nd compounds with drug-like af�nities to a target of interest.8,27,28But once a lead com-

pound is selected from a set of hits, more rigorous and physics-based computational methods are

used for lead optimization.27,29 Recent developments and improvements in docking scoring func-

tions and other computationally ef�cient methods like MM-GBSA,30 support vector regression

scoring,14 and template-based methods31 have shown success in rank ordering and binding af�ni-

ties predictions suitable for lead optimization. Therefore we endeavoured to determine if WScore

was sophisticated enough for use in lead optimization and to attempt to correct and enhance it to

that end. For prospective lead optimization studies, WScore would have to demonstrate accurate

binding energy predictions and rank ordering of congeneric series derived from a lead compound.

Initial tests across eight receptor families (from Ref. 32) with native and known active compounds

showed decent results (not shown here), but testing against new ROCK1 structures and corre-

sponding actives from a structure-activity relationship (SAR) study of lead compounds at Vertex

Pharmaceuticals, Inc.33–35showed incredibly poor performance. We used these ROCK1 complex

structures and congeneric series as a training set to improve WScore correlation and rank ordering

of the most potent compounds.
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1.1.1 ROCK1 Inhibitors

Rho-associated kinases ROCK1 and ROCK2 are serine/threonine kinases36,37 that phosphory-

late a variety of cellular substrates mainly associated with actin-cytoskeletal reorganization affect-

ing cell adhesion and smooth muscle contraction.38–41Therefore ROCK1/2 are therapeutic targets

for a variety of pathologies including hypertension and cardiovascular disease,42 glaucoma,43–45

and cancer.46 ROCK inhibitors fasudil47 and ripasudil45 have even been approved for clinical

use; a comprehensive review of ROCK1/2 inhibitor therapeutics is given in Ref. 48. Since the

ROCK kinases are prime targets for a variety of diseases with a druggable ATP-binding site, many

drug design projects have or are currently working to �nd suitable inhibitors for drug therapeu-

tics.28,33–35,46,49–51

1.1.2 Initial WScore Results

This work began with an attempt to determine WScore's ability to rank known congeneric

inhibitors for a set of previously untested ROCK1 structures.33–35 Schrödinger Software Release

2019-3 was the �rst release tested on these structures. 2019-3 WScore failed to dock two ligands:

19 into 4YVE and16 into 5KKS. Self-docking results of the PDB complexes for both the native

PDB ligand coordinates and a �exible ligand docking are listed in Table 1.1. WScore can be run

in both a “score-in-place” (SIP) and �exible ligand docking mode. In SIP mode we score the

ligand pose as-is, while �exible ligand docking uses the Glide docking machinery with WScore

modi�cations in order to place the ligand in the de�ned binding site. In this entire manuscript

the WScore reported is the “raw” WScore value from WScore-mode of Glide without any post-

processing adjustments made (e.g. ligand Epik energies).

WScore results for the entire congeneric series for each individual receptor are shown in Figure

1.1 and correlation and RMSE values are listed in Table 1.2. The ensemble scoring scheme at the

end of Table 1.2 is explained later in Methods.
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Figure 1.1: Schrödinger 2019-3 WScore ROCK1 results of individual receptors with ensemble
offset applied. The minimum WScore for each ligand across the six receptor structures is used as
the �nal ensemble score. Linear regression trend line in grey and exact� G in dash red line.
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Table 1.1: Schrödinger 2019-3: Native ligand scoring and docking for set of 6 ROCK1 structures

PDB ID WScore SIP WScore docking RMSDy (Å)
4YVE � 9•94 � 6•37 4.892
5BML � 9•83 � 9•91 1.305
5HVU � 9•81 � 7•20 1.233
5KKS � 7•13 � 11•14 5.696
5KKT � 9•83 � 10•14 0.668
5UZJ � 5•33 � 9•29 0.396

All structures have a5•0 WScore “core reorganization” offset.yHeavy atoms only.

Table 1.2: 2019-3 WScore R2 and RMSE

PDB ID R2 RMSE (kcal/mol)
4YVE 0.039y 13.03z

5BML 0.118y 5.42
5HVU 0.030y 4.25
5KKS 0.124 5.75
5KKT 0.001 4.89
5UZJ 0.001 5.49
Ensemble 0.002 2.30

yCorrelation is negative.zWithout16outlier the RMSE is 4.91 kcal/mol.

1.1.3 Context of Work - Schrödinger WScore Development

This project focused solely on ameliorating the WScore desolvation tests and other auxiliary

scoring terms for a set of novel ROCK1 structures and a series of congeneric small-molecule

inhibitors. These scoring improvements were developed alongside, but independently of, other ad-

vances in scoring and ligand binding pose search. It cannot be overstated how much improvements

in conformational sampling and pose placement have been instrumental to the the success of this

WScore project.

1.2 Methods

WScore ranking of known congeneric inhibitors for the ensemble set of ROCK1 structures

began with careful protein structure preparation of the seven published PDB complex X-ray crystal

structures.33–35 Later we explain why only six of the seven published structures are used in the

ensemble. Then WScore grids and WaterMaps were calculated with default parameters except for

6



the WaterMaps which were run for 5ns. The inhibitors from Ref. 33–35 were divided into three

series based on which paper they were �rst published in. Some complexes have their native ligands

appear in multiple sets (Table 1.3).

WScore was run on the three ligand sets as well as the native complex ligand poses in both

a “score-in-place” (SIP) and �exible ligand docking mode. These are also referred to as the

inplace andconfgen modes, respectively. The SIP results helped �nd erroneous penalties

that were being applied to the crystal structure poses. While theconfgen results allowed for

testing pose prediction and accuracy of desolvation terms as the scoring was changed.

We emphasize that WScore in this work is not run with the usual WScore job panels or launch-

ers that are available from the Schrödinger software release. Rather than using the WScore Maestro

panel or command line utility to set up and run the WScore work�ow, we instead run the Glide

docking program with a con�guration that activates WScore docking and scoring routines. This

Glide/WScore docking is done under-the-hood with the available WScore launch tools, but we

bypass all the unnecessary work�ows and inputs that a normal WScore job requires. Our ROCK1

rank ordering method requires only the the raw WScores of the congeneric ligands docked into an

ensemble of target structures.

The protocol for incrementally improving WScore for improved rank-ordering of the ROCK1

set of structures and ligands was three-fold:

1. Score the native complexes (inplace mode,a.k.a.SIP). Fix any invalid penalties that have

been applied to the native poses.

2. Dock the native ligands into their protein structures (confgen mode) and compare to native

pose. Implement or �x penalties that are missing for an non-native-like binding poses.

3. Run �exible ligand docking (confgen mode) on the congeneric inhibitors with all receptor

structures. Analyze WScore terms and audit desolvation protocols for any large over-bound

outliers.

The following sections will �rst go into the details of generating and curating a set of ROCK1
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Table 1.3: Native ligands for each ROCK1 PDB structure

PDB ID chain native ligand(s)
4YVE B 10, p2.20
5BML B 37, p2.21
5HVU A p2.30
5KKS B p3.28
5KKT B p3.37
5UZJ B 30, p3.8

receptor structures and the three sets of congeneric ligands of know binding af�nity. Then I explain

the various improvements and additions made to WScore scoring terms and desolvation methods.

Finally, I show how overall rank ordering of the ligand series was enhanced with a simple ensemble

docking protocol.

1.2.1 Protein Structure Preparation and Selection

There are seven published X-ray crystal structures of ROCK1 complexed with inhibitors of

interest. PDB codes: 4YVC, 4YVE, 5BML, 5HVU, 5KKS, 5KKT, and 5UZJ. All seven crystal

structures are comprised of two ROCK1 kinase region tertiary structures in its asymmetric unit.

These two kinase region tertiary structures are identical only in amino acid sequence and bound

ligand. There are slight differences in overall conformation and resolved residues. All PDB entries

have the tertiary structures labelled with either chain code A or B. Therefore there are potentially

up to fourteen different receptor structures, two for each bound ligand.

Both 4YVC structures were discarded from the set of receptors since it has a Phe87 residue

�ipped into the P-loop region. Thereby blocking any substituted aryl group from slotting into the

loop region as seen with all the other six complexes. For the remain six receptors the better of

the two chains was selected based on the unresolved residues it contained. The chain used as the

representative structure from each PDB structure is listed in Table 1.3.

The most important factor in determining the best chain was if the peripheral loop containing

Asp117 was wholly resolved. This residue has an important interaction with piperidine-like moi-

eties as shown in the 5HVU and 5KKT structures.34,35 Using structures where a loop containing
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Asp117 has to be built usually led to placing the residue such that it hindered native-like bind-

ing poses and induced poor scoring of ligands congeneric to the 5HVU and 5KKT native ligands.

Fortunately, the remaining six PDB structures had at least one chain with a fully resolved Asp117

residue.

Any PDB structure that had resolved Asp117 residues on both chains had the chain with fewer

overall unresolved residues chosen as the representative structure for that complex. This is why

the 5HVU structure uses chain A over chain B even though the nearby Arg115 on chain A is

unresolved. This ends up causing a small WScore penalty for the SIP of the chain A complex due

to the Arg115 predicted pose, as discussed later. The missing residues 233-236 in 5HVU chain

B is a bigger issue than the unresolved Arg115 side chain in chain A. That missing loop is labile

(PDB structures show at least 2 conformations of the loop) and can lead to important implications

for the scoring and pose prediction of ligands with the piperidine-like tail groups similar top2.30

andp3.37.

Once the set of receptor structures was chosen, all selected receptors were prepared in the

Schrödinger 2020-3 Maestro software using the ProteinPrep Wizard panel. The parameters in the

wizard were kept to defaults except for the following: missing loops were added in with PrimeX

and all waters were discarded after the heavy atom minimization stage. These changes are required

for WaterMaps where already present waters and missing loops can alter the calculated water

structure and lead to bogus desolvation penalties. The protonation of the receptor and complex

ligands were calculated using physiological pH of 7.4 rather than the PDB experimental reported

pH of the structure. Structures done at the experimental pH showed no change in protonation of

the bound ligand or any of the binding site residues.

WScore grids were run with default parameters and 10Å and 30Å inner and outer box sizes

respectively. Grid center was set at the native bound ligand centroid. WaterMaps were calculated

with default parameters from the WaterMap panel except for increasing simulation time to 5ns.
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1.2.2 Ligand Preparation and Selection

The entire set of ligands with an experimental Ki value for ROCK1 was manual created in

Maestro. This was more easily done by using a ligand structure from one of the prepared PDB

complexes and iteratively changing the functional groups by hand. Ligands that were beyond the

upper limit of the binding assay were discarded.

The ligands are collected and labelled based on the paper they were published in. All ligands

from the 2015 paper use the exact same label as published. The ligands from the Gao et al.34 and

Bandarage et al.35 also use the same labels as published but with a `p2.' or `p3.' pre�x respectively.

In this paper I refer to the three ligand sets as the 2015, p2, and p3 ligand sets.

The ligand experimental� G values are calculated in units of kcal/mol from the published Ki

using the chemical equilibrium equation at the assay temperature of 30 °C. These values are stored

as structure-level properties in the Maestro ligand library �les allowing Schrödinger or custom

scripts to be used for quick WScore ranking analysis.

The ligands were all prepared with the Ligand Prep panel in Maestro. For ligands with multiple

protonation and/or tautomerization states, the state with the lowest predicted LigPrep State Penalty

was kept. Perfunctory WScore docking jobs showed that the lowest energy ligand state often

scored the best and had the most native-like poses. For the ligands with titratable groups such as

the piperidine-like tail groups in the p2 and p3 ligand sets, it was the case that the lowest energy

ligand state was the one which protonated the basic nitrogen in the aliphatic ring. If there were two

basic nitrogens, then the one furthest from the ligand center was protonated. This corresponded

well with possible ionic hydrogen bond interactions with the Asp117 side chain and also allowed

for reduced interactions of a charged moiety from a largely lipophilic region around Phe120.

1.2.3 Explicit Water Sampling for Lys105 and Asp216 Solvation

The �rst, and largest, challenge to overcome was developing a desolvation penalty protocol for

the water that solvated the charged Lys105 and at least one of the nearby carboxylate amino acid

side chains, Asp216 and Glu124. This desolvation was key in improving the pose prediction and
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Figure 1.2: Ligandp2.22NH+ desolvation. The WaterMap site (red) solvating Lys105 and Asp216
is pushed back by pose of ligandp2.22and new postion is found (yellow).

rank ordering of the p2 and p3 ligand sets with the protonated piperidine-like tail groups. Early

results showed that a handful of the ligands with these moieties were consistently over-bound

relative to the entire series and the nativep2.30andp3.37ligands had poor pose-prediction.

Figure 1.2 shows ligandp2.22docked to 4YVE. Ligandp2.22was a frequently over-bound

ligand compared to the rest in the p2 ligand set we hypothesize for the a missed desolvation penalty

due to the position and orientation of the protonated amine group. This pose receives no penalty

for desolvation of Asp216 and the new found site for the water (yellow sphere) is highly unstable

since water has two charged H-bond donors but no nearby acceptors to properly solvate it.

Initial attempts to create desolvation tests using the standard WScore methods of distance and

angle checks did not prove fruitful as the �exible ligand docking search often found slightly mod-

i�ed conformations that passed these desolvation tests and continued to be over-bound. Therefore

we pursued a new idea where we place a complete water molecule while testing for its total com-
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plement of hydrogen bonds and any polar clashes with the surrounding receptor and ligand envi-

ronment. This desolvation test is only done when testing solvation of a positively charged receptor

hydrogen bond donor with a WaterMap water that also solvates a nearby receptor hydrogen bond

acceptor. Both of these hydrogen bonds are constraints on the search for a valid water geometry.

Using Euler rotation matrix based methods we probe possible positions of both water hydrogens

and test for clashes and complementary hydrogen bonds. The hydrogen positions test over a range

of bond angles centred on the experimental angle of 104.5°and keep a constant bond length of 1

Å. Clash and solvation tests are sped up using a couple pre-calculated arrays of receptor hydro-

gen bond donors and acceptors. We also consider non-displaced WaterMap water sites as possible

acceptors.

1.2.4 WaterMap Hydrogen-bond Categorization Overhaul

The new desolvation test is one of the most rigorous desolvation tests in WScore since it con-

siders the entire water molecule geometry and tests for clashes and ful�llment of all its hydrogen

bonds. The test is designed and parameterized for a very speci�c type of solvation issue and run-

ning this test on waters it is not designed for is liable to produce false negatives. This usually incurs

a hefty penalty on the order of 4 kcal/mol. To �nd issues in the WScore code that might improperly

trigger our new desolvation method we tested against an unpublished internal Schrödinger set of

900 structures and their native ligands. WScoreconfgen docking on the entire set was monitored

for activation of the test and any such complexes were examined for desolvation penalties due to

the new test.

The majority of cases that incurred an undeserved desolvation penalty was largely due to poor

labelling of the hydrogen bonds between the WaterMap water sites and the receptor. The main

issue was associating too many hydrogen bond acceptors to the WaterMap site. We �xed this by

replacing the original routine for determining water-protein hydrogen bonds with a lightly modi�ed

copy of a more rigorous routine already present elsewhere in the WScore code. Modi�cations

included removing hydrogen bonds to both ASP and GLU carboxylate oxygens if one was over
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0.5Å further away. Lastly, there was also a slight �x to the labelling of salt bridges that would turn

off the test for certain ROCK1 structures.

1.2.5 Lipophilic Scoring

The desolvation test above made huge improvements in reducing cases of over-bound ligands

in the p2 and p3 ligand sets and improved pose prediction of ligands with protonated piperidine-

like tail groups. But over-rewarded WScores for these ligands, even with ostensibly good poses,

was still an issue. One WScore reward that still posed problems for rank ordering of ligands in the

p2 and p3 ligand sets was the lipophilic interaction reward. Because the piperidine-like tails are all

aliphatic and composed of mostly carbon heavy atoms, the extra lipophilic reward for this moiety

was usually >1 kcal/mol. We changed the lipophilic reward routine to not count carbons that are

bonded to positively-charged heavy atoms.

1.2.6 Solvent Accessibility of NH Donors

Over-rewarded ligands in the 2015 set corresponded often with an “inverted” core binding

mode (Figure 1.3). All natives displayed a conserved binding mode where the ligand substituted

pyridine or 7-azaindole “warhead” form hydrogen bonds with the kinase hinge residues, the het-

eroatomic 5-membered ring slotted into a large hydrophobic pocket, and then a linking amide to

the terminal substituted aryl group forms a hydrogen bond to the Lys105 protonated amine. The

inverted pose keeps the warhead interactions but �ips the 5-membered ring and amide 180° so that

the amide's NH is pointing towards Lys105.

This inverted pose often produced over-rewarded poses by prioritizing other hydrogen bond in-

teractions that were possible with the substituted aryl group in this binding mode, at the expense of

the relatively weak amide carbonyl-Lys105 hydrogen bond (� 0.5 kcal/mol) and a slight reduction

in hydrophobic interactions of the 5-membered ring. WaterMaps run with a few inverted mode

ligands found no viable water with an estimated� G under 6 kcal/mol able to solvate the amide

NH.
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A B

Figure 1.3: Inverted amide solvation of22 in 5KKT. (A) 5KKT crystal structure pose (orange) and
the amide “inverted” pose of22. The inverted pose lacks the amide carbonyl hydrogen-bond to
Lys105. (B) The position found by WScore for a solvating water to the ligand amide NH group.

We therefore modify the routine testing the solvation of the amide NH by creating more strin-

gent constraints on the number, type, and position of hydrogen bond acceptors for the solvating

water. This more restrictive solvation test only applies when the solvating water is not solvent

accessible, which is the case for this inverted binding mode. Attempts to test solvent accessibil-

ity with currently available metrics in WScore were unsuccessful. These methods use an average

minimum angle distribution of protein heavy atom pairs with respect to the water site.

We created a new and more robust routine for quantifying solvent accessibility by counting

WaterMap site and protein heavy atoms within 6Å and in a conical solid angle whose axis is along

the N-H bond with a vertex angle of 120°. We quantify solvent accessibility by the ratio of protein

heavy atoms to waters. The value for the cutoff on solvent accessibility is parameterized to our

ROCK1 inhibitors and receptor structures.

1.2.7 Polar Grid Scoring of Highly Rewarded Warheads

The 7-azaindole warheads of the p3 ligand set accrue greater hydrogen bond rewards than

the pyridine warheads due to both an extra hydrogen to the Glu154 backbone NH and a special
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hydrogen bond reward for the hinge region hydrogen binding motif. We discuss the merits of such

differences in the rewards of the warheads later. There was also an extra 1 kcal/mol reward for

the 7-azaindole warhead due to a polar atom environment score being applied to two of the atoms

in the fused ring. This is considered an improper double counting of rewards for the atoms in

the special hydrogen bonding motif. Therefore we turn off this polar score reward for atoms that

participate in the special hydrogen bonding motif or bridge such atoms in a ring system.

1.2.8 Fixing Native Pose Scores and Memory Errors

Various changes to WScore penalties were implemented so that SIP scores of the prepared PDB

complexes did not accrue undeserved desolvation and polar clash penalties. Changes include re-

moving the polar clash of the inhibitor linking amide carbonyl to the Asp216 carboxylate since the

positively-charged lysine amine is closer. Desolvation of the Asp216 residue because a specially

labelled bidentate solvating water was no longer able to solvate both carboxylate oxygens when

displaced by the ligand was turned off since both atoms were still solvated by at least 2 waters each.

A polarclash of the NH in the 5KKS sulfonamide moiety with Lys105 was averted since the Wa-

terMap showed a probable water candidate that can bridge between the two hydrogen bond donors.

The last group of changes were improvements to the determination of valid hydrogen bonds both

in the initial WaterMap structure and when probing water moves for solvation of binding site hy-

drophilic residues. However, there was one SIP penalty with the 5HVU complex SIP has a very

small penalty of 0.05 kcal/mol due to the pose causing a slight reduction in quality of the solvation

of the Arg115 side chain. The Arg115 side chain was unresolved in the PDB structure and the

Protein Preparation Wizard tool built and placed the side chain near the ligand. We therefore don't

consider this penalty a failure of WScore for this native ligand pose and it can be ignored.

Using comprehensive program correctness tools like Valgrind52 I found a handful of memory

access errors while testing the entire internal Schrödinger set of 900 complexes and my set of

ROCK1 structures and ligands. Fixes to these errors are critical to WScore and are already incor-

porated in the latest Schrödinger software release. These �xes helped improve consistency of the
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docking results which had become a major hurdle in �nding and implementing improvements to

WScore.

1.2.9 Ensemble Docking with ROCK1 Structures

Final rank ordering of the entire ligand set was done by offsetting the raw WScore of all lig-

ands docked to each of the six receptor structures such that the native ligand(s) for that receptor

equal experimental af�nities. For each receptor we effectively calibrate the raw WScores of all

the ligands to the score of the native ligand(s). For receptors that have their native ligand appear

in multiple ligand sets we offset using the average of the ligand differences to experimental val-

ues. Once the raw WScores of all ligands are adjusted for each receptor docking calculation, we

then take the minimum raw WScore for each ligand across the six receptors as the �nal score

used for rank ordering. Since this ensemble scoring requires every ligand to be docked to every

receptor, for= congeneric ligands and< receptor structures we have to do= � < WScore dock-

ing jobs. This ensemble offset and �lter method can be considered a replacement of the localized

protein strain/reorganization energy protocol from the seminal WScore paper16 (see sectionIVB

andV) which also uses an ensemble of ligand-protein complexes of known af�nity. Cleves and

Jain have also demonstrated how ensembles can improve both structure- and ligand-based virtual

screening.13

1.3 Results and Discussion

1.3.1 Ensemble Scoring and WScore Rank Ordering

Our improved WScore scoring and docking routines show considerable improvement to rank

ordering of our congeneric series of known ROCK1 inhibitors and receptor structures compared to

the 2019-3 software release. The correlation (R2) of of the entire congeneric series is 0.613 with

an RMSE of 1.34 kcal/mol. Compared to the ensemble scoring with the 2019-3 WScore release

that had an R2 of 0.002 and an RMSE of 2.30 kcal/mol.

The ensemble docking method was conceived from the idea that it is unlikely that any one of the
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receptors will �nd good binding poses for all the congeneric ligands and therefore there will likely

be unavoidable under-bound ligands. The scoring scheme was hypothesized to improve upon the

rank-ordering and binding af�nity prediction of the best receptor's WScore results by ameliorating

its worst over-bound ligand results. In �gure 1.6 we see that the 5BML receptor produces the best

WScore to experimental af�nity correlation with an R2 = 0.602 and an RMSE of 1.34 kcal/mol.

The 5BML WScore rank-ordering suffers mostly in the over-bound results for the ligands

p3.18, p3.19, p3.25, andp3.34 that have an experimental af�nity of� 11•8 kcal/mol. The en-

semble scoring helps improve on these over-binders since other receptors docked and scored these

ligands more favorably than the 5BML structure. For example, in Figure 1.5 the 4YVE receptor

Figure 1.4: Ensemble WScore of ROCK1 Congeneric Series of Actives. Linear regression of
ensemble WScore. R2 = 0.613 (grey line). Experimental� G. RMSE = 1.34 kcal/mol (dotted red
line).
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Figure 1.5: Docked poses ofp3.34in 4YVE (green) and 5BML (orange)

andp3.34pose in green is able to place the central aryl group under the P-loop region and form

a hydrogen bond with the ligand ether oxygen and the backbone NH of Phe87 – a binding mo-

tif conserved among the PDB complexes. In contrast the 5BML receptor has the P-loop moved

up and away such that the ligand's aryl ring and ether oxygen aren't able to be placed in such a

way that preserves that binding motif. This placement of the ligand aromatic ring, the hydrogen

bond to the P-loop, and weaker hydrogen bonds in the kinase hinge region leads to a difference in

WScore rewards between the two poses in their respective receptors of 3.7 kcal/mol. The reason

the P-loop is moved up in 5BML is because the native ligand37/p2.21replaces the ether with a

bulkier sulfonamide group that hydrogen bonds with the Phe87 and Ala86 backbone NH groups.

This highlights the utility of an ensemble of ligand bound protein structures for rank ordering us-

18



PDB ID R2 RMSE (kcal/mol)
4YVE 0.160 1.93
5BML 0.602 1.34
5HVU 0.022 2.35
5KKS 0.591 3.59
5KKT 0.563 3.78
5UZJ 0.466 2.07
Ensemble 0.613 1.34

Table 1.4: WScore correlation coef�cient and RMSE for a single receptor and ensemble

ing rigid receptor methods because it can incorporate small yet important conformational changes

required for accommodating different functional groups found in the congeneric set of ligands.

By incorporating more favorable WScores for under-bound ligands, the ensemble scoring scheme

improves upon the 5BML WScore results with a small increase in R2 to 0.613 and no change in

the RMSE of 1.34 kcal/mol.

It is worth considering how the ensemble scoring can improve prediction of binding af�nity

without a good single-receptor WScore performance like 5BML. If we do not include the 5BML

results in the ensemble scoring we get R2 = 0•569and RMSE= 1•26 kcal/mol. This has a worse

correlation than the best remaining single-receptor of 5KKS with R2 = 0•591. But it does have a

better RMSE of 1.26 kcal/mol compared to the best receptor 4YVE with RMSE= 1•93 kcal/mol.

If we remove half of the single-receptor values with the best correlations (i.e. 5BML, 5KKS, and

5KKT) the ensemble scoring has a correlation of R2 = 0•371, which is worse than the best of 5UZJ

with R2 = 0•466. But as before the RMSE of 1.40 kcal/mol of this ensemble is better than 4YVE,

the best of the rest. The ensemble scoring scheme can improve overall af�nity prediction with the

trade-off of poorer correlation when using single-receptor results with R2 Ÿ 0•5. This demonstrates

the strength of this technique when running WScore for lead optimization with an ensemble that

might not have a single good receptor that can dock and score the entire series well.

The ensemble WScore is monopolized by 4YVE and 5BML docking scores (Figure 1.4), and

4YVE scores also account for three of the four most over-bound cases – all four by¡ 3 kcal/mol.

Furthermore, there are only 3 raw WScores in the �nal ensemble that come from 5KKS and 5KKT,
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Figure 1.6: WScore of individual receptors with ensemble offset applied. The minimum WScore
for each ligand across the six receptor structures is used as the �nal ensemble score. Linear regres-
sion trend line in grey and exact� G in dash red line.

the only complexes whose native ligand has the 7-azaindole warhead in the kinase hinge region.

This hints towards the sensitivity the ensemble scoring method has to the relative raw WScore

of cross-docked native ligands. WScore tends to score the 7-azaindole series of ligands with 4-5
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kcal/mol stronger af�nities than analogous ligands with pyridine for the warhead. Experimentally

the relative af�nities should be in the range of 2-3 kcal/mol. WScore rewards the 7-azaindole

warhead (ligandsp3.28andp3.37) in the kinase hinge region more favorably than pyridine due to

the extra hydrogen bond with Glu154, a “special” molecular binding motif reward in the buried

hinge region, and slight increases in multiple hydrophobic reward terms due to two additional

aromatic carbons. As mentioned earlier, our updates to WScore removed a reward double counting

with the 7-azaindole warhead, thereby reducing, but not eliminating, this over-binding. Yet we do

not believe this over-rewarding is ultimately an error in WScore. We have essentially reached a

limit of this empirical knowledge-based scoring method and must recall that WScore is �rst and

foremost a virtual screening and pose-prediction program. It would be a mistake to attempt to

tweak or deactivate the rewards for 7-azaindole in order to increase its rank ordering performance

for this one ROCK1 set of congeneric ligands at the detriment of its virtual screening and pose

prediction performance. To exacerbate this over-binding issue, WScore does not �nd a pose for

the 4YVE native ligand where the ether oxygen has a hydrogen bond to Phe87 (see 4YVEp3.34

pose in �gure 1.5), but when cross-docking the 5KKT native (p3.37) it �nds a pose where the ether

oxygen merits a 1.0 kcal/mol hydrogen bond reward. Ultimately the outcome is that the 4YVE

structure over-binds many ligands in the 7-azaindole series when offset relative to the weaker

binding native ligand10/p2.20. Correspondingly, the 5KKS and 5KKT docking has the weaker

pyridine ligands greatly under-bound after calibrating to thep3.28andp3.37ligands respectively.

The susceptibility of having over-bound ligands due to overestimated differences in the WScore of

important binding groups is an inherent shortcoming in the ensemble score's ability to accurately

predict binding af�nities.

Ligand 16 demonstrates how a docking and empirical scoring function like WScore can still

struggle to discern very subtle molecular effects with signi�cant implications on binding af�nity.

A 2-chloro addition to the 1,3-benzodioxole increases the potency over 10-fold, Ki 100 to 7 nM,

for ligands15 and16 respectively. It isn't obvious how the 2-chloro could enhance the binding

af�nity but we hypothesize it could form a stabilizing halogen bond to the Asp216 side chain. The
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1,3-benzodioxole rings in ligands15and16also seem to highlight a potential failure in the WScore

conformational and/or minimization algorithms since that fused ring moiety is always planar when

it has been shown that the 5-membered ring is slightly puckered in the ground state conformation.53

A puckering of the ring could help the ring oxygens become more sterically accessible to the P-

loop hydrogen-bond donors.

While we have explained where the largely over-bound scores for the 7-azaindole set of ligands

comes from, we also argue that the experimental af�nities for those ligands may be too weak. First,

we recognize that the binding af�nities for the most potent inhibitors are on the order of single-digit

nM K i and the af�nity for the 5KKT nativep3.37 is one of three inhibitors in the `p3` set given

as an upper bound. If the binding assay was reaching its lower limits for the strongest inhibitors

then it is possible that the true experimental af�nities are even stronger than reported. Second,

I run a selection of six ligands:10, p2.29, p2.30, p3.19, p3.35, andp3.37 with Schrödinger's

FEP+ program to compare how free energy perturbation (FEP)�� G values compare to the ex-

perimental values. This set consists of three pairs of inhibitors where the warhead region that

binds to the kinase hinge region is either a pyridine or a 7-azaindole group; the rest of the ligand

is identical. Across the three pairs we change themeta-substituent on the aryl ring to study the

structure-activity relationship of the solubilizing piperidyl and methylpiperazinyl groups and how

it compares to experiment. The FEP+ results in �gure 1.7 and table 1.5 show higher predicted

differences in the binding af�nity between the two warhead groups than reported experimentally.

On average the FEP+�� G of the pyridine to 7-azaindole warhead mutation is� 2•13 kcal/mol

stronger than reported experimentally. The average WScore difference of the ligand pairs (Table

1.5) shows much closer agreement to FEP+�� G values supporting our argument that the reported

experimental af�nities may be too weak for the 7-azaindole inhibitors. Only poses with binding

motifs for the warheads and linking amide analogous to the PDB complexes are used in calculating

the� WScore averages in order to capture the difference in scoring between the two warhead types

without contamination from poor poses that do not capture the rewarding interactions inherent to

the native binding motifs.
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Figure 1.7: FEP+ of10, p3.19, p2.30, p3.35, p2.29, andp3.37using the 5KKT chain B receptor.

ligand pair Exp.�� G (kcal/mol) FEP+�� G (kcal/mol) Avg.� WScorez

10 ! p3.19 � 2•11 � 4•04� 0•67 � 3•50
p2.30! p3.35y � 0•57 � 3•49� 0•67 � 3•97
p2.29! p3.37y � 2•29 � 3•84� 0•67 � 4•56

Table 1.5: Experiment, FEP+, and WScore af�nities between pyridine and 7-azaindole warheads
y Using upper bound experimental af�nity.z Ignore poses without canonical binding motif of

warhead and linking amide.

We also observe the FEP+ results conserve the structure-activity relationship (SAR) of the sol-

ubilizing groups within each warhead set. The potency order is methoxyŸ methylpiperazinylŸ

piperidyl with FEP+, which is the same order we see experimentally with the pyridine ligands,

but not with the 7-azaindole. Since the experimental values used forp3.35andp3.37are the up-

per bounds of the inhibitor dissociation constants, it is plausible that the SAR of the solubilizing

groups is not changed with the 7-azaindole warhead and binding af�nity of the piperidyl-containing

p3.35is actually signi�cantly stronger than reported. Furthermore, if we examine the 5KKT com-

plex with the methylpiperazinylp3.37 we notice that the basic nitrogen closest to the Asp117

residue is interacting with it the same as the piperidylp2.30basic nitrogen in the 5HVU complex.

23



Since the basic nitrogen of these two ligands are in congruent positions relative to the conserved

core, it argues against the assumption that the 7-azaindole warhead could detrimentally affect the

piperidyl-Asp117 interaction without also affecting the methylpiperazinyl-Asp117 interaction. If

we interpolate the SAR for the 7-azaindole piperidylp3.35 we would estimate it would have a

binding af�nity � 2 kcal/mol more negative than experiment.

1.3.2 Natives Docking and SIP

An important step in improving WScore for the ROCK1 inhibitors was �xing unwarranted

penalties that the native PDB ligand poses were triggering. This improved pose prediction of the

native ligands in four of the six complexes (Table 1.6) compared to the initial 2019-3 WScore

docking results (Table 1.1). With the 2019-3 release there are two complexes (4YVE, 5HVU)

where the docked pose is scored worse than the native pose. The new WScore has has only one

such case with 5BML, and the difference in scores is smaller than the 2019-3 cases. This is

indicative of the docking method failing to �nd a pose in the conformational vicinity of the native

pose, otherwise it would have chosen the better scored native pose. It shows a lack of coverage of

the binding pose space and/or an issue with the hierarchical pose �ltering stages. So progress has

been made with the current WScore implementation (see 4YVE & 5KKS, Table 1.1) but there is

still room for improvement.

PDB ID WScore SIP WScore docking RMSDy (Å)
4YVE � 9•34 � 9•55 0.430
5BML � 11•46 � 10•48 1.077
5HVU � 9•85 � 11•37 0.954
5KKS � 13•94 � 14•76 1.286
5KKT � 13•70 � 15•26 1.039
5UZJ � 7•23 � 10•74 1.646

Table 1.6: WScore self-docking results of PDB complexes
All self-docking calculations use the same WScore “core reorganization” offset of5•0. Therefore
the WScores are not indicative of binding af�nity but are useful for comparing SIP and docked

scores.yHeavy atoms only.

Examining the the SIP and docking results of three cases: 5HVU, 5KKT, and 5UZJ (Figure
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1.8), we can elucidate how the scoring has changed and why 5KKT and 5UZJ had a regression

in the pose RMSD. First, with 5HVU (Figure 1.8, A) we notice how the 2019-3 pose (green)

has the linker amide �ipped 180°which induces a desolvation penalty since the NH is pointing

towards the basic Lys105 nitrogen. It also has the effect of pulling the solubilizing group away

from the Asp117. The new WScore pose (light blue) does not have the amide inversion but instead

of having the basic nitrogen of the solubilizing group placed near Asp117 it places it near the

Gly218 backbone carbonyl oxygen. Both versions of WScore do not assign a rewarding hydrogen

bond or special ionic interaction between the basic nitrogen and the Asp117 carboxylate, but the

current version does assign a rewarding hydrogen bond to the Gly218 backbone. Similarly, the

5KKT docked poses (Figure 1.8, B) show analogous behavior regarding the basic nitrogen of the

solubilizing group. Here the new WScore pose gives rewarding hydrogen bonds to Gly218 as

well as the Phe87 backbone NH, the latter of which is not rewarded in the 2019-3 pose and0•5

less rewarded in the native. The change in how WScore scores the potential solubilizing group

interactions causing the basic nitrogen to be rewarded when interacting with Gly218 instead of

Asp117 explains why 5KKT regressed in its pose RMSD. While current WScore did improve

with the prediction of the important linker amide-Lys105 interaction, it disagrees with the crystal

structure poses on the most probable conformation and interaction for the basic nitrogen in the

solubilizing moieties. The relative scoring of these competing interactions should be revisited in

the future and validated across an expansive testing suite of ligands and receptors.

Finally, the largest regression in pose RMSD was 5UZJ (Figure 1.8, C) where new WScore

�ips out the the substituted aryl ring away from the P-loop (light blue). This case was dif�cult to

understand since had the most differences in the scoring breakdown between the two versions of

WScore. After careful consideration the changes that seem to be most important were a bigger

special hydrogen bonding reward for the 2-aminopyridyl warhead and a possible regression in the

Phe87 NH backbone solvation test. In new WScore the 2-aminopyridyl warhead is able to move the

amino group ever so slightly closer to the backbone carbonyl of Met156 in order to trigger a special

buried hydrogen bonding motif reward that is scored 1.7 better than a different special h-bond
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A B

C

Figure 1.8: (A) 5HVU, (B) 5KKT, (C) 5UZJ. Native PDB and WScore docked poses for three
receptors. (pink) Native PDB pose. (green) 2019-3 WScore docked. (light blue) new WScore
docked.

reward received in 2019-3 WScore. This slight movement of the warhead has knock-on effects

in the rest of the binding pose such as pulling the amide carbonyl away from Lys105, reducing

its h-bond reward, and pulling the aryl group away from the P-loop. This is due to a lever effect

with the fulcrum at the pyridine's ring nitrogen; as the amino group swings towards the Met156

backbone oxygen it causes the rest of the ligand to swing away from the receptor. There is also

evidence that the new WScore is incorrectly validating the solvation between the ligand methoxyl

oxygen and Phe87 backbone NH. In 2019-3 WScore the native pose incurred a desolvation penalty

for the Phe87 backbone NH since it deemed the methoxyl oxygen too far for a proper hydrogen

bond. Therefore its docked pose (Figure 1.8, C) moves itself closer in order to solvate and gains a

small hydrogen bond reward in the process. This native pose penalty was not the one neutralized as

described in section 1.2.8(Fixing natives); the remedied penalty for the 5UZJ pose was desolvation

of the backbone NH of Asp216. If this desolvation penalty were to be reverted to behave like it did

in 2019-3 then docking would have to �nd a pose that balances between the large buried hydrogen

bonding reward with Met156 and the solvation of Phe87 backbone NH. The weaker special h-bond
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reward for the 2-aminopyridyl warhead could be reinstated to replace the new stronger buried h-

bond reward since it was already active with native pose in 2019-3 WScore and therefore would

not force the lever-action effect with the amino group. The SIP WScore of the 2019-3 pose with

new WScore leads to a desolvation of the Asp216 backbone, 2.5 score penalty, as previously seen

with the native pose. The culprit is the sulfur of the thiazole ring – even though it only moves

0.036Å closer to the Asp216 backbone NH. A WaterMap calculation with the 2019-3 pose places

a solvating water behind the thiazole ring, where it is highly entropically unfavored (-T� S = 5.4

kcal/mol) and enthalpically neutral (� H = 0.3 kcal/mol). The placement of the thiazole ring in the

native pose is right at the cusp of desolvating Asp216 with the current WScore routines; perhaps a

reevaluation of the parameters for a solvating water in such a pocket is warranted in order to give

the thiazole a bit more room to maneuver.

The self-docking of 5UZJ is a perfect example of the challenges of amending an empirical

knowledge-based virtual screening docking function for rank ordering of congeneric ligands. WS-

core is full of discontinuous, geometrically precise rewards that can annihilate the sensitivity re-

quired for correctly ranking congeneric ligands. The delicate balance of the myriad special rewards

and penalties can be knocked off equilibrium to catastrophic results if any member is not working

appropriately.

1.3.3 Desolvation of Asp216 NH

Lastly we will brie�y mention the current work-in-progress desolvation problem which is caus-

ing a fourth set of congeneric ligands from the same SAR study49 to perform poorly, R2 = 0.083,

but the most potent ligand is correctly ranked with best score. Desolvation of the Asp216 NH

is causing similarly potent ligands to have very different raw WScores due to the 2.5 kcal/mol

penalty. The sulfur in the thiazole/thiophene rings of all native ligands is placed near the Asp216

NH. The PDB structures of the seven published ROCK1 complexes provide insight to the solvation

of this backbone NH. Three of the PDB chains (recall fourteen chains total from seven models) had

waters in their models (Figure 1.9 B) and the rest of the chains, except for 5KKS chain A, have a

27



large positive isovolume at the 3f level above the Asp NH (Figure 1.9 A). A positive Fo-Fc value

means the measured electron density is not accounted for by the model; there is likely missing

atom(s). We believe this is strong evidence for the presence of a solvating water bounded by the

ligand ring sulfur and a small pocket in the binding site directly above the Asp216 NH. We even

see when the geometry of the warhead changes from the pyridine of 5BML to the azaindole of

5KKT and causes the ring sulfur to push in further towards the protein surface, the water accom-

modates the impinging sulfur and moves deeper into the pocket and causes Glu124 to move as well

(Figure 1.9 B). In the 5KKT chain A model, the distances between the ligand sulfur and water to

the Asp N raises the question of if the sulfur is contributing to the solvation of the peptide NH and

whether if the sulfur is placed any closer could it displace the water without incur any large solva-

tion penalties. There also is evidence in the 5KKS chain A model and experimental densities that

is is no missing water in the model and the sulfur could solvate the backbone suf�ciently. Indeed,

the 5KKS native ligandp3.28is the second most potent of the natives. Doubling back to WScore,

we now have a plethora of cases where small deviations of the sulfur atom of less than 0.1Å from

the native pose is causing the water solvating the Asp216 NH to be displaced and incurring the 2.5

kcal/mol penalty. Is the problem that the WScore water-moving protocols are too strict or are we

incorrectly determining that the sulfur is not providing a suf�cient solvation interaction, or both?

This the current problem that needs to be solved for the ROCK1 family of structures and we hope

will lead to future improvements that make WScore a compute-ef�cient and accurate method for

prospective lead optimization projects.

1.4 Conclusion

We demonstrate how careful improvements to WScore scoring routines and a simple ensemble

scoring scheme allowed the virtual screening program to drastically enhance its ability to rank

order and predict binding af�nity for a set of congeneric ROCK1 inhibitors using an ensemble of

ROCK1 PDB structures. These ligands and structures were previously untested with WScore in

the course of its development and showed poor af�nity prediction for this ligand series and family

28



A B

Figure 1.9: (A) 5HVU chain A Fo-Fc isomesh at 3f . (B) Three of the ROCK1 complexes have
waters (red spheres) in their PDB models. 5KKT chain A native ligand (orange) and both 5BML
chains and natives (cyan and green) are shown as thick sticks. N.B. These structures are the PDB
structures and not the prepared structures used with WScore. Ligand hydrogens are added to
highlight ligand H-bond donors.

of ROCK1 receptor conformations initially. The systematic and iterative protocol used to improve

WScore is robust and easily applicable to future development on rank ordering of other congeneric

ligand series and protein targets. It is important that the improvements for the ligands and receptors

of interest are tested alongside large libraries of other complex structures in order to avoid over-

�tting to the system of interest. Such a development and testing framework inspires solutions that

are broad and generally applicable rather than pointed and direct. WScore could be an important

cost-effective rank ordering method in the future for large-scale lead optimization projects before

more computationally costly methods like FEP would be required for more accurate congeneric

ligand tuning.

Future work with these ROCK1 inhibitors and ligands would be to determine its performance in

predicting the selectivity of the ligands between ROCK1 and PKA. There are two PDB structures

of PKA bound with ligands from these series which severely limits the ensemble and could be an

important barrier to overcome for accurate selectivity prediction.

As the 5UZJ self-docking case discussed earlier showed there are still open questions in WS-

core about the special binding motif rewards and the possibility of desolvation routine regressions.

This is expected of parallel and disjointed development of the the program for such a large code
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base. Small changes in the routines that were never considered during the work on improving the

ROCK1 rank ordering could have cascading effects that end up with important scoring and/or pose

prediction results. The 5BML self-docking also exposes shortcomings in the binding pose search

since the native pose is scored better than the found pose. Nevertheless, the consensus is that all

the WScore development, for ROCK1 or otherwise, improved pose prediction of the natives and

combined with the ensemble scoring scheme demonstrates great improvement for binding af�nity

prediction of the congeneric ROCK1 inhibitors.

1.5 Acknowledgment

The author thanks Dr. Robert Murphy, Dr. Steven Jerome, Dr. Ivan Tubert-Brohman, and Dr.

Arman Sadybekov (Schrödinger, Inc.) for their help with the WScore code base. Without it this

endeavour would have been a fool's errand.

30



1.6 Supporting Information

1.6.1 Figure S1.

2015 ligand set, Ref. 33
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1.6.2 Figure S2.

2018 p2 ligand set (ligands pre�xed with `p2'), Ref. 34
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