Random forest model based fine scale spatiotemporal O₃ trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017

Ma, Runmei; Ban, Jie; Wang, Qing; Zhang, Yayi; Yang, Yang; He, Mike Zhongyu; Li, Shenshen; Shi, Wenjiao; Li, Tiantian

Ambient ozone (O₃) concentrations have shown an upward trend in China and its health hazards have also been recognized in recent years. High-resolution exposure data based on statistical models are needed. Our study aimed to build high-performance random forest (RF) models based on training data from 2013 to 2017 in the Beijing-Tianjin-Hebei (BTH) region in China at a 0.01 ° × 0.01 ° resolution, and estimated daily maximum 8h average O₃ (O₃-8hmax) concentration, daily average O₃ (O₃-mean) concentration, and daily maximum 1h O3 (O3-1hmax) concentration from 2010 to 2017. Model features included meteorological variables, chemical transport model output variables, geographic variables, and population data. The test-R² of sample-based O₃-8hmax, O₃-mean and O₃-1hmax models were all greater than 0.80, while the R² of site-based and date-based model were 0.68–0.87. From 2010 to 2017, O₃-8hmax, O₃-mean, and O₃-1hmax concentrations in the BTH region increased by 4.18 μg/m³, 0.11 μg/m³, and 4.71 μg/m³, especially in more developed regions. Due to the influence of weather conditions, which showed high contribution to the model, the long-term spatial distribution of O₃ concentrations indicated a similar pattern as altitude, where high concentration levels were distributed in regions with higher altitude.

Geographic Areas


Also Published In

Environmental Pollution

More About This Work

Academic Units
Published Here
June 28, 2023