A punctuated equilibrium analysis of the climate evolution of cenozoic exhibits a hierarchy of abrupt transitions

Rousseau, Denis-Didier; Bagniewski, Witold; Lucarini, Valerio

The Earth’s climate has experienced numerous critical transitions during its history, which have often been accompanied by massive and rapid changes in the biosphere. Such transitions are evidenced in various proxy records covering different timescales. The goal is then to identify, date, characterize, and rank past critical transitions in terms of importance, thus possibly yielding a more thorough perspective on climatic history. To illustrate such an approach, which is inspired by the punctuated equilibrium perspective on the theory of evolution, we have analyzed 2 key high-resolution datasets: the CENOGRID marine compilation (past 66 Myr), and North Atlantic U1308 record (past 3.3 Myr). By combining recurrence analysis of the individual time series with a multivariate representation of the system based on the theory of the quasi-potential, we identify the key abrupt transitions associated with major regime changes that separate various clusters of climate variability. This allows interpreting the time-evolution of the system as a trajectory taking place in a dynamical landscape, whose multiscale features describe a hierarchy of metastable states and associated tipping points.


Also Published In

Scientific Reports

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Biology and Paleo Environment
Published Here
August 1, 2023


paper + supplementary material