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ABSTRACT

Towards an Accurate Description of Strongly Correlated Chemical Systems with

Phaseless Auxiliary-Field Quantum Monte Carlo - Methodological Advances and

Applications

James Shee

The exact and phaseless variants of auxiliary-field quantum Monte Carlo (AFQMC) have been

shown to be capable of producing accurate ground-state energies for a wide variety of systems

including those which exhibit substantial electron correlation effects. The first chapter of this

thesis will provide an overview of the relevant electronic structure problem, and the phaseless

AFQMC (ph-AFQMC) methodology.

The computational cost of performing these calculations has to date been relatively high, im-

peding many important applications of these approaches. In Chapter 2 we present a correlated

sampling methodology for AFQMC which relies on error cancellation to dramatically accelerate

the calculation of energy differences of relevance to chemical transformations. In particular, we

show that our correlated sampling-based ph-AFQMC approach is capable of calculating redox

properties, deprotonation free energies, and hydrogen abstraction energies in an efficient manner

without sacrificing accuracy. We validate the computational protocol by calculating the ionization

potentials and electron affinities of the atoms contained in the G2 test set and then proceed to

utilize a composite method, which treats fixed-geometry processes with correlated sampling-based

AFQMC and relaxation energies via MP2, to compute the ionization potential, deprotonation free

energy, and the O-H bond dissociation energy of methanol, all to within chemical accuracy. We

show that the efficiency of correlated sampling relative to uncorrelated calculations increases with

system and basis set size and that correlated sampling greatly reduces the required number of

random walkers to achieve a target statistical error. This translates to reductions in wall-times by



factors of 55, 25, and 24 for the ionization potential of the K atom, the deprotonation of methanol,

and hydrogen abstraction from the O-H bond of methanol, respectively.

In Chapter 3 we present an implementation of ph-AFQMC utilizing graphical processing units

(GPUs). The AFQMC method is recast in terms of matrix operations which are spread across

thousands of processing cores and are executed in batches using custom Compute Unified Device

Architecture kernels and the hardware-optimized cuBLAS matrix library. Algorithmic advances

include a batched Sherman-Morrison-Woodbury algorithm to quickly update matrix determinants

and inverses, density-fitting of the two-electron integrals, an energy algorithm involving a high-

dimensional precomputed tensor, and the use of single-precision floating point arithmetic. These

strategies result in dramatic reductions in wall-times for both single- and multi-determinant trial

wavefunctions. For typical calculations we find speed-ups of roughly two orders of magnitude

using just a single GPU card. Furthermore, we achieve near-unity parallel efficiency using 8 GPU

cards on a single node, and can reach moderate system sizes via a local memory-slicing approach.

We illustrate the robustness of our implementation on hydrogen chains of increasing length, and

through the calculation of all-electron ionization potentials of the first-row transition metal atoms.

We compare long imaginary-time calculations utilizing a population control algorithm with our

previously published correlated sampling approach, and show that the latter improves not only the

efficiency but also the accuracy of the computed ionization potentials. Taken together, the GPU

implementation combined with correlated sampling provides a compelling computational method

that will broaden the application of ph-AFQMC to the description of realistic correlated electronic

systems.

In Chapter 4 the bond dissociation energies of a set of 44 3d transition metal-containing di-

atomics are computed with ph-AFQMC utilizing the correlated sampling technique. We investi-

gate molecules with H, N, O, F, Cl, and S ligands, including those in the 3dMLBE20 database

first compiled by Truhlar and co-workers with calculated and experimental values that have since

been revised by various groups. In order to make a direct comparison of the accuracy of our ph-

AFQMC calculations with previously published results from 10 DFT functionals, CCSD(T), and

icMR-CCSD(T), we establish an objective selection protocol which utilizes the most recent exper-



imental results except for a few cases with well-specified discrepancies. With the remaining set of

41 molecules, we find that ph-AFQMC gives robust agreement with experiment superior to that of

all other methods, with a mean absolute error (MAE) of 1.4(4) kcal/mol and maximum error of

3(3) kcal/mol (parenthesis account for reported experimental uncertainties and the statistical er-

rors of our ph-AFQMC calculations). In comparison, CCSD(T) and B97, the best performing DFT

functional considered here, have MAEs of 2.8 and 3.7 kcal/mol, respectively, and maximum errors

in excess of 17 kcal/mol (for the CoS diatomic). While a larger and more diverse data set would

be required to demonstrate that ph-AFQMC is truly a benchmark method for transition metal

systems, our results indicate that the method has tremendous potential, exhibiting unprecedented

consistency and accuracy compared to other approximate quantum chemical approaches.

The energy gap between the lowest-lying singlet and triplet states is an important quantity in

chemical photocatalysis, with relevant applications ranging from triplet fusion in optical upcon-

version to the design of organic light-emitting devices. The ab initio prediction of singlet-triplet

(ST) gaps is challenging due to the potentially biradical nature of the involved states, combined

with the potentially large size of relevant molecules. In Chapter 5, we show that ph-AFQMC can

accurately predict ST gaps for chemical systems with singlet states of highly biradical nature, in-

cluding a set of 13 small molecules and the ortho-, meta-, and para- isomers of benzyne. With

respect to gas-phase experiments, ph-AFQMC using CASSCF trial wavefunctions achieves a mean

averaged error of ∼1 kcal/mol. Furthermore, we find that in the context of a spin-projection tech-

nique, ph-AFQMC using unrestricted single-determinant trial wavefunctions, which can be readily

obtained for even very large systems, produces equivalently high accuracy. We proceed to show

that this scalable methodology is capable of yielding accurate ST gaps for all linear polyacenes for

which experimental measurements exist, i.e. naphthalene, anthracene, tetracene, and pentacene.

Our results suggest a protocol for selecting either unrestricted Hartree-Fock or Kohn-Sham orbitals

for the single-determinant trial wavefunction, based on the extent of spin-contamination. These

findings provide a reliable computational tool with which to investigate specific photochemical pro-

cesses involving large molecules that may have substantial biradical character. We compute the

ST gaps for a set of anthracene derivatives which are potential triplet-triplet annihilators for op-



tical upconversion, and compare our ph-AFQMC predictions with those from DFT and CCSD(T)

methods.

We conclude with a discussion of ongoing projects, further methodological improvements on

the horizon, and future applications of ph-AFQMC to chemical systems of interest in the fields of

biology, drug-discovery, catalysis, and condensed matter physics.
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Chapter 1

Introduction

A central goal in the field of quantum chemistry is to solve the Schrödinger equation

i~
∂

∂t
Ψ = ĤΨ (1.1)

for a realistic chemical system. Typically the Born-Oppenheimer approximation[1, 2] must be

invoked, in which the wavefunction is split into an electronic and nuclear part, with the former

depending parametrically on the nuclear coordinates. As the nuclei are much more massive than

the electrons, the kinetic energy of the nuclei is ignored (and the nuclear-nuclear repulsion is simply a

constant). The resulting Hamiltonian contains the electronic kinetic energy and the electron-nuclear

and electron-electron Coulomb interactions:

Ĥe = T̂e + V̂en + V̂ee. (1.2)

The electronic structure community seeks an ab initio solution of the corresponding electronic

Schrödinger equation

Ĥeψ = Eeψ. (1.3)

Of particular interest, and arguably most relevant to chemical reactivity, are the ground and low-

lying eigenvalues and eigenstates of Ĥe. Ground-states are especially important due to the broad

1



utility of predicting thermochemical properties, e.g. reaction equilibria, oxidation and reduction

potentials, bond dissociation energies, and pKa’s. In addition, the free-energy at the nuclear

geometry corresponding to a transition state yields information about the kinetics of a chemical

reaction. Low-lying excited states, in turn, can be readily populated via excitations due to light or

thermal energy, and therefore the determination of their relative energetics plays a key role in the

mechanistic elucidation of a host of dynamical processes.

However, exact solutions of the so-called “electronic structure problem” can be feasibly obtained

only for a very small number of electrons, even after having narrowed the quantum mechanical scope

in light of the Born-Oppenheimer approximation. The scientific community has for decades been

in pursuit of an ab initio quantum chemical method that is both accurate for a wide variety of

chemical phenomena and scalable to systems with thousands of electrons. However, such a general

method has proven elusive (though much progress has been made). The difficulty stems from the

exponential complexity of the quantum many-body problem. The space of Slater determinants,

i.e. antisymmetrized products of occupied single-particle orbitals, grows exponentially with system

size, and thus, e.g., diagonalization of He in such a space quickly becomes intractable.

Indeed, if a single Slater determinant provides a good description of the total wavefunction,

the above difficulty can be avoided, and large chemical systems can be investigated with reason-

able accuracy via independent particle approximations. Hartree-Fock (HF) theory[3] variationally

minimizes the energy with respect to the orbital coefficients of a single Slater determinant. Den-

sity functional theory (DFT) [4, 5], while formally exact, in practice yields unsystematic accuracy

due to the fact that the exchange-correlation energy functional is unknown and therefore must be

approximated. These types of theories have formed the cornerstone of computational quantum

chemistry, and have been utilized to great effect, with both astonishing successes and failures.

There are myriad instances when a single determinant is insufficient to properly describe the

interacting electrons in realistic chemical systems. In these cases, the energy that is not captured

by HF theory, known as the “correlation energy,” is a large percentage of the exact total energy.

“Electron correlation” is frequently used rather imprecisely in the electronic structure community;

in this work, it will refer simply to a quantum mechanical phenomenon which must be described
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by a superposition of many-particle states with more than one significant coefficient. Electron

correlation is often classified into static and dynamic correlation. While formally indistinguishable

from a physical point of view, in conventional usage the former is said to describe situations in which

there are multiple degenerate or nearly-degenerate states that contribute to the wavefunction, as

encountered, e.g., in transition metal atoms with partial occupancy of five degenerate d orbitals,

or biradicals with two relevant electronic configurations. Dynamic correlation is encountered when

the inclusion of electronic configurations which represent excitations from occupied orbitals of a

reference state to (often high-lying) virtual orbitals is necessary to recover substantial amounts

of correlation energy. The accurate description of inter-electron repulsion in accordance with the

Pauli exclusion principle, most severely encountered in regions near the electron cusps, can require

configurations with orbitals of high energy and angular momentum.

Strongly correlated electrons abound in realistic molecules and materials, and in fact allow for

the possibility of very rich and perhaps exotic chemical reactivity. In this thesis, we will focus

on the electronic properties of transition metals and biradicals, for which an accurate description

of strong correlation is essential in predicting properties such as ionization and bond-dissociation

energies, and the energy gaps separating the lowest-lying singlet and triplet states.

A predictive understanding of the fundamental electronic properties of transition metal con-

taining systems would constitute a huge advance in fields such as drug discovery, metalloenzymes,

energy conversion, and chemical catalysis. Consider, e.g., the case of cisplatin - a small molecule

with a platinum center, FDA-approved in 1978 as a prominent antitumor agent whose binding to

guanine bases results in cellular apoptosis[6, 7]. The ability to understand its binding specificity and

mechanism of action, quantum-mechanically, would enable the rational design of even more effective

drug molecules. Also, roughly half of all enzymes rely on the presence of a metal ion to properly

function[8], and thus a predictive tool to accurately model metal-ligand interactions would be a

critical advance in drug design[9]. Molecular dynamics simulations, which are increasingly being

used to predict relative binding free-energies of drug-like molecules[10], rely on classical force fields

to reproduce the quantum mechanical interactions involving electrons and nuclei. However, bond-

breaking events and especially interactions involving transition metals remain a challenging research
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field[11], and stand to benefit from larger data sets of accurate quantum mechanical data. Metal-

loproteins are another important class of systems for which accurate computational insights would

be greatly beneficial, given the limitations and scarcity of reliable experimental techniques. Much

remains to be understood, e.g., about the biological mechanisms of metalloporphyrins[12, 13, 14],

the redox properties of iron-sulfer clusters[15] in nitrogenase enzymes and the electron transport

chain, and the structure and water-splitting mechanism of the Oxygen-Evolving Complex (OEC) in

Photosystem II[16, 17, 18]. Finally, catalysts for, e.g., sensitization in optical upconversion[19] and

CO2 reduction typically involve transition metals[20]; and synthetic metal clusters[21], with the

cubane motif in common with the OEC, are used as building blocks for superatomic constructions

which exhibit tunable redox and magnetic properties[22].

Another domain of strong correlation that we will focus on in this thesis involves molecules with

biradical character. We define a biradical as a system in which the frontier electronic structure

is characterized by two electrons in two degenerate or nearly-degenerate orbitals. Note this is

different than the typical definition known to most chemists, i.e. when two spatially distinct orbitals

are singly occupied (as in all triplets). Interestingly, the present definition of biradical character

encompasses homolytic single-bond breaking products, and closed-shell systems with a low-lying

excited state, which is the case for most carbenes. In general, the singlet states of such systems are

poorly described by a single Slater determinant, since one can show in the two electron two orbital

model[23, 24] that all three possible singlet states, after configuration interaction, are necessarily a

superposition of two electronic configurations. This is also the case for one of the three triplet states,

however this state is typically not encountered due to the fact that a specified spin multiplicity

puts a constraint on the value of Sz in most quantum chemical methods (generalized HF theory

is a notable exception). An accurate description of the strong correlation in singlet biradicals is a

prerequisite for the prediction of, e.g., singlet-triplet gaps in long polyacene molecules and other

potential photocatalysts, and also in understanding the important roles of, e.g., singlet oxygen in

biology[25].

The pursuit of chemical accuracy (as defined by errors not exceeding 1 kcal/mol) in the ab

initio computation of the energetic properties of generic chemical systems, including the strongly
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correlated ones introduced above, is a long-standing goal that has yet to be reached[26, 27, 28,

29, 30]. As mentioned above, the formally exact procedure involving direct diagonalization of

the Hamiltonian in the complete space of determinants, known as Full Configuration Interaction

(FCI)[3], scales exponentially with system size. Coupled cluster theory with single, double, and

perturbative triple excitations (CCSD(T))[31, 32], commonly known as the “gold-standard” of

quantum chemistry, scales with the seventh power of the system size. Despite many advantageous

properties, chief among them size-extensivity and a wavefunction ansantz that efficiently describes

dynamic correlations, CCSD(T) can break down for systems which exhibit strong multi-reference

character[33, 34, 35], as electronic configurations which cannot be obtained via a truncated set of

excitations from a single reference state are not represented in the wavefunction. This limitation is

shared, too, by methods such as second-order Møller-Plesset Perturbation Theory (MP2)[36] and

truncated CI expansions.

In contrast, there are a number of approaches designed to target the multi-reference nature

of strongly correlated systems. Methods such as Complete Active Space Self-Consistent Field

(CASSCF) [37, 38, 39, 40] supplemented with second order perturbation theory[41, 42], and stochas-

tic variants such as selected CI approaches[43], have been shown to yield benchmark-quality results

even for strongly correlated electronic systems, including those containing transition metals[44, 45].

However, while a judicious choice of the active space can make such calculations tractable for

small systems, exponential scaling will inevitably prohibit the use of these methods to studying

most realistic systems of interest in biology, materials science, and chemical catalysis. As a re-

sult, with the exception of isolated studies using specialized, albeit still approximate, wavefunction

methods[46, 15, 47], these systems can only be investigated feasibly with less accurate but more

economical approaches such as DFT, and the importance of having a systematically improvable ab

initio method which is both accurate and feasible becomes readily apparent.

Quantum Monte Carlo (QMC) methods present an alternative approach[48] to obtaining ap-

proximate solutions to the Schrödinger equation, and in general rely on a stochastic sampling of

electronic configurations from a probability distribution function to average observables such as

the ground-state energy. Various QMC methods are reviewed in detail in Refs. 49, 50, 51, 52, and
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53. To set the stage for the work presented in this thesis, we first illustrate key concepts by briefly

describing the predominant QMC approaches utilized in the chemistry community.

We will refer to the nonrelativistic Born-Oppenheimer Hamiltonian

Ĥ = −1

2

∑
i

∇2
i −

∑
i

∑
α

Zα
|Ri − dα|

+
1

2

∑
i

∑
j 6=i

1

|Ri −Rj |
, (1.4)

where Ri and dα are electronic and nuclear positions, respectively, and Zα are nuclear charges. The

Variational Monte Carlo (VMC) method is the simplest QMC approach[54], which computes the

following energy expression

ET =

∫
φ∗T (R)ĤφT (R)dR∫
φ∗T (R)φT (R)dR

=

∫
ĤφT (R)

φT (R)
P (R)dR > E0, (1.5)

where P (R) = |φT (R)|2∫
|φT (R)|2dR . Sampling Q configurations from P (R), Eq. (1.5) can be evaluated via

Monte Carlo as

1

Q

Q∑
i

ĤφT (R)

φT (R)
|R=Ri . (1.6)

The resulting variational parameterization of φT is typically utilized as the guiding, or trial, wave-

function for subsequent projector approaches.

In such approaches, the substitution τ = −it (and assuming atomic units, i.e. ~ = 1) transforms

Eq. (1.1) to

− ∂

∂τ
Ψ = ĤΨ. (1.7)

When the Hamiltonian is shifted by a constant, E0, equal to the exact ground-state energy, the

general solution to Eq. (1.7) is

Ψ =
∑
n

anψne
τ(E0−En), (1.8)

where Ĥψn = Enψn. At large values of τ , the contributions to Ψ from the excited eigenstates, ψn

(n > 0), will decay exponentially, and thus only the ground-state of the Hamiltonian persists. That

is, given 〈Ψ0|Ψ〉 6= 0,

lim
τ→∞

eτ(E0−Ĥ)|Ψ〉 → |ψ0〉. (1.9)
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In Green’s Function Monte Carlo (GFMC), Eq. (1.9) is realized in coordinate space by iterating

the following integral equation

Ψn+1(R) = E0

∫
G(R,R′)Ψn(R′)dR′, (1.10)

where ĤG(R,R′) = δ(R−R′)[55, 56, 57].

Alternatively, in the most widely-used variant of QMC, Diffusion Monte Carlo (DMC), the

Hamiltonian and wavefunction are also represented in real-space, but the imaginary-time propagator

is discretized such that the ground-state projection takes the form

lim
N→∞

(e∆τ(E0−Ĥ))N |Ψ〉 → |ψ0〉. (1.11)

This is equivalent to iterating

Ψ(R, τ + ∆τ) =

∫
G(R,R′,∆τ)Ψ(R′, τ)dR′. (1.12)

The choice of a small imaginary-time step enables the use of the Trotter-Suzuki decomposition[58,

59], which yields an approximate form of the propagator

G(R,R′,∆τ) ∼ exp
[−(R−R′)2

2∆τ

]
exp
[
∆τ(2E0 − V (R)− V (R′))/2

]
(1.13)

with an error that grows as O(∆τ3). Thus, in this basic formulation of DMC,

Ψ(R′, τ)→
∑
Q

δ(R′ −RQ), (1.14)
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and Eq. (1.12) becomes

Ψ(R, τ + ∆τ) ∼
∑
Q

∫
G(R,R′,∆τ)δ(R′ −RQ)dR′ (1.15)

=
∑
Q

G(R,RQ,∆τ) (1.16)

=
∑
Q

exp
[−(R−RQ)2

2∆τ

]
exp
[
∆τ(2E0 − V (R)− V (RQ))/2

]
. (1.17)

For each Q, a new position is sampled from the Gaussian, and the value of the second exponential

determines the weight of the walker, and whether or not it is replicated or eliminated via a so-called

birth/death algorithm[53].

Ref. 53 also details an importance sampling algorithm, in which the introduction of a trial

wavefunction defines a new function f(R, τ) = Ψ(R, τ)φT (R), such that

f(R, τ + ∆τ) =

∫
G̃(R,R′,∆τ)f(R′, τ)dR′, (1.18)

where G̃(R,R′,∆τ) ∼ exp
[−(R−R′−∆τvD(R′))2

2∆τ

]
exp
[
∆τ(2E0 − EL(R) − EL(R′))/2

]
. The drift ve-

locity is defined as vD(R) = φT (R)−1∇φT (R), which guides the walkers toward increasing |φT |.

The walker weights are now expressed in terms of a quantity called the “local energy,” EL(R) =

φT (R)−1ĤφT (R). This greatly reduces the statistical fluctuations in the random walks assuming

the use of a trial wavefunction that is close to the true ground-state wavefunction, since the resulting

EL are typically much more stable than sampled values of the potential energy surface.

DMC calculations typically employ the fixed-node constraint[60], in which the random walks

are restricted to the space defined by 〈φT |Ψ〉 > 0. Sampling thus in coordinate-space, in the

presence of complicated nodal surfaces, can result in large fluctuations especially due to the core

electrons, which must be treated with an uncontrolled approximation, e.g. most commonly with

pseudopotentials[53]. The fixed-node constraint in DMC is expected to result in a bias more severe

than that incurred in alternative QMC approaches that sample in the space of determinants, which

by construction respect fermionic antisymmetry.
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One such method is known as FCI-QMC, which has undergone rapid development in recent

years[61, 62, 63, 64, 65]. In this method, the propagator is approximated as 1 − τĤ. Despite its

high level of accuracy, the method is limited by the initiator bias; also, despite a much-reduced

prefactor (relative to, e.g., FCI) FCI-QMC still inevitably suffers from exponential scaling with

system size.

Auxiliary-field QMC (AFQMC) is another projector method that involves Monte Carlo sampling

in determinant space. As will be detailed in the next section, the imaginary-time propagator is

transformed such that the interacting system is exactly mapped onto a sum of non-interacting

systems in auxiliary-fields. In the “phaseless” variant (ph-AFQMC)[66, 67, 68] a constraint is

introduced to control statistical noise and to preserve fourth power (or less[69]) computational

scaling with system size for molecular systems, yet a salient feature is that the resulting bias can,

in principle, be systematically reduced. First introduced and developed in the context of model

systems for strongly correlated condensed matter systems, ph-AFQMC has produced state-of-the-

art results in the context of electronic structure theory[70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. In

particular, the methodology shows great promise in the accurate description of a variety of strongly

correlated electronic systems[80, 81, 82], including transition metal-containing species[83, 84, 85,

86, 33, 87, 88, 78, 89].

This thesis will present two major methodological developments aimed at reducing the wall-time

prefactor of ph-AFQMC calculations - a correlated sampling approach to accelerate (and improve

the accuracy of) calculations of energy differences, and an efficient implementation on graphical

processing units. These advances have enabled us to obtain robust results and predictions for a host

of chemically relevant molecular systems, with particular focus on the strongly correlated regime.
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1.1 Overview of AFQMC - Exact Method and the Phaseless Con-

straint

In AFQMC the general electronic Hamiltonian is written in second-quantized form:

Ĥ =

M∑
ij

Tij
∑
σ

c†iσcjσ +
1

2

M∑
ijkl

Vijkl
∑
σ,τ

c†iσc
†
jτclτ ckσ, (1.19)

where M is the size of the orthonormal one-particle basis, and c†iσ and ciσ are the fermionic creation

and annihilation operators with particle and spin labels. The two-body matrix elements, Vijkl,

can be expressed in terms of Cholesky vectors as Vijkl =
∑

α L
α
ikL

α
jl.[77] Defining the one-body

operator v̂α ≡ i
∑

ik L
α
ik

∑
σ c
†
iσckσ, and subtracting the expectation value with respect to the trial

wavefunction 〈v̂α〉 from v̂α, the Hamiltonian can be written as the sum of all one-body operators,

Ĥ1, plus the following two-body operator

Ĥ2 = −1

2

∑
α

(v̂α − 〈v̂α〉)2. (1.20)

Use of the Trotter-Suzuki decomposition gives

e−∆τĤ = e−∆τĤ1/2e−∆τĤ2e−∆τĤ1/2 +O(∆τ3). (1.21)

The exponential terms involving Ĥ2 may be decomposed using a Hubbard-Stratonovich (HS)

transformation[90, 91]

e
1
2

∆τ(v̂α−〈v̂α〉)2 =

∫ ∞
−∞

dxα

(
e−

1
2
x2α

√
2π

)
e
√

∆τxα(v̂α−〈v̂α〉), (1.22)

which expresses the exponential of a two-body operator as the exponential of a one-body operator

integrated over auxiliary-fields (AFs). This transformation allows for practical propagation in terms

of the Thouless theorem, which states that the application of an exponential of a one-body operator

on a Slater determinant produces another Slater determinant[92], which can be implemented via a
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simple matrix multiplication[93, 94].

The propagator (1.21) now takes the form of a multi-dimensional integral

e−∆τĤ =

∫
dxP (x)B̂(x), (1.23)

where x = (x1, x2, . . . , xα), P (x) is a normal distribution with unit variance, and

B̂(x) = e−∆τĤ1e
√

∆τx·(v̂−〈v̂〉)e−∆τĤ1 . (1.24)

The integral in (1.23) may be approximated using a Monte Carlo scheme, with walkers whose

propagation in the space of Slater determinants is guided by the complex importance function

〈φT |φ〉 which is proportional to the walker weights. The representation of the total wavefunction

is thus a weighted sum over walker determinants

|Φ〉 =
∑
k

wk|φk〉
〈φT |φk〉

, (1.25)

yielding essentially a multi-reference description. The energy is calculated at intervals using the

mixed-estimator

〈φT |Ĥ|Φ〉
〈φT |Φ〉

=

∑
k wkEL(φk)∑

k wk
, (1.26)

where the “local energy” is given by EL(φk) = 〈φT |Ĥ|φk〉
〈φT |φk〉 .

The method as described above is called the “Free Projection” (FP) approach[95]. While it

is formally exact and can yield excellent results for small system sizes, this method suffers from

the “phase problem,” which is a generalization of the Fermionic “sign problem” to the complex

plane[96, 97, 98, 99]. For the standard Coulomb interaction the v̂α operators are purely imaginary,

and each application of e
√

∆τx·(v̂−〈v̂〉) can be thought of as a rotation of the Slater determinant |φ〉,

causing an evolution of the overlap 〈φT |φ〉 in the complex plane. Over the course of the random

walk, a determinant accumulates a phase eiθ, and the infinitely many possible values of θ ε [0, 2π)

result in the possibility of infinitely many indistinguishable determinants. Furthermore, over the
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course of the propagation, walkers will populate the origin where 〈φT |φ〉 = 0, and subsequent

propagation yields only noise from signal cancellation effects and divergences in the weights and

local energies.

The ph-AFQMC employs a multifaceted strategy to control this problem. The weights are

initialized to a positive real constant, and after each propagation step are projected back onto the

real axis, i.e. the rotated weights are multiplied by max{0, cos(∆θ)}, where we have defined the

phase of the overlap ratio ∆θ ≡ Im{ln 〈φT |φ
(τ+1)〉

〈φT |φ(τ)〉
}[100]. For this phase projection to work, the AFs

are shifted by a force bias (FB) x̄[67, 101], the optimal choice of which is obtained by minimizing

the fluctuations of the weights with respect to the AFs at their average value:

∂

∂xα

[
〈φT |e

√
∆τ(xα−x̄α)(v̂α−〈v̂α〉)|φk〉
〈φT |φk〉

e−x̄
2
α/2+xαx̄

]
xα=0

= 0. (1.27)

This is, in essence, a stationary-phase approximation. Expanding the expression inside the brackets

to O(
√

∆τ) and taking the derivative gives

x̄α = −
√

∆τ
[
v̄α − 〈v̂α〉

]
, (1.28)

where v̄α ≡ 〈φT |v̂α|φ〉
〈φT |φ〉 . The introduction of the FB does not add any additional approximations,

as the integration variable in (1.22) is merely shifted by a constant, yet it is crucial for two rea-

sons. First, it diverges when the “nodal surface” (as defined in the complex plane of overlaps) is

approached, pushing the walker away from the origin, reminiscent of the drift velocity in DMC.

Second, since v̂α is complex, Im[x̄] reduces the amount of physical information discarded in the

phase projection. Similarly, the subtraction of 〈v̂〉 from v̂ in the propagator also greatly reduces

the severity of this projection, as the smaller diagonal matrix elements of the resulting propagator

cause milder rotations of the phases of the orbitals[71].

The choice of FB allows the weight factor which multiplies the previous weight after a propa-

gation step to be written as W (φ) = e−∆τEL(φ), in analogy to DMC. The second approximation

in ph-AFQMC, which is much milder than the first, takes the real part of the local energy in the
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weight above:

EL(φ) ≡ Re{〈φT |Ĥ|φ〉
〈φT |φ〉

}. (1.29)

The severity of the phaseless constraint in ph-AFQMC can be reduced with the use of more accurate

trial wavefunctions, especially those with the correct symmetry properties.[95] This can be seen

from (1.29), for when |φT 〉 = |Φ0〉, the local energy which determines the weights and energy

measurements is a real constant (equal to the exact ground state energy).
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Chapter 2

Chemical transformations

approaching chemical accuracy via

correlated sampling in auxiliary-field

quantum Monte Carlo1

2.1 Introduction

ph-AFQMC for quantum chemical applications has traditionally required a relatively high compu-

tational cost, as the favorable wall-time scaling is masked by a large prefactor. In this chapter we

present an approach to greatly reducing this prefactor which involves the use of correlated sam-

pling for a particular class of important processes. The general idea is that for sufficiently similar

systems, energy differences are expected to converge more rapidly, i.e. with smaller error bars,

than total energies when the errors or statistical fluctuations in the calculations are biased in the

same direction. Indeed, error cancellation is largely responsible for the success of many approx-

imate methods such as DFT in the computation of energy differences. Correlated sampling has

previously been adapted to reduce the statistical errors in QMC approaches via the use of the same

1Based on work published in J. Chem. Theory Comput. 2017, 13, 6, 2667-2680.
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set of configurations sampled for both the primary and secondary systems[52]. This technique is

often referred to in the literature as “Differential” QMC, and the details of its implementation can

vary depending on the type of QMC being used. The potential energy curves of H2 and BH have

been calculated using correlated sampling with VMC[102], and similarly that of the H3 cation with

Differential GFMC[103]. The latter method has been used to compute the dipole moment of LiH,

[104] and to calculate infinitesimal energy differences from which forces and various polarizabili-

ties have been obtained[105]. This idea has also been extended to DMC, which has been used to

compute forces and potential energy surfaces for the first row diatomics[106]. Correlated sampling

has also been used to calculate energy differences between ground and excited states of the same

Hamiltonian, as illustrated by a VMC study of particle-hole excitations in the two-dimensional

electron gas[107]. In addition, the concept has been extended to enable concerted propagation of a

system with different time steps, in order to extrapolate the Trotter error in Differential DMC[108].

Correlated sampling is, in fact, also well-suited to model the energetics of myriad chemical

reactions, since only energy differences, as opposed to total energies, are relevant. In this pa-

per we present a novel correlated sampling-based AFQMC approach, and show that it is capable

of computing ground-state energy differences corresponding to redox, deprotonation, and hydro-

gen abstraction reactions to a given statistical error in a fraction of the time previously required,

without any loss of accuracy. Redox reactions (often involving TMs) abound, for example, in

metabolic and photosynthetic processes[109, 18, 110], battery chemistry[111], and catalysis (e.g.

CO2 and O2 reduction)[112, 113]. A reliable ab initio method to calculate deprotonation free

energies would provide an improvement upon existing computational approaches to determining

pKa’s and protonation states[114, 115, 116], which would have significant ramifications for drug

discovery[117, 118], materials science[119, 120, 121], and the structural determination of biologi-

cal complexes[17, 122]. In the context of chemical catalysis, proton removal is known to be the

rate-limiting step in many important reactions, e.g. oxygen reduction on the surface of TiO2[123].

Hydrogen abstraction reactions are ubiquitous and play a major role in combustion and the oxi-

dation of hydrocarbons[124, 125], diamond growth via chemical vapor deposition[126], biochemical

processes involving e.g. the antioxidant vitamin E [127] and various metalloenzymes[128, 129],
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industrial processes[130], and organic synthesis[131]. AFQMC would be a useful benchmark for

previous ab initio studies[129, 132, 133, 134, 135, 136, 137, 138, 139] in predicting thermodynamic

properties of this difficult class of chemical reactions. Thus the class of applications we target is

large and important. We highlight the fact that the cost of our correlated sampling approach, rel-

ative to the uncorrelated method, decreases with increasing system and basis set size, opening the

door to the treatment of realistic large chemical systems with correlated sampling-based AFQMC

in the near future.

This chapter is organized as follows: Section 2.2.1 will present our correlated sampling ap-

proach to AFQMC. We justify this approach for modeling molecular systems in Section 2.2.2, and

Section 2.2.3 will disclose further computational details. Section 2.3.1 will present calculations of

the ionization potentials (IPs) and electron affinities (EAs) of the 1st row atoms in the G2 Ion

Test Set[140], while Section 2.3.2 will consider adiabatic molecular properties, taking the IP, de-

protonation energy, and O-H bond dissociation energy of methanol as examples. The efficacy of

correlated sampling as a function of both basis set size and number of random walkers will be

explored in Sections 2.3.3. The latter subsection will provide an assessment of the reduction in

compute time afforded by the use of correlated sampling. In Section 2.4 we conclude, emphasizing

opportunities for further gains in computational efficiency that may be possible and future targets

of investigation.

2.2 Methods

2.2.1 Correlated Sampling Methods for AFQMC

Given that the statistical error in an AFQMC calculation arises solely from the MC evaluation

of the integral over AFs, a natural way to implement correlated sampling in the calculation of an

energy difference is to pair the walkers of the two systems, and use the same set of AFs to propagate

each pair of walkers. To be precise, the correlation is established on the level of each term in (1.20),

for each value of α. This, in essence, matches Cholesky vectors of the same iteration, and becomes

more effective the more similar the interactions are in the two systems.
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Sampling in this way, however, requires one to relinquish optimal importance sampling, which

is usually implemented via a population control (PC) scheme in which walkers with large (small)

weights are replicated (stochastically purged), since performing independent PC for each system

separately would quickly destroy the walker-pair correlation. Alternatively, one can implement PC

with respect to the weights of the primary system for both systems. This, however, will only be

effective if the two systems are essentially identical. In the absence of a PC scheme, the noise

from the accumulation and persistence of divergent walkers inevitably grows with propagation

time. We find that the immediate reduction in statistical error following the correlation of the

AFs, augmented as needed by what we call the “preliminary equilibration scheme” below, allows

converged averages to be obtained at short and intermediate projection times. In light of the fact

that the stability of the random walks at long times, as afforded by a branching scheme, appears to

be only marginally relevant when our correlated sampling approach is used, we simply choose not

to implement PC when the AFs are correlated. In the event that a walker’s weight becomes zero

or negative (in the latter case the phase projection sets the weight to zero), the walker is no longer

propagated and the random number stream is updated if necessary such that the correlation of the

other walker-pairs is unaffected.

The data shown in blue in Fig. 2.1 illustrates features associated with the typical correlated

sampling protocol used in this work. In this example, the propagation in imaginary time (measured

in Ha−1) is performed using correlated AFs and repeated 11 times using different random number

seeds. The mean energy difference and associated standard error at each τ point is computed among

the repeats (see left plot). We then choose the imaginary-time at which the energy difference is

seen to stabilize (in this case at τ ∼ 4), and for each repeat calculate the cumulative average at

each τ , which represents the running average of the energy measurements taken after the end of the

equilibration period up to the given value of τ . To obtain the final result, we compute the mean

and standard error of the cumulative averages among the repeats (see right plot), and choose the

value corresponding to the τ at which the standard error reaches a minimum (if there are multiple

equivalent minima the one occurring earliest is chosen) or falls below a target error level. We note

that our choice of 11 repeats is arbitrary; a larger number could be used to reduce the standard
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error as necessary. Clearly in this example correlating the AFs for τ ≥ 0 drastically reduces the

error relative to the uncorrelated runs shown in red, and the resulting IP agrees with that obtained

from independent τ = 80 ph-AFQMC runs of the neutral and cationic species. This benchmark,

indicated by the solid black line, was found to have a negligible standard error of 0.2 mHa after

employing a reblocking analysis which corrects for auto-correlation[141].

As it is often the case that a very small population size is sufficient to achieve a desired statis-

tical error via the correlated sampling approach, we choose not to employ PC in the uncorrelated

comparisons since this would result in a bias that typically goes as 1/Nwlk[142]. A second reason

is that over the relatively short imaginary-time scales relevant for the correlated sampling method,

PC is expected to have little effect on the uncorrelated comparisons as the walker weights usually

do not stray far from unity. This is confirmed by the similarity of the error curves plotted in the

insets of Fig. 2.1, corresponding to uncorrelated runs with (dotted green) and without (red) PC.

The former is obtained by using a large enough population size such that the bias from the PC

algorithm is negligible (360 walkers per repeat), and rescaling the resulting standard error by
√

360
12 .

(a) Averaged IPs (circles) among the repeats at each τ
along the imaginary-time propagation.

(b) Mean values (circles) of the cumulative averages
taken for τ > 4.

Figure 2.1: Comparison of correlated and uncorrelated sampling for the IP of the K atom in a 6-31+G* basis, with
∆τ = 0.01, 12 walkers per repeat, and a HF reference state. The error bars give the standard errors (the standard
deviation times 1√

Nr
, where Nr is the number of repeats) of the mean values among the repeats at each τ point in

(a), and of the cumulative averages in (b). These standard errors are plotted in the insets, along with the scaled
standard error resulting from an uncorrelated run in which PC was used with 360 walkers per repeat (dotted green).

If one or both of the comparative systems requires a long equilibration time, which can be the
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case for, e.g., initial populations which are severely spin-contaminated or for strongly correlated

systems in which the “guiding” trial function poorly describes the true ground state, then walker

pair correlation can be lost prior to convergence, and the associated noise growth can make mea-

surements impossible. The simplest way to overcome this problem is to use a better trial function,

e.g. a multi-determinant CASSCF wavefunction instead of the single Hartree-Fock (HF) determi-

nant. Alternatively, we have devised what we will refer to as the “preliminary equilibration scheme”

(PES). First, one of the two systems is equilibrated using PC for the required interval, then the

walkers of the secondary system are initialized with the resulting determinants of the equilibrated

primary system, with weights scaled by
〈φsecondaryT |φ〉
〈φprimaryT |φ〉

(and any resulting phases projected) to reflect

the appropriate importance sampling. Finally, both systems are propagated using correlated sam-

pling with their respective Hamiltonians without PC for a short period of time after which energy

measurements are collected. A schematic of this procedure is shown in Fig. 2.2. This protocol is

repeated with different random number seeds to obtain satisfactory statistics on the energy differ-

ence between the ground states. We note that a similar scheme was published many years ago by

Traynor et al[103].

Figure 2.2: Schematic of the PES version of correlated sampling. Preliminary equilibration of the primary system is
shown in red. This phase can be as long as necessary due to the use of PC. The resulting walkers are used to initialize
the secondary system, after which the two systems are propagated with their own Hamiltonians using correlated
sampling. Equilibration of the secondary system is relatively rapid, allowing measurements to be taken before the
noise growth becomes prohibitive.

Inspection of the ph-AFQMC propagator

B̂(x− x̄) = e−∆τĤ1/2e
√

∆τ(x−x̄)(v̂−〈v̂〉)e−∆τĤ1/2, (2.1)
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demonstrates that stricter approaches to correlated sampling exist. In one such alternative to

correlating only the AFs, each pair of walkers is propagated using both the same AFs and FBs.

However taking the simple average of the FBs of the primary and secondary systems was found to

cause an early onset of noise even for marginally different systems. This issue likely arises from

divergences in the local energies and weights which can occur more frequently due to the use of

sub-optimal FBs, a fact which follows from the discussion centered around Eq. (1.28). Separately,

we choose not to correlate the 〈v̂〉 since any gain in sampling efficiency would come at the cost of

an increased bias from the phaseless constraint[71].

Finally, we note that our method of correlated sampling is not limited to the phaseless version

of AFQMC, and can be used in exactly the same manner for FP calculations. In fact, using the

same AFs in the latter case results in a relatively stricter form of correlated sampling, since the FB

is not present in the post-HS propagator used in FP.

2.2.2 Utilizing Optimal Correlation in Molecular Applications

Having justified our choice to correlate only the AFs, we claim that maximal correlation between

a pair of walkers is achieved when the primary and secondary systems use the same set of basis

functions. To see this, recall the definition of the two-electron matrix elements in the Hamiltonian

(1.19):

Vijkl =

∫
dr1dr2φi(r1)φj(r2)

1

r12
φk(r1)φl(r2). (2.2)

When {φ}primary = {φ}secondary, the Vijkl and, in turn, the one-body operators v̂ in the propagators

(2.1) for both systems will be identical. This ideal condition is obviously satisfied when the two

systems are an atom or molecule with the same geometry but e.g. different charges, since atomic

basis functions such as Gaussian-type orbitals are usually centered on the positions of the nuclei.

In fact, for the calculation of vertical IPs and EAs, exactly the same Tij and Vijkl elements are

used in the imaginary-time propagation of both systems. For adiabatic redox processes, however,

the ground-state geometries of the neutral and ionized species are, in general, different. In most

cases the differences in the Vijkl are slight, and correlated sampling is still found to be effective,
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albeit with reduced efficiency. For example, Fig. 2.3 compares the correlated and uncorrelated

standard errors corresponding to the vertical and adiabatic IPs of methanol. While the errors

from the uncorrelated runs are roughly similar in magnitude, that from the correlated vertical case

is significantly smaller and more constant compared to that from the correlated adiabatic case.

This suggests the use of a two-step process to compute adiabatic energy differences, in which the

fixed-geometry transition is calculated with correlated sampling-based AFQMC, and the geometry

relaxation energy is obtained from a lower level of theory. Further details will be presented in

Section III.B.

(a) Vertical IP (b) Adiabatic IP

Figure 2.3: Standard errors resulting from uncorrelated (red) and correlated (blue) propagation of the repeats for
methanol in the cc-pVTZ basis. ∆τ = 0.01 and 24 walkers per repeat were used.

In the same spirit, we have devised a protocol which enables the calculation of the change in

energy corresponding to the removal of a proton while the rest of the geometry remains fixed, in

which the optimal condition mentioned above is realized with the use of so-called “ghost” basis

functions. In this scheme, the deprotonated species uses the same set of basis functions as the acid,

i.e. the position of the removed proton still serves as a center for hydrogen basis functions but not

as a center of nuclear charge. As a result, the number of basis functions remains the same for the

primary and secondary systems as required by our correlated sampling method. Moreover the Vijkl

and thus the v̂ are, by construction, identical. We note that even though the Tij now differ due to

the altered electron-nucleus attraction terms, the statistical error in the calculated energy difference
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is not exacerbated since it results only from the MC evaluation of the integral over AFs. Fig. 2.4

illustrates the efficacy of this procedure in a calculation of the deprotonation energy for methanol,

showing a drastic reduction in the statistical errors when the AFs are correlated. The “ghost” basis

(a) Averaged deprotonation energy (circles) among the
repeats at each τ .

(b) Mean values (circles) of the cumulative averages
taken at τ > 4.

Figure 2.4: Comparison of correlated and uncorrelated sampling for the fixed-geometry deprotonation of CH3OH in
the cc-pVTZ basis with “ghost” basis functions. We use ∆τ = 0.01, 12 walkers per repeat, and a HF reference state.
The error bars, plotted in the insets, in (a) represent the standard error among the repeats at each τ ; those in (b)
give the standard error of the cumulative averages.

function strategy can also be directly applied effectively to hydrogen abstraction reactions. Fig. 2.5

demonstrates the error reduction afforded in a calculation of the MeOH → MeO· reaction energy.

Thus we have presented a correlated sampling approach which has the potential to reduce the

statistical error for redox, deprotonation, and hydrogen abstraction reactions. The extension of

this protocol to obtain adiabatic energy differences will be described in Section III.B.

2.2.3 Computational Details

One-electron and overlap integrals, Cholesky vectors, restricted open-shell and unrestricted HF

trial wavefunctions were all obtained from a modified version of NWChem[143, 77]. The maximum

residual error in the Cholesky decomposition was chosen to be 1 × 10−6 Ha. This cutoff has a

negligible effect on the QMC energies (i.e. orders of magnitude smaller than the statistical error

bars), and is utilized to decrease the number of AFs required, which in turn decreases both the

error from the random noise and the computational cost of the calculations.
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(a) Averaged H abstraction energy (circles) among the
repeats at each τ .

(b) Mean values (circles) of the cumulative averages
taken at τ > 2.

Figure 2.5: Comparison of correlated and uncorrelated sampling for the energy difference corresponding to the removal
of H· from the O-H bond of CH3OH, with the rest of the geometry fixed. The cc-pVTZ basis is used, with ∆τ = 0.01,
12 walkers per repeat, and a CASSCF reference state. The error bars, plotted in the insets, in (a) represent the
standard error among the repeats at each τ ; those in (b) give the standard error of the cumulative averages.

For calculations using a single-determinant trial wavefunction with unrestricted reference, spin-

contamination can occur due to the presence of higher multiplicity spin configurations in the trial

function, which can prolong equilibration times and reduce accuracy. We use a spin-projection

technique[75] in AFQMC to minimize such effects. In this scheme, the walkers are initialized with

a restricted open-shell HF determinant, which is an eigenfunction of Ŝ2, such that propagation

with e
√

∆τx·(v̂−〈v̂〉) preserves spin symmetry. The unrestricted HF determinant, while not an eigen-

function of the total spin operator, is known in most cases to provide a better description of the

ground-state energy, and is therefore used to implement the phaseless constraint and to estimate

the energy.

Multi-determinant trials were obtained from CASSCF calculations performed with PySCF[144].

The resulting expansions of the wavefunctions in CI space are truncated such that determinants as-

sociated with coefficients below a specified threshold are discarded. In what follows, CASSCF(X,Y )

will denote an active space with X electrons and Y orbitals; for cases in which an energy difference

is calculated we use the notation X ≡ Nneutral/Nion and Y ≡Mneutral/Mion to denote the numbers

of electrons and orbitals in the neutral and charged systems, respectively.

In all AFQMC calculations the spin -up and -down sectors of the walker determinants are sep-
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arately orthonormalized via a modified Gram-Schmidt procedure[145] every 0.05 Ha−1 to preserve

the anti-symmetry of the walker determinants. When required, we use a PC algorithm in which

the number of walkers is fixed throughout the entire calculation[142]. PC (when used) and energy

measurements are performed every 0.1 Ha−1.

Use of the “hybrid” formulation[76] of ph-AFQMC allows for the calculation of the local energy,

the bottleneck in the algorithm’s scaling, at intervals rather than at every step since EL is not

required to compute the weight factors, which are now calculated explicitly as 〈φT |φ
(τ+1)〉

〈φT |φ(τ)〉
ex·x̄−x̄2/2.

We chose to implement the hybrid method primarily because it is much faster than the local energy

method, and offers more flexibility when devising correlated sampling strategies.

The comparison of QMC energies with experimental results in general requires extrapola-

tions to mitigate errors associated with the use of a finite time step and basis set. The Trot-

ter error, due to the decomposition in (1.21) and three bounding conditions[76], can be esti-

mated from a linear extrapolation of the energy differences from three independent simulations

at ∆τ = 0.02, 0.01, and 0.005 Ha−1. For the IPs and EAs of the G2 atomic test set, the energies

resulting from the 0.01 Ha−1 time step were found in all cases to be well within 1 mHa of the

∆τ -extrapolated value. Hence, we use only the ∆τ = 0.01 value to produce the results in Section

III. Extrapolation to the complete basis set (CBS) limit was performed following the MP2-assisted

protocol detailed in Ref. [77]. AFQMC calculations were performed at x = 3 (where x is the

cardinal number of the basis set); UHF calculations were run at x = 2-5 and MP2 calculations at

x = 3, 4 using GAMESS[146] or, for the reactions which utilize “ghost” basis functions, NWChem.

IPs were computed using the cc-pVxZ basis[147], while EAs and the deprotonation energies to be

compared with experimental data were computed using the aug-cc-pVxZ basis sets[148].

QMC statistical error bars were propagated through the data analysis procedure. In assessing

the statistical error on the deviation of QMC from experiment, we assume that there are negligible

uncertainties associated with 1) the experimental measurements, 2) the exponential (HF) and linear

(MP2) fits in the CBS extrapolation procedure where we found that the former error is an order of

magnitude or more smaller than the QMC error in representative cases, and 3) the scaling factor

for the zero-point energies. With regard to 1), experimental uncertainties can be found in the
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NIST database[149], and are ignored in order to isolate the statistical error associated with the

QMC measurements, since the quantities presented in this work are differences between calculated

energies and experimental measurements.

Calculations in this chapter utilized our first implementation of ph-AFQMC, in Fortran 90

linked with OpenBLAS[150, 151] and Expokit[152]. Random numbers were generated with the 48

bit Linear Congruential Generator with Prime Addend, as implemented in SPRNG5[153].

2.3 Results

2.3.1 Atomic IPs and EAs

In this section, we use our correlated sampling-based AFQMC approach to calculate the IPs and

EAs of the 1st row atoms included in the G2 Ion Test set, which have experimental uncertainties

of less than 0.05 eV[140]. The deviations from experiment within calculated AFQMC results are

presented in Tables 2.1 and 2.2 alongside the deviations resulting from G2 theory[154], and DFT

with the B3LYP exchange-correlation functional[155, 156] in the 6-311+G(3df,2p) basis[140].

Table 2.1: Experimental IPs and the deviations of various calculated results (theory - experiment)
for atoms in the G2 Test Set in eV. QMC statistical errors in the two right-most digits are shown in
parenthesis. QMC calculations using single-determinant trial functions (phaseless and FP) use 5040
walkers per repeat, while those using multi-determinant trial functions use 1056 walkers per repeat.

Atom Expt. ∆ph-HF/QMC ∆FP ∆ph-CAS/QMC ∆G2 ∆B3LYP

B 8.2980 -0.156(10)* -0.0012(50) -0.0162(26)a 0.10 -0.44

C 11.2603 0.0342(90)* 0.0045(43)b 0.08 -0.29

N 14.5341 0.1214(61)* 0.0050(84) 0.0100(38)c 0.06 -0.14

O 13.6181 -0.0830(22)* -0.0360(24)d 0.08 -0.55
F 17.4228 0.0010(35) 0.0015(46)e 0.03 -0.34
Ne 21.5645 0.0775(51) 0.0159(34)f -0.05 -0.21

* PES
a QMC trial from CASSCF(5/4,8) with minimum CI coefficient of 0.034 (20/14 determinants)
b QMC trial from CASSCF(4/3,8) with minimum CI coefficient of 0.034 (14/7 determinants)
c QMC trial from CASSCF(5/4,8) with minimum CI coefficient of 0.01 (29/32 determinants)
d QMC trial from CASSCF(6/5,13) with minimum CI coefficient of 0.01 (67/62 determinants)
e QMC trial from CASSCF(7/6,8) with minimum CI coefficient of 0.033 (7/2 determinants)
f QMC trial from CASSCF(8/7,16) with minimum CI coefficient of 0.0085 (101/104 determinants)

For the calculations which used the unrestricted HF determinant as the trial function, PES was
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Table 2.2: Experimental EAs and the deviations of various calculated results (theory - experiment)
for atoms in the G2 Test Set in eV. QMC statistical errors in the two right-most digits are shown in
parenthesis. QMC calculations using single-determinant trial functions (phaseless and FP) use 5040
walkers per repeat, while those using multi-determinant trial functions use 1056 walkers per repeat.

Atom Expt. ∆ph-HF/QMC ∆FP ∆ph-CAS/QMC ∆G2 ∆B3LYP

B 0.2797 -0.0422(31) -0.0090(30)a 0.09 -0.18

C 1.2621 0.0762(84)* 0.0031(43)b 0.07 -0.11
O 1.4620 0.0505(86) 0.0327(53)c 0.06 -0.22

F 3.4013 0.222(18)* -0.033(20) 0.0474(49)d -0.08 -0.13

* PES
a QMC trial from CASSCF(3/4,8) with minimum CI coefficient of 0.01 (34/46 determinants)
b QMC trial from CASSCF(4/5,8) with minimum CI coefficient of 0.01 (30/53 determinants)
c QMC trial from CASSCF(6/7,8) with minimum CI coefficient of 0.01 (39/77 determinants)
d QMC trial from CASSCF(7/8,16) with minimum CI coefficient of 0.0075 (145/243 determinants)

used for the IPs of B, C, N, and O with equilibration times of 35, 20, 15, and 15 Ha−1, respectively,

and similarly for the EAs of C and F with 15 and 10 Ha−1, respectively. For the remaining species,

equilibration was facile and thus the AFs were correlated from the beginning of the imaginary-time

propagation. Notable deviations from the experimental values are found for the IPs of B and N,

and the EA of F when the UHF state is used as the trial function (nearly identical errors have been

previously reported within ph-AFQMC[71]). These discrepancies are resolved in the correlated

sampling-based FP results. Since the energies from FP are not biased by the phaseless constraint

and thus insensitive to the trial function used, (any) small residual errors can be attributed to the

MP2-assisted CBS extrapolation scheme.

The long equilibration times and inaccuracies encountered in the above cases are manifestations

of the fact that single-determinant trial functions obtained from mean-field calculations are gener-

ally not well-suited to describe the open-shell systems involved in redox reactions. For instance in

the IP of B, comparing FP and ph-AFQMC calculations for both the neutral and cationic species

exposes the fact that the error in the IP stems from inaccuracies in the computation of the to-

tal energy of the neutral B atom, which has a single unpaired electron in the triply-degenerate p

orbital manifold. The use of trial wavefunctions with proper symmetry properties has previously

been shown to lead to improved accuracy within the phaseless approximation[95], so we now con-

sider trial functions which are eigenfunctions of Ŝ2 for use with the phaseless constraint. While
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employing a restricted open-shell HF trial affords no appreciable gain in accuracy, the use of a

truncated CASSCF trial with a very modest active space size and a small number of determinants

is sufficient to eliminate most of the error for the IPs of both B and N.

The accurate description of the EA of F proves to be more demanding. It is possible that the

phase problem is particularly problematic for the case of F- due to the small atomic radius which

may lead to very strong electronic correlations. Such sizable correlations manifest themselves in the

algorithm as a large imaginary component of the propagator, which in turn leads to the elimination

of crucial physical information during the projection to the real axis if the trial function does not

adequately provide the gauge information on the Slater determinants of the ground state. In such

cases, excitations into a large number of virtual orbitals will make significant contributions to the

correlation energy, and therefore a large active space is required to generate the CASSCF trial

function so that the resulting phase projections are sufficiently benign.

In general, the implementation and efficacy of the correlated sampling scheme presented in this

work remain unaltered in the case of a multi-determinant trial function since walker determinants

are propagated in exactly the same manner. We do find a reduction in the required equilibration

times for all multi-determinant ph-AFQMC calculations that we have performed, relative to single-

determinant calculations of the same systems, rendering the use of PES unnecessary. In addition,

the use of multi-determinant trial functions results in drastically smaller error bars, even when

more than 4x fewer walkers are used. Increasing the quality of the CASSCF trial function is a

promising way to systematically reduce the error from the phaseless constraint, and we find that

in all cases the use of a reasonable number of determinants produces redox energies within the

maximum experimental error of 0.05 eV for the G2 Test Set.

2.3.2 The Case of Methanol

Motivated by the arguments set forth in Section II.C, we now describe the details of a composite

method for calculating the adiabatic IPs, deprotonation free-energies, and hydrogen-dissociation

energies of molecular systems, and illustrate the accuracy of our approach on the case of methanol.

We utilize a stepwise process consisting of: 1) the fixed-geometry process calculated with correlated
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sampling-based ph-AFQMC, and 2) a geometry-relaxation step calculated within MP2. Optimal

correlation can be achieved in 1) since the same set of basis functions is used, while in 2) we expect

large error cancellation resulting from the fact that the initial and final ground-state geometries are

typically very similar in redox, deprotonation, and hydrogen abstraction reactions. The calculations

are performed in a triple-zeta basis with additional diffuse basis functions for all species involved

in the deprotonation reaction. The resulting energy differences from these two steps are added

together, and the endpoints are extrapolated to the CBS limit.

For all reaction types, zero-point energies are calculated at the level of HF/6-31G* and scaled by

a factor of 0.899 to account for anharmonicity and the known shortcomings of HF theory, following

the G2 protocol. Deprotonation free-energy results incorporate the value of -6.28 kcal/mol as the

free-energy of a proton at 298 K[157], and we use the exact ground-state energy of H· (-0.5 Ha) to

calculate the bond dissociation enthalpy of the O-H bond.

Table 2.3 illustrates the accuracy of our correlated sampling protocol with respect to experi-

mental results for all three reaction types. The quality of our IP and deprotonation free-energy

results surpass that of the more costly G2 method, while the O-H bond dissociation result has an

error of comparable magnitude. We note that the single-determinant trial wavefunction is sufficient

to produce a near-exact deprotonation free-energy, which we attribute to the fact that in this reac-

tion type both the protonated and deprotonated species are closed-shell. Moreover, our correlated

sampling-based ph-AFQMC calculations, using an extremely modest number of walkers, predicts

the energy differences corresponding to all of these reaction types to within chemical accuracy,

which is not the case for the G2 method.

2.3.3 Basis Set Size, Number of Random Walkers, and CPU-time Reduction

2.3.3.1 Basis Set Size

The statistical noise of individual AFQMC runs is expected to increase with the number of AFs,

α, yet the precise scaling is subtle. Each AF contributes additional noise. On the other hand,

the magnitude of the contribution is moderated by a degree which depends on the form of the

interaction and the decomposition procedure leading to Eq. (1.23). For example, the error bar
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Table 2.3: Adiabatic Reaction Energies for Methanol. Experimental values
and the deviations of the correlated sampling-based ph-AFQMC and G2 re-
sults (theory - experiment) in eV. QMC statistical errors in the two right-most
digits are shown in parenthesis. All QMC calculations use 192 walkers per re-
peat.

Reaction Expt. ∆ph-QMC ∆G2

Ionization Potential 10.84 0.034(27)† -0.11
Deprotonation Free-Energy 16.2695 -0.005(21)†† 0.0484a

O-H Bond Dissociation Energy 4.5359 0.039(14)† 0.0166b

† QMC trial from CASSCF(10/11, 10/11) with minimum CI coefficient of
0.02 (27/32 determinants)

†† HF trial
a Ref. [158]
b Ref. [159]

is seen to change little beyond a modest cutoff in plane-wave AFQMC[73]. In principle α grows

as M2, but our (rather conservative) truncation of the Cholesky decomposition via the cutoff

mentioned in Section II.D results in α ∼ 10M . As a result, we expect the statistical error in an

uncorrelated calculation to increase with M before saturating toward the CBS limit. This could be

problematic given that large basis sets containing functions associated with high angular momenta

are frequently required to accurately describe the correlation energy[147], and also given the fact

that most interesting applications involve large systems.

Here we show that the magnitude of the reduction in statistical error enabled by the use of

correlated sampling grows with M , such that the error is nearly independent of M . Fig. 2.6 shows

the standard errors resulting from calculations of the IP of the K in the 6-31G*, 6-31+G*, and 6-

311+G* basis sets (which consist of 23, 35, and 45 basis functions, respectively); Fig. 2.7 illustrates

the same effect for fixed-geometry deprotonation reactions of water, methanol, and ethanol (58,

116, and 174 basis functions). For both reaction types, while the errors from the uncorrelated

calculations increase significantly with M , we find that those resulting from correlated sampling

remained roughly constant. We anticipate that this finding will hold in general, and will be of crucial

importance in future applications of correlated sampling-based AFQMC to larger molecules.
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Figure 2.6: Comparison of the standard errors of the cumulative averages resulting from correlated and uncorrelated
sampling in computing the IP of the K atom in three different basis sets with 5040 walkers per repeat. The inset
zooms in on the lower region, for clarity.

Figure 2.7: Comparison of the errors resulting from correlated and uncorrelated sampling in computing the fixed-
geometry deprotonation energies of H2O (M=58), CH3OH (M=116), and C2H5OH (M=174) with 192 walkers per
repeat.
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2.3.3.2 Reduction in the Number of Random Walkers and CPU-Time

In an uncorrelated QMC calculation for a fixed length of propagation time, the resulting standard

error can be reduced by increasing the number of random walkers, Nwlk, used in the MC evaluation

of the HS integral in Eq. (1.23). However, given that the required computational expense increases

linearly with Nwlk, using a brute-force approach that simply increases Nwlk is less practical for

many systems. For energy differences, correlated sampling provides a much cheaper alternative as

it allows for a dramatic reduction in the Nwlk required to achieve a given statistical error.

The errors of the cumulative averages of the IP of K in the 6-31+G* basis (M=35) and the

fixed-geometry deprotonation of methanol in the cc-pVTZ basis (M=116) are shown for different

values of Nwlk in Figs. 2.8 and 2.9, respectively. For both reaction types, we make the following

observations: First, for a given Nwlk, the standard error is significantly lower in the correlated

sampling case. Second, the magnitude of this reduction is greater for smaller Nwlk. Finally, while

the standard errors of the uncorrelated runs increase as Nwlk is reduced, in the correlated sampling

runs the error is relatively insensitive to Nwlk.

Figure 2.8: Dependence of standard error on the number of random walkers per repeat for the IP of K in the 6-
31+G* basis. The inset highlights the errors of the uncorrelated run with 1056 walkers and the correlated run with
24 walkers, compared with the 0.5 mHa error target.
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Figure 2.9: Dependence of standard error on the number of random walkers per repeat for the fixed-geometry
deprotonation of methanol in the cc-pVTZ basis. The inset highlights the errors of the uncorrelated run with 2400
walkers and the correlated run with 96 walkers, compared with the 1 mHa error target.

In light of these findings, we are in a position to understand how a reduction in the standard

error due to correlating the AFs translates into a reduction in CPU-time. Considering first the IP

of K in the 6-31+G* basis, we choose a target standard error of 0.5 mHa on the QMC energy (which

defines the 99% confidence interval as the cumulative average of the energy ± 1 kcal/mol), and

compare the total CPU-time required to achieve this via correlated and uncorrelated approaches. In

the former case, we find that using only 24 walkers in each of the 11 repeat calculations is sufficient

to achieve the target error and a resulting energy in agreement (i.e. within the 99% confidence

interval) with a benchmark result obtained with 5040 walkers. In fact, as few as 6 walkers produced

the same level of accuracy in some cases. The inset of Fig. 2.8 shows that the statistical error falls

below the target at τ ∼ 7. The total CPU-time required to propagate 11 repeats for this length of

imaginary-time is 41.2 minutes on a single 2.60 GHz Intel Xeon processor. Using the same number

of walkers without correlating the AFs, we find that the target error is not reached even after 200

Ha−1. Using 1056 walkers gives rise to a standard error that falls below 0.5 mHa after 10 Ha−1, as

shown in the inset of Fig. 2.8, and a resulting QMC energy that is in agreement with the benchmark
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result. This calculation takes 2262.6 minutes on a single processor, and we thus conclude that our

correlated sampling approach reduces the CPU-time by a factor of approximately 55.

For the deprotonation of methanol we use a target error of 1 mHa. As shown in the inset

of Fig. 2.9, both the uncorrelated run with 2400 walkers and the correlated run with 96 walkers

yield results that fall below our target error at τ ∼ 10. We use the fact that the total CPU-time

is proportional to the product of the number of walkers and the propagation time to estimate

that correlating the AFs reduces the CPU-time by a factor of approximately 25. Currently the

total calculation, including all 11 repeats, requires ∼154 hours on a single CPU core. We perform a

similar analysis for the dissociation of H· from the O-H bond of methanol. Due to the relatively large

computational cost of using a CASSCF trial function (with the same active space and truncation

scheme described in Table III), we increase our target error to 2 mHa. Figure 2.10 shows that the

errors on the cumulative averages from both an uncorrelated run with 288 walkers and a correlated

run with 12 walkers fall below our target error at τ ∼ 6. Thus we deduce a speed-up factor of 24

for this H abstraction reaction. On a single CPU core this requires ∼157 hours.

Figure 2.10: Comparison of the standard errors resulting from the use of correlated sampling with 12 walkers per
repeat and uncorrelated sampling with 288 walkers per repeat to calculate the energy difference associated with the
fixed-geometry removal of H· from the O-H bond of methanol in the cc-pVTZ basis. The 2 mHa error target is shown
in black.

As the previous sections have shown, the magnitude of the reduction in the statistical error,

and consequently the CPU-time, as compared with an uncorrelated calculation depends on the

number of walkers used and the size of the basis set. In addition, one intuitively expects our
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correlated sampling approach to work better for systems that more closely resemble each other.

This is crudely the case, yet the subtleties involved in such a claim warrant further discussion.

Indeed, referring to the propagator in (2.1), while our correlated sampling method ensures that the

v̂ operators and the AFs, x, are the same for both the primary and secondary systems, the FBs,

x̄, as defined in (1.28) and the expectation values with respect to the trial functions 〈v̂〉 will in

general be different. In the limit that the primary and secondary systems are identical, the entire

propagator in (2.1) is identical for both systems, and the statistical error in the energy difference will

be exactly and trivially zero as a result of perfect walker-pair correlation. Otherwise, the reduction

in statistical error afforded by our correlated sampling approach becomes less pronounced the more

the trial wavefunctions of the primary and secondary systems differ, since the the FBs and 〈v̂〉

are expectation values that depend explicitly on the trial wavefunctions. It is encouraging to note

that despite the differences in trial functions correlating only the AFs yields such large speed-ups

in CPU-time. While additionally correlating the 〈v̂〉, possibly by using some combination of the

trial functions for both systems, would compromise the accuracy of the phaseless approximations,

future studies will explore optimal ways to pair walkers such that the similarity in the FBs of

walker pairs is maximized. It is encouraging that even for systems for which the electronic energies

of the primary and secondary systems differ by some 200 eV, as is the case in the deprotonation of

methanol, our correlated sampling approach still yields dramatic efficiency gains.

2.4 Conclusions and Outlook

In this chapter we have devised a correlated sampling protocol for the calculation of chemically

relevant energy differences within the exact and phaseless variants of AFQMC. For molecules we

utilize a two step strategy in which optimal walker-pair correlation is achieved in the ph-AFQMC

description of the fixed-geometry process, while the geometry relaxation energy is calculated with

the confines of MP2. Together with an MP2-assisted CBS extrapolation method we obtain calcu-

lated IPs, EAs, deprotonation free-energies, and bond dissociation energies that are in excellent

agreement with experiments. Moreover, our correlated sampling approach yields large reductions
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in the statistical errors relative to those obtained from uncorrelated approaches. In contrast to un-

correlated AFQMC, where the error bars are found to increase with system size and/or the number

of basis functions, correlating the AFs keeps the statistical error relatively constant as chemical

complexity increases. In addition, our approach drastically reduces the number of walkers required

to achieve a given statistical error target, which translates into large reductions in CPU-time.

We utilize a “ghost” basis function strategy that enables the application of a correlated sampling-

based approach to processes involving large energetic changes. Indeed, given that the correlated

sampling scheme outlined here is successful for electron, proton, and H· transfer reactions, we are

optimistic that other chemical changes are within reach. In the future, we plan to systematically

investigate chemical reactions which involve substantial changes in geometry, including the addi-

tion/removal of larger, more complex functional groups. Along the same lines we are optimistic

about the savings that our correlated sampling approach may yield when basis functions that are

independent of the nuclear coordinates, such as plane-waves, are used. We anticipate that the

insensitivity of the statistical error to basis set size that we observe in this work may partially or

totally offset the relatively large number of plane-waves typically required for convergence.
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Chapter 3

Phaseless Auxiliary-Field Quantum

Monte Carlo on Graphical Processing

Units1

In the previous Chapter we introduced a correlated sampling (CS) approach for quantities involving

energy differences which is capable of reducing computational prefactors by approximately an order

of magnitude. In this chapter we present a different but complementary strategy involving hardware

optimization on graphical processing units (GPUs) which can drastically reduce the prefactors in

calculations of general ground-state properties.

GPUs have several distinct advantages over traditional Central Processing Units (CPUs), in-

cluding the ability to perform efficiently parallelized matrix operations both in serial and in

“batches,” and the use of single-precision (sp) floating-point arithmetic with significant gains

in computational speed. We refer the reader to Ref. 160 for a lucid exposition of many gen-

eral properties of GPU hardware. In recent years the use of GPUs has been extended well

beyond traditional image visualization tasks into many fields such as machine learning[161] and

molecular mechanics[162]. Of particular relevance to our work presented here is the progress in

performing electronic structure calculations on GPUs. This hardware has been utilized to ef-

1Based on work published in J. Chem. Theory Comput. 2018, 14, 8, 4109-4121.
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ficiently evaluate the integrals required in ab-initio calculations[163, 164, 165, 166], to perform

HF[167, 168] and DFT calculations[169, 170, 171], and to study model systems such as the Hubbard

Model within the dynamical cluster approximation[172] and the Ising model[173, 174]. In addi-

tion there have been recent GPU implementations of MP2[175, 176, 177, 178], CC methods[179],

TDDFT[180], CI[181, 182], and CASSCF approaches[183, 184]. Efficient algorithms to compute

energy gradients[185, 186] and tensor contractions[187] have also been developed.

With respect to QMC methods, GPU implementations have been formulated primarily for real-

space approaches. For example, DMC with sp arithmetic has been accelerated by a factor of ∼6x on

a GPU versus a quad-core CPU[188]. A recent study employing a multi-GPU implementation has

reported speed-ups of a factor of 10-15x relative to a quad-core CPU for VMC and DMC for real

materials[189]. Very recently an open-source QMC suite, QMCPACK[190], has released scalable

implementations of real-space QMC methods. An implementation of AFQMC is mentioned in Ref.

190, although data illustrating its efficiency and accuracy is not yet available.

In this chapter we detail our GPU implementation of the phaseless variant of AFQMC (ph-

AFQMC), and illustrate its performance and accuracy via calculations of the total energies of

linear chains of hydrogen atoms and the all-electron IPs of the first-row transition metal (TM)

atoms. We explicitly compare our GPU wall-times with CPU timings from a code of equivalent

algorithmic sophistication. Speed-ups from the GPU port of two orders of magnitude are seen in

large systems, with the potential for even greater reductions of the scaling prefactor depending on

the system-size. The robustness and accuracy of our implementation are shown by comparing our

calculated values to either exact numerical techniques or experiment.

This chapter is organized as follows: In Sec. 3.1 we detail our GPU implementation and highlight

significant algorithmic additions. In Sec. 3.2 and 2.3 we present timing and accuracy results for

the hydrogen chains and TM IPs, respectively, and comment on the advantages of the correlated

sampling approach. In Sec. 3.4 we conclude with a summary of our results and a discussion of

future work.
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3.1 GPU Implementation

In contrast to traditional computing paradigms which utilize CPUs to execute all computing tasks,

we employ a strategy in which CPUs offload a majority of the computational effort to one or more

GPU cards. A typical GPU device has 4-12 GB of memory which is separate from that accessible by

the CPU; therefore, data is usually allocated on both the host and device, and inter-communication

between these different memory spaces requires the explicit copying of data back and forth. In this

work great care is taken to minimize such transfers, and we create custom memory structures that

organize memory addresses and facilitate switching between sp and double-precision (dp).

A flowchart outlining the ph-AFQMC algorithm with 3 CPU/GPU pairs is presented in Fig. 3.1.

First the root CPU reads in relevant quantities such as matrix elements of Ĥ, overlap integrals,

and the initial and trial wavefunctions, and then completes a preliminary setup which includes

transformations to an orthonormal basis, walker and operator initializations. These quantities are

sent to all devices, after which the tensor (or slices of it) used in the energy evaluation is precom-

puted directly on the GPUs. Throughout the entire sequence of functions involved in propagating

a walker, all operations are performed on the devices, i.e. without any data transfers or opera-

tions involving the CPUs. We utilize NVIDIA’s Compute Unified Device Architecture (CUDA)

Basic Linear Algebra Subprograms (cuBLAS) library to execute, e.g., the matrix multiplications

that propagate walker determinants by a one-body operator, and have supplemented this library

with custom C/CUDA functions which can be classified roughly into two types. Those in the first

constitute a matrix library of kernels which carry out, most notably, element-wise matrix additions

and matrix sums (i.e. matrix → scalar). These are used frequently to compute the trace of a

matrix product, which is utilized in the calculation of expectation values such as the force-bias

and local energy. In addition to such library-type functions, we also wrote GPU kernels to sample

auxiliary-fields, compute the force-bias, assemble and exponentiate one-body operators, carry out

the Sherman-Morrison-Woodbury (SMW) updates, orthonormalize the orbitals of walker determi-

nants, and measure the local energy. With the exception of the SMW and energy measurement

functions, which we will subsequently detail, the GPU port of the above functions did not involve
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notable algorithmic improvements over our CPU implementation.

Figure 3.1: Flowchart of our AFQMC implementation, for 9 walkers (k = 0, . . . , 8) and 3 CPU-GPU pairs (CPU/GPU
0, 1, 2). If the size of the precomputed tensor used in the energy evaluation exceeds the memory capacity of each
device, each GPU precomputes and stores only a slice of the tensor, and the energy of a walker is computed by
circulating the walker to all other GPUs and tallying the partial energies obtained from the resident slices.

Once the code enters the loops shown in Fig. 3.1, data need only be transferred from the current

device when the energy is measured, which for our typical time-step choice of ∆τ = 0.005 Ha−1

happens once in 20 propagation steps. An explanation of the slicing variant of the energy algorithm

will be presented later in Sec. 3.2. For now we simply wish to emphasize that throughout the

majority of an AFQMC calculation data does not need to leave the devices. This is in large

part why the current implementation leads to such pronounced speed-ups compared to our initial

attempts to simply offload the matrix multiplications.

A relatively new addition to the cuBLAS library are so-called “batched” functions which perform
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many smaller operations simultaneously, e.g. a set of matrix-matrix multiplies or lower-upper (LU)

decompositions. These batched functions are well-suited for operations that are individually too

small to parallelize effectively across thousands of cores. We utilize this feature heavily in our

implementation of SMW updates to quickly compute equal-time Green’s functions when multi-

determinant trial functions are used. We note that previous Diffusion MC studies have utilized

similar SMW updates[191, 192, 189]. Given a reference matrix A, the following formulas are used

to compute the determinants and inverses of matrices which differ from A by one or more row or

column:

det(A+ UiV
T
i ) = det(I + V T

i A
−1Ui)det(A)

(A+ UiV
T
i )−1 = A−1 −A−1Ui(I + V T

i A
−1Ui)

−1V T
i A

−1.

(3.1)

In the context of ph-AFQMC, suppose we use a multi-determinant trial wavefunction, |ΨT 〉 =∑
i=0 ci|ψT,i〉, where 〈ψT,i|ψT,j〉 = δij . Then, for the kth walker determinant |φk〉, A = [ψT,i=0]†[φk],

where the square brackets denote a matrix representation, Ui, Vi are of dimension Nσ x Ei, where Nσ

is either the number of spin-up or spin-down electrons, and Ei is the number of excitations required

to form the ith configuration of the multi-determinant expansion from the reference configuration.

The determinant and inverse of the reference matrix corresponding to zero excitations (i = 0) is

computed first for spin-up and spin-down configurations, followed by batched SMW updates for

all i 6= 0. Sub-cubic scaling with respect to particle number is achieved since Ei << Nσ. Fig. 3.2

highlights the efficiency of our batched implementation of the SMW algorithm, for the Mn atom in

the aug-cc-pwCVQZ-DK basis (185 basis functions, 25 electrons). “Propagation time” denotes the

total wall-time minus the time spent on initial setup, e.g., memory allocation, input/output, and

precomputation of the operators and required intermediates. Previously, going from, e.g., 10 to

1200 determinants would multiply the propagation time by a factor of 120. In contrast, our SMW

algorithm reduces this to a mere factor of 3.9.

We have developed a GPU-optimized algorithm for evaluating the local two-electron energy of

a walker. 4-index tensors are precomputed once at the start of a simulation, which, in the spin-free
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Figure 3.2: Propagation time vs the number of configurations in the CASSCF trial wavefunction for the Mn atom
in the aug-cc-pwCVQZ-DK basis. Calculations use sp, a CD threshold of 10−4Ha, 20 walkers and imaginary-time
trajectories of length 1 Ha−1 with a time step of ∆τ = 0.005 Ha−1. Walker orthonormalization and local energy
measurements were performed every 2 and 20 steps, respectively.

and single-determinant trial case (for simplicity), are of the form:

Yijab =
∑
kl

∑
α

LαikL
α
jl[ψ

†
T,akψ

†
T,bl − ψ

†
T,alψ

†
T,bk], (3.2)

where the Lα arise from decomposing the two-electron integrals via CD or DF (Vijkl =
∑

α L
α
ikL

α
jl),

indices i, j, k, l run from 1 to M (basis size) while indices a, b run from 1 to N (number of electrons).

ψT is a matrix with columns composed of the orbitals in the trial function. Importantly, the sums

over k, l and over auxiliary-fields α, the number of which typically scales as 2-10M , need only be

computed once at the start of the simulation. The energy is evaluated by pairing indices i, a → γ

and j, b→ δ, thereby flattening the 4-index tensor in (3.2) to a 2-index tensor, and then performing

the following contraction:

E2e[φ] = Tr(QY ) =
∑
γδ

QγδYγδ, (3.3)
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where Qγδ = [φ(ψ†Tφ)−1]γ [φ(ψ†Tφ)−1]δ. The Q and Y matrices are of size MNxMN , and hence the

energy evaluation dominates the scaling, with respect to system size, of both the required memory

and run-time of an AFQMC calculation. In Sec. 3.2 we describe a strategy to split the memory

burden among multiple GPU cards on a single node, and suggest approaches to attain additional

scalability in Sec. 3.4. In what follows we illustrate the efficiency of our current implementation.

Table 3.1 shows select performance metrics, from an analysis using NVIDIA’s nvprof code

profiler, for the GPU kernels involved in our energy algorithm. While these metrics can, in general,

vary widely depending on the particulars of both the device architecture and the description of

the chemical system under study (e.g. choices of basis and trial function), we chose to optimize

our code’s performance for ph-AFQMC calculations using large multi-determinant trials, in light

of our interest in strongly correlated systems. As before, we show data for the Mn atom in the

aug-cc-pwCVQZ-DK basis using sp, with 1200 determinants in the trial function (as is used to

calculate the IP reported in Sec. 3.3). Nearly 90% of the wall-time is spent in CGEMM from the

cuBLAS library, which we use to compute a quantity analagous to Q in Eq. (3.3) but generalized

to the case of a multi-determinant trial function. It appears that our custom element-wise matrix

multiplication and matrix sum kernels, while at peak warp utilization, are limited by the device

memory (DRAM) bandwidth. Additional fine-tuning of the latter kernels’ usage of the memory

hierarchy will at best result in a small improvement in the overall performance of the energy function

for this system (∼1.1x, from Amdahl’s law), given that the majority of the time is spent executing

the highly optimized CGEMM kernel.

Table 3.1: Efficiency metrics of the GPU kernels involved in our energy algorithm. For each kernel we show the
percentage of total run-time spent in that kernel, compute utilization as a percentage of peak compute performance,
the number of registers per thread, memory utilization as a percentage of peak bandwidth (shown only for the
memory type exhibiting the highest utilization), and the occupancy, i.e. the percentage of available warps (a group
of 32 threads) that are active.

Kernel % Run-time % Comput. Util. Reg/Thread % Mem. Util. (type) % Occ.

CGEMM 88.2 95-100 84 50-60 (shared) 25
El. MatMul 6.8 < 10 12 80-90 (device) 91.6
Matrix Sum 2.3 < 10 16 80-90 (device) 96.1

Finally we introduce the use of DF[193] in AFQMC calculations, where effective densities ρ̄ij(r)
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are fit to auxiliary basis functions, χ(r):

Vijkl =

∫
dr1dr2φi(r1)φj(r1)

1

r12
φk(r2)φl(r2) (3.4)

∼
∫
dr1dr2ρ̄ij(r1)

1

r12
φk(r2)φl(r2) (3.5)

=
∑
ν

dijν (ν|kl) (3.6)

The last equality follows from inserting ρ̄ij(r1) =
∑

ν d
ij
ν χν(r1), and defining the three-center

integrals (ν|kl) =
∫
dr1dr2χν(r1) 1

r12
φk(r2)φl(r2). The expansion coefficients can be chosen such

that dijν =
∑

µ(ij|µ)J−1
µν , where Jµν =

∫
dr1dr2χµ(r1) 1

r12
χν(r2). Expressing J−1

µν as a contraction

over a third index allows the two-electron integrals to be written in a form suitable for AFQMC:

Vijkl =
∑
α

(∑
µ

(ij|µ)J−1/2
µα

)(∑
ν

J−1/2
αν (ν|kl)

)
=
∑
α

LαijL
α
kl. (3.7)

The number of terms in the sum over α is equal to the number of auxiliary-fields sampled by each

walker in AFQMC, which via DF is typically reduced to ∼2M . As a result the calculation of the

force-bias and the assembly of the one-body operator in Eq. (1.22) can be done faster, and fewer

L matrices (each with M2 elements) need to be stored in memory relative to when CD is used. In

addition, fewer auxiliary-fields generally leads to a reduction in statistical noise. The accuracy of

the DF approximation will be assessed in Sec. 3.2.

3.2 Illustration with Hydrogen Chains

In this section we explore the effects on both computational efficiency and accuracy due to the

use of sp vs dp, and DF vs CD for linear chains of hydrogen atoms. These systems have played

an important role in benchmarking new theories of correlated electronic materials[194, 195, 80,

196, 197, 198, 81]. While these systems do not capture many nuances of more realistic molecular

systems, they are nevertheless a useful prototype capable of (1) yielding wall-time and scaling

insights due to the ability to systematically increase the system size, (2) providing an atomistic
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analogue of well-studied model systems such as the Heisenberg and Hubbard models albeit with

a more realistic description of long-range Coulomb interactions, while (3) exhibiting strong static

correlation at large bond lengths.

3.2.1 Computational Details

For all hydrogen chain calculations we use the cc-pVDZ basis, for which there is abundant bench-

mark data[81]. In this basis there are 5 basis functions per electron, a notably smaller number than

used in typical molecular calculations. The Weigend Coulomb-fitting basis set[199] is employed as

the auxiliary basis for DF, and CDs in this section employ a threshold of 10−5Ha (as chosen in

Ref. 81).

We use PySCF[144] to compute all inputs required of our ph-AFQMC code. Unless otherwise

specified we use an imaginary-time step of 0.005 Ha−1. Walker orbitals are orthonormalized after

every two propagation steps, to preserve the anti-symmetry of the walker configurations and also

to keep the magnitude of orbital coefficients and associated quantities as small as possible (thus

extending the accuracy of sp). We employ the hybrid method of ph-AFQMC[76] to minimize

evaluations of the local energy, which is measured every 0.1 Ha−1. The total number of walkers is

fixed throughout each simulation, and when required we use a population control (PC) algorithm

at intervals of 0.1 Ha−1. Long imaginary-time runs utilizing PC use a reblocking analysis[141] to

obtain statistical errors uncontaminated by autocorrelation. All calculations are run on NVIDIA

GeForce GTX 1080 GPUs, with Intel Xeon E5-2620 v4 CPUs running at a maximum of 2.10GHz.

3.2.2 Timings

Employing an unrestricted HF trial for ph-AFQMC has been shown to produce very accurate

energies for hydrogen chains near their equilibrium bond lengths[81]. Using a bond length of

1.880(2) Bohr as given by Density Matrix Renormalization Group (DMRG) in the cc-pVDZ basis,

we compare propagation times using a single GPU card for an increasing number of hydrogen

atoms. Sample propagation times for several variants of precision and means of decomposing the

two-electron terms are shown in Fig. 3.3. For H60 DF is 2.0x faster than CD in sp and 1.5x faster
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in dp. Sp is 2.1x faster than dp when DF is used, and 1.6x faster using CD. Generally we find

that the relative speed-ups afforded by sp over dp, and DF over CD, increase with system size.

The non-monotonicity of the propagation times vs system size is a unique and rather unexpected

artifact of the GPU architecture, and we observe that the sp (dotted) and dp (lines) trajectories

move together, suggesting a different treatment of sp and dp at the hardware level. The GPUs used

in this work can perform sp and dp floating point operations at a maximum of 8876 and 277.36

GigaFLOP/s, respectively. Our observed speed-up going from dp to sp is significantly less than

what these peak metrics would imply. This is because for the H chain sizes investigated here with

single-determinant trials the GPU performance is not compute limited but rather bound by the

device memory bandwidth. This suggests additional speed-ups can be expected for calculations of

this type, and we plan to pursue further memory optimization in the near future.

Figure 3.3: Propagation time using 1 GPU for hydrogen chains of varying lengths, comparing two types of two-
electron integral decompositions, DF vs CD with a 10−5 cutoff, within both sp and dp. UHF trial functions are used,
and 24 walkers are propagated for an imaginary-time segment of length 1 Ha−1.

In Table 3.2 we benchmark the performance of our GPU implementation for multi-determinant

trial functions with CD. We compare against our latest CPU code, which utilizes the same SMW

algorithm but without the batching scheme and with cuBLAS kernels replaced by calls to equivalent
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functions in the Intel Math Kernel Library (MKL). The energy algorithm implemented in the CPU

code also utilizes the precomputed tensor shown in Eq. (3.2). Furthermore the CPU code defines

the same C structure types for matrices in sp and dp, and uses analogous algorithms to, e.g., copy

and exponentiate these matrix structures. We believe that for these reasons a fair comparison

between our CPU and GPU codes can be made. The GPU-accelerated code in sp achieves large

speed-ups ranging from 87.2x with two determinants to 670.1x with 1000 determinants, compared

to our CPU code in dp. Importantly we find that the relative speed-up increases with the number

of determinants present in the trial function. This is due to efficient batched processing in the

evaluation of mixed-expectation values involving the trial wavefunction.

Table 3.2: Propagation times (in seconds) for an H50 chain with a varying number of determinants that comprise the
trial wavefunction. We use CD with a 10−5 cutoff, and show the speed-up of a single GPU in sp over a single CPU
in dp.

Ndet = 2 Ndet = 50 Ndet = 100 Ndet = 500 Ndet = 1000

GPU sp 99.9 105.3 111.8 158.0 218.7
CPU dp 8775.2 15019.7 22993.7 79713.3 148544.2
Speed-up 87.8x 142.7x 205.6x 504.6x 679.1x

To parallelize across GPU cards on a single node, we divide the total number of walkers into

subsets which are independently propagated and measured on different GPU cards. We use Open

Multi-Processing (OpenMP) to achieve shared-memory parallelization of the CPU threads, and to

each CPU thread we associate a partner GPU device. Fig. 4.1 highlights the near-unity parallel

efficiency of our implementation, defined as the multi-GPU speed-up over 1 GPU divided by the

number of GPUs utilized.

To treat larger system sizes we have implemented a local memory strategy which spreads slices

of the 4-dimensional tensors in Eq. (3.2) across 8 cards for the entire simulation. At the intervals

where the energy is measured, the random walkers propagated on, e.g., GPU 0 are sent to GPUs 1-7

to compute the components of the two-electron energy derived from the elements stored locally on

GPUs 1-7. This is done simultaneously for walkers on all GPUs, after which the energy components

are gathered and tallied for each walker. The nodes utilized have 8 GPU cards each with 8 GB of

RAM. Using DF and sp, this local memory-slicing algorithm enables us to treat systems as large
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Figure 3.4: Parallel efficiency of our ph-AFQMC code illustrated on H50. We use a CASSCF trial wavefunction with
44 determinants, and 800 walkers propagated for 0.5 Ha−1 with ∆τ = 0.01 Ha−1.

as H100 in the double-zeta basis (M = 500, N = 100).

3.2.3 Accuracy

To benchmark the accuracy of our algorithm when sp and DF are used, we compute the total

energy of H50 in the cc-pVDZ basis with a bond length of 1.8 Bohr, and compare with results from

a recent study[81] presenting data from state-of-the-art methods including ph-AFQMC, DMRG, and

restricted CCSD(T), among others. DMRG is essentially exact for one-dimensional systems[194],

and RCCSD(T) is expected to provide a high level of accuracy as the bond-length is near its

equilibrium value[31].

Our GPU results are shown in Table 3.3 along with the previously published data. The differ-

ences in the total energies of sp vs dp for our GPU calculations are 1.2(9) mHa for DF and 0.7(8)

mHa for CD. Importantly, both of these are smaller than the resolution required for chemical

accuracy (1.6 mHa), confirming that for this system size we can take advantage of the hardware-

optimized sp arithmetic on the GPU without incurring a significant loss of accuracy.
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Table 3.3: Total electronic energies [Ha] of H50 at R = 1.8 Bohr in the cc-pVDZ basis. Propagation times [hours]
are presented using 8 CPU/GPU pairs. We use 1000 walkers propagated for a length of 200 Ha−1 (including
equilibration).

Electronic Energy Propagation Time

GPU sp DF -125.2107(7) 14.6
GPU dp DF -125.2119(6) 31.4
GPU sp Chol -125.2239(6) 27.8
GPU dp Chol -125.2246(5) 45.2
CPU dp Ref. 81 -125.2242(8)
RCCSD(T) Ref. 81 -125.2067
DMRG Ref. 81 -125.2210(1)

DF produces about half the number of auxiliary-fields compared with CD (550 vs 1105), reducing

propagation times by a factor of 1.9 for sp and 1.4 for dp. In terms of the resulting accuracy, it is

well known that while the DF decomposition may not be sufficient to produce total energies within

chemical accuracy, it can recover sub-mHa accuracy in the calculation of relative energies[200, 201].

Indeed, we find that for the total energy of H50 DF differs from CD with a 10−5 cutoff by 13.2(9)

mHa in sp and 12.7(8) mHa in dp, respectively. Yet to put these errors into context we note

in passing that DF ph-AFQMC in both sp and dp produces total energies for this system that

are closer to the DMRG reference by ∼ 4 mHa than RCCSD(T), known to many as the “gold

standard” of quantum chemistry[202, 203].

To conclude this section we illustrate the capacity of DF and more aggressive CD truncation

thresholds to recover chemically accurate energy differences for the deprotonation of methanol.

Table 3.4 shows errors of ∼3 mHa for the total energies of the neutral and deprotonated species;

however the deviation of the energy difference from that of the most stringent CD cutoff is negligible,

taking statistical errors into account. In this molecular case, compared to H50, we find a more

pronounced reduction in the number of auxiliary-fields, implying a ∼4x speed-up (vs ∼2x for the

hydrogen chain) over CD with a 10−5 threshold.
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Table 3.4: Accuracy of DF and CDs with various cutoffs for the deprotonation energy of methanol. Sp is used, and
long imaginary-time trajectories are stabilized with PC. NAFs denotes the resulting number of auxiliary-fields.

NAFs MeOH MeO− ∆E ∆E −∆ECD10−6

DF 142 -155.8503(4) -148.5340(7) 0.6777(8) -0.0004(10)
CD 10−2 187 -155.8144(6) -148.4985(4) 0.6772(7) -0.0008(10)
CD 10−3 385 -155.8531(4) -148.5357(4) 0.6787(6) 0.0007(9)
CD 10−4 471 -155.8542(4) -148.5366(4) 0.6790(6) 0.0009(9)
CD 10−5 617 -155.8544(4) -148.5371(3) 0.6787(6) 0.0007(8)
CD 10−6 855 -155.8533(5) -148.5366(4) 0.6780(6) 0

3.3 IPs of Transition Metal Atoms

In this section we compute the IPs of the first-row TM atoms correlating all electrons, and compare

the calculated ph-AFQMC results to experiment and previous electronic structure calculations.

3.3.1 Computational Details

Our computational protocol begins with a restricted (open-shell) HF calculation. We visually

inspect the occupied orbitals of this solution to ensure that the electron configurations shown in

Table 3.5 are obtained. For some atomic species, HF provides a qualitatively incorrect description

of the single-particle orbital occupancies, requiring initialization from custom density matrices to

converge subsequent HF calculations to the target ground-state configurations. We note that for

the V+ cation the initial density matrix guess was constructed with the L = 2 orbital unoccupied.

In all cases the canonical HF orbitals are used to initialize a restricted CASSCF calculation.

Table 3.5: Target electron configurations and spin-multiplicities (2S + 1), from Refs. 65 and 204.

System Sc Ti V Cr Mn Fe Co Ni Cu Zn

Neutral 4s23d1 4s23d2 4s23d3 4s13d5 4s23d5 4s23d6 4s23d7 4s23d8 4s13d10 4s23d10

Spin Mult. 2 3 4 7 6 5 4 3 2 1
Cation 4s13d1 4s13d2 3d4 3d5 4s13d5 4s13d6 3d8 3d9 3d10 4s13d10

Spin Mult. 3 4 5 6 7 6 3 2 1 2

All ph-AFQMC calculations in this section use a CD cutoff of 10−4. We utilize basis sets

that have been optimized to account for scalar relativistic effects[204], and use the spin-free exact

two-component approach[205, 206] to decouple the electronic degrees of freedom from the Dirac
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equation. This approximation produces one-body terms which we simply add to the non-relativistic

Hamiltonian in Eq. (1.19).

To compare calculations in finite basis sets to experiments we extrapolate the correlation en-

ergies to the CBS limit using two data points fit to 1/x3 (x = 3, 4 for TZ,QZ)[85, 207, 204]. We

confirmed for a subset of the atoms that the inclusion of the aug-cc-pwCV5Z-DK energies did not

significantly change the extrapolated results, consistent with Ref. 204. Following Ref. 65 and our

own observation that the HF energies converge relatively quickly in this sequence of basis sets, we

use the 5Z value for the CBS HF energies.

The Trotter error due to finite imaginary-time discretization can be extrapolated to 0 using

progressively smaller time steps. Here we use ∆τ = 0.005, 0.01, and 0.02 Ha−1. For Co through Zn

we compared the CBS estimate from such an extrapolation with values from the smallest time step

only, ∆τ = 0.005 Ha−1. In the latter approach we observe a substantial yet systematic cancellation

of error, and CBS estimates of equivalent accuracy compared to the 3-point extrapolation approach

are shown in Table 3.6. In light of this data we use only ∆τ = 0.005 Ha−1 for all calculations.

Table 3.6: Comparison of CBS IPs [eV] for Co, Ni, Cu, and Zn with ∆τ → 0 vs ∆τ = 0.005 Ha−1 computed in sp
with ph-AFQMC/PC.

Co Ni Cu Zn

Expt. 7.87 7.59 7.73 9.39
∆τ → 0 7.87(3) 7.61(3) 7.54(3) 9.33(4)
∆τ = 0.005Ha−1 7.89(3) 7.59(3) 7.55(3) 9.37(3)

Details of the CS procedure can be found in Chapter 2. In short, we run a set of independent

calculations called repeats, each of which uses a distinct random number seed to propagate both

the neutral and cationic species such that pairs of walkers sample the same auxiliary-fields. After

an initial equilibration period, cumulative averages of the energy difference are computed along

each of the imaginary-time trajectories, and are averaged among the set of repeats to obtain an

estimate of statistical error. In the present case, stochastic error cancellation leads to a pronounced

reduction in the variance of the IPs, and convergence at very short imaginary times can be achieved

when the standard error drops below the target error tolerance and upon visual observation of a

plateau in the measured quantity. We will show in the next section that this CS approach leads
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not only to significant reductions in computational cost, relative to the uncorrelated approach, but

also to systematically improved accuracy.

3.3.2 Results and Discussion

Tables 3.7 and 3.8 summarize our results for the all-electron IPs of the first-row TM atoms. We show

values obtained from both PC and CS ph-AFQMC approaches, and compare with experimental

and CCSD(T) values.

Table 3.7: Calculated ph-AFQMC IPs [eV] in the CBS limit computed with
sp and ∆τ = 0.005 Ha−1, compared with experimental and CCSD(T) values.
Experimental IPs have spin-orbit contributions removed.

Sc Ti V Cr Mn

ph-AFQMC/PC 6.51(1) 6.71(2) 6.74(1) 6.75(2) 7.41(2)
ph-AFQMC/CS 6.52(3) 6.80(3) 6.74(3) 6.74(3) 7.45(3)
Expt. 6.56 6.83 6.73 6.77 7.43

CCSD(T)* 6.54 6.81 6.73 6.79 7.42
* Ref. 204

Table 3.8: Same as Table 3.7, but for atoms in the right-half of the row.

Fe Co Ni Cu Zn

ph-AFQMC/PC 7.86(2) 7.89(3) 7.59(3) 7.55(3) 9.37(3)
ph-AFQMC/CS 7.89(2) 7.87(3) 7.61(2) 7.68(3) 9.37(3)
Expt. 7.90 7.87 7.59 7.73 9.39
CCSD(T) 7.89 7.88 7.59 7.72 9.37

Table 3.9: Number of active electrons and orbitals in the CASSCF trial wavefunctions for the
cation/neutral species, and the number of determinants kept in the ph-AFQMC trial function
accounting for 99.5% of the CI weight. For all species in this table the 3p electrons are active.

Sc Ti V Cr Mn

Active Space 8/9e,16o 9/10e,16o 10/11e,19o 11/12e,16o 12/13e,18o†

Ndets TZ 146/224 240/442 366/751 303/271 423/584
Ndets QZ 143/439 293/388 300/903 92/262 852/1266
† Three 5p orbitals replaced by five 4d orbitals in the active space.

The active spaces employed for the neutral and cationic species in the TZ and QZ basis sets

are described in detail in Tables 3.9 and 3.10. In general, the use of truncated CASSCF trial wave-

functions in ph-AFQMC involves subtleties that require careful consideration, since the CASSCF
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Table 3.10: Same as Table 3.9, but for Cu and Zn with 99.0% of the CI weight retained.

Fe Co Ni Cu Zn

Active Space 7/8e,18o 8/9e,13o 9/10e,13o 10/11e,18o 11/12e,13o
Ndets TZ 23/227 210/85 138/156 374/322 299/518
Ndets QZ 23/121 237/66 159/161 504/507 277/526

calculation itself can become an expensive pre-processing step when large active spaces are re-

quired, and the truncation breaks size extensivity. This approach is viable if the ph-AFQMC result

converges quickly with trial wavefunctions generated from active spaces much smaller than the

full Hilbert space. For atoms and molecules this is typically the case, and an internal validation

procedure within ph-AFQMC can be employed involving a series of calculations using various ac-

tive space and trunctation cutoffs. In particular, for Fe-Zn we started by including the 4s and 3d

electrons in an active space composed of 13 active orbitals. While the resulting truncated CASSCF

trial wavefunctions produced sufficiently accurate ph-AFQMC/PC results in the CBS and ∆τ → 0

limits for Co, Ni, and Zn, 18 orbitals were required in the case of Fe. The improvement in the IP

resulting from the inclusion of a second shell of d orbitals in the CASSCF active space is a mani-

festation of the so-called “double-shell” effect[208, 209]. We find that this effect is less pronounced

in the case of all-electron ph-AFQMC since the application of e−τĤ to walker configurations can

explore the space of excitations into virtual d orbitals even if such excitations are not represented

in the trial function.

For the left half of the 1st row of transition metals in the periodic table, Sc-Mn, we designate

the 3p electrons as active in addition to the 4s and 3d electrons. In an effort to maintain consistency

(i.e. to include HF virtuals of similar character in the initial guesses for the CASSCF procedure)

among all atoms in the row, for those in the left-half we start with 16 active orbitals. This produced

accurate ph-AFQMC/PC results for Sc and Cr. For V we noticed a sharp drop in energy in both

the neutral and cationic species going from 16 to 19 active orbitals; for Mn an accurate IP required

the replacement of three 5p orbitals with five 4d in the CASSCF active space to accommodate the

double-shell effect.

The case of Cu proves to be particularly challenging, and illustrates an additional merit of the
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CS approach. A trial function with 18 active orbitals approaches the memory limit of traditional

CASSCF solvers, but is still insufficient to produce results of the desired accuracy within ph-

AFQMC/PC. With additional active orbitals, approximate CASSCF solvers utilizing DMRG[210]

did converge, but only a subset of the resulting configurations and CI coefficients could be accessed

with the current implementation of selected CI in PySCF. Even with moderate selection cutoffs,

when such a wavefunction was used as a trial function in ph-AFQMC we found a significant increase

in statistical error, in addition to larger deviations of the resulting IP from experiment.

In contrast to regular ph-AFQMC/PC, which stabilizes long imaginary-time trajectories, a key

advantage of the CS approach is that averaging among independent repeats at short times allows

for not only a vast variance reduction when the auxiliary fields are correlated, but also the ability

to converge measurements of the energy difference before the full onset of the bias that results from

the phaseless constraint. Even though the phaseless approximation is made after each time step,

the walker weights at early times stay relatively closer to their true unconstrained values than at

long times when the phaseless constraint has fully equilibrated. To illustrate this we plot the IP of

Cu in the TZ basis at short imaginary-times in Fig. 3.5. At longer imaginary times (not shown)

the CS IP appears to approach the ph-AFQMC/PC result (albeit with substantial noise due to

the absence of PC), yet from 2-7 Ha−1 ph-AFQMC/CS unambiguously converges on an answer

consistent with iFCI-QMC, which is expected to be very accurate here[65]. Moreover, this value

after CBS extrapolation is within range of chemical accuracy with respect to experiment.

The case of Ni is also quite remarkable. Both CS and PC methods produce IPs consistent

with the experimental value and each other in the CBS limit, however a detailed comparison with

CCSD(T) values in each basis set, shown in Table 3.11, reveals that this agreement is due to

fortuitous cancellations of error. While the CCSD(T) values approach the CBS limit from above,

the ph-AFQMC/PC values approach the same value from below. ph-AFQMC/CS calculations, on

the other hand, produce statistically consistent results with CCSD(T) in each basis and in the CBS

limit.

For the case of Ti, having observed a quick equilibration time in the PC run with 16 active

orbitals we chose to use CS as a much cheaper alternative to further increasing the size of the active
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Figure 3.5: Comparison of the IP of Cu as a function of imaginary-time produced from ph-AFQMC/CS in the aug-
cc-pwCVQZ-DK basis compared to the regular ph-AFQMC/PC result in the same basis. The i-FCIQMC result in
the aug-cc-pVQZ-DK basis is indicated by a dashed line.

space. We note, however, that this alternative may not always be feasible, e.g. when a poor trial

function results in long equilibration times. Generally, for all atoms in this work CS results exhibit

equivalent or better accuracy compared to the conventional method of running ph-AFQMC cal-

culations with PC. Moreover, the ability to consistently produce chemically accurate results while

using sp is reassuring, given that the total energies involved in these calculations are on the order

of ∼ -1000 Ha. This implies that mHa energy scales require precision out to at least 7 significant

figures, which would be stretching the typical capabilities of sp arithmetic in deterministic algo-

rithms. In the future any differences in the sensitivity of stochastic vs deterministic algorithms to

numerical precision could be explored further using half-precision, however on our current GPUs

the peak performance of half-precision in GigaFLOP/s is 128x slower than sp and 4x slower than

dp.

Table 3.12 shows the total propagation-times required to produce the final IPs in Tables 3.7

and 3.8, which account for calculations of the total energies of the neutral and cation in the TZ

and QZ basis sets. 8-core CPU times are estimated by scaling the propagation time of a small
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Table 3.11: Comparison of ph-AFQMC IPs for Ni, as obtained with CS and regular ph-AFQMC/PC, with CCSD(T)
in triple- and quadruple- zeta basis sets and in the CBS limit[204]. The CCSD(T) values were obtained with a
composite method, namely cc-pVxZ-DK results plus a core-valence correction, which is the difference in the cc-
pwCVxZ-DK basis of CCSD(T) calculations with active spaces defined by 3s3p3d4s and 3d4s orbitals (x=T,Q).
QMC results used the aug-cc-pwCVxZ-DK basis sets.

CCSD(T) ∆QMC/CS ∆QMC/PC

TZ 7.68 7.68(1) 7.56(2)
QZ 7.63 7.64(1) 7.57(1)
CBS 7.59 7.61(2) 7.59(3)

20 walker system propagated for 1 Ha−1 by the required factors to reproduce the parameters of

the GPU/PC calculations, i.e. 2000 walkers propagated in the TZ/QZ bases for 120/130 Ha−1 for

Cr and Fe, and for 200/230 Ha−1 for Cu. We assume perfect parallel efficiency in projecting our

single-core CPU estimates to 8-cores. Obtaining comparable error bars using CS with our GPU

code required the propagation of 200 walkers in the TZ/QZ bases for 5/3 Ha−1 for Cr, 4/3 Ha−1

for Cr, and 10/6 Ha−1 for Cu. For Cr and Cu we use 16 repeats in both basis sets, and for Fe

we found that only 5/8 repeats in TZ/QZ are needed. We note that the larger wall-times for Cu

are due to 1) the larger number of both particles and determinants in the trial functions employed,

and 2) the relatively poor trial function (compared to the exact ground state) which leads to longer

propagation and equilibration times in the PC and CS methods, respectively. It may be the case

that the relatively small atomic radius of Cu results in larger dynamical correlations compared to

the rest of the atoms in the row, which are unaccounted for in the CASSCF trial wavefunctions

(this explanation is consistent with the relative difficulty we encountered previously in calculating

the electron affinity of the flourine atom [211]). The corresponding speed-ups for these selected

atoms are shown in Table 3.13.

Table 3.12: Total propagation times [hours] required to produce the final all-electron ph-AFQMC IPs in this work.

Cr Fe Cu

Est. 8-core CPU PC dp 9780 6970 34200
8-card GPU PC sp 50.5 47.5 136.4
8-card GPU CS sp 2.4 0.9 6.0

We conclude this section with a few remarks. Currently we use a simple combing method[142] to

implement PC. More sophisticated schemes are possible which may improve the statistical accuracy
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Table 3.13: Speed-ups corresponding to the timings in Table 3.12. All CPU/GPU calculations use dp/sp respectively.

Cr Fe Cu

GPU PC vs CPU PC 194x 138x 250x
GPU CS vs GPU PC 21x 53x 23x
GPU CS vs CPU PC 4100x 7700x 5700x

of the calculation. While this would slightly reduce the wall-times for the ph-AFQMC/PC method,

the accuracy of the results with respect to experiments will be unchanged, since any bias due to

PC vanishes when a large population (∼2000 walkers) is used. At the time of writing, auxiliary

basis sets optimized for the scalar relativistic Hamiltonian and DK basis sets used in this work are

not publicly available. The ability to use a DF decomposition would certainly provide additional

speed-ups, although its effect on accuracy remains to be tested for these TM systems. Finally, we

note that the capacity of our GPU code to treat O(1000) determinants in the trial wavefunction

will likely enable the accurate study of many strongly-correlated systems. We anticipate that fewer

determinants will be needed for metal-ligand complexes (in which the ligand is a non-metal), as

TM atoms typically exhibit larger static correlation effects than most coordinated complexes. In

addition, the use of symmetry constraints in the CASSCF calculations will greatly reduce the

number of configurations in the CI expansions.

3.4 Conclusions and Outlook

We have designed a GPU implementation of ph-AFQMC for single- and multi-determinant trial

wavefunctions which can drastically reduce the scaling prefactor in realistic electronic structure

calculations with near-unity parallel efficiency. Our strategy utilizes new batched SMW and energy

algorithms, along with the ability to use sp and the DF decomposition. We validate performance

enhancements with ph-AFQMC calculations of linear chains of hydrogen atoms and the atomic

IPs of Sc through Zn, finding speed-ups relative to the CPU in dp of two orders of magnitude

and which increase with the number of determinants in the trial wavefunction. For H50 and TM

IPs, sp is sufficient to produce accuracy on the scale of 1 kcal/mol with respect to exact methods

and experiment, respectively. In this work we also demonstrate that our previously outlined CS
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approach to ph-AFQMC enables both additional speed-ups of an order of magnitude, as well as the

ability to converge measurements before the full onset of the bias due to the phaseless constraint.

For all TM atoms, CS produces equivalent and often more accurate IPs, and in a fraction of the

wall-time.

While we have shown that the code segment which scales most steeply with system size, i.e.

the energy algorithm, has been implemented with a very high level of device utilization, we antic-

ipate that calculations on small systems, and especially those employing single-determinant trial

functions, can still be substantially accelerated by additional tuning iterations in which the various

utilization metrics from nvprof are prioritized. However, it must be stressed that the optimal choice

of parameters (e.g. grid and block sizes) and memory strategy to most efficiently utilize the device

architecture will depend on the particular choice of hardware. For this reason we postpone these

fine-tuning optimizations until a target application on a large-scale computing cluster is ascertained.

We are optimistic that in the near future the investigation of many large, realistic systems

will be feasible with ph-AFQMC. In what follows we anticipate issues of scalability and describe

the possible solutions we envision. While our current implementation exclusively uses NVIDIA

hardware with CUDA and cuBLAS, it would be straightforward to adapt it to a more universal

standard, e.g., Open Computing Language (OpenCL) and associated BLAS packages. To enable

large-scale calculations that efficiently utilize available High-Performance Computing clusters, we

have designed a simple and scalable scheme to parallelize across GPU nodes for cases in which all

required data for a ph-AFQMC calculation can be stored on a single node. Once a small population

is equilibrated, walker data can be copied to all available nodes and used to initialize independent

trajectories on separate nodes, each with a different random number seed. These sub-trajectories

can later be combined into a single trajectory from which averages and error bars can be obtained.

We note that our current memory limitation is rather artificial in the sense that GPU archi-

tectures and computing capabilities are improving at a rapid pace, suggesting that the memory

capacity of GPU cards will continue to increase. Also, in later Chapters we report an implementa-

tion that uses Message Passing Interface (MPI) to extend our local memory-slice scheme to multiple

nodes. At the time of writing, NVIDIA’s NVLink boasts transfer speeds of ∼300 GB/sec between
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Tesla V100 GPUs, and we expect that future improvements in device-to-device and host-to-device

transfer speeds will further reduce the overhead associated with MPI communication or possibly

other strategies utilizing CPU memory to store the high-dimensional tensors.

Combining the speed-ups due to the GPU and CS, we now have a robust and efficient com-

putational protocol that is approximately three orders of magnitude faster than previous AFQMC

procedures. This will enable routine ph-AFQMC calculations of a variety of chemically relevant

properties with an unprecedented level of throughput and systematically improvable accuracy.
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Chapter 4

On Achieving High Accuracy in

Quantum Chemical Calculations of 3d

Transition Metal-containing

Diatomics with Auxiliary-Field

Quantum Monte Carlo1

4.1 Introduction

Transition metals play a vital role in a wide range of important processes in biology [212] and

materials science [213]. Many redox and catalytic reactions, such as the water splitting reaction

in Photosystem II[214], are dependent upon the electronic structure of specific transition metal-

containing clusters. A precise understanding of the chemistry and physics of these processes at

an atomic level of detail can only be elucidated by accurate quantum chemical calculations in

conjunction with extensive experimental data. However, quantum chemical methods have had

1Based on work published in J. Chem. Theory Comput. 2019, 15, 42346-2358.
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great difficulty in the treatment of transition metal-containing systems[30, 215]. Even for small

molecules, the accuracy of high level ab initio approaches for these systems has been far from clear.

For larger systems, DFT has been the only viable alternative. Much has been learned from applying

DFT to complex systems[216], but while in many cases surprisingly good quantitative results have

been obtained, there are also cases where errors as large as 40 kcal/mol can be observed[35]. A

benchmark quality quantum chemical methodology which can be scaled up efficiently to treat

systems 30-100 atoms in size would be a transformative advance.

Validation of benchmark accuracy must start with molecules containing only a few atoms, as

was the case for organic systems, where coupled cluster (CC) based approaches, predominantly

CCSD(T), have been able to demonstrate accuracy to better than 1 kcal/mol, with steady, system-

atic improvement over the past 20 years [32]. For transition metals, the challenge is compounded

by uncertainties in many of the experimental measurements used as relevant test cases, as is ap-

parent in recent investigations using a variety of computational methods on small molecules[217,

218, 219, 220, 221, 222, 223, 224, 225, 226, 227]. Focusing on CC methods, electronic excitations

for atoms are well described by CCSD(T) calculations using large basis sets and correcting for

relativistic effects [32]. However, even for problems involving simple diatomic molecules, such as

the dissociation energy of NiH, there is considerable uncertainty as to the degree of accuracy that

CCSD(T) methods can achieve [35]. Error bars in the experimental gas phase measurements of

dissociation energies of transition metal-containing diatomics are reported to be as large as ∼ 5-10

kcal/mol in unfavorable cases (and for a few experiments may exceed that threshold) [35]. With

this level of possible error, it is very challenging to carry out robust statistical assessments of various

approaches, as was done successfully for organic systems using the G2 [140] and G3 [228] databases

of Pople and co-workers.

Over the past decade, there have been a number of efforts to evaluate the accuracy of CC

approaches for small transition metal-containing molecules. The most recent work over the past 5

years has focused principally on diatomic species. The electronic structure problem is still qualita-

tively more difficult than it is for atoms, but the minimal size of the system enables very high level

theoretical methods to be applied on relatively large data sets, and the experimental errors are in
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general more well controlled than for more diverse test cases (although severe individual problematic

cases remain). In addition to the experimental uncertainty, a key issue that has emerged is that the

CC numbers can vary considerably depending upon the details of the calculations. The treatment

of relativistic effects, spin-orbit coupling, and basis set extrapolation can have large effects on the

accuracy of predicted bond dissociation energies. Early work from this period did not necessarily

utilize a complete treatment of such aspects. For example, Ref. 229 employed single point calcu-

lations only in the triple zeta basis set, without any basis set extrapolation. Subsequent work has

established standard protocols (which we discuss in more detail below) which appear to be sufficient

to handle these particular aspects of the problem to near-chemical accuracy[230, 231]. Neverthe-

less, significant discrepancies between theory and experiment remain, and have been challenging to

analyze definitively.

The current state-of-the-art is well reflected in the recent work of de Oliviera-Filho and coworkers[35].

They consider the bond dissociation energies of 60 diatomic species, each consisting of one transi-

tion metal atom and one hydrogen or second or third row acceptor. Of these systems, 42 contain a

first row transition metal, to which we will limit our consideration in the present work (we plan to

consider higher row transition metals in subsequent work). This data set of diatomics is expanded

in size as compared to earlier efforts along the same lines, e.g. the 3dMLBE20 data set of Truhlar

and coworkers, which contains 20 molecules, 19 of which are included in Ref. 229. All of the test

cases have available experimental results that are at least plausible, although the issues with uncer-

tainy noted above remain. We adopt the data set of de Oliveira-Filho and co-workers as a starting

point for our analysis in what follows, adding and subtracting a few cases based on consideration

of the experimental results, as will be discussed in detail below. A larger and more diverse data set

enables more robust conclusions to be drawn concerning the performance of quantum chemical ap-

proaches in thermochemical calculations. Calculated errors can vary dramatically among molecules

that are apparently very similar, as can be seen by examining the performance of DFT methods

in calculating atomization energies for molecules in the G3 database (222 molecules)[232]. While

the present data set is in our view not sufficiently large or diverse to draw rigorous conclusions

concerning benchmark quality (on the order of 1 kcal/mole mean absolute error (MAE) across the
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entire range of first row transition metal chemistry), it does represent a reasonable place to start

an assessment of whether a given method is a candidate for such performance, assuming that the

experimental errors can be sufficiently well understood.

CC-based calculations are carried out in reference 35 at the state of the art level, carefully

converging results to the CBS limit and incorporating core-valence and relativistic effects. In ad-

dition to single-reference (SR) CCSD(T) calculations, multi-reference (MR) CCSD(T) calculations

are also reported. Such computations require nontrivial approximations, due to the potentially

large computational expense incurred by the use of MR wavefunctions. Nevertheless, it is of great

interest to observe the effects of attempting to employ a methodology that, in principle, represents

a systematic improvement over CCSD(T), addressing the well known presence of multiple relevant

low-lying states in the electronic structure of transition metals. The results presented in that work

provide a qualitative picture of the accuracy of CC based approaches for transition metal-containing

systems. In many cases, both the SR and MR approaches are within a few kcal/mole of the ex-

perimental value of the dissociation energy. In others, the MR calculation provides a dramatic

correction to SR results that were in considerable disagreement with experiment, by as much as

14.6 kcal/mole. In still other cases, the MR results continue to exhibit large disagreements with

experiment, up to 11.6 kcal/mole. For these remaining outliers, even at the best (MR-CCSD(T))

level of theory employed, the question remains as to the relative contribution of computational

and experimental errors to the discrepancies. A reasonable conclusion to be drawn is that SR-

CCSD(T) is not capable of benchmark quality results for transition metal-containing systems (in

contrast to non-metal systems, where MAEs < 1 kcal/mole have been reported for a subset of the

G2 database[233]).

QMC approaches are an alternative to the CC methodology, and have shown encouraging accu-

racy in the prediction of transition metal properties. DMC within the fixed-node constraint has been

utilized to compute the dissociation energies of the 20 diatomics in the 3dMLBE20 data set[234].

Deviations as large as 10 kcal/mol between calculated and experimental values were encountered,

due to uncontrolled biases arising from the use of pseudopotentials and single-determinant trial

wavefunctions, and possibly to the use of erroneous experimental values. We note that the use of
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multi-determinant trial wavefunctions, e.g. from selected CI, can produce sub kcal/mol accuracy

for the dissociation energy of the FeS diatomic[235], however the high computational cost of ob-

taining the coefficients for the millions of required determinants in the trial wavefunction would

make such calculations on a large set of molecules highly challenging, and systematic accuracy has

not been demonstrated.

Another QMC approach that is, in principle, capable of achieving systematically improvable and

benchmark-quality accuracy for transition metal-containing systems is the ph-AFQMC methodol-

ogy [66, 67, 71, 70, 68]. In previous chapters we have described a number of technical advances

which have demonstrated dramatic reductions in the computational requirements for ph-AFQMC

calculations, while in some cases actually improving their accuracy and robustness. The first of

these is the use of correlated sampling[211]. With correlated sampling, energy differences between

two states are computed by sampling both states with the same set of auxiliary fields, leading to

significant cancellation of error. This enables energy differences to be computed in a much shorter

amount of propagation time and with fewer samples than would normally be required to obtain a

given statistical error[211]. Furthermore, these measurements at short propagation times are often

converged before the full accumulation of the errors associated with the phaseless approximation,

thus yielding results that are closer to the unbiased, exact value[211]. The second advance is the

development of an efficient implementation of ph-AFQMC on graphical processing units (GPUs),

including the use of the Sherman-Morrison-Woodbury (SMW) algorithm to accelerate calculations

using multideterminental trial wavefunctions[236]. For problems where correlated sampling is ap-

plicable, the combination of these two techniques can reduce the computational effort by more than

two orders of magnitude, enabling the method to be applied to larger systems, and also to sub-

stantially larger data sets. Further efficiency improvements are feasible (reducing both the scaling

and the prefactor), leading to the possibility that ph-AFQMC will emerge as a scalable benchmark

methodology for transition metal-containing systems.

In the present chapter, we apply our ph-AFQMC methodology to a subset of the diatomics con-

sidered in Ref. 35, specifically all those containing first row transition metals (44 test cases in all).

In Chapter 3 we showed that ph-AFQMC yields excellent accuracy for the IPs of first row transition
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metal atoms. This finding is a good starting point, but it is clear from previous efforts in the liter-

ature that diatomic dissociation energies are much harder to compute with kcal/mol accuracy[35],

and that the validation problem is more challenging given the issues with the experimental data.

The first objective of this chapter is to address key methodological issues that are critical to

achieving robust and accurate results with ph-AFQMC for diatomic dissociation energies. Firstly,

we demonstrate that correlated sampling can be made to work well for heavy atom dissociation,

building on previous work which only considered removal of a hydrogen atom[211]. We find that

correlated sampling not only provides substantial reductions in computational effort, but is essential

in obtaining accurate energetics for these systems. The ability to treat heavy atom dissociation

substantially expands the domain of applicability of correlated sampling to a wide range of chemical

and biological problems.

Secondly, in ph-AFQMC calculations it is essential to utilize a sufficiently “good” trial function.

We explore CASSCF type wavefunctions[40] for this purpose, and take advantage of the fact that

for these small systems the dissociation energies can be converged with respect to active space size,

making our calculations effectively size-consistent. The ph-AFQMC calculations for the diatomic

molecules in our test set used between 100 and 5700 determinants. Our efficient GPU implementa-

tion of the SMW approach is essential for the utilization of large multideterminant trial functions

of this form while keeping the increase in computer time at only a small factor.

Thirdly, we investigate three different approaches to estimating the CBS limit. All strategies

employ a ph-AFQMC calculation in the triple zeta basis, and two-point extrapolations based on

MP2, CCSD(T), and entirely based on ph-AFQMC. MP2 extrapolation suffices for many, but not

all cases. CCSD(T) extrapolation usually does better, if not similarly to MP2. For a subset of the

cases which we found to be exceptionally difficult, we show that direct AFQMC extrapolation is

consistently able to improve the MP2 and CCSD(T) results.

Fourthly, we include new experimental values published in Ref. 237, and we identify one case

(ZnS) where we believe that the experimental result is problematic, i.e. outside the error bars

reported in the experimental papers. The very large discrepancies of experiment with both state-

of-the-art CC and QMC results, along with a detailed analysis of the experiments, lead us to believe

64



that the experiment is in error. Theory cannot evolve to benchmark status without such conclusions

being drawn along the way. With an optimized methodology defined, and with an objectively chosen

set of reference values, we find remarkably good agreement between the ph-AFQMC results and

the experimental data (taking into account the experimental error bars). We compare the MR-

CCSD(T) and CCSD(T) values reported in Ref. 35 to the reference values, and find that the CC

methods display a number of large outliers (fewer for the MR-corrected version). We also analyze

the performance of 10 DFT functionals, reported in Ref. 35. Assessment of DFT results has been

a feature of many of the papers cited above; however, the accuracy of the assessment has been

problematic due to the uncertain nature of the reference values.

Finally, we discuss computational efficiency and the feasibility of scaling up to larger systems.

It is possible to parallelize AFQMC efficiently across a large farm of GPUs (we plan to report the

results of such an implementation in the near future), so with sufficient computational hardware

resources, AFQMC calculations with a large number of basis functions can be carried out in a

reasonable wall clock time. Furthermore, significant improvements in the AFQMC algorithm are

still possible, and likely will be necessary to handle grand challenge problems with the goal of

achieving true benchmark status. As noted above, the generation of sufficiently good trial functions

may turn out to be the leading challenge to be faced in this scale up effort.

This chapter is organized as follows. In Sec. 4.2, we provide computational details. In Sec.

4.3, we describe the extension of our correlated sampling approach to the computation of bond

dissociation energies. Sec. 4.4 includes a discussion of the landscape of experimental methods.

In Sec. 4.5, we present our results for the De’s of the 3d transition metal diatomics, and justify

our selection of the reference values used in the comparative statistical analysis of the various

computational methods. In Sec. 4.6, we offer concluding remarks.

4.2 Computational Details

We use PySCF[144] to obtain all inputs required by our ph-AFQMC calculations. To compute

the trial wavefunctions used in this work, we first perform restricted (open-shell) HF calculations,
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ensuring that the electronic configurations are consistent with the term symbols published in Refs.

35 and 65. Canonical HF orbitals are used to initialize restricted CASSCF calculations. The

resulting wavefunctions are truncated such that the sum of the squares of the CI coefficients kept

is > 98% in all cases, resulting in ∼800 determinants on average.

We stress that the spin and orbital symmetries, which we enforce at the RHF level, cannot be

overlooked[238, 239]. For example, the latter can change the computed De in TiH by a staggering

15 kcal/mol. The diatomic term symbols, active space specifications, and bond lengths are shown

in Tables 4.1 and 4.2.

Table 4.1: Electronic States, Active Spaces, and Bond Distances used in our ph-AFQMC
calculations for diatomics containing Sc through Mn. X/Y means that both active space
configurations produced statistically equivalent results. The number in parenthesis is
the experimental bond length.

electronic state CASSCF Active Space Re [Å] CC (expt)

ScH 1Σ 10e18o 1.762 (1.7754)
ScO 2Σ 13e15o 1.664 (1.6661)
ScF 1Σ 14e15o 1.787 (1.787)
ScS 2Σ 13e15o 2.132 (2.1353)
TiH 4Φ 10e18o 1.768 (1.777)
TiN 2Σ 13e15o/7e18o 1.57 (1.5802)
TiO 3∆ 14e15o 1.617 (1.6203)
TiF 4Φ 15e15o 1.8311 (1.8311)
TiS 3∆ 10e18o 2.0827 (2.0827)
TiCl 4Φ 15e15o 2.2642 (2.2697)
VH 5∆ 12e13o 1.684 (1.730)
VN 3∆ 14e15o/10e17o 1.544 (1.5703)
VO 4Σ 15e15o 1.5839 (1.5893)
VCl 5∆ 16e15o/10e16o 2.2273 (2.2145)
CrH 6Σ 13e18o 1.6293 (1.6554)
CrO 5Π 10e16o 1.6116 (1.615)
CrF 6Σ 11e17o 1.776 (1.7839)
CrCl 6Σ 17e15o/11e17o 2.1688 (2.194)
MnH 7Σ 14e18o 1.727 (1.7309)
MnO 6Σ 17e15o/11e18o 1.638 (1.6446)
MnF 7Σ 18e15o 1.834 (1.836)
MnS 6Σ 17e15o/11e18o 2.0633 (2.0663)
MnCl 7Σ 18e15o/12e18o 2.2355 (2.2352)
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Table 4.2: Electronic States, Active Spaces, and Bond Distances used in our ph-AFQMC
calculations for diatomics containing Fe through Zn. X/Y means that both active space
configurations produced statistically equivalent results. The number in parenthesis is
the experimental bond length.

electronic state CASSCF Active Space Re [Å] CC (expt)

FeH 4∆ 9e18o 1.5478 (1.606)
FeO 5∆ 12e17o 1.612 (1.6164)
FeS 5∆ 12e17o 2.009 (2.0140)
FeCl 6∆ 13e17o 2.1751 (2.1742)
CoH 3Φ 10e15o/10e18o 1.5049 (1.5327)
CoO 4∆ 13e17o 1.6286 (1.5286)
CoS 4∆ 13e17o 1.9786 (1.9786)
CoCl 3Φ 14e17o 2.0749 (2.0656)
NiH 2∆ 11e15o/11e19o 1.4538 (1.4538)
NiO 3Σ 14e17o 1.626 (1.6271)
NiF 2Π 15e17o 1.733 (1.7387)
NiCl 2Π 15e17o 2.0539 (2.0615)
CuH 1Σ 12e15o/12e19o 1.4593 (1.4626)
CuO 2Π 15e17o 1.709 (1.7246)
CuF 1Σ 16e17o/10e19o 1.745 (1.7449)
CuS 2Π 11e19o 2.051 (2.0499)
CuCl 1Σ 16e17o 2.0498 (2.0512)
ZnH 2Σ 13e15o 1.5899 (1.5935)
ZnO 1Σ 16e12o 1.6989 (1.7047)
ZnS 1Σ 16e17o 2.0427 (2.0464)
ZnCl 2Σ 17e16o 2.1274 (2.1300)

Our ph-AFQMC calculations correlate all electrons (i.e. no frozen-core), and utilize the “hy-

brid” formulation of the algorithm[76]. With an imaginary-time step of 0.005 Ha−1, walker orbitals

are orthonormalized every other propagation step, and energy measurements are taken every 0.1

Ha−1. We employ a cutoff of 10−4 for the Cholesky decomposition of the two-electron integrals.

We have verified that these parameter choices result in biases smaller than the statistical error

bar[236]. We use the aug-cc-pwCVxZ-DKH basis sets[204] and the spin-free exact two-component

approach[205, 206] to account for scalar relativistic effects. For the 3dMLBE20 molecules, the com-

bination of this level of theory and basis sets has produced good results for CC calculations[231].

The MP2-assisted CBS extrapolation protocol is detailed in Refs. 211 and 77. After a ph-

AFQMC calculation in the triplet-zeta (TZ) basis, a CBS correction is obtained by extrapolating

the correlation energies as computed with MP2 using the 1
x3

form, with x = 3, 4[85, 207, 204]. We
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employ a scaling factor, which is the ratio of the MP2 and QMC values in the TZ basis. For all

diatomics we performed both restricted and unrestricted HF calculations to compute correlation

energies, and choose the method which leads to a scaling factor closest to 1. Finally, following

Ref. 65 and our own observation that the HF energies converge relatively quickly in this sequence

of basis sets, we use the 5Z (x = 5) value for the CBS HF energies, and add this to the extrapolated

correlation energy to arrive at our final result.

For the small molecules considered here, CCSD(T) calculations can be performed in large basis

sets, and results have been made available in the Supporting Information of Ref. 35. To evaluate

the reliability of the MP2-assisted protocol for transition metal-containing systems, we use the

published CCSD(T) data to extrapolate our ph-AFQMC results to the CBS limit as follows: We

take the difference between de Oliveira-Filho’s CCSD(T)(CV)/CBS estimate of De, as was obtained

via 1/x3 extrapolation of the correlation energy at x = Q,5 with respect to the restricted open-

shell HF reference, and their value in the aug-cc-pwCVTZ basis. We then add this term to our

ph-AFQMC result in the aug-cc-pwCVTZ-DKH basis. We estimate the statistical error in the CBS

limit using that in the TZ basis combined with their x = T,Q CCSD(T) values. We note that this

procedure assumes that the optimal bond lengths and scalar relativistic contribution to the BDEs

are independent of basis size, as is done in Ref. 35, among other works. The spin-orbit term, ∆SO,

in Eq. (4.1) is taken from Ref. 35, in which values are computed using CASSCF in a QZ basis.

We emphasize that in both of these extrapolation approaches, AFQMC calculations are only

performed in the TZ basis. In our view, this is a significant source of computational expedience, as

the convergence of observables with the size of the CASSCF active space used in the trial function

is expected to be slower in basis sets of increasing size. For large chemical systems with substantial

multireference character we note that other methods such as CASPT2 or even ph-AFQMC with a

single-determinant trial wavefunction can be used to compute a CBS correction.

For a select number of cases where we encountered significant discrepancies among our calculated

methods and with respect to experiment, we perform ph-AFQMC calculations in both the TZ and

QZ basis sets, and extrapolate to the CBS limit. We view this extrapolation protocol to be of the

highest quality, and for the purposes of this paper we employ it as required.
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All ph-AFQMC calculations use single precision floating point arithmetic (which we have veri-

fied to give consistent results within statistics as double precision calculations[236]) and were run

on NVIDIA GeForce GTX 1080, Tesla P100 and V100 graphical processing units. Our code is

parallelized with Message Passing Interface (MPI), and we observe excellent strong-scaling parallel

efficiency, shown in Fig. 4.1 for the CoO diatomic in the QZ basis. Using 360 GPUs on 60 nodes of

the Summit supercomputer, the parallel efficiency of our implementation is still 90%. This allows

us to run large calculations in minutes, a capability not possible for traditional, non-stochastic

quantum chemical methods.

Figure 4.1: For a set of node counts on the Summit computing cluster, we plot the parallel efficiency, defined as the
speed-up over a 1 node calculation divided by the number of nodes. Each node utilizes 6 NVIDIA V100 GPU cards.

Not all of the “experimental” bond lengths in Ref. 229 were actually obtained from experiments,

so we use calculated bond lengths for the 3dMLBE20 set at the CCSD(T)/CBS level of theory,

taken from Ref. 230. When the experimental bond lengths, as given in Ref. 35, differ by more

than 0.01Å from the CCSD(T) values, we ran ph-AFQMC calculations at both bond lengths. In

the future we will consider using geometries optimized within ph-AFQMC[240].
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The active spaces utilized to generate the trial wavefunctions were initially chosen with the

intention of realizing a maximal cancellation in the systematic error associated with finite active

spaces. That is, the number of active electrons (orbitals) of the isolated metal and ligand should

sum to the number of electrons (orbitals) in the metal-ligand dimer. However, for these diatomic

systems we found it possible to converge the BDE with respect to increasing active space sizes,

and prioritized this convergence at times over the balanced protocol described above. The size of

the active spaces is limited by the current CI module in PySCF, yet we were able to employ active

spaces with up to 19 orbitals, allowing for satisfactory convergence throughout.

For the isolated ligands, we confirmed the convergence of the energy from ph-AFQMC/PC

calculations with increasingly large active space sizes, and found that in all cases except for the

sulfur and fluorine atoms, CASSCF did not lower the energy by more than a milliHartree with

respect to unrestricted Hartree Fock (UHF). Hence, we use UHF for these cases, CASSCF(6e,8o)

for S, and CASSCF(7e,16o) for F. The latter is consistent with our previous work[211], in which

we found that an active space of this size was necessary to obtain chemically accurate electron

affinities for the F atom.

4.3 Correlated Sampling for BDEs

Recently we have introduced a correlated sampling (CS) approach for quantities involving energy

differences which is capable of reducing computational prefactors[211] and in some cases the severity

of the phaseless approximation[236]. In this section, we show that significant reductions in statistical

errors are obtained not only for hydrogen abstraction reactions, as shown previously, but also for

bond breaking events between a transition metal and a heavier ligand atom.

For diatomic molecules consisting of a metal (M) and ligand (L), the following equation for the

bond dissociation energy is employed:

De = E(M) + E(L)− E(ML) + ∆SO. (4.1)

We use CS to compute E(M)−E(ML), where in the former term so-called “ghost” basis functions
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centered at the coordinates of L are added, but without the nuclear charge or electrons from the

ligand. We note that the basis set superposition imbalance[241], if any, that is introduced at the

TZ level vanishes in the CBS limit. E(L) is computed using the population control (PC) method

detailed in Refs. 211 and 142, and ∆SO is the calculated energy difference due to spin-orbit

coupling taken from Ref. 35.

Figure 4.2: Ratio of the standard errors, as a function of imaginary time, resulting from ph-AFQMC calculations
with correlated vs uncorrelated sampling, for the five Mn-containing diatomic species.

The reduction in statistical error, compared to the uncorrelated sampling approach, is shown in

Fig. 4.2 for the Mn-containing diatomics in our set (the saving in computational time is, as usual,

given by the square of the error ratio). We find that the effect of correlated sampling is largest for

the hydride ligand, with decreasing noise reduction efficiency as the ligand atomic number increases.

As shown in Chapter 3, CS results exhibit equivalent or better accuracy compared to the conven-

tional method of running ph-AFQMC calculations with PC employing the same trial wavefunctions,

for the ionization potentials of first row transition metal atoms. We find the same behavior in the
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calculation of the BDEs in this study. For ph-AFQMC calculations of the D0 of MnCl in the

aug-cc-pwCVTZ-DKH basis, PC and CS yield values of 86(1) and 82(2) kcal/mol, compared with

the experimental value of 80(2). For MnS PC, CS, and experimental D0 values are 78(1), 71(1),

and 70(3). Thus, in light of significantly improved computational efficiency and accuracy, we use

CS for the E(M)− E(ML) part of all the BDE calculations in this chapter.

4.4 Experimental BDEs

The experimental BDEs given by Truhlar and co-workers for the 3dMLBE20 set were determined

either from experimental enthalpies of formation (TiCl, VH, VO, VCl, CrO, CrCl, MnS, MnCl,

FeCl, CoCl, NiCl, CuCl, ZnH, ZnO, ZnS, and ZnCl), which have their own error bars, or from

direct measurements of D0 at 0 K (CrO, FeH, CoH, and CuH)[229]. Both were converted to De

via scaled DFT calculations of zero-point energies.

In the follow-up work by Dixon and co-workers, the experimental De’s for the hydride diatomics

were replaced by values derived from hydride transfer experiments[230]. These experiments involve

the following reaction

M+ +RH →MH +R+. (4.2)

By combining the energy of this reaction (referred to in Ref. 230 as Ethreshold) with the ionization

potential (IP) of the metal (M), the electron affinity (EA) of the hydrogen atom, and the heterolytic

bond dissociation energy of a C-H bond in an organic molecule (typically a hydrocarbon or amine)

(BDEheterolytic(R-H)) the BDE of the metal hydride is obtained:

BDE(MH) = BDEheterolytic(R−H)− IP (M)− Ethreshold − EA(H). (4.3)

In these measurements, IP(M), EA(H), and Ethreshold are known relatively accurately. The

BDEheterolytic(R-H) values have more uncertainty, but Dixon and co-workers confirmed the ex-

perimental quantities with G3MP2 calculations[230]. However, the quantity BDEheterolytic(R-H) -
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Ethreshold is not constant for various R, often varying up to 10 kcal/mol. Therefore, Dixon and

co-workers give two values: one that is the average of all the measurements with different R’s and

one measurement that is the closest to their calculated CCSD(T)-level value. [230] In the present

work, when referring to the values from Dixon and co-workers we only consider the measurements

derived from the former method (averaged values). Stanton and co-workers use similar experi-

mental values for VH and CrH using hydride transfer reactions and also confirm the validity of

the BDEheterolytic(R-H) using their own HEAT345-Q protocol[231]. These experimental values for

the De may be an underestimate of the true De as the Ethreshold may be affected by competi-

tion with side reactions, which may explain some of persistent disagreement between theory and

experiment[231].

Dixon and co-workers also replaced the values for the chlorides with direct mass spectrometric

measurements using Ag-M-Cl vapors, the value for VO with a direct measurement using a Eu-V-

O system, and the value for ZnO with a mass spectrometry experiment, and the value for other

compounds, particularly ZnS using different, fully experimental, heats of formation using more

accurate Joint Army-Navy-NASA-Air Force (JANAF) thermochemical values[230]. Their selection

of best experimental values for the 3dMLBE20 set are listed in Table 5 of Ref. [230].

Recently, Morse has reviewed his group’s progress in obtaining highly precise measurements

using resonant two-photon ionization spectroscopy to obtain predissociation thresholds that are

equivalent to the BDE’s of those diatomics with a very high density of states[237]. This experiment

works by increasing the frequency of the incoming laser pulse until the excited state cation can

no longer be detected (the predissociation threshold), because it has dissociated from the excited

state’s rovibrational state to the ground-state separated atom limit via other unstable excited states.

Thus, this technique requires there to be a high density of states to ensure the method is precise and

accurate, which precludes study of diatomics containing Cr, Mn, Cu, or Zn. For molecules where

this technique is appropriate, it is more precise than many high-temperature Knudsen effusion

measurements of gas-phase equilibria and guided ion beam mass spectrometry. Morse also shows

that the measurements are also amenable to testing via a thermodynamic cycle with other precise

measurements[237]. In our study we convert D0 to De using the ZPE data in Ref. 35.
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In the study by de Oliveira-Filho and co-workers only spectroscopically-derived data is referenced[35],

which may explain their omission of the VH molecule.

4.5 BDEs of Transition metal-containing Diatomics

In this section, we show our computed values of De for the set of diatomic molecules containing

first row transition metal atoms, and compare the calculated ph-AFQMC results to experiments,

and to the MR-CCSD(T) calculations performed in Ref. 35.

As we expect the finite basis set error to be less sensitive to the method used to calculate the

correlation energy, we examine various strategies to minimize the compute time required to reach

the CBS limit. The MP2-assisted and CC protocols produced CBS results that are very similar in

the majority of cases. Importantly, an extreme value (with respect to unity) of the scaling factor,

which is the ratio of the correlation energies at the MP2 and ph-AFQMC levels in the TZ basis,

can serve to flag an unreliable MP2 extrapolation. For instance, the scaling factors for CrH and

NiH are both larger than 2.5. The resulting MP2-assisted predictions for De in the CBS limit for

NiH was the furthest from experiment that we observed.

The CC method of CBS extrapolation is more reliable, and we checked that all scaling factors

are between 0.8 and 1.2. When the resulting CBS BDE value still differed substantially from

experiment, i.e. for ScH, TiS, CrO, CrF, CrCl, CoH, NiH, NiO, NiCl, CuO, and ZnS, we performed

ph-AFQMC calculations in both the TZ and QZ basis sets, and extrapolated to the CBS limit.

In all of these cases, except for CrO and ZnS, this procedure produced results consistent (within

experimental uncertainty and statistical error) with experimental values. These two cases will be

discussed in detail below. As control cases, we utilized this procedure for two cases, CoO and CrO,

for which the CC CBS estimate is already accurate. As expected, the pure ph-AFQMC CBS results

produced essentially the same values.

For all species in which the CC and experimental bond lengths, shown in Tables 4.1 and 4.2,

differed by more than 0.1 Å, we performed ph-AFQMC calculations at both bond lengths. No

significant differences in De resulted, so the results corresponding to the CC values are shown.
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In Figs. 4.3 - 4.12 we present our results by metal species. We show the selection of experimental

values and the MR-CCSD(T) results from Ref. 35 by default. We also show experimental values

from the predissociation technique of Ref. 237 when available, and note their extremely small

uncertainties. We considered the experimental selections in Ref. 230 as well, and plot their choice

only when it is not within error bars of the corresponding value from Ref. 35.

We would like to highlight that the measurements in Ref. 237 were published after the ph-

AFQMC calculations in this work were completed. It is rather remarkable that in all six relevant

cases - ScS, TiN, TiS, VN, and FeS - our best QMC results (QMC/CCcbs and, when available,

QMCcbs) are consistent with the newly available, and presumably of higher quality, experimental

data. While demonstrating consistency with past results is obviously a necessary phase in the

development of any new method, we are certainly encouraged by the predictive capability already

shown by our methodology.

Figure 4.3: Deviations [kcal/mol] of various calculations and alternate experiments (when relevant) from the experi-
mental values used by de Oliveira-Filho (GSOF) and co-workers in Ref. 35. For calculations and experiments, error
bars represent statistical error and quoted experimental uncertainties, respectively.
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Figure 4.4: Same as Fig. 4.3, but for Ti-containing diatomics.

Figure 4.5: Same as Fig. 4.3, but for V-containing diatomics. VH was not considered in Ref. 35, and we show the
experimental result selected by Truhlar and co-workers in Ref. 229.

76



Figure 4.6: Same as Fig. 4.3, but for Cr-containing diatomics. For CrO we also show the experiment selected by
Dixon and co-workers in Ref. 230, since it is not consistent with that chosen by de Oliveira-Filho and co-workers[35],
given the reported uncertainties.
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Figure 4.7: Same as Fig. 4.3, but for Mn-containing diatomics.

Figure 4.8: Same as Fig. 4.3, but for Fe-containing diatomics.
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Figure 4.9: Same as Fig. 4.3, but for Co-containing diatomics.

Figure 4.10: Same as Fig. 4.3, but for Ni-containing diatomics.
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Figure 4.11: Same as Fig. 4.3, but for Cu-containing diatomics.

Figure 4.12: Same as Fig. 4.3, but for Zn-containing diatomics.

80



We now proceed to highlight a number of notable cases:

de Oliveira-Filho and coworkers do not consider VH, presumably because the experimental

dissociation energy has not been measured spectroscopically. In Fig. 4.5 we show the experimental

value selected by Truhlar and coworkers[229] which is derived from enthalpies of formation. We

prefer this number over those proposed in Ref. 230, since the disparity of values shown in Ref. 230

(52.5 ± 4.4 and 56.1 ± 1.5 kcal/mol) illustrates the sensitivity of De to the R-dependent quantity

BDEheterolytic(R-H), as discussed in Sec. IV.

For CrO, even though our QMC/CCcbs result agrees with the value chosen by de Oliveira-Filho

and co-workers, our QMC/MP2cbs and QMCcbs value deviate from that value by 4(2) and 5(2)

kcal/mol, respectively. However, we note two alternative experimental values: 111.1 ± 2 reported

by Dixon and co-workers, and 110 ± 2 reported using ion molecule reactions in Ref. 242. Both of

these experiments are consistent with our best method, QMCcbs, which gives 110.1 ± 1.3 kcal/mol.

For CoS, single-reference CCSD(T), the “gold standard” to many, is in error by a sizable 14.6

kcal/mol. The large MR correction, in the TZ basis, brought the CCSD(T) value within error bars

of experiment. ph-AFQMC calculations, which also show excellent agreement with experiment,

strengthen our confidence in the reliability of the experimental measurement.

For CoO, CCSD(T) again makes a large error of 10.9 kcal/mol. The MR correction, however, is

not sufficient this time, as the MR-CCSD(T) result is still off by 3.6 kcal/mol. de Oliveira-Filho and

coworkers suggest that an MR correction in a larger basis may fix this. We also note that the scalar

relativistic correction is rather large for this molecule, at -4.5 kcal/mol. All CBS extrapolation

variants of our ph-AFQMC calculations produce values in agreement with the experimental value.

For NiH, CCSD(T) is 8.5 kcal above experiment, and MR-CCSD(T) brings the BDE further

away from experiment by an additional 3 kcal/mol. Our QMC/MP2cbs result has a deviation com-

parable to that from MR-CCSD(T), and while QMC/CCcbs provides a substantial improvement,

it is still off by 7.3 kcal/mol. Only QMCcbs brings NiH within the error bars of experiment. We

note that our CS calculation in the QZ basis, with the CAS(11e,19o) trial, resolved two measurable

plateaus. Since it is not feasible to include more orbitals in the active space in this case, we measure

the first plateau, as done (and justified) previously in Ref. 236.

81



CuO is another difficult case for all but our best full QMC treatment. CCSD(T) is off by 9.3

kcal/mol, and MR-CCSD(T) by 8.4 kcal/mol. QMC/MP2cbs, QMC/CCcbs, and QMCcbs differ

from experiment by 4, 5.5, and 1.6 kcal/mol.

4.5.1 Selection of Best Values and Comparisons of ph-AFQMC with DFT and

CC methods

With the goal of obtaining a robust, objective statistical comparison among ph-AFQMC, CCSD(T),

MR-CCSD(T), and various DFT functionals, we now lay out a protocol to construct a reliable test

set of reference experimental values.

We begin with a baseline set of experiments selected by de Oliveira-Filho and co-workers[35].

When possible, we substitute the high quality experimental results obtained via the predissociation

technique of Ref. 237. We then consider the independently selected best experimental values in

the work of Dixon and co-workers[230], and remove from the test set any case for which there is

disagreement, considering error bars, with the original experiment from either de Oliveira-Filho or

Morse. This situation arises only once, for CrO, and we therefore exclude it from our comparison.

For ZnS, the BDEs computed with QMC/MP2cbs, QMC/CCcbs, and MR-CCSD(T) are all

in excellent agreement, with a value roughly 15 kcal/mol below experiment, which is 49.1 ± 3

kcal/mol as suggested by de Oliveira-Filho and co-workers[35] and derived from the work of Marquat

and Berkowitz [243] and de Maria et al[244]. This experimental value is in stark contrast to

the value of 34.3 ± 1.0 kcal/mol suggested by Truhlar and co-workers[229]. The latter value, as

pointed out by de Oliveira-Filho and co-workers[35], is derived from a thermochemical analysis

by von Szentpaly[245], which used theoretical, not experimental, values provided by Peterson et

al[246]. Papakondylis, who used various theoretical methods to calculate the De of ZnS[247],

pointed out that the aforementioned experimental papers used outdated values for the equilibrium

bond lengths and frequencies as compared to more recent measurements[248, 249], bringing the

older experimental measurements into doubt. Therefore, more experimental investigation into ZnS

should be done to see if indeed the calculations are correct. For these reasons, we omit ZnS from our

analysis, and simply report to the community our prediction of 38.8± 2.4 kcal/mol, as obtained with
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our QMCcbs method. We believe that the quantitatively consistent results provided by completely

independent high-level electronic structure approaches will eventually prove to predict the correct

experimental value, but this speculation will have to wait for further experiments to confirm or

refute.

The MAE of all QMC methods, the CC approaches, and 10 DFT functionals, with respect to

the experimental set of 40 molecules as selected above, are given in Table 4.3.

.
Table 4.3: Mean Absolute Error and Maximum Er-
ror on De shown for AFQMC, CCSD(T), icMR-
CCSD(T), and DFT methods vs. the experiments
selected in Ref. 35 and, when possible, Ref. 237.
For reasons justified in the text, we omit VH, CrO,
and ZnS from the comparative statistical analysis.
In all, our test set contains 41 diatomics. All DFT
calculations are in the aug-cc-pVQZ basis with DKH
corrections. DFT and CC values taken from Ref. 35.
All values are in kcal/mol.

Method MAE Max Error

PBE 15.66 40.90
BP86 14.78 38.17
TPSS 12.83 31.00
M06-2X 12.05 37.95
BLYP 11.64 37.10
M06-L 8.44 21.85
M06 7.06 22.25
PBE0 4.73 21.85
B3LYP 4.45 23.45
B97 3.70 17.25
CCSD(T) 2.84 17.35
icMRCCSD(T) 2.76 11.60
QMC/MP2cbs 2.3(4) 12(2)
QMC/CCcbs 2.1(4) 7(2)
QMC/MP2+QZcbs† 1.5(4) 4(3)
QMC/CC+QZcbs† 1.4(4) 3(3)

† Includes QMC TZ/QZ CBS extrapola-
tions when available

We note that the treatment of spin-orbit effects at the CASSCF level does not include dynamic

correlation, which can in some cases be very large (e.g., -3 kcal/mol for NiCl, -3.1 for NiO, -2.4 for

NiF). For reasons such as this, DeYonkers and co-workers have suggested that “chemical accuracy”
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for transition metal species is ±3 kcal/mol[250]. None of the DFT functionals considered in this

study meets this criterion. As is well known, DFT results are highly dependent on the exchange-

correlation functional used, with MAEs ranging from 3.7 to 15.7 kcal/mol. The highest level of

accuracy is obtained with the B97 functional, and our data suggests that it should be chosen in

DFT studies of similar transition metal chemistries.

The results of this work would argue that Truhlar’s original claim, that CCSD(T) and DFT

produce comparable accuracy, must be qualified. A head to head comparison of the B97 functional

in a large basis set with state-of-the-art CCSD(T) in the CBS limit shows that while both exhibit

equally large maximum errors (∼17 kcal/mol), the MAE of the latter is slightly, but significantly,

lower. That said, the accuracy of DFT depends entirely, and perhaps unsystematically, on the

functional employed, and we note that in comparison to the majority of functionals, CCSD(T)

should be preferred assuming one has adequate computing capacity.

For the CCSD(T) approach and its MR-corrected variant, our analysis gives MAEs of 2.84 and

2.76 kcal/mol, and maximum errors of 17.35 and 11.6 kcal/mol, respectively. A robust benchmark

method for transition metal chemistry, in our view, cannot make such large errors for individual

cases. That is not to say that CCSD(T) is necessarily unfit for benchmark applications. Specifically,

both the CCSD(T) protocol and the MR-CCSD(T) results we present, as performed in Ref. 35,

involve a number of assumptions that may lead to suboptimal accuracy. Chief among them are

the additivity assumptions involving the core-valence and scalar relativistic corrections. In the CC

protocol, the CBS limit is estimated with the non-relativistic Hamiltonian. Then, a relativistic

correction using the DKH Hamiltonian in a TZ-level basis is added. Similarly, the MR-CCSD(T)

values shown simply add a multi-reference corrections computed in the TZ basis without core-

valence effects treated explicitly, and without the DKH Hamiltonian and corresponding basis sets.

Indeed, the relativistic corrections can be quite large, e.g. -8.1, 6.4, and -7.8 kcal/mol for NiCl, CoCl,

and NiF, respectively. In such cases, among others, it is plausible that the additivity assumptions

mentioned above break down.

Another potential source of error is that the MR-CCSD(T) calculations have not been converged

with respect to active space size, likely due to the high computational expense associated with such
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a procedure. Indeed, the full-valence (and sometimes smaller) active spaces may be insufficient for

cases in which excitations into high-lying virtual and/or from low-lying occupied orbitals contribute

significantly to the correlation energy.

Thus, these points suggest that more accurate CC results are possible, in principle, but only

if one is willing to bear the high computational expense required to carry out a more rigorous

computational protocol.

Turning to our ph-AFQMC methods, we first notice that QMC/MP2cbs, with an MAE of

2.3(4) kcal/mol and maximum error of 12(2) kcal/mol, is of comparable quality to, or arguably

slightly more robust than, MR-CCSD(T). This is remarkable given that the latter involves CC

calculations, which scale as the seventh power with system size, in QZ and 5Z basis sets, while the

former requires a ph-AFQMC calculation in the TZ basis only, followed by a relatively inexpensive

two-point MP2 extrapolation. The near-perfect parallel efficiency of the QMC calculation, and its

acceleration on graphical processing units, are advantages that are not enjoyed by traditional CC

implementations.

QMC/CCcbs achieves notable reductions in both the MAE and maximum error, at 2.1(4) and

7(2) kcal/mol, respectively. We note that for larger systems, using localized orbital implementations

of CCSD(T) can drastically reduce the computational cost, while preserving systematic improvabil-

ity with regard to localization errors. For systems with substantial MR character, methods such as

CASSCF of selected CI supplemented with perturbation theory can be used to replace CCSD(T)

to perform the CBS extrapolation.

When the 13 cases for which we performed CBS extrapolations entirely with ph-AFQMC are

taken into account, the maximum error of our best method, QMC/CC+QZcbs is reduced to 3(3)

kcal/mol, with an MAE of 1.4(4) kcal/mol. For larger systems, the QZ extrapolation option

becomes relatively more advantageous, given its accuracy at low-polynomial scaling.
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4.6 Conclusions and Outlook

In summary, we have computed the De of 44 3d transition metal-containing diatomic molecules

with ph-AFQMC. We describe the extension of a recently developed correlated sampling approach

to the calculation of bond dissociation energies, and report improvements in both efficiency and

accuracy compared to uncorrelated calculations. In order to assess the robustness of various CBS

extrapolation techniques, and moreover to compare our ph-AFQMC results to the DFT, CCSD(T),

and MR-CCSD(T) calculations performed in Ref. 35, we carefully assemble a set of reference

experimental values via the following unbiased protocol. We use the experimental values selected

by de Oliveira-Filho and co-workers, and, when available, predissociation measurements from a

recently published work by Morse and co-workers. VH was omitted in Ref. [35], thereby depriving

us not only of a consistently-chosen experimental reference but also of consistently-computed DFT

and CC values, so it is not included in our statistical analysis. We omit cases where the experimental

values selected by de Oliveira-Filho and Dixon are significantly different (with non-overlaping error

bars), which necessitates the removal of CrO from the test set. Finally, we remove ZnS from the

analysis on the grounds of concerns regarding the validity of the reported experimental number,

which has been voiced previously in the literature, and emboldened substantially by the observation

that ph-AFQMC, CCSD(T), and MR-CCSD(T) all disagree with the experimental value, and

roughly agree with each other given statistical error bars.

Using this set of reference values, we assess the accuracy of our ph-AFQMC calculations along-

side previously published results from 10 DFT functionals, CCSD(T), and MR-CCSD(T). The

results are plotted in Fig. 4.13.
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Figure 4.13: Statistical summary of the accuracy of bond-dissociation energy predictions, for a representative set of
computational methods.

We find that of the DFT functionals, B97 performs best, and suggest its use for future DFT

studies of transition metal-containing systems. We find that CC methods, while more accurate

on average than DFT approaches, are not suitable benchmark methods for these systems due

to the persistence of outliers with errors in excess of 10 kcal/mol. We take advantage of the

systematic improvability of the ph-AFQMC method to attain high-quality predictions for these

diatomic systems, and experiment with various cost-effective CBS extrapolation methods utilizing

MP2 or CC. The final MAE of our best calculations is 1.4(4) kcal/mol, with maximum error of 3(3)

kcal/mol. We would like to draw particular attention to the need for more robust experimental

determinations of the dissocation energy of ZnS (as discussed before) and CrO, as, with regard

to the latter, our most reliable ph-AFQMC calculation predicts 110.1 ± 1.3 kcal/mol, which is

in agreement with two other published experiments[230, 242], but not the one put forth by de

Oliveira-Filho and co-workers.

Although they are composed only of two atoms, these transition metal systems exhibit very
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complex electronic structures, with a wide range of both static and dynamic correlation, core-

valence and relativistic phenomena. The presence of many competing, low-lying states is common

in transition metal-containing systems, e.g. in the Ni atom[251] and FeS[235], and we have shown

that our ph-AFQMC protocol is capable of constraining calculations to targeted, experimentally-

observed angular momenta and spatial symmetries that characterize the ground states.

That our QMC calculations can achieve such high accuracy is even more remarkable given that

the trial wavefunctions used to implement the phaseless constraint utilize between 100 and 5700

determinants (∼800 on average). However, obtaining CASSCF wavefunctions with sufficiently

many active electrons and orbitals will become a challenge when larger systems are considered.

We stress the need to experiment with alternative trial wavefunctions, the choice of which will

likely depend on the target application. We are optimistic that explorations into more efficient

descriptions of dynamic correlation and ways to exploit the locality of entanglements will lead the

way toward scalable trials for accurate ph-AFQMC calculations.
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Chapter 5

Singlet-Triplet Energy Gaps of

Organic Biradicals and Polyacenes

with Auxiliary-Field Quantum Monte

Carlo

5.1 Introduction

The energy gap separating the lowest-lying singlet and triplet states of a molecule is an important

property relevant to many chemical processes. For example, light absorption by chlorophyll in

Photosystem II can produce triplet states which in turn react with triplet oxygen to produce short-

lived and highly reactive singlet oxygen[252]. Additionally, the relative energetics of first-excited

singlet and triplet states in dopants utilized in organic light-emitting diodes governs the efficiency of

such devices, and is a useful parameter for the design of light-emitting electronics[253]. In the field

of photocatalysis the singlet-triplet (ST) gap is directly relevant to a variety of redox reactions[254].

In addition the ST gap is a quantity of crucial importance for determining the energetic feasibility

of the optical processes known as singlet fission[255] and upconversion[19]. In the former process, a
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single photon produces a high energy singlet state which eventually splits into two triplet excitons; in

the latter, two triplet excitons annihilate or fuse to form a high energy emissive singlet. In certain

cases the ST gap can be probed under cryogenic conditions via phosphorescence measurements,

however for a large number of relevant molecules direct measurement is not possible.

The electronic structures relevant to these types of applications can be complicated by the

presence of biradical character in one or more of the involved spin-states. Biradicals are molecules in

which two valence electrons can occupy two degenerate but spatially distinct molecular orbitals[256]

(the species are referred to as biradicaloids if these two orbitals are nearly-degenerate, but we do not

make this distinction here). The many possible electronic configurations give rise to their capacity

to exhibit remarkably specific chemical reactivity[257, 258, 259, 260, 261]. Singlet states can be

characterized as either closed-shell or open-shell. In the former, one of the two valence states is

doubly occupied, which is typically the case, e.g., in carbenes. These species can simultaneously

display Lewis base and Lewis acid character, and thereby undergo concerted addition reactions, e.g.

with alkenes, to produce stereospecific products. Open-shell singlet states[262] are characterized

by single-occupancy of each of the two valence states, as in all triplet states due to Pauli exclusion.

Such open-shell molecules yield products of mixed stereochemistry.

The electronic structure community has witnessed the development of promising theoretical

methods for computing the ST gap in biradical molecules. This is a challenging problem for tradi-

tional single-reference ab initio methods, e.g. Hartree-Fock (HF) and Density Functional Theory

(DFT), as a minimal quantum-mechanical description of the wavefunctions corresponding to all

singlet states and one triplet state (Ms = 0) in the two electron two orbital model is necessar-

ily a superposition of two electronic configurations[23, 24], thus requiring more than one Slater

determinant. Even for simple chemical species such as NH and O2, which have triplet ground

states, the singlet spin-configuration is notoriously difficult to describe. Accurate predictions are

further complicated by the requirement that static and dynamic electron correlation be well bal-

anced, with spin-states of both multiplicities treated on equal theoretical footing. Biradical systems

have been studied with DFT[263, 264] and fractional spin variants[265, 266], Generalized Valence

Bond theory[267, 268, 269, 270], spin-flip (SF) methods[23, 271, 272, 273], Complete Active Space
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Self-Consistent Field (CASSCF) with 2nd order perturbation theory[274], multiconfiguration pair-

density functional theory (pDFT)[275, 276, 277, 278, 279], Coupled Cluster (CC) methods[280, 281,

282], doubly electron-attached equation-of-motion CC theory[283, 284], spin-extended Configura-

tion Interaction (CI) with singles and doubles[285], incremental Full CI[286], Difference Dedicated

CI[287, 288, 289], the particle-particle random phase approximation (pp-RPA)[24, 290], the Den-

sity Matrix Renormalization Group (DMRG)[291], Yamaguchi spin projection[292] and its recent

combination with orbital-optimized MP2[293].

We will use ph-AFQMC to compute ST gaps in this Chapter. While imaginary-time projection

is most frequently used to yield ground-state properties of a system, the formalism has also been

used to accurately compute low-lying excited states of materials[294], molecular diatomics[295] and

dipole-bound species[296]. These calculations rely on the fact that eigenfunctions of the Hamil-

tonian are orthogonal. In practice, when the exact eigenfunctions are unknown, ph-AFQMC cal-

culations use a so-called “trial wavefunction” to project out orthogonal components that may be

sampled along the imaginary-time random walks. For example, for the molecules with triplet

ground-states relevant to this work, the energy of the lowest-lying excited singlet state can be

sampled using a trial wavefunction with 〈S2〉 = 0, due to its near-orthogonality to the true triplet

ground-state. In the limit of an exact trial wavefunction, this symmetry-constraining approach

would be exact.

In what follows we will show that an unrestricted single-determinant trial wavefunction is ca-

pable of accurately describing multi-reference biradical species. This is a significant result because

the computational cost of CI and CASSCF calculations, despite many recent advances[297, 298,

299, 300], scales exponentially with system size and thus such methods are infeasible as trial wave-

functions for ph-AFQMC. As an example, the number of π electrons in the polyacene series is 4n+2

(n=1,2,... for benzene, naphthalene,...), which typically must be included in the active space for

accurate MCSCF-based predictions. Typical CI solvers can handle up to ∼ 16 active electrons and

orbitals, which would be insufficient for n > 3.

We view the ability of an electronic structure theory to accurately describe biradicals as a pre-

requisite for future studies of large, typically conjugated systems that catalyze photochemical pro-
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cesses such as upconversion. After showing that a spin-projected approach to ph-AFQMC[75] with

unrestricted single-determinant trial wavefunctions produces accurate results for a set of strongly

biradical small molecules and three benzyne isomers, we then illustrate the scalability of our ap-

proach by taking a first step toward relevant and relatively large photocatalytic molecules, namely

the polyacene series including naphthalene, anthracene, tetracene, and pentacene. These molecules

are well-studied both experimentally (with measurements available in the literature for n=1-5,

though not beyond) and theoretically, as they have myriad applications in organic electronics (see

references in the first paragraph of Ref. 290). While biradical and polyradical character is pre-

dicted to be responsible for the instability of hexacene and longer acenes[291, 301], we focus on the

n=2-5 molecules since they are representative of the majority of molecules in our target class of

photocatalysts[254]. In fact, n=3,4 are known to perform upconversion[19], and n=3-5 are known

singlet-fission catalysts[255].

This chapter is organized as follows. Details of our computational approach are described in

Sec. 5.2. In Sec. 5.3 we compute ST gaps for a set of 13 small organic molecules which have singlet

states of highly biradical nature, and compare with experimental measurements. Next we examine

ortho- meta- and para- isomers of benzyne, and show that very high accuracy can be obtained with

both CASSCF and single-determinant trial wavefunctions using a basis set of moderate size. Having

shown that a single-determinant trial wavefunction combined with a spin projection technique is

capable of accurately describing multi-reference biradical species, we proceed to compute ST gaps

with ph-AFQMC for the increasingly large (but not necessarily biradical) systems naphthalene,

anthracene, tetracene, and pentacene, and compare our results with state-of-the-art electronic

structure theories and experimental measurements. Finally, we predict the ST gaps for a set of

anthracene derivatives which are potential annihilators for optical upconversion.

5.2 Computational Details

All calculations utilize an imaginary time step of ∆τ = 0.005Ha−1. Walker orthonormalization,

population control, and local energy measurements are carried out every 2, 20, and 20 steps,
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respectively. We utilize a modified Cholesky decomposition of the electron repulsion integrals

(ERIs)[77], with cutoffs of 10−5 for the small molecule biradicals, and 10−4 for polyacenes, n=2-

4. For pentacene (n=5) we use density fitting with the Weigend Coulomb-fitting basis set[199]

to reduce the memory requirements of the calculation, while preserving high accuracy in energy

differences[236].

All calculations utilize single-precision floating point arithmetic, though we note that inputs such

as the trial wavefunction, one-electron integrals, and decomposed ERIs are obtained using double-

precision. For ionization and bond-dissociation energies of transition metal atoms and diatomics,

respectively, this yielded very high accuracy while reducing the computational cost compared to

double-precision calculations[236, 302]. For pentacene, the largest molecule considered in this

work, we verified with separate calculations in the STO-3G basis that single- and double-precision

calculations gave statistically indistinguishable results.

For the small molecule biradicals, we use the aug-cc-pVxZ basis sets[148], with x=T,Q. Unre-

stricted HF (UHF), restricted HF (RHF) and its open-shell variant (ROHF), unrestricted Kohn-

Sham DFT with the B3LYP functional (UB3LYP), and CASSCF trial wavefunctions are obtained

using PySCF[144]. ST gaps are extrapolated to the complete basis set (CBS) limit using exponen-

tial and 1/x3 forms for the mean-field and correlation energies, respectively, as detailed in, e.g.,

Ref. 236.

For the benzyne isomers and polyacenes we report ST gaps in the cc-pVTZ basis[147], primarily

for computational expedience, since pentacene has nearly 900 basis functions. For hydrocarbon

systems, full CBS extrapolation typically alters the triple-zeta results by ∼1 kcal/mol or less. This

empirical finding is consistent with previous studies of polyacenes using other wavefunction methods

which show little basis set dependence[280, 303, 290].

Our ph-AFQMC calculations utilize the spin-projection technique detailed in Ref. 75. The

walkers are initialized with RHF for singlets and ROHF for triplets, which have 〈S2〉 of exactly 0

and 2, respectively. With an appropriate form of the Hubbard-Stratonovich transformation this

can ensure that the single-particle imaginary-time propagator preserves spin-symmetry despite the

use of a (possibly) spin-contaminated unrestricted trial wavefunction.
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In what follows, we propose a simple empirical protocol, “AFQMC/U”, to guide the selection

of an optimal unrestricted orbital set, among UHF and UB3LYP orbitals, to be used as the trial

wavefunction in AFQMC calculations of potentially biradical systems. UHF orbitals are used by

default, unless 〈S2〉UHFsinglet > 1.1 or 〈S2〉UHFtriplet > 2.1, in which case UB3LYP orbitals are utilized.

Our rationale is based on the observation that wavefunctions constructed from unrestricted Kohn-

Sham orbitals are known to exhibit less spin-contamination compared to UHF solutions[304]. To

justify the selected thresholds, we note that for a perfect singlet biradical, as exemplified by the

dissociated H2 system, UHF provides a correct description of the dissociation limit, and 〈S2〉UHFsinglet =

1[305]. This would suggest that spin-contamination in significant excess of this value may represent

distortions that are irrelevant to the essential physics of singlet biradicals, and thus UB3LYP

orbitals, which are less severely contaminated, are a preferable alternative. Biradical triplet states,

in general, are not expected to exhibit spin-contamination at the UHF level, as they are typically

well-described by a single determinant (the two-determinant Ms = 0 triplet state is not encountered

due to the constraint on 〈Sz〉). Thus, any spin-contamination in significant excess of the spin-pure

value of 〈S2〉triplet = 2 is likely undesirable, and in such situations AFQMC/U utilizes a trial

wavefunction with UB3LYP orbitals.

5.3 Results and Discussion

5.3.1 Small Molecule Biradical Set

ST gaps are computed for the set of 13 small molecules with singlet states that exhibit substan-

tial biradical character, recently examined in Ref. 275. Molecular geometries for the biradical

species are taken from the Supporting Information of Ref. 275, which used QCISD/MG3S for CF2

and QCISD(T)/aug-cc-pVQZ for the rest, with unrestricted (restricted) HF references for triplet

(singlet) multiplicities, respectively. ph-AFQMC results utilizing CASSCF trial wavefunctions are

plotted in Fig. 5.1, relative to experimental reference values, along with data provided in Ref.

275 for broken-symmetry DFT with the BLYP functional (UKS/BLYP), its spin-projected variant

(WA-KS/BLYP), and a composite method which has been shown to produce comparable accuracy
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to CCSD(T)/CBS[306] (W2X). We note that we use a different reference value for NH+
2 , which is

from a genuine experimental measurement[307], following Ref. 308.

Figure 5.1: Deviations [kcal/mol] of various calculations from experimentally-derived reference values. Error bars
show the statistical error of the QMC measurements.

The ph-AFQMC ST gaps have been converged with respect to active space sizes of the CASSCF

trial wavefunctions, an approach which has been shown to produce very high accuracy even for

strongly correlated systems[302, 236]. However the generation of such trial wavefunctions is, in

practice, limited to moderate system sizes due to the procedure’s exponential scaling. In light of

applications to large systems such as those found in organic electronics which we will focus on in

future investigations, we explore the simplest scalable alternatives, namely UHF and RHF wave-

functions, and single determinants constructed from UB3LYP orbitals. 〈S2〉 values with respect to

the trial wavefunctions are shown in Table 5.1.
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Table 5.1: 〈S2〉 of the singlet and triplet unrestricted solutions for the 13 small molecule
biradical set.

UHF singlet UHF triplet UB3LYP singlet UB3LYP triplet

CH2 0 2.02 0.57 2.01
CF2 0.14 2.01 0 2.00
NH+

2 0.82 2.02 0.75 2.01
SiH2 0.43 2.01 0 2.00
PH+

2 0.44 2.01 0 2.00
H2CC 0.16 2.35 0 2.03
NH 1.01 2.02 1.00 2.01
NF 1.01 2.02 1.00 2.01
O2 1.02 2.05 1.01 2.01
OH+ 1.01 2.01 1.00 2.01
O 1.01 2.01 1.00 2.00
C 1.02 2.01 1.01 2.00
Si 1.05 2.02 1.01 2.00

Table 5.9 provides a rudimentary statistical representation of the accuracy of selected theoretical

approaches with respect to experiment, comparing the mean signed error (MSE), mean absolute

error (MAE), and maximum error (MaxE). As expected, utilizing CASSCF trial wavefunctions can

obtain excellent accuracy, with an MAE of less than a kcal/mol and MaxE of 1.7(3) kcal/mol for

O2. For this molecule, we have tried active spaces of 12e8o, 8e12o, and 10e15o. The latter two

active spaces produce statistically indistinguishable ST gaps in the CBS limit. Additionally, we

verified that the total energies of both the singlet and triplet states in the aug-cc-pvtz basis differ

by less than 1mHa going from one active space to the next. This suggests that the AFQMC/CAS

result is converged with respect to active space size, and the remaining deviation from experiment

is likely due to inaccuracies of the optimized geometries and/or the zero-point energies used to

correct the experimental result.
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Table 5.2: Mean signed, absolute, and maximum
errors [kcal/mol] of the theoretical methods shown
in Fig. 5.1 for the 13 small molecule biradical set.
Sorted by MAE value. Parenthesis indicate statis-
tical errors.

MSE MAE MaxE

AFQMC/CAS 0.5(4) 0.9(4) 1.7(3)
AFQMC/U 0.5(7) 1.2(7) 2.1(8)
W2X 2.7 3.1 6.9
WA-KS/BLYP -6.8 7.3 17.4
UKS/BLYP -12.5 12.9 34

The performance of UKS/BLYP is unsurprisingly poor, given the high level of spin-contamination

in the singlet states revealed in Table 5.1. The notable onset of larger errors in Fig. 5.1, i.e. for NH,

NF, O2, OH+, O, C, and Si, is found to roughly correlate with the presence of spin-contamination in

the unrestricted wavefunctions. The Yamaguchi correction clearly improves upon the UKS/BLYP

results, however the MAE of 7.3 kcal/mol and MaxE of 17.4 are still very large. W2X is relatively

more robust, with an MAE of 3.1 kcal/mol; however, the MaxE of 6.9 kcal/mol illustrates the

difficulty in describing biradical systems even with “gold-standard” single-reference methods.

In contrast, the AFQMC/U approach shows a significant improvement in accuracy (all ph-

AFQMC results using UHF, UB3LYP, and RHF trials are shown in the Appendix). We note that

the MaxE for AFQMC/UHF is for the H2CC molecule. The UHF wavefunction for the triplet state,

which should largely be of single-reference nature, still exhibits significant spin-contamination, as

seen in Table 5.1. The Slater determinant derived from UB3LYP orbitals appears to be relatively

uncontaminated, with an 〈S2〉 value of 2.03 while still benefiting from the additional variational

freedom due to the use of unrestricted orbitals. When this is used as the trial wavefunction for

ph-AFQMC, the resulting ST gap in the CBS limit is -49.9(9) kcal/mol, which significantly re-

duces the deviation from experiment from 3.1(7) to -1.3(9) kcal/mol. While more data points are

needed to validate a more general claim, this case suggests that when a single-reference spin-state

exhibits spin-contamination, AFQMC/UB3LYP can improve the accuracy of ST predictions over

AFQMC/UHF. This is reflected in the protocol specified earlier for AFQMC/U, which utilizes UHF

trial wavefunctions for triplet states when 〈S2〉 ≤ 2.1, and UB3LYP otherwise.
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To make a broader comparison regarding the ability of a variety of electronic structure methods

(with similar computational scaling with respect to system size) to predict ST gaps in biradicals,

we include calculated values from methods highlighted in Ref. 24 for a subset of 8 biradicals. We

plot this data in Fig. 5.2, and provide a comparative statistical summary in Table 5.10.

Figure 5.2: Deviations [kcal/mol] of computational methods selected from Ref. 24 from experimentally-derived
reference values, for a subset of 8 biradicals.
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Table 5.3: Mean signed, absolute, and maximum er-
rors [kcal/mol] of ph-AFQMC results and other meth-
ods for the 8 molecule biradical subset shown in Fig.
5.2. Sorted by MAE value. Parenthesis indicate sta-
tistical errors.

MSE MAE MaxE

AFQMC/U† 0.83(7) 1.0(7) 2.1(7)
AFQMC/CAS† 0.5(4) 1.1(4) 1.7(3)
SF-LDAa -0.7 1.7 4.0
SF-CIS(D)b 1.8 1.9 5.1
W2Xc 3.0 3.7 6.9
(V)FS-PBEd 4.2 4.3 6.7
B3LYP/pp-RPAe -3.5 4.8 7.7
WA-KS/BLYPc -6.6 6.6 17.5
HF/pp-RPAe -7.0 7.1 17.3
UKS/BLYPc -12.5 12.5 34.0

† This work.
a SF-TDDFT with LDA functional and non-

collinear kernel, TZ2P basis, from Ref.
309.

b cc-pVQZ basis for NH, OH+, NF, O2;
TZ2P basis for CH2, NH+

2 , SiH2, PH+
2 ;

from Ref. 23
c from Ref. 275.
d (Variational) Fractional-Spin method, 6-

311++G(2d,2p) basis, from Ref. 266.
e aug-cc-pVDZ basis, from Ref. 24.

For this subset of cases, there is no distinction between the AFQMC/UHF and AFQMC/U pro-

cedures, and AFQMC/U and AFQMC/CAS yield equivalent accuracy, considering statistical error

bars. Both produce MAEs of ∼1 kcal/mol and MaxEs of ∼2 kcal/mol, comparing favorably to all

other methods. As shown in the Appendix, the accuracy of AFQMC/UB3LYP and AFQMC/RHF

is similar to that obtained via spin-flip methods for these systems.

5.3.2 Benzyne Isomers

In this section we consider the ortho-, meta-, and para-benzyne isomers, shown in Fig. 5.3, and

compare predicted ST gaps with precise, gas-phase experimental measurements. The ground state

for all isomers is a singlet, and biradical character correlates with the distance between the unpaired
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electrons (ortho < meta < para)[23]. These systems are of scientific interest in their own right,

e.g. singlet para-benzyne is a biradical that can abstract hydrogen atoms from specific positions in

DNA, potentially enabling antitumor activity[310, 311].

Figure 5.3: Benzyne isomers and polyacenes studied in this work.

Ab initio calculations are difficult due to the strongly correlated biradical electrons. In par-

ticular, singlet para-benzyne exhibits orbital instabilities at the RHF level, and subsequent RHF-

based correlation methods produce poor results. Better results are obtained with the broken-

symmetry UHF reference, with complete spin symmetry-restoration via, e.g., subsequent CCSD

calculation[311]. With this in mind, we explore UHF and UB3LYP trial wavefunctions for ph-

AFQMC, in addition to multi-determinant trial wavefunctions from CASSCF.

Our ph-AFQMC calculations utilize geometries obtained from SF-DFT/6-311G* using the so-

called 50/50 functional[23]. The ortho- and meta- geometries are provided in Ref. 24, the para-

geometry in Ref. 273. In Ref. 24, ST gaps of para-benzyne are based on SF-CCSD/cc-pVTZ

optimized geometries[273]. However we have performed ph-AFQMC calculations on this SF-CCSD

geometry with CASSCF trial wavefunctions utilizing increasingly large active spaces (up to 8 elec-

trons in 16 orbitals), and still find a residual error from experiment of 2.9(7) kcal/mol in the
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cc-pVTZ basis (which is altered by only 1 kcal/mol in the estimated CBS limit). For this reason,

and for consistency with the ortho- and meta- isomers, we use the SF-DFT/6-311G* geometry for

the para-isomer as well.

It is noteworthy that Refs. 24 and 271 do not account for ZPE contributions in comparing

calculated electronic ST energies to experimentally measured quantities. For meta-benzyne this

correction is ∼1 kcal/mol, so we choose here to subtract out ZPE values, taken from Ref. 23, from

the experimental data when comparing with purely electronic predictions.

〈S2〉 values of the candidate unrestricted trial wavefunctions are shown in Table 5.4 for the

benzyne isomers. The UHF singlet and triplet states are both significantly contaminated in all

isomers, with the singlet state of para-benzyne is severe case (S2=1.68). UB3LYP reduces the

amount of spin-contamination in all cases, however it does not always eliminate it, e.g. 〈S2〉 of

singlet para-benzyne is reduced to 0.92. The AFQMC/U method will use UB3LYP trial wavefunc-

tions for all isomers, since 〈S2〉UHFsinglet > 1.1 for ortho- and para- benzynes, and 〈S2〉UHFtriplet > 2.1 for

all.

Table 5.4: 〈S2〉 of the singlet and triplet unrestricted solutions for ortho- meta- and para-
benzyne molecules.

UHF singlet UHF triplet UB3LYP singlet UB3LYP triplet

ortho 1.26 2.31 0.00 2.01
meta 0.97 2.68 0.10 2.02
para 1.68 2.31 0.92 2.01

The resulting ST gaps are shown in Table 5.11, and the deviations of the predicted values from

ZPE-corrected experimental results are shown in Fig. 5.7. AFQMC/UHF and AFQMC/UB3LYP

values are shown separately in the Appendix.
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Table 5.5: ST gaps [kcal/mol] for the ortho- meta- and para- ben-
zyne isomers. Parenthesis indicate statistical errors.

ortho meta para

expt* 37.5 ± 0.3 21.0 ± 0.3 3.8 ± 0.3

ZPE** -0.6 1.0 0.5
ZPE-corr’d expt 38.1 20.0 3.3

AFQMC/CAS† 37.4(6) 20.7(8) 4.5(5)
AFQMC/U† 37.6(7) 18.9(9) 2.2(9)
UB3LYPa 29.4 14.2 2.4
HF/pp-RPAb 45.6 35.5 4.0
B3LYP/pp-RPAb 37.4 22.1 0.6
SF-CIS(D)c 35.7 19.4 2.1
SF-B3LYPd 46.9 26.1 6.9
SF-CCSD(T)e 37.3 20.6 4.0
SF-oo-CCDc 37.6 19.3 3.9

* Ref. 312
** SF-DFT/6-311G*, Ref. 23.
† SF-DFT/6-311G* geometries from Ref. 23, cc-pVTZ

basis. This work.
a 6-31G* basis, Ref. 271
b Ref. 24. pp-RPA calculations in aug-cc-pVDZ basis.

o- and m- geometries from SF-DFT with the 50/50
functional (Ref.271). p- geometry from SF-CCSD,
Ref. 273.

c SF-DFT/6-311G* geometries, cc-pVTZ basis, Ref.
23.

d cc-pVTZ basis, Ref. 273.
e SF-DFT/6-311G* geometries, cc-pVTZ basis, Ref.

313.
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Figure 5.4: Deviations [kcal/mol] of various calculations from ZPE-corrected experimental measurements. Error bars
show the statistical error of the QMC measurements. Dotted black lines represent the reported uncertainty of the
experimental measurements.

SF-oo-CCD and SF-CCSD(T) both consistently obtain sub kcal/mol accuracy, however they

are computationally infeasible for larger systems due to the respective O(M6) and O(M7) scaling.

We thus focus presently on methods with lower scaling.

AFQMC/CAS and AFQMC/U produce predictions of comparable accuracy, with maximum

errors just outside 1 kcal/mol. AFQMC/UHF achieves good accuracy for the ortho- and meta-

isomers, however the severely spin-contaminated singlet state of para-benzyne results in a relatively

large overestimation of the ST gap. For this latter system AFQMC/UB3LYP substantially reduces

the deviation from experiment from 5.7(8) to 1(1) kcal/mol, and we note that similarly pronounced

corrections are observed in pp-RPA calculations when the B3LYP reference for the (N−2)-electron
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system is used instead of HF[24]. AFQMC/U and AFQMC/UB3LYP are equivelent for this set of

molecules, and thus we again find that AFQMC/U, utilizing only unrestricted single-determinant

trials, can produce results of comparable accuracy to both AFQMC/CAS and experiment.

We must emphasize the importance of explicitly breaking the spin-symmetry when obtaining

UHF and UB3LYP trial wavefunctions, and choosing the solution with lowest-energy. For instance,

the calculated ST gap using a spin-pure (〈S2〉 = 0) B3LYP trial for para-benzyne is -15 kcal/mol,

vs +2.2 kcal/mol when the lower-energy 〈S2〉 = 0.92 unrestricted singlet state is used.

As a final remark in this section, we note that while indeed the errors from UB3LYP (i.e.

without subsequent QMC) are generally reduced in comparison with those from the small molecule

biradical set, we still find significant errors of -8.7, -5.8, and -0.9 kcal/mol for the ortho-, meta-,

and para-benzynes. UB3LYP systematically underestimates the ST gaps, due to the unrealistically

low energy of the broken-symmetry singlet state. Rather unexpectedly, however, the magnitude of

the errors here are inversely correlated with diradical character.

These results suggest that for the benzyne isomers, which exhibit strong biradical character

while sharing features similar to the planar aromatic ring systems relevent to chemical photo-

catalysis, the ST gaps are accurately predicted by ph-AFQMC with both CASSCF and single-

determinant trials, and in the cc-pVTZ basis. The accuracy of AFQMC/UHF, even in its spin

projected form, is compromised by the heavily spin-contaminated singlet state in para-benzyne,

though AFQMC/UB3LYP provides an improved prediction, and is utilized in our AFQMC/U

method.

5.3.3 Polyacenes

Having shown that AFQMC/U can accurately describe molecules with strong biradical nature, we

now show that this computational approach can scale to larger molecules, focusing on polyacenes

from naphthalene to pentacene, shown in Fig. 5.3. These molecules all have singlet ground states.

We use geometries from Ref. 314 for the acenes, which were computed at the unrestricted B3LYP/6-

31G(d) level of theory.

Table 5.6 shows that the extent of spin-contamination in the singlet UHF states increases with

104



the number of fused rings. In contrast, wavefunctions constructed from UB3LYP orbitals are

spin-pure, consistent with previous computational studies[315, 281, 280].

Table 5.6: 〈S2〉 of the singlet and triplet unrestricted solutions for polyacenes n =
2− 5.

n UHF singlet UHF triplet UB3LYP singlet UB3LYP triplet

2 1.10 2.30 0 2.02
3 1.78 2.68 0 2.02
4 2.43 2.91 0 2.03
5 3.06 3.44 0 2.03

ST gaps calculated with ph-AFQMC in the cc-pVTZ basis are shown in Table 5.13, alongside

predictions from state-of-the-art ab initio methods and available experimental data. When more

than one experimental value is given in Ref. 303, we choose the value that is closest to that shown

in Ref. 290. Zero point energy corrections, which are subtracted out of the experimental values, are

required in order to compare calculated electronic energies with experiment, and we utilize numbers

from Ref. 303 derived from B3LYP/6-31G(d) geometry optimizations and frequency calculations.

It is important to recognize that all the experimental values, except in the case of anthracene,

cannot be fairly compared directly with gas-phase calculations. Ref. 281 conveniently provides

details of many of the experimental measurements, which are reproduced here. While the adiabatic

ST gap of anthracene was obtained via gas-phase photoelectron spectroscopy, the reported experi-

mental measurement for naphthalene was done in ether-isopentane-alcohol (solid) solvents at 77K.

The tetracene measurement was done in poly(methyl methacrylate) matrix at 298K, and pentacene

was measured in a tetracene matrix at 298K. Clearly, the gas-phase 0K conditions assumed in our

calculations are not consistent with the realistic experimental conditions for most of the polyacenes

studied here.
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Table 5.7: ST gaps [kcal/mol] for the polyacenes n=2-5. Square brackets indicate alternate
experiments, and parenthesis indicate statistical errors.

naphthalene anthracene tetracene pentacene

expt* [60.9] 61.0 [42.6] 43.1 29.4 19.8±0.7

ZPE* -3.4 -2.3 -1.8 -1.5
ZPE-corr’d expt 64.4 45.4 31.2 21.3

AFQMC/Ua 68.0(1.2) 46.2(1.2) 34.0(1.6) 25.2(1.6)
UB3LYPb 62.6 41.8 27.7 17.9
CCSD(T)/FPAc 65.8 48.2 33.5 25.3
B3LYP/pp-RPAd 66.2 45.7 32.1 22.6
GAS-pDFT (FP-1)e 70.6 45.5 33.6 25.4
GAS-pDFT (WFP-3)e 64.7 43.1 28.8 20.5
ACI-DSRG-MRPT2f 62.2 43.2 28.3 18.0
DMRG-pDFTg 67.1 46.1 31.6 22.6

* Taken from Ref. 303
a this work
b UB3LYP/6-31G(d) geometries and energies. Ref. 291
c B3LYP/cc-pVTZ geometries. Ref. 281
d UB3LYP/6-31G* geometries, B3LYP reference, cc-pVDZ basis. Ref. 290
e UB3LYP/6-31G(d,p) geometries, tPBE/6-31G(p,d). Active spaces de-

fined in Ref. 277
f UB3LYP/6-31G(d) geometries. Ref. 303
g UB3LYP/6-31G(d,p) geometries. tPBE/6-31+G(p,d). Ref. 279

We observe that the ph-AFQMC predictions are insensitive to the trial wavefunction used for

these polyacene systems, and show results from UHF, RHF, and UB3LYP trial wavefunctions in

the Appendix. Given that naphthalene through pentacene exhibit little biradical character[290],

the extreme spin-contamination of the UHF solutions shown in Table 5.6 is likely not representa-

tive of strong electron correlation, and hence restricted trial wavefunctions can also be expected

to yield accurate results. Moreover, all ph-AFQMC variants unambiguously achieve high accuracy

with respect to the gas-phase measurement for anthracene. The ph-AFQMC predictions for the

other polyacenes, which were experimentally probed in (solid) solvent matrix, appear to system-

atically overestimate the experimental values by a few kcal/mol. For naphthalene, we performed

ph-AFQMC calculations with CASSCF(10e,10o) trial wavefunctions, which gave a ST gap of 67(1)

kcal/mol. This value is in agreement with that from AFQMC/U, given statistical error bars, and lies

above the reported ZPE-corrected experiment by some 3 kcal/mol. Very similar overestimations by
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AFQMC/U are seen for n=2,4,5 and are corroborated by CCSD(T)/FPA, B3LYP/pp-RPA, and

DMRG-pDFT (though not by UB3LYP and ACI-DSRG-MRPT2). Thus it seems reasonable to

hypothesize that the calculations’ neglect of molecular environment may be responsible, though

admittedly there are a number of other factors that might be expected to contribute. For instance,

adiabatic ST gaps are known to be sensitive to the optimized geometries, which can result in

variations on the order of 1-3 kcal/mol[303].

Overall, given the uncertainties due to the treatment of temperature, solvent, and molecular ge-

ometries in these acene calculations, ph-AFQMC with single-determinant trial wavefunctions gives

satisfactory agreement with both experiments and other highly-accurate electronic structure meth-

ods, and moreover can scale with near-perfect parallel efficiency to systems as large as pentacene

in a triple-zeta basis, which has 146 electrons and 856 basis functions.

5.3.4 Potential Annihilators for Optical Upconversion - Anthracene Derivatives

In this section, we predict the ST gaps of a set of anthracene derivatives with AFQMC/U, and

compare with results from UB3LYP and a localized-orbital variant of CCSD(T) theory, DLPNO-

CCSD(T)[316, 317]. The structures are shown in Fig. 5.5. The anthracene with two methyl sub-

stituents, known as DMA, is a known triplet-triplet annihilator in optical upconversion schemes[318],

i.e. it catalyzes the fusion of two triplet excitons into a higher energy singlet state. In an effort to

design new annihilators, we generate candidate compounds by replacing the methyl substituents

with various functional groups that are synthetically feasible, and probe the effects, if any, on the

ST gaps.
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Figure 5.5: Structures of the anthracene derivatives. Top row, from left to right: DCA, DPA, TIPS. Middle row:
CF3, CN-UpDnMethyl, CN-DiagMethyl. Bottom row: DMA, OMe

UB3LYP and DLPNO-CCSD(T) calculations were performed with the ORCA quantum chem-

istry program[319]. Geometries were optimized at the UB3LYP/cc-pVTZ level of theory. Vibra-

tional frequencies were computed numerically with an increment of 0.001 Bohr. Zero-point energies

and thermal vibrational corrections are scaled by a factor obtained from the NIST computational

chemistry database (0.965 for B3LYP/cc-pVTZ)[149] and added to the resulting energies.

The DFT results reported in Table 5.8 are obtained from geometries and vibrational frequencies

computed within the conductor-like polarizable continuum model (CPCM) to estimate the effects

of toluene solvent. The DLPNO-CCSD(T) and AFQMC/U values are obtained by first calculating
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the ST energy difference in the gas-phase; energetic corrections to this gap due to ZPEs and thermal

occupation of vibrational states, computed in the gas-phase, are scaled and then added. Finally,

a solvent correction is obtained via DFT as the difference between the vibrationally corrected ST

gaps in toluene, as represented by the CPCM model, and in gas-phase.

Table 5.8: ST gaps for selected anthracene derivatives

UB3LYP DLPNO-CCSD(T) AFQMC/U

DCA 1.50 1.75 1.75(07)
DPA 1.66 1.91 1.82(11)

TIPS 1.39 1.66 *

CF3 1.66 1.95 2.05(11)
CN-UpDnMethyl 1.28 1.58 1.56(12)
CN-DiagMethyl 1.42 1.70 1.73(11)
DMA 1.54 1.77 1.69(07)
OMe 1.60 1.85 1.81(10)

* Given the general agreement for these systems between
AFQMC/U and DLPNO-CCSD(T) we omit the TIPS calcu-
lation, as it requires ∼1000 basis functions and thus significant
computational effort.

In every case, the DLPNO-CCSD(T) and AFQMC/U results agree to within the statistical error

bars of the latter, though both are significantly different than the DFT values, which appear to

systematically underestimate the gaps. We are aware of only one experimental measurement of the

ST gap, which for DCA is 1.8 eV[320]. UB3LYP performs poorly for this system, underestimating

the gap by 0.3 eV, whereas both DLPNO-CCSD(T) and AFQMC/U are in good agreement with

the experimental value.

For all molecules except DPA and TIPS, we investigated the effects of CBS extrapolation on

the ST gaps, and find that with DLPNO-CCSD(T) the difference between the cc-pVTZ result and

our extrapolated estimate of the CBS limit is never larger than 0.06 eV. Given that our QMC error

bars are larger than this, further extrapolation of the AFQMC/U results appears to be unnecessary.
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5.4 Conclusions

With CASSCF trial wavefunctions, ph-AFQMC can predict ST gaps with sub kcal/mol accuracy

with respect to gas-phase experimental measurements for a set of 13 small molecules with sin-

glet states of strong biradical character. However, for large systems the generation of such a trial

wavefunction quickly becomes impractical. The main result of this work is that near-chemical ac-

curacy for gas-phase ST gaps can also be obtained, even for strongly correlated biradical systems,

with a spin-projected ph-AFQMC technique, which initializes walkers with restricted determinants

while using an unrestricted single-determinant trial wavefunction to implement the phaseless con-

straint. We establish a quantitative criteria for choosing UHF or UB3LYP orbitals based on the

spin-contamination of the UHF wavefunction, and the resulting AFQMC/U methodology is vali-

dated on the small molecule test set, the ortho-, meta-, and para-benzyne isomers, and of all the

polyacenes for which experimental results are reported (though a true gas-phase experiment is only

available for anthracene). Having shown that the ph-AFQMC method can provide a balanced and

robust approach to accurately predict ST gaps, we use AFQMC/U to compute this quantity for

a set of anthracene derivatives, in an effort to discover novel triplet-triplet annihilators for optical

upconversion.
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5.A Appendix - Ph-AFQMC data from various trial wavefunc-

tions

5.A.1 Small Molecule Biradical Set

Figure 5.6: Deviations [kcal/mol] of ph-AFQMC predictions with single-determinant trial wavefunctions from
experimentally-derived reference values. Error bars show the statistical error of the QMC measurements.

Table 5.9: Mean signed, absolute, and maximum errors
[kcal/mol] of the theoretical methods shown in Fig. 5.6 for
the 13 small molecule biradical set. Sorted by MAE value.

MSE MAE MaxE

AFQMC/CAS 0.5(4) 0.9(4) 1.7(3)
AFQMC/U 0.5(7) 1.2(7) 2.1(8)
AFQMC/UHF 0.8(7) 1.3(7) 3.1(7)
AFQMC/UB3LYP 1.2(7) 1.9(7) 5.0(1.2)
AFQMC/RHF -1.6(8) 2.4(8) 7.5(8)
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Table 5.10: Mean signed, absolute, and maximum errors
[kcal/mol] of ph-AFQMC results and other methods for
the 8 molecule biradical subset shown in Fig. 2 of the main
manuscript. Sorted by MAE value.

MSE MAE MaxE

AFQMC/UHF†, †† 0.83(7) 1.0(7) 2.1(7)
AFQMC/CAS† 0.5(4) 1.1(4) 1.7(3)
SF-LDAa -0.7 1.7 4.0
AFQMC/UB3LYP† 1.26(7) 1.8(7) 5.0(1.2)
SF-CIS(D)b 1.8 1.9 5.1
AFQMC/RHF† -0.8(8) 2.1(8) 5.0(7)
W2Xc 3.0 3.7 6.9
(V)FS-PBEd 4.2 4.3 6.7
B3LYP/pp-RPAe -3.5 4.8 7.7
WA-KS/BLYPc -6.6 6.6 17.5
HF/pp-RPAe -7.0 7.1 17.3
UKS/BLYPc -12.5 12.5 34.0

† This work.
†† Equivalent to AFQMC/U
a SF-TDDFT with LDA functional and non-

collinear kernel, TZ2P basis, from Ref. 309.
b cc-pVQZ basis for NH, OH+, NF, O2; TZ2P

basis for CH2, NH+
2 , SiH2, PH+

2 ; from Ref. 23
c from Ref. 275.
d (Variational) Fractional-Spin method, 6-

311++G(2d,2p) basis, from Ref. 266.
e aug-cc-pVDZ basis, from Ref. 24.
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5.A.2 Benzyne Isomers

Table 5.11: ST gaps [kcal/mol] for the ortho- meta- and para- benzyne
isomers.

ortho meta para

expt 37.5 ± 0.3 21.0 ± 0.3 3.8 ± 0.3

ZPE* -0.6 1.0 0.5
ZPE-corr’d expt 38.1 20.0 3.3

AFQMC/CAS† 37.4(6) 20.7(8) 4.5(5)
AFQMC/UHF† 40.0(9) 20.7(8) 9.0(8)
AFQMC/UB3LYP†, †† 37.6(7) 18.9(9) 2.2(9)

* SF-DFT/6-311G*, Ref. 23.
† SF-DFT/6-311G* geometries from Ref. 23, cc-pVTZ

basis. This work.
†† Equivalent to AFQMC/U
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Figure 5.7: Deviations [kcal/mol] of various calculations from ZPE-corrected experimental measurements. Error bars
show the statistical error of the QMC measurements. Dotted black lines represent the reported uncertainty of the
experimental measurements.

5.A.3 Polyacenes

Table 5.12: Total energies [Ha] for naphthalene with various trial wave-
functions, in the cc-pVTZ basis.

Spin-state Trial Wavefunction ph-AFQMC Energy [Ha]

singlet CASSCF(10e10o) -385.334(1)
UHF -385.334(1)
UB3LYP -385.331(2)
RHF -385.334(2)

triplet CASSCF(10e10o) -385.227(1)
UHF -385.225(1)
UB3LYP -385.223(1)
ROHF -385.225(1)

114



Table 5.13: ST gaps [kcal/mol] for the polyacenes n=2-5.

naphthalene anthracene tetracene pentacene

expt [60.9] 61.0 [42.6] 43.1 29.4 19.8±0.7
ZPE -3.4 -2.3 -1.8 -1.5
ZPE-corr’d expt 64.4 45.4 31.2 21.3

AFQMC/UHFa 68.1(1.2) 44.7(1.1) 33.7(1.9) 24.4(1.5)
AFQMC/RHFa 68.1(1.2) 45.2(1.4) 35.1(1.7) 23.4(1.6)
AFQMC/UB3LYPa, †† 68.0(1.2) 46.2(1.2) 34.0(1.6) 25.2(1.6)

†† Equivalent to AFQMC/U
a this work

Figure 5.8: Deviations [kcal/mol] of various calculations from ZPE-corrected experimental measurements. Error bars
show the statistical error of the QMC measurements.
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Chapter 6

Conclusions

6.1 Current Status

The methodological improvements detailed in this work, together with the increasing availability

of large-scale GPU-accelerated supercomputers, have enabled the broad application of ph-AFQMC

to explore a wide variety of chemical applications, and we are continuing this push with a number

of ongoing projects.

The ability to compute and compare barrier heights corresponding to competing reaction mech-

anisms is a useful tool in predicting the rate of a chemical reaction. In fact, the prevalence of one

or more stretched bond at the transition state of a bond-breaking reaction coordinate demands the

use of an ab initio method which can accurately describe significant electron correlation effects.

To explore the performance of ph-AFQMC, we have computed reaction profiles for a number of

isoprene-ozone reaction mechanisms that may possibly occur in the atmosphere. The results will

be reported elsewhere, and will be followed by future explorations into the reactivity of transition

metal complexes and clusters.

The Friesner group has, for a number of years, been developing an empirical correction scheme

for DFT energy differences, called DFT-LOC[321, 322, 323, 14, 115]. We are utilizing ph-AFQMC

to supplement a collection of experimental IPs (and, quite often, to select among many values

reported with large uncertainties). This reference data is being used to fit a set of physically
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relevant descriptors, which are parameters that depend, e.g., on the molecular geometry and other

qualitative properties of the relevant chemical reaction. Having produced many hundreds of data

points, the resulting model to correct DFT IPs is shown to yield notable improvements in accuracy

compared to uncorrected DFT results. The success of this procedure paves the way for extensions

to other types of chemical reactions, e.g. spin-splittings and pKa’s of transition metal complexes.

In the near future, we intend to produce much larger data sets which will enable the investigation

of various machine learning-based alternatives.

Producing benchmark-quality thermochemical predictions for realistic transition metal contain-

ing species is a momentous goal, which we are intent on pursuing, since accurate and precise exper-

imental measurements in the gas phase especially are extremely rare. As discussed in Chapter 4,

new experimental techniques from Morse and co-workers have recently been reported, which appear

to yield reliable bond-dissociation measurements for small transition metal containing molecules

with sub kcal/mol precision[237]. Having utilized such measurements for the 3d-containing di-

atomics, we are keen to compare ph-AFQMC predictions with the measurements for compounds

containing heavier transition metals, e.g., Pt, Ag, and Au. In the near future we plan to validate

a ph-AFQMC protocol for such elements, which will involve an examination of various scalar rela-

tivistic approximations and pseudopotentials. In addition, we have identified a modest number of

ligand dissociation measurements for select transition metal complexes with reported experimental

uncertainties of ∼1 kcal/mol or less. We are currently using this reference data to explore how the

bias due to the phaseless constraint depends upon the choice of trial wavefunction; in other words,

we are asking the question, “What properties of a trial wavefunction are necessary to produce ac-

curate energy differences for transition metal complexes?” The results in Chapter 5 suggest that an

unrestricted single-determinant trial wavefunction is sufficient to describe some organic molecules,

even those with significant biradical character; however, the results in Chapters 3 and 4 suggest

that such trials are insufficient for transition metal atoms and diatomics (though we do expect, on

average, that the extent of static electron correlation may be slightly ameliorated in response to

ligand coordination). We are developing a systematic protocol to select actives spaces, informed

by ligand field theory and molecular orbital diagrams, for trial wavefunctions, and are comparing
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the resulting ph-AFQMC results with experiment and high-level quantum chemical predictions.

6.2 Outlook

6.2.1 Additional Methodological Improvements

The projects mentioned above are being pursued alongside concurrent efforts to improve the ph-

AFQMC methodology and its computational efficiency.

While, in principle, we have eliminated the memory bottleneck, as both the decomposed two-

electron integrals and precomputed tensors required to efficiently evaluate the local energy can

be split among an arbitrarily large number of GPU cards across multiple nodes, under such cir-

cumstances the parallel efficiency drops rather severely as the number of nodes is increased. Thus,

further methodological advances, to increase the computational efficiency while at least maintaining

current levels of accuracy, are desired. Our primary focus is to explore the utility of the DLPNO

approximations in the context of AFQMC, which exploit the short-range nature of dynamic corre-

lations to restrict the vast number of electronic excitations from localized, occupied orbitals into

virtual orbitals which do not contribute significantly to the correlation energy. This approach, in

the context of MP2[324], CC methods[316, 325, 317], and MCSCF methods[326], has been shown

to drastically reduce both the scaling and memory requirements, and we have reason to believe the

same will hold true in the case of AFQMC. Indeed, a related strategy known as “downfolding,” in

which terms in the Hamiltonian involving virtual orbitals above a specified cutoff are excluded, has

produced promising results[85], and may even be combined with DLPNO approaches to further

accelerate ph-AFQMC.

A second methodological advance, which can potentially lead to large reductions in computa-

tional cost, involves a more efficient way to estimate the CBS limit. While our current MP2- or

CCSD(T)-assisted extrapolation protocol appears to produce robust results in the vast majority of

cases, we did find, e.g., in Chapter 4 that ph-AFQMC calculations in both triple- and quadruple-ζ

basis sets are necessary to produce accurate predictions for highly multi-reference systems. An al-

ternative approach would be to utilize an auxiliary set of “explicitly correlated” basis functions, as
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is done in, e.g., Canonical Transcorrelation (CT) theory[327]. An effective Hamiltonian is produced

with the electron cusps analytically removed. Such a transformation is analogous to including Jas-

trow factors in DMC[53]. We anticipate that this will reduce the number of basis functions required

to reach the CBS limit[328, 329], and that the high scaling of the original CT procedure might be

reduced by the use of localized orbital approximations.

Regarding code development, we note that the parallel efficiency of our implementation for

large systems can be further improved by incorporating asynchronous MPI communications. This

approach will enable more efficient utilization of the GPUs, as the code can be organized such that

the devices can simultaneously perform computations while (unrelated) data is being transferred

elsewhere. Finally, we anticipate that AFQMC calculations on large systems may require the

incorporation of mixed-precision and sparse linear algebra routines[330, 175, 189].

6.2.2 Future Applications

Computing the relative energetics of low-lying excited-states is possible within the current ph-

AFQMC framework[295], and is highly relevant especially to fields such as photocatalysis. Chap-

ter 5 describes an accurate methodology to obtain the lowest excited-state of a different spin-

multiplicity, which fits naturally into the ground-state projection scheme. We have also shown in

Ref. 296 that an excited dipole-bound anionic state can be described given careful choice of trial

wavefunction. An exciting frontier involves computing a manifold of excited-state wavefunctions

with, e.g., CASSCF, TD-DFT, or CI methods, and utilizing these states as trials for subsequent

ph-AFQMC calculations. This could be a powerful technology, especially if correlated sampling is

used effectively.

Indeed, a similar approach utilizing an orthogonalization constraint with DFT virtual orbitals

has been introduced to compute excited-state properties of solids, e.g. band structures and optical

gaps[294]. As a new research direction, we envision that our efficient ph-AFQMC implementation

will open the door to the accurate and fully ab initio investigation of strongly correlated solids. In

addition to the recent advances mentioned above, we have outlined a way to compute quasiparticle
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gaps, ∆, with the addition-removal expression[331]

2∆ = [E(N + 1)− E(N)] + [E(N − 1)− E(N)], (6.1)

where correlated sampling is utilized to converge the quantities in square brackets. While we antici-

pate that large finite-size effects will make such a calculation, in practice, far from trivial, we believe

that ph-AFQMC has the potential to be a robust ab initio tool for band-gap prediction of semicon-

ducting materials. Finally, we envision that atomistic ph-AFQMC simulations can accurately probe

the charge- and spin- stripe orders known to be present in the ground-state of high-temperature

superconducting materials such as the cuprates[332, 333]. We intend to corroborate the results

from a recent study[82] in which the ground-state of the doped two-dimensional Hubbard model

is characterized by state-of-the-art quantum-mechanical simulations. Another possible extension

of the results in Chapter 5 is the computation of spin gaps in solids[334] utilizing the correlated

sampling technique.

The far-reaching significance of the developments presented in this thesis can be illustrated

by the potential use of ph-AFQMC to not only study systems such as the OEC of Photosystem

II with quantum mechanical resolution, but also to improve the accuracy of molecular mechanics

simulations for transition metal containing species. The parameterization of accurate classical force

fields for transition metals would be highly beneficial to the fields of drug discovery, metalloenzymes,

catalysis, and materials science. The required parameterization would likely involve the calculation

of potential energy surfaces of a metal atom coordinated by a wide variety of ligands or amino acid

residues. With accurate interaction potentials, it would be possible to use, e.g., the free-energy

perturbation technique to investigate relative binding affinities of candidate drug molecules with

metal cofactors in an active site. Furthermore, with such potentials one could rigorously compute

solvation free-energies of metal containing complexes, which would properly account for important

factors such as entropic effects at physiological temperatures. These results might then be used to

improve the parameterization of implicit solvation models for transition metal ions and complexes,

which could be used routinely and reliably to model metal chemistry in solution.
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[241] Śılvia Simon, Miquel Duran, and JJ Dannenberg. How does basis set superposition error

change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys., 105(24):11024–

11031, 1996.

[242] H Kang and JL Beauchamp. Gas-phase studies of alkene oxidation by transition-metal oxides.

ion-beam studies of cro+. J. Am. Chem. Soc., 108(19):5663–5668, 1986.

[243] J R Marquart and J Berkowitz. Dissociation energies of some metal sulfides. J. Chem. Phys.,

39(2):283–285, 1963.

[244] G De Maria, P Goldfinger, L Malaspina, and V Piacente. Mass-spectrometric study of gaseous

molecules. zns, znse and znte. Trans. Faraday Soc., 61:2146–2152, 1965.
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