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Abstract

Cellular dg-categories and their applications to homotopy theory of A∞-categories

Oleksandr Kravets

We introduce the notion of cellular dg-categories mimicking the properties of topological

CW-complexes. We study the properties of such categories and provide various examples corre-

sponding to the well-known geometrical objects. We also show that these categories are suitable

for encoding coherence conditions in homotopy theoretical constructs involving A∞-categories.

In particular, we formulate the notion of a homotopy coherent monoid action on an A∞-category

which can be used in constructions involved in Homological Mirror Symmetry.
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Chapter 0: Introduction

0.1 Motivation

The Homological Mirror Symmetry conjectures in general try to establish equivalences be-

tween algebraic data given by the derived categories of coherent sheaves on algebraic varieties on

one side, and symplectic data given by Fukaya categories on the corresponding symplectic man-

ifolds on the other side. In particular cases, we also may experience different variations of these

notions. For example, Fukaya categories might be replaced by partially wrapped Fukaya cate-

gories, symplectic manifolds and algebraic varieties might be additionally equipped with a Landau-

Ginzbur potential and/or a group action, and derived categories of coherent sheaves might be

replaced by categories of singularities (categories of matrix factorizations). While the data on

the algebraic side can be nicely described in terms of dg-categories, the data on the symplectic

side naturally fall into the realm of A∞-categories. This makes the symplectic side essentially

more complex as it is based both on the notions of differential topology and Fredholm theory

of J-holomorphic curves (needed just in order to define the A∞-operations), and on the abstract

formalism of A∞-categories, all of which are non-trivial theories lying on the different sides of

algebra/geometry/analysis-division of mathematics.

Our work was motivated by the attempt to define the notion of a semidirect product of a Fukaya

category with a monoid acting on this category appearing in certain examples of equivariant mirror

symmetry. However, eventually our main focus switched into developing the foundations required

for these notions to be properly defined. In particular, we realized that the notion of a (homotopy

coherent) action on A∞-categories is not so obvious to explicitly formulate itself, even though the

idea behind it is clear.

A natural approach for defining a homotopy coherent action of a monoid Γ on an A∞-cate-
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gory A is to start from the classical definition of a strict action as a monoid morphism ρ : Γ →

A∞(A,A), where A∞(A,A) denotes the class of all A∞-endofunctors of A forming a monoid

under the composition of functors, and try to replace the equalities arising in this definition by the

A∞-equivalences. Namely, we should firstly provide the set of A∞-functors

ρ(g) : A → A for g ∈ Γ,

then we should provide the set of natural transformations/equivalences

ηg,h : ρ(gh) −→ ρ(g)ρ(h) for g, h ∈ Γ,

measuring the failure of ρ to commute with the compositions. Then, we also need to provide the

higher coherence data for the above functors and transformations in order to get a workable defini-

tion. Namely, for n ≥ 3, we just need to specify one homotopy for each choice of g1, . . . , gn ∈ Γ

between certain A∞-transformations ρ(g1 . . . gn) → ρ(g1) . . . ρ(gn) defined in terms of previous

components. However, even though this idea is clear, it becomes less and less obvious of how

to write down these coherence conditions as n increases. For example, it is not clear of how to

unambiguously combine the homotopies appearing in a multi-dimensional diagram into a single

algebraic expression so that to define the boundary conditions for each subsequent homotopy. The

problems even worsen as the composition of transformations in the A∞-setting is not associative.

0.2 Idea and implementation

It is well-known that we generally can present the coherence conditions on the objects of some

category as “functors” from “diagrams” into this category. For example, the A∞-transformations

of two A∞-functors f, g : A → B can be encoded as the functors from (∗ → ∗) to the category

of A∞-functors A∞(A;B). Such diagrams should be also equipped with the differentials, so that

we could encode the homotopies between A∞-transformations. Similarly, there should be a way

to compose the morphisms in our diagrams to account for the compositions of transformations.
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In this thesis, we introduce the notion of cellular dg-categories as the objects able to encode the

above diagrams. They can be thought as just “free categories on diagrams equipped with a differ-

ential”. Moreover, we notice that the diagrams involved in the definition of a homotopy coherent

action can be described in terms of polyhedra, similarly to how the A∞-categories themselves can

be described in terms of Stasheff associahedra. Due to this, our categories are designed to mimic

the topological objects such as CW-complexes rather than more abstract diagrams.

In Chapter 2, we provide the precise definition and study the general properties of cellular

dg-categories by comparing them to CW-complexes. In particular, we describe various examples

of cellular dg-categories corresponding to well-known geometric objects. We also suggest in Con-

jecture 2.37 that cellular dg-categories form invariants of CW-complexes. (This chapter does not

involve A∞-formalism.)

In Section 3.1, we prove our main statements (Theorem 3.1 and Corollary 3.4) showing that

cellular dg-categories indeed form a good model for the diagrams involved in describing coherence

conditions in A∞-setting. Namely, we show that every A∞-functor from a cellular dg-category A

into an A∞-category B can be described by the values on the objects and cells of A (which can be

thought as the vertices and arrows in the diagram) satisfying the boundary conditions defined from

the structure of the differential in A. We also note that such functor can be uniquely reconstructed

from the corresponding values up to a certain type of equivalence called s-homotopy which was

introduced by Seidel in [Sei08] under the name of homotopy. We dedicate Appendix B to for-

mulating the notion of an s-homotopy and for describing its various properties and implications

needed for us.

Remark 0.1. An important feature of the above facts is that the coherence conditions in A∞-set-

ting can be encoded by dg-categories, which means that one might be able to formulate different

homotopy theoretic notions in A∞-categories without preforming too many computations with

A∞-structures per se. For example, we ourselves rarely need to perform any sign computations in

this work, even though a significant part of it is formulated in A∞-terms.

In Section 3.2, we apply the above ideas and suggest the precise definition of a homotopy
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coherent monoid action on A∞-categories. We notice that such action can be described in terms

of A∞-categorical analogues of topological A∞-maps of strict monoids (similarly to how a strict

action can be described as a strict map of monoids). The components of the topological A∞-maps

are parameterized by ordinary n-dimensional cubes (see §1.3), and their A∞-categorical counter-

parts are parameterized by the corresponding dg-n-cubes defined in §2.5.2. In Appendix A, we

describe two examples of A∞-categorical monoids needed in order to formulate the definition of

a homotopy coherent action.
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Chapter 1: Preliminaries

We use the following notations and conventions:

• We are working in the k-linear setting, where k is a commutative (unital) ring not assumed

to be a field.

• Our differentials have degree 1 and are denoted by ∂. The chain complexes are denoted

by X•. The shift of complexes is denoted by sX• := X•[1]. The corresponding operation

s : X• → sX• has degree −1.

• The grading always means Z-grading.

• We use notation (−)n := (−1)n.

• We compose functions in the traditional right-to-left order and write the arguments on the

right of the functions as in (f ◦ g)(x) = f(g(x)). Similarly, we compose morphisms and

paths from right-to-left.

• We usually denote composition of functions/morphisms/paths/etc. by juxtaposition.

• We denote the units/identities in categories and dg-categories as 1X for an object X .

• We denote the units and strict units in A∞-categories as iX and isuX respectively for an ob-

ject X .

• We use two kinds of A∞-operations mn and bn when dealing with A∞-categories.

• We mostly follow notations and conventions of [Man07] when discussing A∞-categories.

Remark 1.1. Even though half of this thesis is built on the notion of A∞-categories, the nature of

our results is such, that we rarely need to perform any sign computations with A∞-categories.
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1.1 Chain complexes and dg-categories

A chain complex X• is a Z-graded space of k-modules (Xn)n∈Z equipped with a differential

∂X : X• → X• which is a graded map of degree 1 such that (∂X)2 = 0. We will often omit the

subscript and will write ∂(x) instead of ∂X(x) as soon as we know which complex the element x

belongs to.

Throughout this work, whenever we talk about the grading, we always mean Z-grading.

If x ∈ Xn, we call x an element of X• of degree n. For an element x ∈ X•, we denote its

degree by |x|. An element x of X• is called a cycle if ∂(x) = 0, and it is called a boundary if

x = ∂(y) for some element y. In the latter case, we will also say that x is a boundary of y. Any

boundary is automatically a cycle.

A graded map f : X• → Y • of degree n of two chain complexes is a sequence of k-linear maps

fk : Xk → Y k+n for k ∈ Z. It is called a chain map, if it has degree 0 and commutes with the

differentials: f ◦ ∂X = ∂Y ◦ f .

We define the shifted complex sX• = X•[1] by its components as follows: (sX•)n := Xn+1.

For each x ∈ X• of degree n, we will denote by sx the same object considered as an element of

sX• of degree n − 1. Thus, we define the shift map s : X• → sX•, x 7→ sx which is a graded

map of degree−1 whose components are basically the identity maps. We define the differential on

sX• as the negation of the differential on X•:

∂sX(sx) := −s
(
∂X(x)

)
, for any x ∈ X•.

Remark 1.2. The sign in the definition of ∂sX is chosen in such a way that the shift map s becomes

itself a cycle of degree −1, that is ∂Hom(s) = 0 in the corresponding Hom-space.

Definition 1.3 (Leibniz rule). We say that a bilinear operation ? of degree 0 on two complexes

X• and Y • satisfies the Leibniz rule if the following equation holds for all elements x ∈ X• and

y ∈ Y •:

∂(x ? y) = ∂(x) ? y + (−)|x| x ? ∂(y).
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Definition 1.4. A dg-category A is a category whose sets of morphisms have structures of chain

complexes such that the units are 0-cycles and the operations of composition satisfy Leibniz rule.

In such case, the differential on the morphisms is denoted by ∂A.

The chain complexes form a closed monoidal category, meaning that the tensor products and

inner Hom-spaces also form chain complexes. The differentials in the latter chain complexes are

defined in such a way that the Leibniz rule is satisfied for either of the operations of the tensor

product of morphisms, of the function evaluation and the function composition.

Definition 1.5. The differential ∂X⊗Y on the tensor product X• ⊗ Y • of two chain complexes X•

and Y • is defined via the Leibniz rule:

∂X⊗Y (x⊗ y) := ∂X(x)⊗ y + (−)|x|x⊗ ∂Y (y).

Definition 1.6. For two chain complexes X• and Y •, the graded maps f : X• → Y • of vari-

ous degrees form a chain complex Hom•(X•, Y •) with the inner differential ∂Hom defined by the

following formula:

∂Hom(f) := ∂Y ◦ f − (−)|f |f ◦ ∂X .

This definition can be also interpreted in terms of Leibniz rule as follows. Applied to an element

x ∈ X•, it gives us the equality

(
∂Hom(f)

)
(x) = ∂Y

(
f(x)

)
− (−)|f |f

(
∂X(x)

)
,

which is equivalent to the following:

∂Y
(
f(x)

)
=
(
∂Hom(f)

)
(x) + (−)|f |f

(
∂X(x)

)
.

The latter is precisely the Leibniz rule for the function application.

The definition of ∂Hom implies that the Leibniz rule holds also for the compositions of the
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graded maps f : Y • → Z• and g : X• → Y •:

∂(f ◦ g) = ∂(f) ◦ g + (−)|f |f ◦ ∂(g),

where the first differential is taken in the complex Hom•(X•, Z•), the second in Hom•(Y •, Z•)

and the third in Hom•(X•, Y •) respectively.

Remark 1.7. The above definitions imply that the composition map

◦X,Y,Z : Hom•(Y •, Z•)⊗ Hom•(X•, Y •)→ Hom•(X•, Z•), f ⊗ g 7→ f ◦ g,

and the evaluation map

evX,Y : Hom•(X•, Y •)⊗X• → Y •, f ⊗ x 7→ f(x),

are chain maps of the corresponding complexes, that is 0-cycles in the corresponding complexes

of graded maps.

Remark 1.8. The definition of the inner differential implies that the differential ∂X : X• → X•

considered as an element of Hom•(X•, X•) is itself a cycle of degree 1, that is ∂Hom(∂X) = 0.

We will also need to use the general principle called the Koszul sign rule. It states that in any

meaningful construction or definition we need to use signs of type (−)|x||y| whenever the symbols

x and y appear in the “wrong” order.

It is used in the following two definitions.

Definition 1.9. For two graded maps f : X• → Z• and g : Y • → T •, we consider the tensor

product f ⊗ g as a graded map from X• ⊗ Y • to Z• ⊗ T • via the following definition:

(f ⊗ g)(x⊗ y) := (−)|g||x|f(x)⊗ g(y),

for any x ∈ X• and y ∈ Y •.
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Definition 1.10. The composition of the tensor products of graded maps is defined as follows:

(f1 ⊗ g1) ◦ (f2 ⊗ g2) := (−)|g1||f2|(f1 ◦ f2)⊗ (g1 ◦ g2).

Leibniz rule and Koszul sign rule allow us to compute the differentials of more complicated

expressions in a straightforward manner as follows.

Definition 1.11. Consider any expression which is formed out of tensor products, function appli-

cations, function compositions and a finite sequence of elements x1, . . . , xn participating in this

expression in this precise order. We will call it a standard expression of (x1, . . . , xn).

Example 1.12. The expression (f ⊗ f)(x⊗ y) is a standard expression of (f, f, x, y). The expres-

sion (f ⊗ id) ◦ (id⊗ g) is a standard expression of (f, id, id, g).

The inductive application of the Leibniz rule immediately implies the following.

Lemma 1.13 (Generalized Leibniz Rule). The value of the differential on any standard expression

expr(x1, . . . , xn) can be computed from the following formula:

∂(expr(x1, . . . , xn)) =
n∑
i=1

(−)|x1|+...+|xi−1|expr(x1, . . . , ∂(xi), . . . , xn),

where the differentials are taken in the corresponding chain complexes.

This in particular means that if xi belongs to the complex X•i for 1 ≤ i ≤ n, and the value of

a standard expression expr(x1, . . . , xn) belongs to the complex Y •, then expr defines a chain map

of complexes:

expr : X•1 ⊗ . . .⊗X•n → Y •, x1 ⊗ . . .⊗ xn 7→ expr(x1, . . . , xn).

Remark 1.14. The sign in the generalized Leibniz rule can be thought of as coming from the

Koszul sign rule where the sign (−)|x| appears from permutation of x and ∂, the latter having

degree 1.
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Lemma 1.15. If the elements x1, . . . , xn are cycles in the corresponding chain complexes, then the

value of any standard expression of (x1, . . . , xn) also forms a cycle. Moreover, if one of xi is also

a boundary, then the whole expression also becomes a boundary.

Remark 1.16. Similar statements hold when we allow the permutations of symbols in the expres-

sions. In such case, one just need to add extra-signs according to Koszul sign rule.

1.2 A∞-categories

In this section, we list the basic notions from the theory of A∞-categories that will be used in

Section 3. We omit some of the technical details which are not relevant to our work and refer the

reader to [Man07] and to other works by Manzyuk and Lyubashenko for more details whenever

needed.

Remark 1.17 (Conventions). Though we will mostly follow the notations and conventions of the

above mentioned authors, we will differ from them in the following ways. The first difference is

that we use the more traditional approach of composing functions from right to left, and of writing

the argument after the function, as in (f ◦ g)(x) = f(g(x)), while the above authors compose the

functions from left to right and write the argument of the function before the function itself. Most

definitions however stay the same and the only difference occurs in some of the signs due to Koszul

sign rule. We try to indicate such differences whenever possible.

Another difference is that our units iX and isuX in A∞-categories will have degree 0, while the

mentioned authors define the corresponding shifted elements siX and sisuX of degree −1 as their

units. We introduce this difference so that to match the notions of units in dg- and A∞-settings.

Similarly, we want natural transformations to have degree 0 and not−1, so we separate the notions

of A∞-transformations and the corresponding coderivations via the extra-shift, while the above

authors identify A∞-transformations with the coderivations.

A graded quiver A consists of a set of objects ObA and a Z-graded k-module A(X, Y ) of

morphisms from X to Y for each X, Y ∈ ObA. We also consider the shifted quivers sA and
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s−1A which have the same objects as A and whose spaces of morphisms are shifted as in the

definition of shifted complexes.

A graded map of quivers f : A → B of degree d is given by a map Ob f : ObA → ObB on

the objects, and by the corresponding graded maps fX,Y : A(X, Y )→ B(f(X), f(Y )) of degree d

on the morphisms. If ObB = ObA, then we also consider graded maps of quivers over ObA

which are the graded maps f : A → B such that Ob f = idObA. The shift map s : A → sA is a

graded map of quivers over ObA given by the shift maps on the spaces of morphisms.

For a graded quiver A, we will denote by k1A the quiver which has the same objects as A and

whose morphisms are defined as follows:

k1A(X, Y ) := 0, if X 6= Y ,

k1A(X,X) := k1X ,

where 1X just denotes the generator of the corresponding one-dimensional space.

For a graded quiver A, we define the n-fold tensor product T nA = A⊗n for n ≥ 0 as the

graded quiver which has the same objects as A and whose morphisms are as follows:

T nA(X0, Xn) :=
⊕

X1,...,Xn−1∈ObA

A(Xn−1, Xn)⊗ . . .⊗A(X0, X1),

for any X0, Xn ∈ ObA. For example, T 0A = k1A and T 1A = A. Then we define the tensor

coalgebra TA as

TA :=
⊕
n≥0

T nA.

We will also denote by

prn : TA → T nA

the projection map from TA onto its n-th component, where n ≥ 0.

Remark 1.18. Note that in the above definition we differ from Manzyuk in that we multiply

11



the factors A(Xi, Xi+1) in the opposite order so that to match our convention of composing the

morphisms from right to left.

Definition 1.19. An A∞-category is a graded quiver A equipped with the graded maps of quivers

bn = bAn : T nsA → sA of degree 1 over ObA for n ≥ 1, called A∞-operations, satisfying the

famous A∞-relations:

∑
p+k+q=m

p,q≥0, k≥1

bp+1+q(1
⊗p ⊗ bk ⊗ 1⊗q) = 0 : TmsA → sA, for each m ≥ 1. (1.1)

The A∞-operations bn always come together with their more traditional counterparts mn of

degrees 2− n, which we will call traditional A∞-operations, defined as follows:

mn := s−1bns
⊗n : A⊗n → A. (1.2)

These operations satisfy the following set of A∞-conditions:

∑
p+k+q=m

p,q≥0, k≥1

(−)p+kq mp+1+q(1
⊗p ⊗mk ⊗ 1⊗q) = 0 : TmA → A, m ≥ 1. (1.3)

Remark 1.20. The equivalence of A∞-relations (1.1) and (1.3) can be checked directly by plug-

ging in the definition (1.2) into (1.3) and rearranging the terms s and bk after that. The signs will all

cancel out due to the Koszul sign rule, and we will get exactly the expression in (1.1) multiplied

by s−1 on the left and by s⊗m on the right.

Remark 1.21. Our sign in (1.3) differs from the ones in the works of Lyubashenko and Manzyuk,

because they use the left-to-right order of function composition.

Example 1.22. Every (not necessarily unital) dg-category (A, ∂A) can be treated as an A∞-cate-

gory such that mA1 = ∂A, mA2 is given by the composition of morphisms, and mn = 0 for n ≥ 3.

When we discuss the A∞-categories in general, we prefer to use operations bn because the cor-
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responding A∞-relations and subsequent computations all have straightforward signs. However,

in some cases, it is more convenient to use traditional operations mn. For example, we prefer to

use mn in the following two situations: 1) when we are talking about dg-categories; and, 2) when

we are transferring the customary notions of the traditional category theory, such as units, to the

A∞-setting.

Example 1.23. Transitioning between bn and mn on the morphisms of T nA can be done via the

following formula:

bn(sx1 ⊗ . . .⊗ sxn) = (−)
∑

i(n−i)|xi|smn(x1 ⊗ . . .⊗ xn),

for x1 ⊗ . . .⊗ xn ∈ A⊗n. This follows from definition (1.2) and from the fact that s⊗n(x1 ⊗ . . .⊗

xn) = (−)
∑

i(n−i)|xi|(sx1 ⊗ . . . ⊗ sxn) by Koszul sign rule. For example, for n = 1 we have

b1(sx) = sm1(x) from definition and for n = 2 we have:

b2(sx⊗ sy) = (−)|x|b2(s⊗ s)(x⊗ y) = (−)|x|sm2(x⊗ y).

Remark 1.24. The usual interpretation of the traditional A∞-operations is as follows. The first

A∞-relation

m2
1 = 0

allows to interpret the first operation m1 as the differential on A thus making it into a dg-quiver.

We will thus denote it by

∂A := mA1 : A → A.

The second A∞-relation

m1m2 −m2(m1 ⊗ 1)−m2(1⊗m1) = 0

is equivalent to the condition that m2 : A ⊗ A → A is the chain map of dg-quivers which is
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equivalent to the equality ∂Hom(m2) = 0, where the differential ∂Hom on the space of graded maps

from A ⊗ A to A is defined in terms of the differential ∂A = mA1 on A. Hence, m2 satisfies the

Leibniz rule and can be interpreted as the “composition” of morphisms in A. This composition

fails to satisfy the strict associativity relation. However, the third A∞-relation

m1m3 +m2(m2 ⊗ 1)−m2(1⊗m2) +m3(m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1) = 0

is equivalent to

∂Hom(m3) = m2(1⊗m2)−m2(m2 ⊗ 1),

which means that m2 is associative up to the homotopy given by the third operation m3. Similarly,

the higher operationsmn then provide the higher homotopies for transitioning between the different

ways of “composing” n morphisms.

Remark 1.25. The quiver TsA has a natural structure of an augmented graded coalgebra and the

A∞-operations bn uniquely extend to a (idTsA, idTsA)-coderivation b : TsA → TsA of degree 1

such that b2 = 0 and b|T 0sA = 0. (See more details in [Man07].) The corresponding matrix

coefficients bn;m can be then found from the following formulas:

bn;m =
∑

p+k+q=n
p+1+q=m

p,q≥0, k≥1

1⊗p ⊗ bk ⊗ 1⊗q : T nsA → TmsA. (1.4)

1.2.1 A∞-functors and transformations

AnA∞-functor f : A1, . . . ,Ak → B with multiple inputs is a morphism of augmented dg-coal-

gebras f : �i TsAi → TsB. Any such functor is uniquely determined by its components

f(ni)i : �i T nisAi → sB
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for ni ≥ 0, satisfying certain A∞-conditions. Throughout this work, we won’t be using the exact

form of theseA∞-conditions for the functors of multiple inputs, and we refer the reader to [Man07]

for the precise definition.

Example 1.26. In a case of a single input, an A∞-functor f : A → B is defined by its components

fn : T nsA → sB for n ≥ 0 of degree 0, such that f0 = 0. The A∞-conditions in this case become

as follows:

∑
r+k+t=n

fr+1+t(1
⊗r ⊗ bAk ⊗ 1⊗t) =

∑
i1+...+ip =n

bBp
(
fi1 ⊗ . . .⊗ fip

)
: T nsA → sB, (1.5)

for each m ≥ 1.

Remark 1.27. The matrix coefficients of a functor f : A → B are defined from its components

fn : T nsA → sB via the following formula:

fn;m =
∑

i1+...+ip =n

i1,...,ip≥1

fi1 ⊗ . . .⊗ fip : T nsA → TmsB. (1.6)

Then, the components fn : T nsA → sB satisfy conditions (1.5) if and only if the function

f : TsA → TsB

defined by its matrix coefficients fm;n from (1.6) satisfies the following equation:

f bA = bB f : TsA → TsB,

where bA and bB are defined via components bAk and bBk by (1.4).

Remark 1.28. The conditions (1.5) admit a well-known form expressed in terms of the compo-

nents mi rather than bi.

Definition 1.29. For two functors f, g : A1, . . . ,Ak → B with multiple arguments, we define
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the graded space A∞(A1, . . . ,Ak;B)(f, g) of A∞-transformations to be the back-shifted space of

graded (g, f)-coderivations �i TsAi → TsB:

A∞(A1, . . .Ak;B)(f, g) := s−1
{

(g, f)-coderivations �i TsAi → TsB
}
.

In other words, anA∞-transformation s−1r of degree k from f to g is defined by the corresponding

(g, f)-coderivation r : �i TsAi → TsB of degree k − 1.

An A∞-transformation s−1r of degree k is uniquely determined by the components

r(ni)i : �i T nisAi → sB

for ni ≥ 0 of the corresponding coderivation r of degree k − 1.

Example 1.30. In the case of a single input A, the matrix coefficients of r are determined by the

components ri : T isA → sB via the following formula:

rn;m =
∑

gj1 ⊗ . . .⊗ gjq ⊗ rt ⊗ fi1 ⊗ . . .⊗ fip : T nsA → TmsB, (1.7)

where the summation is taken over all partitions

j1 + . . .+ jq + t+ i1 + . . .+ ip = n, q + 1 + p = m,

where j1, . . . , jq ≥ 1; i1, . . . , ip ≥ 1 and t, p, q ≥ 0.

1.2.2 Multicategory of A∞-categories

The A∞-functors from (A1, . . . ,Ak) to B themselves form an A∞-category denoted by

A∞(A1, . . . ,Ak;B),
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in which the graded spaces of morphisms are given by the corresponding spaces of A∞-transfor-

mations and the A∞-operations Bn are defined by explicit formulas. (See [Man07; Lyu03] for the

precise definition; see also [Fuk02; Sei08] for the definition of A∞-categories A∞(A;B) given by

A∞-functors with a single input.)

Let us describe the first A∞-operation B1 in the case of a single input. For two functors

f, g : A → B, we define

B1 : sA∞(A;B)(f, g)→ sA∞(A;B)(f, g),

which maps a (g, f)-coderivation r of degree |r| to a (g, f)-coderivation B1(r) of degree |r| + 1,

by the following formula:

B1(r) := br − (−)|r|rb : TsA → TsB.

Component-wisely, we can write is as follows:

(B1(r))n =
∑

bl+1+k(gj1 ⊗ . . .⊗ gjl ⊗ rp ⊗ fi1 ⊗ . . .⊗ fik)

− (−)|r|
∑

rl+1+k(1
⊗l ⊗ bq ⊗ 1⊗k) : T nsA → sB,

(1.8)

where the first sum is taken over the decompositions n = j1 + . . . + jl + p + i1 + . . . + ik for

l ≥ 0, k ≥ 0, jm ≥ 1, im ≥ 1 and p ≥ 0, and the second sum is taken over the decompositions

n = l + q + k for l ≥ 0, k ≥ 0, q ≥ 1.

Definition 1.31. Let η = s−1r : f → g : A → B be an A∞-transformation given by a (g, f)-

coderivation r. We call η a natural transformation, if it is a 0-cycle in A∞(A;B)(f, g), that is if r

has degree −1 and B1(r) = 0.

The categories A∞(A1, . . . ,Ak;B) satisfy many nice properties and together form an ob-

ject A∞ called a closed multicategory of A∞-categories. We do not list all of these properties

here, but we will describe a few useful constructs arising from this concept. For more details on
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the multicategory A∞ and the subsequent notions, we refer the reader to [Man07]. For the general

definition of a multicategory, we refer the reader to [Man07; Lei04; EM06].

There is an evaluation A∞-functor

evA∞ = evA∞A1,...,Ak;B : A∞(A1, . . . ,Ak;B),A1, . . . ,Ak → B,

which maps the tuple (f,X1, . . . , Xk) consisting of an A∞-functor f : A1, . . .Ak → B and objects

Xi ∈ Ai for 1 ≤ i ≤ k to the object f(X1, . . . , Xk) ∈ B. The only non-vanishing components

of evA∞ are: evA∞0,n1,...,nk
for
∑

i ni 6= 0 which evaluates to the components fn1,...,nk
of the functor

f provided by the first input, and evA∞1,n1,...,nk
which evaluates to the component rn1,...,nk

of the

coderivation r provided by the first input.

For example, in a case of a single input k = 1, we will have:

evA∞A;B : A∞(A;B), A → B, (f,X) 7→ f(X),

evA∞0,n : kA∞(A;B) ⊗ T nsA → sB, 1f ⊗ (x1 ⊗ . . .⊗ xn) 7→ fn(x1, . . . , xn),

evA∞1,n : sA∞(A;B)⊗ T nsA → sB, r ⊗ (x1 ⊗ . . .⊗ xn) 7→ rn(x1, . . . , xn).

The result of [Man07, §3.3.2] says that there exists an isomorphism of A∞-categories

ϕA∞ : A∞
(
A1, . . . ,Ak; A∞(B1, . . . ,Bl; C)

)
→ A∞(A1, . . . ,Ak, B1, . . . ,Bl; C),

defined on the objects by mapping an A∞-functor

f : A1, . . . ,Ak → A∞(B1, . . . ,Bl; C)

to the functor

ϕA∞(f) = evA∞B1,...,Bl;C ◦ (f, idB1 , . . . , idBl).
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There exists a composition A∞-functor

M = MA,B,C : A∞(B; C), A∞(A;B)→ A∞(A; C)

which is a unique functor that makes the following diagram commutative

A∞(B; C), A∞(A;B), A A∞(A; C), A

A∞(B; C), B C

M, id

id, evA∞ evA∞

evA∞

This condition means that ϕA∞(M) := evA∞ ◦ (M, id) = evA∞ ◦ (id, evA∞), hence the existence

and uniqueness of such functor M follows from the fact that ϕA∞ is a bijection on the objects. On

the objects, the composition functor acts as a regular composition of A∞-functors:

ObMA,B,C : (f : B → C), (g : A → B) 7→ (f ◦ g : A → C).

1.2.3 Unitality and A∞-equivalences

Definition 1.32. An A∞-category A is called strictly unital if there exist 0-cycles isuX : X → X

for each object X ∈ A such that m2(isuY , x) = x = m2(x, isuX ) for any morphism x : X → Y , and

mn(. . . , isu, . . . ) = 0 for n ≥ 3. In this case, the cycles isuX are called the strict units of A.

Example 1.33. If mn = 0 for n ≥ 3, the previous notion gives us the definition of a regular

dg-category.

Remark 1.34. In terms of bn and sA, the condition for A of being strictly unital means that there

are (−1)-cycles sisuX ∈ sA(X,X) for each X such that b2(sisuY , x) = x and b2(x, sisuX ) = (−)|x|+1x

for any x ∈ sA(X, Y ), and bn(. . . , sisu, . . . ) = 0 for n ≥ 3.

Most categories we encounter in applications (especially in symplectic topology) are not strictly

unital but admit a weaker version of unitality as follows.
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Definition 1.35 (Lyubashenko, see [LM08] and [Lyu03]). An A∞-category A is called unital if

there are 0-cycles iX : X → X for each X ∈ A, called the units, such that the chain maps

m2(iY ⊗ 1),m2(1⊗ iX) : A(X, Y )→ A(X, Y ) are homotopic to the identity map.

Remark 1.36. In terms of bn and sA, the condition of being unital means that there are (−1)-

cycles siX ∈ sA(X,X) for each X such that b2(siY ⊗ 1) and −b2(1⊗ siX) are homotopic to the

identity map on sA(X, Y ).

Remark 1.37. It follows from the definition, that if A is unital, then its units iX are determined

uniquely up to homotopy.

We will also use an equivalent definition which is due to Fukaya. In order to formulate it, we

will need to consider the extended quiverA+ = A⊕kisuA ⊕kjA for anA∞-categoryA. This quiver

is obtained fromA by attaching to each objectX inA the new morphisms isuX : A → A of degree 0

and jX : A → A of degree −1.

Definition 1.38 (Fukaya, see [Fuk02] and also [LM08]). An A∞-category A is called homotopy

unital if the extended quiverA+ = A⊕kisuA ⊕kjA admits an A∞-structure m+
n with the following

properties:

(1) m+
n |A = mn, that is m+

n is an extension of mn;

(2) isuX are the strict units of A+;

(3) there are iX ∈ A(X,X) such that m+
1 (jX) = ±(isuX − iX);

(4) Im(m+
n |A⊕kj) ⊆ A.

Remark 1.39. It was proved in [LM08] that the different notions of unitality are equivalent. In par-

ticular, every unital structure iA on A can be extended to the homotopy unital structure (A+,m+
n ).

This becomes handy when we want to prove some statement for unital categories in general, but

want to simplify computations involving the units. In such case, we can firstly prove the state-

ment for the strictly unital category A+ and then try to transfer the result via the A∞-equivalence

between A and A+ obtained in Lemma B.21.
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Remark 1.40. The homotopy unital structure can be thought as the external strictification of the

unital structure as follows. The elements jX can be thought as formal homotopies between the

actual units iX and the external strict units isuX . Defining the extended A∞-operations on A ⊕ kjA

can be thought as providing the explicit unit homotopies on A. For example, the restrictions of

the maps m+
2 (jY ⊗ 1) and m+

2 (1 ⊗ jX) on A(X, Y ) provide the homotopies of m2(iY ⊗ 1) and

m2(1 ⊗ iX) with the identity map, called the right and left unit homotopies respectively. This

implies that we have two canonical homotopies between m2(iX , iX) and iX , one given by the right

unit homotopy m+
2 (iX , jX) and another given by the left unit homotopy m+

2 (jX , iX). The element

m+
2 (jX , jX) then provides the higher homotopy between these two choices. The higher operations

involving j may be given a similar interpretation as providing the higher coherence conditions

between the right and left unit homotopies.

In the unital A∞-categories, the isomorphisms between the objects can be correctly defined as

follows.

Definition 1.41. Let A be a unital A∞-category. We say that a morphism x : X → Y in A is

an isomorphism (or an equivalence), if x is a 0-cycle which has a two-sided homotopic inverse.

In other words, there is a 0-cycle y : Y → X , the inverse (or the inverse equivalence), such that

m2(y, x) is homotopy equivalent to the unity on X and m2(x, y) is homotopy equivalent to the

unity on Y . In this situation, we also say that objects X and Y are isomorphic (or equivalent).

The assumption of unitality is essential if we want to transfer the well-known notions of equiv-

alency from regular category theory into the A∞-setting. For example, this assumption allows us

talk about the equivalences of A∞-functors and A∞-categories as follows.

Lemma 1.42 ([Man07, Proposition 3.4.10]). For any A∞-categories (A1, . . . ,Ak) and a unital

A∞-category B, the category A∞(A1, . . . ,Ak;B) is unital as well.

Definition 1.43. Let f, g : A1, . . . ,Ak → B be two A∞-functors into a unital A∞-category B.

We will call a natural A∞-transformation η : f → g a natural equivalence, if η is an isomor-
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phism from f to g considered as the objects in the corresponding unital A∞-category of functors

A∞(A1, . . . ,Ak;B).

By using the above notion, we can compare two A∞-functors if their output is a unital A∞-cat-

egory. Namely, we can say that f, g : A1, . . . ,Ak → B are naturally equivalent (or simply, equiv-

alent) if there exists a natural equivalence between them. Another way of comparing A∞-functors

not requiring the output A∞-category B of being unital was introduced by Seidel in [Sei08]. It will

be quite useful for our work and we dedicate Appendix B to this notion and its properties.

1.3 Topological A∞-maps

Definition 1.44. A topological monoid (X,m, e) is a topological space X endowed with a con-

tinuous map m : X × X → X , called “multiplication” and an element e ∈ X , called “the unit”,

satisfying the associativity property m(m(x, y), z) = m(x,m(y, z)) for all x, y, z ∈ X and the

unity properties m(e, x) = x = m(x, e) for all x ∈ X . (We will often denote the result of

multiplication by the juxtaposition. In the latter notation, the given conditions can be written as

(xy)z = x(yz) and ex = x = xe.)

Definition 1.45. AnA∞-map f between the two topological monoids (X,mX , eX) and (Y,mY , eY )

is given by the collection of maps fn : In−1 × Xn → Y for each n ≥ 1, where I = [0, 1] is the

unit interval and In−1 is the (n − 1)-dimensional unit cube. The maps (fn)n≥1 should satisfy the

following boundary conditions for each 1 ≤ i ≤ n− 1:

fn(t1, . . . , tn−1, x1, . . . , xn) =
fn−1(t1, . . . , t̂i, . . . , tn−1, x1, . . . , xixi+1 , . . . , xn) if ti = 0

fi(t1, . . . , ti−1, x1, . . . , xi) fn−i(ti+1, . . . , tn−1, xi+1, . . . , xn) if ti = 1,

where 0 ≤ tj ≤ 1 and xj ∈ X for all j. (See [BV73, Definition 1.14] and also [Sug60].) We also

require f to be compatible with the units by providing a path fe between f1(eX) and eY inside Y .

(In other words, we provide a map fe : I → Y such that fe(0) = f1(eX) and fe(1) = eY .)
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Schematically, we can depict the conditions for f2 and f3 as follows, where we denote f = f1

for convenience:

t = 0 t = 1

f(xy) f(x)f(y)
f2(t, x, y)

f(xyz)
(t = 0, s = 0)

f(x)f(yz)
(t = 1, s = 0)

f(xy)f(z)
(t = 0, s = 1)

f(x)f(y)f(z)
(t = 1, s = 1)

f2(t, x, yz)

f2(t, x, y)f(z)

f2(s, xy, z) f(x)f2(s, y, z)f3

(
t, s,
x, y, z

)

Here, f2 is the homotopy between the maps (x, y) 7→ f(xy) and (x, y) 7→ f(x)f(y), where

x, y ∈ X . Such homotopy gives rise to the two homotopies connecting f(xyz) to f(x)f(y)f(z),

one via f(xy)f(z) and another via f(x)f(yz). Then f3 provides a homotopy between the latter

two homotopies and so on.
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Chapter 2: Cellular dg-categories

In this section we introduce and study the notion of cellular dg-categories. These are the

dg-categories of special type designed to mimic the properties of CW-complexes. Such categories

allow us to transfer some notions and constructs from the homotopy theory of topological spaces

into the homotopy theory of dg/A∞-categories.

Before formulating the precise definition, let us describe an idea of how we can map the topo-

logical notions into the world of dg-categories:

topological spaces −→ dg-categories

points −→ objects

paths between points −→ morphisms which are 0-cycles

composition of paths −→ composition of morphisms

homotopy of paths h : p1 ∼ p2 −→

 homotopy of morphisms

∂(h) = p2 − p1


 composition of homotopies

h1 : p1 ∼ p2 and h2 : p2 ∼ p3

 −→ sum of homotopies h1 + h2

higher homotopies −→ higher homotopies

Our observation is that if the topological space has some kind of a cellular structure (for exam-

ple, is a CW-complex), then on the dg-side, the homotopic properties of this space can be expressed

by only using the images of the cells and applying the operations of composition and differentia-

tion inside the dg-category. Thus, all the needed data is essentially contained in the subcategory

generated by the cells. This motivates our definition of a cellular dg-category as a linear category
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freely generated by cells and equipped with the differential.

In §2.1, we recall the notions related to free or path categories on graphs. In §2.2, we use this

notion in order to define cellular dg-categories. In §2.3, we provide some geometric examples of

cellular dg-categories mimicking the well-known geometric objects. In §2.4, we compare cellular

dg-categories with CW-complexes and conjecture that there exists a more straightforward corre-

spondence producing cellular dg-categories as invariants of CW-complexes. Finally, in §2.5, we

show that, even though we might not yet be able to construct a cellular dg-category associated to

every possible CW-complex, we can still produce some meaningful non-trivial examples, such as

dg-cubes, by using the notion of a cellular product of cellular dg-categories.

2.1 Preliminaries on path categories

A (directed) graph Λ is given by a set Λ0 of vertices, by a set Λ1 of arrows, and by two maps

S, T : Λ1 → Λ0 called source and target respectively. For any arrow a ∈ Λ1, we will say that a

is an arrow from its source to its target, and we will denote this situation as a : X → Y , where

X = S(a) and Y = T (a).

A morphism of graphs f : Λ → Λ′ is given by a map f0 : Λ0 → Λ′0 on the vertices, and by a

map f1 : Λ1 → Λ′1 on the arrows which is compatible with f0 in a way that S(f1(a)) = f0(S(a))

and T (f1(a)) = f0(T (a)) for any a ∈ Λ1.

A marked graph ΛΣ is given by a graph Λ and a subset Σ ⊆ Λ1 of its arrows marked as

invertible. A morphism of marked graphs f : ΛΣ → Λ′Σ′ is a morphism of graphs f : Λ→ Λ′ such

that f(Σ) ⊆ Σ′.

After this section, we will usually denote marked graphs simply by Λ, especially when we

don’t need to compare them with the underlying unmarked graph.

Remark 2.1. Any category can be considered as a graph by treating all of its objects as the vertices

and all of its morphisms as the arrows. This allows us to talk about the subgraphs of categories.

There is also a natural choice of the marking on a category given by marking of all invertible

morphisms. When we talk about the marked subgraphs of categories, we assume that the category

25



is equipped with such marking, that is that invertible arrows of this subgraph are also invertible

morphisms in the category.

A path p in Λ is a sequence

(Xn, an, Xn−1, . . . , X1, a1, X0)

of alternating vertices Xi and arrows ai, such that S(ai) = Xi−1 and T (ai) = Xi for 1 ≤ i ≤ n,

where n ≥ 0. (So, the path goes from right to left.) We define the length l(p) of a path p as the

number n of arrows in the corresponding sequence. We also set S(p) := X0 and T (p) := Xn

and say that p is a path from X0 to Xn. If n > 0, then we will also say that p starts with a1 and

ends with an. For any vertex X , the sequence (X), which is a path of length 0, will be called an

empty path on X . We will call paths of positive length non-empty. We will also treat any arrow

a : X → Y as a path (Y, a,X) of length 1.

We say that two paths p = (Xn, an, . . . , a1, X0) and q = (Ym, bm, . . . , b1, Y0) are composable

if X0 = Ym. In such situation, we define their concatenation pq = p ◦ q to be a path

(Xn, an, . . . , a1, X0 = Ym, bm, . . . , b1, Y0).

This operation is clearly associative and has identities given by the empty paths.

Any non-empty path p = (Xn, an, . . . , a1, X0) can be unambiguously recovered from the se-

quence of its arrows (an, . . . , a1), since the vertices Xi are determined as being the sources and

targets of the corresponding arrows. Thus, the non-empty paths can be thought of as the concate-

nations of non-empty sequences of composable arrows. In particular, this allows us to denote any

non-empty path p = (Xn, an, . . . , a1, X0) simply by a juxtaposition anan−1 · · · a1 of its arrows.

We will also denote an empty path on X by 1X for any vertex X .

26



A path category Ω[Λ] is a category formed by the vertices and paths of Λ:

Ob Ω[Λ] := Λ0,

Ω[Λ](X, Y ) := {paths in Λ from X to Y },

where the composition is given by the concatenation of paths, and the identities are given by the

empty paths.

For a marked graph ΛΣ, we also consider the graph Λ ∪ Σ−1 formed by adding formal inverse

arrows to Λ. Namely, for each arrow a : X → Y in Σ, we add a new arrow a−1 : Y → X to the

graph Λ. We say that a path in Λ ∪ Σ−1 is reduced, if it does not have subpaths of type aa−1 and

a−1a for a ∈ Σ. We say that two paths in Λ ∪ Σ−1 are equivalent if they can be connected by a

sequence of elementary equivalences of types paa−1q ∼ pq and pa−1aq ∼ pq, where p, q are paths

(maybe empty), a ∈ Σ, and the concatenations are well-defined. Every path p is equivalent to

some reduced path obtained by consecutive removal of subpaths of type aa−1 and a−1a until there

are none left. The resulted path does not depend on the order of removal and we will call it the

reduction of p. Also, the equivalent paths have the same reduction. (These statements are proved

in the same way as in the theory of free groups. See [MKS76, §1.4] for more details.)

We define a path category Ω[ΛΣ] of a marked graph ΛΣ as follows:

Ob Ω[ΛΣ] := Λ0,

Ω[ΛΣ](X, Y ) := {reduced paths in Λ ∪ Σ−1 from X to Y },

where the composition is given by the reduced concatenation of paths, and the identities are given

by the empty paths. Another way to describe the category Ω[ΛΣ] is as the category of fractions

Ω[Λ][Σ−1] which is produced from Ω[Λ] by formally inverting the arrows in Σ. (See [Bor94, §5]

for more details on the path categories and categories of fractions.)

For the sake of convenience, we will define the paths in a marked graph ΛΣ as the reduced

paths in Λ ∪ Σ−1, and the concatenation of paths in ΛΣ as the reduced concatenation.
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Remark 2.2. If Σ = Λ1, that is if all arrows in Λ are marked invertible, then the corresponding

category Ω[ΛΣ] coincides with the free groupoid on Λ. Then for any other choice of Σ, the category

Ω[ΛΣ] can be thought as a subcategory of this free groupoid generated by all arrows of Λ and by

the inverses of the arrows in Σ.

We will denote by kΩ[Λ] the linearized version of Ω[Λ]. It has the same objects as Ω[Λ], and

its morphisms from X to Y are the formal k-linear combinations of different paths from X to Y

in Λ. Similarly, we will denote by kΩ[ΛΣ] the linearized version of Ω[ΛΣ].

A grading (or Z-grading) on a graph Λ is given by assigning to each arrow a ∈ Λ1 an in-

teger value |a| ∈ Z called the degree of a. Any grading on Λ gives rise to the gradings on the

corresponding path categories Ω[Λ] and kΩ[Λ], in which the degree of a non-empty path an . . . a1

is given by the sum of degrees of ai, and empty paths have zero degree: |an . . . a1| =
∑

i |ai|,

|1X | = 0. Similarly, for the marked graphs, we obtain the gradings on Ω[ΛΣ] and kΩ[ΛΣ] if we

also define the degrees of the inverse arrows as |a−1| := −|a| for a ∈ Σ.

A graph Λ is naturally included into the path categories Ω[Λ], kΩ[Λ], Ω[ΛΣ] and kΩ[ΛΣ] treated

as graphs. These inclusions then satisfy the following universal properties:

• any morphism of graphs from Λ to a category A uniquely extends to a functor from Ω[Λ]

to A;

• any morphism of graphs from Λ to a k-linear category A uniquely extends to a k-linear

functor from kΩ[Λ] to A;

• any morphism of graphs from Λ to a category A, which maps arrows in Σ to invertible

morphisms, uniquely extends to a functor from Ω[ΛΣ] to A;

• any morphism of graphs from Λ to a k-linear category A, which maps arrows in Σ to invert-

ible morphisms, uniquely extends to a k-linear functor from kΩ[ΛΣ] to A.

We also see that if Λ andA are graded, and the given morphism from Λ toA preserves the grading,

then the corresponding functors preserve the grading as well.

28



An inclusion of (marked) graphs Λ ⊆ Λ′ gives rise to the inclusions of the corresponding

path categories: Ω[Λ] ⊆ Ω[Λ′], kΩ[Λ] ⊆ kΩ[Λ′]. Similarly, any morphism of (marked) graphs

f : Λ → Λ′ induces the morphisms of the corresponding path categories: Ω[f ] : Ω[Λ] → Ω[Λ′],

kΩ[f ] : kΩ[Λ]→ kΩ[Λ′].

2.1.1 Differentials on path categories

Let us formulate a few observations about the dg-structures on path categories. For that, let us

firstly recall a few facts about derivations.

Definition 2.3. A graded linear map ∂ on a graded category A is called a derivation if it satisfies

the Leibniz rule for the composition:

∂(xy) = ∂(x)y + (−)|∂||x|x∂(y).

Thus, a differential is a derivation of degree 1 whose square is zero.

Lemma 2.4. Let ∂ be a derivation on A of degree 1.

(1) For any object X in A, we have: ∂(1X) = 0.

(2) For any sequence (xi)1≤i≤n of composable morphisms in A, we have:

∂(x1 . . . xn) =
∑
i

(−)|x1|+...+|xi−1|x1 . . . ∂(xi) . . . xn.

(3) If a morphism x has a two-sided inverse x−1, then

∂(x−1) = (−)|x|+1 x−1 ∂(x)x−1.

Proof. To prove the first statement, let us note that

∂(1X) = ∂(1X · 1X) = ∂(1X) · 1X + 1X · ∂(1X) = 2∂(1X),
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hence ∂(1X) = 0. The second statement follows from induction on n, similarly to Lemma 1.13.

The third statement follows from

0 = ∂(1) = ∂(xx−1) = ∂(x)x−1 + (−)|x|x∂(x−1)

after we multiply this equation by x−1 from the left.

Now, let us consider a graded marked graph Λ and the corresponding k-linear path cate-

gory kΩ[Λ].

Lemma 2.5. Any derivation ∂ of degree 1 on kΩ[Λ] can be uniquely determined from its values on

the arrows of Λ. Moreover, such derivation exists for any given set of values ∂(a) ∈ kΩ[Λ](X, Y )

for the arrows a : X → Y in Λ such that |∂(a)| = |a|+ 1.

Proof. Lemma 2.4 shows that the value of ∂ on any path in Λ can be uniquely determined from

the values on its arrows.

To prove the existence, we can just use both parts of Lemma 2.4 in order to define the values

of ∂ on arbitrary paths in Λ. In particular, the Leibniz rule for the compositions of arrows will hold

by definition. Then it is a trivial check that the Leibniz rule will also hold for the compositions of

paths of arbitrary length.

Lemma 2.6. Let ∂ be a derivation of degree 1 on kΩ[Λ]. Then ∂ is a differential if and only if

∂2(a) = 0 for every arrow a in Λ.

Proof. We need to prove that if the equation ∂2 = 0 holds on the arrows of Λ, then it holds on

all paths as well. To check this, let us just use Lemma 2.4. For an empty path 1X , we have
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∂2(1X) = ∂(0) = 0. For a non-empty path x1 . . . xn, we have:

∂2(x1 . . . xn) =
∑
i

(−)|x1|+...+|xi−1|∂
(
x1 . . . ∂(xi) . . . xn

)
=
∑
j<i

(−)|xj |+...+|xi−1|x1 . . . ∂(xj) . . . ∂(xi) . . . xn

+
∑
i

x1 . . . ∂
(
∂(xi)

)
. . . xn

+
∑
j>i

(−)1+|xi|+...+|xj−1|x1 . . . ∂(xi) . . . ∂(xj) . . . xn.

The second sum is zero, because xi is an arrow, hence ∂(∂(xi)) = 0 by assumption. The terms in

the first and third sums cancel with each other due to extra 1 in the sign inside the third sum. Thus

∂2(x1 . . . xn) = 0. Hence, we conclude the proof.

Remark 2.7. The previous two lemmas show that in order to define a differential ∂ on a path

category kΩ[Λ], it is enough to specify its values ∂(a) on all arrows a of Λ such that |∂(a)| = |a|+1

and then to verify that ∂2(a) = 0 holds for all these arrows and for the resulting derivation ∂.

Remark 2.8. Similarly to the previous remark, if we have an inclusion Λ ⊆ Λ′ of the (marked)

graphs and the corresponding inclusion of the path categories kΩ[Λ] ⊆ kΩ[Λ′], then in order to

extend a differential ∂ from kΩ[Λ] to kΩ[Λ′], we just need to specify its values on the new arrows

(by Lemma 2.5) in such a way that the equation ∂2 = 0 holds on these arrows (by Lemma 2.6).

Also, we will use the following lemma.

Lemma 2.9. Let Λ ⊆ Λ′ be an inclusion of graphs and kΩ[Λ] ⊆ kΩ[Λ′] be the corresponding

inclusion of path categories. If ∂ is a differential on kΩ[Λ′], then the subcategory kΩ[Λ] is closed

under ∂ if and only if ∂(a) ∈ kΩ[Λ] for all arrows a ∈ Λ.

Proof. Follows from Lemma 2.4 and from the fact that every morphism in kΩ[Λ] can be expressed

as the linear combination of the empty paths and the compositions of arrows in Λ and their inverses.
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2.2 Definition of a cellular dg-category

In this section, we formulate our main notion of a cellular dg-category and state its basic

properties.

Definition 2.10. A cellular graph is a graded marked graph such that all of its arrows have non-

positive degrees and the invertible arrows have degree zero. In such graph, we assign a positive

number to each arrow, called dimension, via the formula dim a := 1− |a|. We say that the vertices

of this graph are its 0-cells, and the arrows of dimension i are its i-cells.

Remark 2.11. By definition, the invertible arrows in a cellular graph are all 1-cells.

Remark 2.12. We can build a cellular graph from a non-graded graph by assigning positive di-

mensions to its arrows and by marking some of the arrows of dimension 1 as invertible. Then we

can define the grading by the inverse formula |a| := 1− dim a.

As any graded marked graph, a cellular graph Λ gives rise to a graded k-linear path cate-

gory kΩ[Λ].

Definition 2.13. A dg-category A is called cellular, if it is equipped with a cellular subgraph Λcell
A

such that the inclusion Λcell
A ⊆ A gives rise to an isomorphism kΩ[Λcell

A ] ∼−→ A of graded k-linear

categories. In such situation, we call Λcell
A a cellular structure onA, and we will say that the i-cells

of Λcell
A are the i-cells of A. We will also say that the inverses of invertible arrows of Λcell

A are the

inverse 1-cells of A.

Remark 2.14. Due to the isomorphism A ∼= kΩ[Λcell
A ], all objects of A are its 0-cells, and every

morphism of A can be represented as the linear combination of reduced paths on cells of A and

their inverses in a unique way.

Remark 2.15. Essentially, a cellular dg-category is just a path category of a cellular graph equipped

with a differential.
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Definition 2.16. We define the k-skeleton skk(Λ) of a cellular graph Λ to be the subgraph of Λ

consisting of cells of dimension less or equal than k. (If k ≥ 1 and a was an invertible 1-arrow

in Λ, we keep it as an invertible arrow in skk(Λ) as well.)

We have the tower of skeletons as follows:

Λ0 = sk0(Λ) ⊆ sk1(Λ) ⊆ sk2(Λ) ⊆ · · · ⊆ Λ =
⋃
k≥0

skk(Λ).

Definition 2.17. We define the k-skeleton skk(A) of a cellular dg-category A to be the minimal

dg-subcategory containing all cells of dimension less or equal than k and their inverses.

Similarly to the previous, we have the tower of skeletons of A as well:

k1A = sk0(A) ⊆ sk1(A) ⊆ sk2(A) ⊆ · · · ⊆ A =
⋃
k≥0

skk(A),

where k1A denotes the subcategory ofA consisting of all its objects and the scalar multiples of the

identity morphisms.

Remark 2.18. For a cellular dg-category A, the path subcategory on the k-skeleton of Λcell
A is

automatically contained in the k-skeleton of A, that is

kΩ[skk(Λcell
A )] ⊆ skk(A).

Lemma 2.19 (Properties of cellular dg-categories). LetA be a cellullar dg-category with a cellular

structure Λ = Λcell
A . Then the following statements hold:

(1) All morphisms of A are situated in nonpositive degrees.

(2) If c is a 1-cell, then ∂(c) = 0. Moreover, if c is an invertible 1-cell, then ∂(c−1) = 0.

(3) Any morphism x in A of degree d belongs to kΩ[sk1−d(Λ)], hence to sk1−d(A).

(4) If i > 1 and c is an i-cell, then ∂(c) ∈ kΩ[ski−1(Λ)] ⊆ ski−1(A).
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(5) The k-skeleton of A coincides with the path subcategory on the k-skeleton of Λ, that is

skk(A) = kΩ[skk(Λ)].

Proof. (1) By definition, Λ is cellular, hence all its arrows have nonpositive degrees. Also, the

invertible arrows have zero degree, hence their formal inverses have zero degree as well.

Thus, the degree of every path in Λ is also nonpositive, since it is the sum of the degrees of

its arrows and their inverses. The paths constitute the basis for the morphisms in kΩ[Λ] ∼= A,

hence the proof.

(2) Due to the formula |c| = 1 − dim c, all 1-cells have degree 0. Hence, ∂(c) should have

degree 1. However, (1) implies that there are no nontrivial morphisms of degree 1 in A,

hence ∂(c) = 0. The statement for invertible c then follows from Lemma 2.4(3).

(3) Let us firstly prove the statement for the cells and their inverses. If c is a cell of degree d, then

we have dim c = 1−d, so c ∈ sk1−d(Λ) ⊆ kΩ[sk1−d(Λ)] by definition. If c is invertible, then

|c| = 0 and we have c−1 ∈ kΩ[sk1(Λ)] by definition as well. Now since any morphism x is

a linear combination of paths in Λ of degree d, it is enough to prove the statement only for

the paths.

For the empty path 1X , the statement is true, because d = |1X | = 0 and 1X ∈ sk0(A) ⊆

sk1(A). Any non-empty path p however is the composition x1 . . . xn of cells and their in-

verses, so we have |p| =
∑

i |xi| where |xi| ≤ 0 by (1). Hence, |p| ≤ |xi| for every

i. If |p| = d, then d′ := |xi| ≥ d. Since we already proved the statement for cells and

their inverses, we have xi ∈ kΩ[sk1−d′(Λ)]. The latter category is however contained in

kΩ[sk1−d(Λ)] since 1− d′ ≤ 1− d. Thus, p also belongs to kΩ[sk1−d(Λ)], since all xi do.

(4) Indeed, |c| = 1 − i, hence |∂(c)| = |c| + 1 = 2 − i. Now by (3), we have that ∂(c) ∈

kΩ[ski−1(Λ)].

(5) Indeed, we already know that kΩ[skk(Λ)] ⊆ skk(A), where kΩ[skk(Λ)] is the minimal

graded subcategory of A containing all cells of dimension ≤ k, and skk(A) is the mini-
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mal dg-subcategory of A containing the same cells. Hence, in order to prove that these two

subcategories coincide, we just need to show that kΩ[skk(Λ)] is closed under the differential.

By Lemma 2.9, in order to prove the latter, we just need to check that ∂(c) ∈ kΩ[skk(Λ)] for

every cell c in skk(Λ) of positive dimension. Let us do this. If dim c = 1, then by (2), we

have ∂(c) = 0 ∈ kΩ[skk(Λ)]. If dim c > 1, then by (4), we have ∂(c) ∈ kΩ[ski−1(Λ)] ⊆

kΩ[skk(Λ)], where i = dim c ≤ k by definition. Hence the proof.

2.3 Examples

It follows from Remarks 2.12, 2.15 and 2.7, that we can construct a cellular dg-category by

performing the following steps:

1) specify a graph Λ;

2) assign positive dimensions to the arrows of Λ and define the corresponding grading by setting

|a| := 1− dim a;

3) mark some arrows of dimension 1 as invertible;

4) consider Λ with the above data as a marked graded graph and form the corresponding path

category kΩ[Λ];

5) define a derivation ∂ of degree 1 on kΩ[Λ] by choosing the values ∂(a) on all arrows a;

6) verify that ∂ is a differential by checking that ∂2(a) = 0 holds on all arrows a.

Such procedure produces a cellular dg-category (kΩ[Λ], ∂) whose cellular structure is Λ. In this

section, we follow this procedure and construct several examples of cellular dg-categories mim-

icking the well-known topological and combinatorial objects.

Example 2.20 (Directed interval). Let us consider a graph I→ having two vertices denoted 0 and

1, and one arrow i : 0 → 1 between them of dimension 1, that is of degree |i| = 0. The only
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paths in this graph are 10, 11 and i all having degree 0. These paths consitute the basis for the

morphisms in the category kΩ[I→]. The differential ∂ on this category is necessarily trivial due to

Lemma 2.19(2). This situation can be depicted as follows:

0 1i  0 1i
10 11

Example 2.21 (Undirected interval). Similarly to the previous example, let us consider a graph I

which is formed by two vertices 0 and 1, and one invertible arrow i : 0 → 1 of dimension 1. The

paths in I (which are reduced paths on symbols i and i−1) will be 10, 11, i and i−1 of degree 0. The

differential in kΩ[I] will be again trivial. This situation can be depicted as follows:

0 1i  0 1
i

10

i−1

11

Example 2.22 (Directed triangle). Consider a filled triangle4ABC with verticesA,B,C. We can

build a cellular dg-category corresponding to it as follows. The graph will consist of: three vertices

A, B and C; three arrows c : A→ B, a : B → C and b : A→ C of dimension 1, corresponding to

the edges of the triangle; and one arrow f : A → C of dimension 2 corresponding to the interior

of the triangle. The only paths in this graph will be 1A, 1B, 1C , a, b, c and ac, all having degree 0,

and f of degree −1.

The differential ∂ on 1-cells a, b and c should be trivial by Lemma 2.19(2). This implies that

∂(ac) = 0 as well. Thinking of f as the homotopy connecting two paths b and ac from A to C,

we define the differential on f by setting ∂(f) := ac − b. The condition ∂2(f) = 0 holds since
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∂(ac− b) = 0.

c(1) a(1)

b(1)

f (2)

A C

B

 
B

A C

a

1B

c

b,ac,f,
∂(f)=ac−b

1A 1C

Example 2.23 (Loop). We can also start with a graph with a single vertex ∗ and a single ar-

row γ : ∗ → ∗ of dimension 1, hence of degree 0. The corresponding k-linear path category

will have a single object and its space of morphisms will be either k[γ], if we do not invert γ,

or k[γ, γ−1], if we invert γ. The differential will be necessarily trivial.

Example 2.24 (n-sphere). For n ≥ 2, we consider a graph with a single vertex ∗ and a single

arrow a : ∗ → ∗, similarly to the loop example. However, in this case, we assign dimension n

to our arrow, hence it will have degree 1 − n < 0, so cannot be inverted. The morphisms in the

corresponding path category will be given by a graded ring k[a], and we define the differential ∂

by setting ∂(a) := 0, so it will be again trivial.

Example 2.25 (n-simplex). For any n ≥ 0, we can define a dg-categorical version of an n-simplex

as follows. Let us denote the vertices of our simplex by the integers 0, . . . , n. Also, let us denote

by [i0, . . . , ik] the k-dimensional face of the simplex on the vertices i0 < . . . < ik. We define the

corresponding cellular graph Λ as follows. It will have n+ 1 vertices labeled by the integers 0, . . . ,

n corresponding to the vertices of the simplex. The k-faces of our simplex, where k ≥ 1, will give

rise to the arrows of Λ as follows. For each k-face [i0, . . . , ik] we define the corresponding arrow

ei0...ik of dimension k from i0 to ik. So, the degrees of arrows are |ei0...ik | = 1−k. Then, we define
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the differential on kΩ[Λ] by its values on arrows as follows:

∂(ei0...ik) :=
∑

0<j<k

(−)k−j
(
ei0...̂ij ...ik − eijij+1...ik · ei0i1...ij

)
. (2.1)

For example, for 1-, 2- and 3-cells, we get respectively:

∂(e01) = 0,

∂(e012) = −(e02 − e12e01) = e12e01 − e02,

∂(e0123) = −(e023 − e123e01) + (e013 − e23e012)

= e123e01 + e013 − e023 − e23e012.

Then we can verify that ∂2 = 0 holds on arrows by using the above definition and the Leibniz rule

as follows:

∂2(ei0...ik) =
∑

0<j<k

(−)k−j
(
∂(ei0...̂ij ...ik)− ∂(eij ...ik)ei0...ij

− (−)1−(k−j)eij ...ik∂(ei0...ij)
)

=

[ ∑
0<l<j<k

(−)(k−j)+(k−1−l)(ei0...̂il...̂ij ...ik − eil...̂ij ...ikei0...il)
+

∑
0<j<l<k

(−)(k−j)+(k−l)(ei0...̂ij ...̂il...ik − eil...ikei0...̂ij ...il
:::::::::::::

)]

+
∑

0<j<l<k

(−)(k−j+1)+(k−l)(eij ...̂il...ik − eil...ikeij ...il)ei0...ij
+

∑
0<l<j<k

(−)j−leij ...ik
(
ei0...̂il...ij
:::::::

− eil...ijei0...il
)

= 0 ,

where the cancelling terms are underscored respectively. This cancellation works, because each

term appears twice, once with the sign (−)j+l and another time with the sign (−)j+l+1.

Remark 2.26. The previous examples of directed/undirected interval and directed triangle are
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particular cases of an example of n-simplexes for n = 1, 2, where in the undirected case we also

invert all 1-arrows.

Example 2.27 (Simplicial complex). Using the previous example, we can build a cellular dg-cate-

gory associated to arbitrary simplicial complexK given by its set of vertices V (K) and a set S(K)

of simplices, which are finite non-empty subsets of V (K) such that every subset of a simplex is a

simplex and every vertex v ∈ V (K) forms a simplex {v} ∈ S(K). In order to build an associated

cellular dg-category, we firstly order the vertices V (K) in arbitrary way and then proceed in the

same way as in Example 2.25. Namely, we define a cellular graph Λ which has the same vertices

as K and whose arrows correspond to the simplices of positive dimension in K. Then we equip

kΩ[Λ] with the differential defined by (2.1) and obtain the desired cellular dg-category. (Alterna-

tively, we can consider K as a subcomplex of a full simplex on its vertices V (K) and just take the

corresponding dg-subcategory of the category constructed in Example 2.25.)

Remark 2.28. In the previous example, there is an ambiguity in choosing the order on the vertices

of a simplicial complex. However, if we invert all 1-vertices in the associated cellular graph Λ,

then it is easy to check that the resulting dg-category won’t depend on the choice of the ordering,

hence it defines an invariant of a simplicial complex.

Namely, we can notice that any reordering of vertices is a composition of elementary reorder-

ings of types i ↔ i + 1. Then, we can check that these elementary reorderings indeed induce

isomorphisms of the corresponding dg-categories, even though the cellular structures themselves

might be different. For example, a 1-arrow ei,i+1 in the original category will correspond to the

inverse arrow (e′i+1,i)
−1 in the category for which the vertices i and i + 1 are ordered in the op-

posite way. Similarly, a 2-simplex ei,i+1,j , where j > i + 1, will correspond to a morphism

−e′i+1,i,j · (e′i+1,i)
−1 in the reordered category, and similar correspondences can be written for the

higher simplices as well.
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2.4 Cell attachment

A useful feature of CW-complexes is that they can be constructed inductively via a consecutive

cell attachment starting from an empty CW-complex. Here, we define different kinds of elementary

extensions of cellular dg-categories analogous to cell attachments of CW-complexes, and analyze

how the morphisms in these categories change under such kinds of extensions. We also prove that

every cellular dg-category can be inductively constructed via elementary extensions starting from

the empty category, similarly to the analogous result for CW-complexes. At the end, we conjecture

that the inductive construction procedure for arbitrary CW-complex can be unambiguously trans-

ferred into cellular dg-setting, thus producing a cellular dg-category which is an invariant of the

original CW-complex.

Definition 2.29. For a given cellular graph Λ, we define the following types of elementary exten-

sions of Λ:

1) (adding a vertex) For some new symbol X , we define Λ t X as a cellular graph obtained

from Λ by adding an extra-vertex labelled by X .

2) (adding an arrow) Given k ≥ 1, two vertices X and Y of Λ, and a new symbol a denoting

an arrow a : X → Y of dimension k, we define Λ∪ a as a cellular graph obtained from Λ by

adding an extra-arrow labelled by a which has the given source, target and dimension, and

which is not marked as invertible.

3) (adding an invertible 1-arrow) Given two vertices X and Y of Λ, and a new symbol a

denoting an arrow a : X → Y , we define Λ ∪ a± as a cellular graph obtained from Λ by

adding an extra-arrow labelled by a of dimension 1 which has the given source and target

and is marked as invertible.

4) (inverting an existing 1-arrow) Given a non-invertible 1-arrow a of Λ, we define Λ ∪ a−1

as a cellular graph obtained from Λ by marking a as invertible.
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Remark 2.30. The third operation can be thought as the composition of the second and fourth

operations.

The following lemma is obvious.

Lemma 2.31. Any cellular graph can be obtained from the empty graph ∅ via an inductive se-

quence of elementary extensions of types 1), 2) and 3), or of types 1), 2) and 4). Moreover, if a

cellular graph does not have invertible arrows, then only extensions of types 1) and 2) are neces-

sary.

Now, let us describe how the elementary extensions of graphs affect the sets of paths.

Lemma 2.32. Let Λ′ be one of the elementary extensions of Λ. Then the paths in Λ′ are related to

the paths in Λ as follows:

(1) If Λ′ = Λ tX , then the paths in Λ′ are just the paths in Λ plus an empty path on X .

(2) If Λ′ = Λ ∪ a, then every path in Λ′ has a unique representation of the form

p0 a p1 a . . . a pn ,

where n ≥ 0 and pi are paths in Λ (possibly empty).

(3) If Λ′ = Λ ∪ a±, then every path in Λ′ has a unique representation of the form

p0 a
ε1 p1 a

ε2 . . . aεn pn ,

where n ≥ 0, pi are paths in Λ, and εi = ±1, such that if εi+1 = −εi then the intermediary

path pi is non-empty.

(4) If Λ′ = Λ∪ a−1 for a in Λ, then every path in Λ′ has a unique representation of the form

p0 a
−1 p1 a

−1 . . . a−1 pn ,
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where n ≥ 0 and pi are paths in Λ, such that pi does not start with a for i < n and does not

end with a for i > 0. (Remember that paths go from right to left.)

Proof. Follows from the definitions of paths and reduced paths in graphs.

By Remark 2.8, if we have an elementary extension Λ ⊂ Λ′ of cellular graphs, then in order to

extend a differential from kΩ[Λ] to kΩ[Λ′], we just need to specify its value on a new positive cell

and check that ∂2 = 0 still holds on this cell, if we are adding any new cell at all. This allows us to

define the elementary extensions of cellular dg-categories as follows.

Definition 2.33. For a given cellular dg-category A with a cellular structure Λ, we define the

elementary extensions of A by extending the graph Λ and extending the values of the differential

from A to the new arrows as follows:

1) (attaching a 0-cell/adding an object) For a new object X , we define a cellular dg-category

A tX via its cellular graph Λ tX .

2) (attaching a positive cell) Given k ≥ 1, two objectsX and Y ofA, a new symbol c denoting

a cell c : X → Y of dimension k, and a chosen morphism b ∈ A2−k(X, Y ) of degree 2 − k

such that ∂(b) = 0, we define a cellular dg-category A ∪b c by its cellular graph Λ ∪ c and

by setting the value of a differential to ∂(c) = b. We will also call b the boundary condition

for c.

If k = 1, then we always choose b = 0 and write A ∪ c instead of A ∪0 c.

3) (attaching an invertible 1-cell) Given two objects X and Y of A and a new symbol c

denoting a cell c : X → Y of dimension 1, we define a cellular dg-category A ∪ c± by its

cellular graph Λ ∪ c± and by setting ∂(c) = 0.

4) (inverting an existing 1-cell) For a 1-cell c inA not marked as invertible, we define a cellular

dg-category A ∪ c−1 by its cellular graph Λ ∪ c−1.

Similarly to Lemma 2.31, we have the following statement for cellular dg-categories.
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Proposition 2.34. Every cellular dg-categoryA can be obtained from an empty dg-category ∅ via

an inductive sequence of elementary extensions of types 1), 2) and 3), or of types 1), 2) and 4).

Moreover, if A does not have invertible 1-cells, then only extensions of types 1) and 2) are neces-

sary.

Proof. Let Λ denotes a cellular structure of A. Then by Lemma 2.31 we can obtain Λ from an

empty graph by a sequence of elementary extensions of the required types:

∅ = Λ(0) ⊂ Λ(1) ⊂ · · · ⊂ Λ(n) = Λ.

Moreover, we can choose this sequence in such a way, that we firstly add all 0-cells/vertices of Λ,

then we add all 1-cells (and their inverses), then all 2-cells etc.

Now, let us prove that the path subcategories kΩ[Λ(i)] ⊆ A are all closed under the differ-

ential ∂ of A for all i, hence they are cellular dg-categories themselves with the cellular struc-

tures Λ(i). We will use induction on i. The statement is obvious for the empty category. Now,

let us assume that it holds for kΩ[Λ(i)] and consider the elementary extension Λ(i) ⊂ Λ(i+1).

By Lemma 2.9, in order to prove that kΩ[Λ(i+1)] is closed under ∂, we just need to check that

∂(c) ∈ kΩ[Λ(i+1)] for every arrow in Λ(i+1). However, this property already holds for every arrow

in Λ(i) by assumption, hence we need to check it only for the new arrow, if we add any on this step.

Let c be this arrow. If c has dimension 1, then we automatically have ∂(c) = 0 by Lemma 2.19(2),

so the statement is true. If c has dimension k > 1, then its differential ∂(c) belongs to the (k − 1)-

skeleton kΩ[skk−1(Λ)] of A by Lemma 2.19(4). However, by construction, since we are adding a

cell of dimension k at this step, all cells of lesser dimension were already added to the graph be-

fore, so the (k − 1)-skeleton is contained in kΩ[Λ(i)], hence ∂(c) ∈ kΩ[Λ(i)]. Thus, the statement

is true in this case as well. This concludes the induction.

Finally, let us note that each inclusion kΩ[Λ(i)] ⊂ kΩ[Λ(i+1)] is an elementary extension of

cellular dg-categories. Indeed, if an extension Λ(i) ⊂ Λ(i+1) has type 1), 3), 4), or 2) with k = 1,

then the inclusion kΩ[Λ(i+1)] can be expressed as an elementary extension of kΩ[Λ(i)] in the same
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way as Λ(i+1) can be expressed via Λ(i), since in all of these cases the differential extends from

kΩ[Λ(i)] to kΩ[Λ(i+1)] in a unique way. For example, if Λ(i+1) = Λ(i) t X , then kΩ[Λ(i+1)] =

kΩ[Λ(i)] t X; and, if Λ(i+1) = Λ(i) ∪ ∗, where ∗ ∈ {c, c±, c−1}, then kΩ[Λ(i+1)] = kΩ[Λ(i)] ∪ ∗.

However, if an extension Λ(i) ⊂ Λ(i+1) has type 2) with k > 1, then we also need to note that ∂(c)

belongs to kΩ[Λ(i)] by the previous argument, so we can express kΩ[Λ(i+1)] as kΩ[Λ(i)]∪∂(c) c.

Now, let us express how the morphisms in the extended cellular dg-categories are related to the

original ones by using Lemma 2.32. For that, let us introduce a few auxiliary notations as follows:

Ω∗[Λ](X, Y ) := {non-empty paths in Λ from X to Y },

Ωǎ..[Λ](X, Y ) := {paths in Λ from X to Y whose first letter is not a},

Ω..ǎ[Λ](X, Y ) := {paths in Λ from X to Y whose last letter is not a},

Ωǎ..ǎ[Λ](X, Y ) := {paths whose first and last letters are not a}.

Remark 2.35. In most cases, the above sets contain all paths from X to Y . For example, we have:

• Ω∗[Λ](X, Y ) = Ω[Λ](X, Y ) if X 6= Y ,

• Ωǎ..[Λ](X, Y ) = Ω[Λ](X, Y ) if Y 6= T (a);

• Ω..ǎ[Λ](X, Y ) = Ω[Λ](X, Y ) if X 6= S(a);

• Ωǎ..ǎ[Λ](X, Y ) = Ω[Λ](X, Y ) if Y 6= T (a) and X 6= S(a).

Using the above notations, we can reformulate Lemma 2.32 for cellular dg-categories as fol-

lows.

Lemma 2.36. Let A ⊂ A′ be an elementary extension of dg-categories with cellular structures Λ

and Λ′ respectively. Then the categories are related as follows:
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(1) If A′ = A tX , then we have:

ObA′ = ObA t {X},

A′(X,X) = k1X ,

A′(X, Y ) = 0 for Y ∈ ObA,

A′(Y,X) = 0 for Y ∈ ObA,

A′(Y, Z) = A(Y, Z) for Y, Z ∈ ObA.

(2) If A′ = A ∪b c, then ObA′ = ObA and the morphisms in A′ are as follows:

A′(X, Y ) = A(X, Y )⊕⊕
n≥1

A(T (c), Y )⊗ kc⊗A(T (c), S(c))

⊗kc⊗ . . .⊗kc⊗

A(T (c), S(c))⊗ kc⊗A(X,S(c)),

where the term kc appears n times inside the direct sum.

(3) If A′ = A ∪ c±, then ObA′ = ObA and the morphisms in A′ are as follows:

A′(X, Y ) = A(X, Y )⊕⊕
n≥1

ε1,...,εn=±1

A(T (cε1), Y )⊗ kcε1 ⊗ Ā(T (cε2), S(cε1))

⊗ kcε2 ⊗ · · · ⊗ kcεn−1⊗

Ā(T (cεn), S(cεn−1))⊗ kcεn ⊗A(X,S(cεn)),

where

Ā(T (cεi+1), S(cεi)) =


A(T (cεi+1), S(cεi)) if εi+1 = εi,

kΩ∗[Λ](T (cεi+1), S(cεi)) if εi+1 = −εi.
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(4) If A′ = A ∪ c−1, then ObA′ = ObA and the morphisms in A′ are as follows:

A′(X, Y ) = A(X, Y )⊕⊕
n≥1

kΩ..č[Λ](S(c), Y )⊗ kc−1 ⊗ kΩč..č[Λ](S(c), T (c))

⊗ kc−1 ⊗ · · · ⊗ kc−1⊗

kΩč..č[Λ](S(c), T (c))⊗ kc−1 ⊗ kΩč..[Λ](X,T (c)),

where the term kc−1 appears n times inside the direct sum.

2.4.1 Invariant of CW-complexes

We know that every CW-complex can be inductively constructed by applying consecutive cell

attachment. Namely, in order to attach a new n-cell to a CW-complex X , we need to define

an attachment map f : Sn−1 → X from the boundary of the n-dimensional ball, which is an

(n− 1)-dimensional sphere, into X . Up to homotopy equivalence, such map can be thought of as

a composite sphere insideX patched from its (n−1)-cells. Our idea here is that ifX is modelled by

some cellular dg-categoryA, then such patched sphere inX corresponds to a well-defined element

in A which will define the boundary conditions for the corresponding elementary extension of A.

This gives rise to the following conjecture.

Conjecture 2.37. (1) Any CW-complex X gives rise to a cellular dg-category A which has the

same set of cells as X , where the values of the differential on the cells of A correspond

to the attachment maps of cells of X , and in which all 1-arrows are invertible. Moreover,

such categoryA is defined uniquely up to a dg-isomorphism, though the choices made in the

reconstruction process might give rise to different cellular structures in A.

(2) The above correspondence extends to a functor from CW-complexes to dg-categories, where

cellular maps of CW-complexes give rise to the dg-functors of the corresponding dg-cate-

gories and the homotopy equivalences give rise the isomorphic categories.
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Remark 2.38. Let us consider a CW-complexX and a suggested associated cellular dg-categoryA

which is an invariant ofX . The categoryA in fact captures many nice homotopical properties ofX .

For example, the connected components of X are in one-to-one correspondence with the classes

of isomorphic objects inA, thusA fully captures π0(X). We can also observe that H0(A(x, x)) =

k[π1(X, x)] for any point/0-cell x in X .

2.5 Cellular product

In this section, we define a notion of a cellular product of cellular dg-categories mimicking

the construction of the product of CW-complexes. We also use this notion in order to explicitly

construct dg-categorical counterparts of n-dimensional cubes by representing them as the powers

of the interval category from Examples 2.20 and 2.21.

2.5.1 Definition

Before defining the cellular product for dg-categories, let us define an analogous notion for the

graphs as follows.

Definition 2.39. Let Λ and Λ′ be two cellular graphs. We define their cellular product Λ � Λ′ as

a cellular graph having one (i + j)-cell a ∗ b for each pair of an i-cell a in Λ and a j-cell b in Λ′.

More precisely, its vertices are

(Λ � Λ′)0 := Λ0 × Λ′0,

and its arrows are

(Λ � Λ′)1 := (Λ0 × Λ′1) t (Λ1 × Λ′0) t (Λ1 × Λ′1).
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The source and target maps are defined as follows:

S(X ∗ b) := X ∗ S(b), T (X ∗ b) := X ∗ T (b),

S(a ∗ Y ) := S(a) ∗ Y, T (a ∗ Y ) := T (a) ∗ Y,

S(a ∗ b) := S(a) ∗ S(b), T (a ∗ b) := T (a) ∗ T (b),

for any vertices X and Y and arrows a and b in Λ and Λ′ respectively, and the dimensions are:

dim(X ∗ b) = dim b, dim(a ∗ Y ) = dim a, dim(a ∗ b) = dim a+ dim b.

If a is an invertible arrow, then we invert a ∗ Y for all vertices Y in Λ′. Similarly, if b is invertible,

then we invert X ∗ b for all vertices X in Λ. (We do not invert any arrows of type a ∗ b, where a

and b are arrows, as they have dimension ≥ 2.)

Remark 2.40. For the vertices X and Y and arrows a and b in Λ and Λ′ respectively, it follows

from the formulas for dimensions that the degrees of the corresponding cellular products are as

follows:

|X ∗ b| = |b|, |a ∗ Y | = |a|, |a ∗ b| = |a|+ |b| − 1.

Example 2.41. For example, if Λ = Λ′ = I→ is the interval graph from Example 2.21, then Λ�Λ′

will be as follows:

(
0 1i

)
�

(
0 1i

)
=

i ∗ 0

1 ∗ i0 ∗ i

i ∗ 1

i ∗ i

0 ∗ 0 1 ∗ 0

0 ∗ 1 1 ∗ 1

,

where the arrows 0 ∗ i, i ∗ 1, i ∗ 0 and 1 ∗ i have dimension 1, and the arrow i ∗ i has dimension 2.

In order to define a cellular product for cellular dg-categories we just need to take the product

of their cellular graphs and then to set up the differential in the right way. Before doing that, let us
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introduce the following auxiliary operation on the objects and morphisms of two path categories

kΩ[Λ] and kΩ[Λ′].

Definition 2.42. For two cellular graphs Λ and Λ′, let us consider X ∗ b, a ∗ Y and a ∗ b as the

operations whose inputs are arrows a and b and whose outputs are arrows in Λ�Λ′ (for the specified

vertices X and Y in Λ and Λ′ respectively). Let us define extensions of these operations to graded

k-linear operationsX ∗(−) and (−)∗Y of degree 0, and to a graded k-bilinear operation (−)∗(−)

of degree −1, whose inputs are arbitrary morphisms in the respective path categories kΩ[Λ] and

kΩ[Λ′] and whose outputs are morphisms in kΩ[Λ � Λ′] as follows.

1) For a vertex X of Λ, we define the operation X ∗ (−) on paths in Λ′ as follows:

X ∗ 1Y := 1X∗Y ,

X ∗ b−1 := (X ∗ b)−1,

X ∗ (y1 . . . yn) := (X ∗ y1) · . . . · (X ∗ yn),

where Y is a vertex in Λ′, b is an invertible arrow in Λ′, and yi are arrows or their inverses

in Λ′. Then we extend to all morphisms of kΩ[Λ′] via k-linearity.

2) For a vertex Y of Λ′, we define the operation (−) ∗ Y on paths in Λ as follows:

1X ∗ Y := 1X∗Y ,

a−1 ∗ Y := (a ∗ Y )−1,

(x1 . . . xn) ∗ Y := (x1 ∗ Y ) · . . . · (xn ∗ Y ),

where X is a vertex in Λ, a is an invertible arrow in Λ, and xi are arrows or their inverses

in Λ. Then we extend to all morphisms of kΩ[Λ] via k-linearity.
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3) For an arrow b in Λ′, we define the operation (−) ∗ b on paths in Λ as follows:

1X ∗ b := 0: X ∗ S(b)→ X ∗ T (b),

a−1 ∗ b := −
(
a ∗ T (b)

)−1
(a ∗ b)

(
a ∗ S(b)

)−1
,

(x1 . . . xn) ∗ b :=
∑

1≤i≤n

(−)(
∑

j>i |xj |)·(|b|+1)
(∏
j<i

(xj ∗ T (b))
)

(xi ∗ b)
(∏
j>i

(xj ∗ S(b))
)
,

where X is a vertex in Λ, a is an invertible arrow in Λ, and xi are arrows or their inverses

in Λ.

4) Finally, we define the operation (−) ∗ (−) on all paths in Λ and Λ′ as follows:

p ∗ 1Y := 0: S(p) ∗ Y → T (p) ∗ Y,

p ∗ b−1 := −
(
T (p) ∗ b)

)−1
(p ∗ b)

(
S(p) ∗ b)−1,

p ∗ (y1 . . . yn) :=
∑

1≤i≤n

(−)(|p|+1)·(
∑

j<i |yj |)
(∏
j<i

(T (p) ∗ yj)
)

(p ∗ yi)
(∏
j>i

(S(p) ∗ yj)
)
,

where p is a path in Λ, Y is a vertex in Λ′, b is an invertible arrow in Λ′, yi are arrows or their

inverses in Λ′, and p ∗ b was defined in the previous step. Then we extend to all morphisms

of kΩ[Λ] and kΩ[Λ′] via k-linearity.

Remark 2.43. Equations used to define (x1 . . . xn) ∗ b and p ∗ (y1 . . . yn) hold if we replace xi and

yi by arbitrary paths in Λ and Λ′ respectively.

Remark 2.44. The definition is asymmetric with respect to its two arguments, as in order to de-

fine the composition (x1 . . . xn) ∗ (y1 . . . ym), we firstly need to express the second argument via

(x1 . . . xn) ∗ yj by step 4, and then to use the definitions for the latter expressions from step 3.

Definition 2.45. Given the derivations ∂ and ∂′ of degree 1 on the path categories kΩ[Λ] and

kΩ[Λ′] respectively, let us use Lemma 2.5 to define a derivation ∂ � ∂′ of degree 1 on kΩ[Λ � Λ′]

by its values on the arrows of Λ � Λ′ as follows:
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1) For an arrow a in Λ and a vertex Y in Λ′, we define the value on a ∗ Y as

(∂ � ∂′)(a ∗ Y ) := ∂(a) ∗ Y. (2.2)

2) For a vertex X in Λ and an arrow b in Λ′, we define the value on X ∗ b as

(∂ � ∂′)(X ∗ b) := X ∗ ∂′(b). (2.3)

3) For two arrows a and b in Λ and Λ′ respectively, we define the value on a ∗ b as

(∂ � ∂′)(a ∗ b) := ∂(a) ∗ b− (−)|a|
(
a ∗ ∂′(b)

)
− (−)|a|(a � b), (2.4)

where

a � b := (a ∗ T (b))(S(a) ∗ b)− (−)|a|·|b|(T (a) ∗ b)(a ∗ S(b)).

Remark 2.46. The correction term a � b in the above definition is crucial as otherwise the cellular

product of two 1-cells would be trivial (as for 1-cells we have ∂(a) = ∂(b) = 0). This term

provides exactly what we want, that is a boundary of the square formed by arrows a∗S(b), a∗T (b),

S(a)∗b and T (a)∗b. In fact, if we would have the fully linearized picture in which we would allow

subtraction of the objects and would define ∂(a) = Ta − Sa for 1-cells a (instead of ∂(a) = 0)

and would replace the composition of paths by their formal sum (instead of product), then the term

a � b would appear naturally among the first two summands of (∂ � ∂′)(a ∗ b).

Lemma 2.47. For any derivations ∂ and ∂′ on kΩ[Λ] and kΩ[Λ′] respectively, the following equa-

tions hold for arbitrary paths p and q in Λ and Λ′ respectively:

(∂ � ∂′)(p ∗ Y ) = ∂(p) ∗ Y,

(∂ � ∂′)(X ∗ q) = X ∗ ∂′(q).
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Proof. Immediately follows from definitions (2.2) and (2.3), from definitions of X ∗ q and p ∗ Y ,

and from Leibniz rule applied for ∂, ∂′ and ∂ � ∂′.

Lemma 2.48. If a = 1X or b = 1Y , then a � b = 0.

Proof.

1X � b = (1X ∗ T (b))(X ∗ b)− (X ∗ b)(1X ∗ S(b))

= (1X∗T (b)) · (X ∗ b)− (X ∗ b) · (1X∗S(b)) = X ∗ b−X ∗ b = 0,

a � 1Y = (a ∗ Y )(S(a) ∗ 1Y )− (T (a) ∗ 1Y )(a ∗ Y )

= (a ∗ Y ) · (1S(a)∗Y )− (1T (a)∗Y ) · (a ∗ Y ) = a ∗ Y − a ∗ Y = 0.

Lemma 2.49. Operation p� q satisfies Leibniz rule for arbitrary paths p and q in Λ and Λ′ respec-

tively:

(∂ � ∂′)(p � q) = ∂(p) � q + (−)|p|
(
p � ∂′(q)

)
.

Proof. Immediately follows from Lemma 2.47 and Leibniz rule for derivation ∂ � ∂′.

Lemma 2.50. If ∂ and ∂′ are derivations on kΩ[Λ] and kΩ[Λ′] respectively, and ∂′ = 0, then

Equation (2.4) holds when the arrow a is replaced by arbitrary path p in Λ:

(∂ � 0)(p ∗ b) = ∂(p) ∗ b− (−)|p|(p � b).

Proof. When p is an arrow in Λ, the equation holds by definition. Let us prove that this equation

also holds when p = a−1 is an inverse of an arrow in Λ. In this case, we have |a| = 0, ∂(a) = 0

and ∂(a−1) = 0, since a is invertible, hence

(∂ � 0)(a ∗ b) = ∂(a) ∗ b− a � b = 0 ∗ b− a � b = −a � b,
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and we need to prove that

(∂ � 0)(a−1 ∗ b) = −(a−1) � b.

We can do it as follows:

(∂ � 0)(a−1 ∗ b) = Definition of a−1 ∗ b

= (∂ � 0)
(
−
(
a ∗ T (b)

)−1
(a ∗ b)

(
a ∗ S(b)

)−1
)

= Leibniz rule for ∂ � 0 using that ∂(a ∗ Y ) = ∂(a) ∗ Y = 0

= −
(
a ∗ T (b)

)−1 ·
(
(∂ � 0)(a ∗ b)

)
·
(
a ∗ S(b)

)−1

=
(
a ∗ T (b)

)−1 · (a � b) ·
(
a ∗ S(b)

)−1

= definition of a � b

=
(
��

���a ∗ T (b)
)−1(

���
��a ∗ T (b)
) (
S(a) ∗ b

) (
a ∗ S(b)

)−1

−
(
a ∗ T (b)

)−1(
T (a) ∗ b

) (
��

���a ∗ S(b)
) (
��

���a ∗ S(b)
)−1

= (S(a) ∗ b)
(
a ∗ S(b)

)−1 −
(
a ∗ T (b)

)−1
(T (a) ∗ b)

= (S(a) ∗ b)
(
a−1 ∗ S(b)

)
−
(
a−1 ∗ T (b)

)
(T (a) ∗ b)

= definition of a−1 � b = −(a−1) � b.

The statement also holds when p = 1X is an empty path, because in this case, both sides

become zero due to the definition of 1X ∗ b and Lemma 2.48:

(∂ � 0)(1X ∗ b) = (∂ � 0)(0) = 0,

∂(1X) ∗ b− (−)|1X |(1X � b) = 0 ∗ b− 0 = 0.

Now let us prove that if the equation holds for x1 and x2, then it holds for x1x2. Namely,
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assume that it holds for x1 and x2:

(∂ � 0)(x1 ∗ b) = ∂(x1) ∗ b− (−)|x1|(x1 � b),

(∂ � 0)(x2 ∗ b) = ∂(x2) ∗ b− (−)|x2|(x2 � b).

After that, let us prove it for x1x2 by using Leibniz rule and Remark 2.43 as follows:

(∂ � 0)(x1x2 ∗ b) = Remark 2.43 for x1x2 ∗ b

= (∂ � 0)
(

(−)|x2|·(|b|+1)(x1 ∗ b)(x2 ∗ S(b)) + (x1 ∗ T (b))(x2 ∗ b)
)

= (−)|x2|·(|b|+1)(∂ � 0)
(

(x1 ∗ b)(x2 ∗ S(b))
)

+ (∂ � 0)
(

(x1 ∗ T (b))(x2 ∗ b)
)

= Leibniz rule for ∂ � 0

= (−)|x2|·(|b|+1)
(

(∂ � 0)(x1 ∗ b)
)
· (x2 ∗ S(b))

+ (−)|x2|·(|b|+1)+|x1|+|b|+1(x1 ∗ b)
(

(∂ � 0)(x2 ∗ S(b))
)

+
(

(∂ � 0)(x1 ∗ T (b))
)
· (x2 ∗ b)

+ (−)|x1|(x1 ∗ T (b)) ·
(

(∂ � 0)(x2 ∗ b)
)

= assumptions for x1 and x2

= (−)|x2|·(|b|+1)
(
∂(x1) ∗ b− (−)|x1|(x1 � b)

)
· (x2 ∗ S(b))

+ (−)(|x2|+1)(|b|+1)+|x1|(x1 ∗ b)
(
∂(x2) ∗ S(b)

)
+
(
∂(x1) ∗ T (b)

)
(x2 ∗ b)

+ (−)|x1|(x1 ∗ T (b)) ·
(
∂(x2) ∗ b− (−)|x2|(x2 � b)

)
= Remark 2.43 for ∂(x1)x2 ∗ b and x1∂(x2) ∗ b

=
(
∂(x1)x2

)
∗ b+ (−)|x1|

(
x1∂(x2)

)
∗ b

+ (−)|x2|·(|b|+1)+|x1|+1(x1 � b)
(
x2 ∗ S(b)

)
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+ (−)|x1|+|x2|+1
(
x1 ∗ T (b)

)
(x2 � b)

= Leibniz rule for ∂ and definitions of x1 � b and x2 � b

=
(
∂(x1x2)

)
∗ b+ (−)|x2|·(|b|+1)+|x1|+1

(
(((

((((
(((

((
(x1 ∗ T (b))(S(x1) ∗ b)

− (−)|x1|·|b|(T (x1) ∗ b)(x1 ∗ S(b))
)
·
(
x2 ∗ S(b)

)
+ (−)|x1|+|x2|+1

(
x1 ∗ T (b)

)
·
(

(x2 ∗ T (b))(S(x2) ∗ b)

− (−)|x2|·|b|
((((

((((
((((

(T (x2) ∗ b)(x2 ∗ S(b))
)

=
(
∂(x1x2)

)
∗ b+ (−)(|x1|+|x2|)·(|b|+1)

(
T (x1) ∗ b

)(
x1 ∗ S(b)

)(
x2 ∗ S(b)

)
+ (−)|x1|+|x2|+1

(
x1 ∗ T (b)

)(
x2 ∗ T (b)

)(
S(x2) ∗ b

)
= Lemma 2.47 for x1x2 ∗ S(b) and x1x2 ∗ T (b)

=
(
∂(x1x2)

)
∗ b+ (−)(|x1|+|x2|)·(|b|+1)

(
T (x1x2) ∗ b

)(
x1x2 ∗ S(b)

)
+ (−)|x1|+|x2|+1

(
x1x2 ∗ T (b)

)(
S(x1x2) ∗ b

)
= definition of x1x2 � b =

(
∂(x1x2)

)
∗ b− (−)|x1|+|x2|

(
x1x2 � b

)
.

Now, we can conclude that the needed equation holds for arbitrary paths p in Λ, since every

path is either empty or is a product of arrows and their inverses for which the equation holds.

Hence the proof.

Lemma 2.51. If ∂ and ∂′ are differentials on kΩ[Λ] and kΩ[Λ′] respectively, and ∂′ = 0, then the

derivation ∂ � ∂′ is a differential on kΩ[Λ � Λ′].

Proof. Indeed, by Lemma 2.6, we just need to check that (∂ � ∂′)2 = 0 on arrows of Λ � Λ′. This

equation holds on the arrows of type a ∗ Y , since

(∂ � ∂′)2(a ∗ Y ) = (∂ � ∂′)
(
(∂ � ∂′)(a ∗ Y )

)
= (∂ � ∂′)(∂(a) ∗ Y ) = ∂

(
∂(a)

)
∗ Y = 0 ∗ Y = 0

by Lemma 2.47. Similarly, it holds on the arrows of type X ∗ b by the same Lemma. On the arrows
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of type a ∗ b, we can check it as follows:

(∂ � 0)2(a ∗ b) = (∂ � 0)
(
(∂ � 0)(a ∗ b)

)
= definition of ∂ � 0

= (∂ � 0)
(
∂(a) ∗ b− (−)|a|(a � b)

)
= (∂ � 0)

(
∂(a) ∗ b

)
− (−)|a|(∂ � 0)(a � b)

= Lemma 2.50 for ∂(a) ∗ b

=
(
∂
(
∂(a)

)
∗ b− (−)|∂(a)|∂(a) � b

)
− (−)|a|(∂ � 0)(a � b)

= Lemma 2.49

= 0 ∗ b− (−)|a|+1
��

���∂(a) � b− (−)|a|
(
��

���∂(a) � b+ (−)|a| a � 0
)

= 0.

Remark 2.52. The condition ∂′ = 0 is technical here. In general case, a similar statement should

work, though one need to add an extra-correction term to (2.4) handling the asymetricity in the

definition of p ∗ q (see Remark 2.44).

Finally, we are ready to define a cellular product for dg-categories.

Definition 2.53. Let (A, ∂A) and (B, ∂B) be cellular dg-categories with cellular structures ΛA and

ΛB respectively, such that ∂B = 0. We define a cellular product A � B as a cellular dg-category

whose cellular structure is ΛA � ΛB and whose differential is ∂A � ∂B.

Remark 2.54. For any object X in A, the operation X ∗ (−) on the objects and morphisms of B

gives rise to an inclusion dg-functor B ⊆−→ A � B. Similarly, for any object Y in B, the operation

(−) ∗ Y defines an inclusion dg-functor from A into A� B.

Remark 2.55. If A ⊆ A′ is the inclusion of cellular dg-subcategories corresponding to the in-

clusion of their cellular graphs, then A � B naturally includes into the category A′ � B (as soon
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as these products are well-defined). Similarly, if B ⊆ B′ is such inclusion, then A � B includes

into A� B′. The images of A� B under these inclusions will coincide with the dg-subcategories

generated by cells of type x ∗ y where x is a cell in A and y is a cell in B.

Conjecture 2.56. Let A and B be cellular dg-categories constructed by the procedure of Conjec-

ture 2.37 from two CW-complexes X and Y respectively. Then the cellular dg-product A � B is

isomorphic to the CW-category constructed from a direct product CW-complex X × Y .

2.5.2 dg-cubes

Let us denote by ~I the cellular dg-category obtained from the directed interval graph I→ in

Example 2.20, and by I the corresponding undirected category from Example 2.21. We will

call them as directed and undirected interval categories, respectively. Also, whenever we are

talking about just an interval category, we will mean that the statement applies to both directed and

undirected cases.

Both interval categories have trivial differential, so we can multiply them by themselves using

Definition 2.53 as follows.

Definition 2.57. We define a directed and undirected dg-n-cubes ~I�n and I�n as the cellular

n-fold products of the corresponding interval categories:

~I�n :=
(

(~I � ~I) � . . .
)

� ~I (n times);

I�n :=
(

(I � I) � . . .
)

� I (n times).

Since an interval category contains three cells 0, 1 and i, the corresponding dg-n-cube contains

exactly 3n cells corresponding to the elements of the power set {0, 1, i}n. Let us denote by eα1...αn

the cell α1 ∗ . . .∗αn for any αj ∈ {0, 1, i}. An dg-n-cube has exactly 2n−k
(
n
k

)
cells of dimension k

which correspond to the tuples (α1, . . . , αn) in which exactly k elements are equal to i and the rest

n − k elements are 0 or 1. In terms of the corresponding cellular graph, it has 2n vertices/0-cells

eα1...αn where αj ∈ {0, 1}. Arrows are the cells eα1...αn in which at least one αj is equal to i.
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For an arrow eα1...αn , its source is given by a vertex eβ1...βn where βj = αj if αj ∈ {0, 1} and

βj = S(i) = 0 if αj = i. Similarly, the target is given by a vertex eβ1...βn where βj = αj if

αj ∈ {0, 1} and βj = T (i) = 1 if αj = i.

Example 2.58. A dg-1-cube is just an interval (see Examples 2.21 and 2.20).

Example 2.59. A dg-2-cube is a square. The graph for the square was described in Example 2.41.

The differential is defined by setting ∂(0 ∗ i) = ∂(1 ∗ i) = ∂(i ∗ 0) = ∂(i ∗ 1) = 0 and ∂(i ∗ i) =

−i � i = (1 ∗ i)(i ∗ 0) − (i ∗ 1)(0 ∗ i) by (2.4) which means that i ∗ i denotes a 2-cell homotopy

connecting two paths from 0 ∗ 0 to 1 ∗ 1 (see also the picture in Example 2.41).

Example 2.60. A dg-3-cube is a regular cube. The differential of an interior cell i∗ i∗ i is equal to

∂(i ∗ i ∗ i) =− (i ∗ 1 ∗ i)(0 ∗ i ∗ 0)− (i ∗ 1 ∗ 1)(0 ∗ i ∗ i) + (1 ∗ i ∗ i)(i ∗ 0 ∗ 0)

+ (1 ∗ i ∗ 1)(i ∗ 0 ∗ i) + (i ∗ i ∗ 1)(0 ∗ 0 ∗ i)− (1 ∗ 1 ∗ i)(i ∗ i ∗ 0),

which has precisely six terms corresponding to the six square faces as expected.

Now, since all of our constructions work equally in directed and undirected cases, let us use

the uniform notation and denote by Cn the dg-n-cube ~I�n or I�n for the rest of this section. Thus

the corresponding directed or undirected interval will be denoted by C1. Also, we can denote by C0

the one-point category {∗} with a single 0-cell.

Let us now describe the faces in dg-cubes. Namely, for a cube Cn, let us denote by dεk(Cn) the

subcategory of Cn generated by cells of type α1 ∗ . . . ∗ αn, where αk = ε ∈ {0, 1} and 1 ≤ k ≤ n.

These 2n subcategories for different k and ε correspond to the (n− 1)-faces of a regular n-cube.

Lemma 2.61. The faces of cubes are cubes themselves. Namely, for any n ≥ 1, any ε = 0, 1, and

any 1 ≤ k ≤ n, there exist an inclusion functor

ιεn,k : Cn−1

∼=−−→ dεk(Cn)
⊆−−→ Cn,
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isomorphically mapping a dg-(n−1)-cube Cn−1 onto the face dεk(Cn) of a dg-n-cube Cn, and acting

on cells as follows:

ιεn,k : α1 ∗ . . . ∗ αn−1 7−→ α1 ∗ . . . αk−1 ∗ ε ∗ αk ∗ . . . αn−1.

Proof. Let us construct these functors as follows. If n = 1, then the inclusion functor is just the

mapping of a one-point category {∗} = C0 onto the object ε = 0, 1 of the interval category C1.

If n > 1, we will use the inductive definition of Cn as Cn−1 � C1 and will define our functors

inductively by n− k.

If k = n, then we just consider the product of Cn−1 with the inclusion {ε} ⊆ C1 of a single

object ε = 0 or ε = 1 into the interval category C1 as in Remark 2.55:

ιεn,n : Cn−1

∼=−−→ Cn−1 � {ε} ⊆−−→ Cn−1 � C1 = Cn.

If k < n, then we can inductively express ιεn,k via ιεn−1,k as follows:

ιεn,k : Cn−1 = Cn−2 � C1

ιεn−1,k�C1
−−−−−−→ Cn−1 � C1 = Cn,

where the functor ιεn−1,k � C1 is defined via Remark 2.55.
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Chapter 3: Applications to homotopy theory of A∞-categories

3.1 A∞-functors from cellular dg-categories

Here, we consider unital A∞-functors f : A → B, where A is a cellular dg-category and B is

a unital A∞-category. We also assume that A does not have invertible cells. We show that every

such functor is essentially determined by the images of cells of A in B. In order for such functor

to exist, these cell images should also satisfy boundary conditions compatible with the differential

in A.

Since every cellular dg-category without invertible cells can be obtained from an empty cate-

gory by either adding new objects or adding new cells, the above fact follows from the following

theorem.

Theorem 3.1. Let A′ = A ∪b c be a cellular dg-category obtained from a cellular dg-category A

by attaching a single cell c : X → Y of dimension k with the boundary condition ∂(c) = b where

b ∈ A2−k(X, Y ) and ∂(b) = 0. Then for any unital A∞-functor f : A → B from A to a unital

A∞-category B, and an element c′ ∈ B(f(X), f(Y )) such that b1(sc′) = f1(sb), there exists a

functor f ′ : A′ → B such that f ′|A = f and f ′1(sc) = sc′. Moreover, such functor f ′ is uniquely

defined up to an s-homotopy (see Definition B.1).

Remark 3.2. Note that the boundary condition b1(sc′) = f1(sb) for the morphism c′ is a necessary

requirement in the theorem. Indeed, for any functor f ′ with the given value f ′1(sc) = sc′ such that

f ′|A = f , the following A∞-condition should hold on sc:

f ′1b1(sc) = b1f
′
1(sc).

However, here the right-hand-side is b1f
′
1(sc) = b1(sc′) and the left-hand-side is exactly f ′1b1(sc) =
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f ′1(s∂(c)) = f ′1(sb) = f1(sb) by our assumptions, hence we obtain the necessary condition.

Remark 3.3. A similar statement holds when we restrict ourselves to the dg-world. Namely, if B

is a dg-category, f is a dg-functor and c′ satisfies the same boundary conditions, then there exists

a unique dg-functor f ′ extending f with the given value on c. Theorem 3.1 can be thought as

a homotopy version of this statement.

Corollary 3.4. If A is a cellular dg-category without invertible arrows, then any untial A∞-func-

tor f : A → B to a unital A∞-category B is uniquely determined (up to an s-homotopy) by the

images f(X) of the objects inA and by the images f1(sc) of the positive-dimensional cells c inA,

satisfying boundary conditions of type b1(f1(sc)) = f1(s∂(c)), where f1(s∂(c)) is described in

terms of the images of cells of lower dimension.

The rest of this section is dedicated to proof of Theorem 3.1. The idea of the proof is quite

straightforward and is as follows.

By definition, an A∞-functor is given by its values on the composable tuples of morphisms

in the input category satisfying A∞-conditions (1.5). In our setting of the input category being

a cellular dg-category A with an underlying cellular graph Λ, the k-linear basis in the set of the

composable tuples of morphisms in A is formed by the composable tuples [p1, . . . , pn] of paths

in Λ. Thus, for any map of quivers f : TsA → sB, the condition for it of being an A∞-functor can

be expressed as the set of equations on the values fn(sp1 ⊗ . . .⊗ spn) of f on such tuples.

In Theorem 3.1, we are trying to construct a functor f ′ : A′ → B satisfying certain conditions.

Let Λ′ denote the underlying cellular graph in A′. Then, as in the above discussion, we will treat

the values f ′n(sp1 ⊗ . . . ⊗ spn) of f ′ on the composable tuples of paths in Λ′ as our variables. In

the following, we will analyze the equations on these variables in large detail. In particular, we

will show that the variables can be nicely classified into the independent and dependent ones and

that the required functor can be explicitly constructed by arbitrary assignment of the values to the

independent variables and by deducing the values of the dependent variables from A∞-conditions.

In §3.1.1, we classify the tuples of paths according to our discussion of independent and de-

pendent variables. In §3.1.2, we construct f ′ as a map of quivers from TsA to sB by assigning
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arbitrary values to the independent variables and by deducing the values of the rest of the variables

from a subset of A∞-conditions. In §3.1.3, we are checking that f ′ satisfies the rest of A∞-con-

ditions, hence is a well-defined A∞-functor. Finally, in §3.1.4, we show that any two possible

extensions are s-homotopic, thus concluding the proof of Theorem 3.1.

Example 3.5. Let us consider the directed interval category ~I = {0 i−→ 1} from Example 2.20.

Let us add a new object to it labelled as 2 and denote the resulting category by A. Ignoring the

unitality issues, an A∞-functor f from A to an A∞-category B is uniquely determined by the

images of objects 0, 1 and 2, and by a 0-cycle x : f(0) → f(1) in B which will be the image of i

under f up to the shifts, that is f1(si) = sx:

A =
 0 1 2i

 f−−→ B
Then, let us add a new 1-cell j : 1 → 2 to A and denote the resulting category by A′. Thus

A′ = A ∪ j, where ∂(j) = 0. Now, let us see how Theorem 3.1 works in this situation.

In order to define an A∞-functor f ′ : A′ → B, we need to specify the values of f ′1(si), f ′1(sj),

f ′1
(
s(ji)

)
and f ′2(sj ⊗ si):

A′ =


0 1 2i j

ji

 f ′−−→ B

By assumption of our theorem, f ′ extends f , so the value f ′1(si) = f1(si) is predefined. Also,

the value of f ′1(sj) is also specified in the assumptions of our theorem as the value on the new

cell. Only the other two values f ′1
(
s(ji)

)
and f ′2(sj ⊗ si) will be our actual variables. Since

b1(si) = s∂(i) = 0, b1(sj) = s∂(j) = 0 and b2(sj ⊗ si) = s(ji), the A∞-conditions (1.5) for the
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functor f ′ reduce to the following three equations on these variables:

0 = b1f
′
1(si),

0 = b1f
′
1(sj),

f ′1
(
s(ji)

)
= b2

(
f ′1(sj)⊗ f ′1(si)

)
+ b1f

′
2(sj ⊗ si).

The first equation is satisfied automatically, since it was true for the original functor f . The second

equation is just the boundary condition for the image of the new cell j, so it holds by initial

assumption on f ′1(sj). The third equation, however, provides a non-trivial relation between our

variables. Moreover, we see that as soon as we know the values of f ′1(si), f ′1(sj) and f ′2(sj ⊗ si),

we can immediately recover the value of f ′1
(
s(ji)

)
. Thus in this case, we can choose f ′2(sj ⊗ si)

as an independent variable, and f ′1
(
s(ji)

)
as a dependent variable. (Extending this language, we

can also call f ′1(si) and f ′1(sj) as predefined constants.) In particular, we can set f ′2(sj ⊗ si) := 0

which will imply that f ′1
(
s(ji)

)
= b2

(
f ′1(sj)⊗ f ′1(si)

)
.

3.1.1 Types of tuples of paths

Let us denote the underlying cellular graph of A by Λ and the corresponding cellular graph

of A′ by Λ′ = Λ ∪ c. Let us classify the composable tuples of paths in Λ′ as follows.

Definition 3.6. For tuples [p1, . . . , pn] of composable paths pi in Λ′ we define the following four

their types:

(1) Tuples that have at least one empty path in them, that is pi = 1X for some i and some

object X .

(2) (a) Tuples that solely consist of paths in the old graph Λ;

(b) a 1-tuple consisting of a new cell c.

(3) (a) Tuples such that p1 = c and n ≥ 2;
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(b) tuples whose k-th element pk is the path with first letter c and whose preceding elements

are paths in the old graph Λ, where k > 1.

(4) (a) Tuples such that p1 = cq for some non-empty path q in Λ′;

(b) tuples whose k-th element is the path whose word starts with qcwhere q is a non-empty

path in the old graph Λ and whose previous elements are paths in the old graph Λ, where

k ≥ 1.

Remark 3.7. The above types have the following significance. Type (2) consists of the tuples on

which the extended functor f ′ has predefined values (constants). Type (3) consists of the tuples on

which we will be able to define f ′ in arbitrary way (independent variables), and type (4) consists

of the tuples on which the value of f ′ will be uniquely determined from the previous values and

from the A∞-equations (dependent variables). Also, type (1) serves a technical role of simplifying

constructions involving unitality properties.

Schematically, we can describe the above types as follows. Let us use the following notations:

� := {paths in Λ}, � := {non-empty paths in Λ},

F := {paths in Λ′}, 9 := {non-empty paths in Λ′}.

Then the above types are as follows:

(1) [. . . , 1, . . . ];

(2) (a) [�, . . . ,�︸ ︷︷ ︸
≥1

], (b) [c];

(3) (a) [ c,F, . . . ,F︸ ︷︷ ︸
≥1

], (b) [�, . . . ,�︸ ︷︷ ︸
≥1

, cF, F, . . . ,F ];

(4) (a) [ c9, F, . . . ,F ], (b) [�, . . . ,�, � cF, F, . . . ,F];

where the number of objects in the dotted sequences �, . . . ,� andF, . . . ,F might be zero, unless

they are denoted as “≥1”.
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Lemma 3.8. Every tuple [p1, . . . , pn] of composable paths in Λ′ for n ≥ 1 belongs to a single type

among types (2), (3) and (4) where all symbols �, �,F and 9 have uniquely determined values.

Proof. Indeed, by Lemma 2.32(2), we know that every path in Λ′ is either an old path in Λ, that is

�, or a path of type � cF where c denotes the first occurrence of letter c and � andF are uniquely

defined. Thus for the given tuple of paths, we can decide which type it belongs to by performing

the following algorithm:

• Does the tuple have at least one occurrence of a new cell c?

No⇒ type (2a). Yes⇒ proceed further.

• Denote by k the position in the tuple where the first occurence of c is located. That is, pi = �

for i < k and pk = � cF.

• If k = 1, then p1 = � cF. If � is non-empty, then p1 = � cF and the tuple has type (4b)

(with zero elements � in it). Otherwise, p1 = cF. If F is empty, then p1 = c and the tuple

has type (2b) if n = 1 or type (3a) if n > 1. Otherwise, p1 = c9 and the tuple has type (4a).

• If k > 1, then pk = � cF. If � is empty, then the tuple has type (3b). Otherwise, the tuple

has type (4b).

3.1.2 Construction of the functor extension

Here, we will assume for simplicity of the argument that B is a strictly unital category with

strict units isuY for Y ∈ ObB, and that the original functor f : A → B is strictly unital in a sense

that f1(s1X) = sisuf(X) and fi(. . . , s1X , . . . ) = 0 for i > 1. The extended functor will then also

satisfy the same condition.

Remark 3.9. We can assume that B is strictly unital, since we can always embed a unital A∞-cat-

egory into an equivalent strictly unital category B+ by Remark 1.39. Then after we are done with

extending the functor, we can project the result back onto B (see also Lemma B.21). We can further
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assume that the original functor is strictly unital. Otherwise, we can deform it to a strictly unital

one by Lemma B.11. After that we can extend it via the procedure described below. Finally, we can

deform the result back by using the same s-homotopic deformation, thus obtaining the extension

of the original functor.

We will define the extended functor on different types of input tuples as follows.

If the tuple has type (1), then we will define it via the above strict unitality property regardless

of whether it belongs to type (2), (3) or (4).

If the tuple has type (2a), then we define f ′ as having the same value as f , and if it has type (2b),

then we define f ′ by the given value of f ′(sc) = sc′. (By assumption, the original functor satis-

fies strict unitality property, so this definition is compatible with the definition for the tuples of

type (1).)

On each tuple of type (3) but not of type (1), we define f ′ in arbitrary way. (Here, “arbitrarily”

still means meaningfully, that is we remember from the definition of an A∞-functor which degree

the value of f ′ should have, and what are the source and the target of the output morphism.)

On the tuples of type (4) but not of type (1), we define f ′ from the A∞-conditions using the

previously defined values. We also do it inductively on the number of occurrences of c in the tuple.

We do it as follows. We start by noticing that f ′ was already defined as f on the tuples with no

occurrences of c. To perform inductive step, let us assume that we have already defined the value

of f ′ on the tuples with the number of occurrences of c less than m, where m ≥ 1. Consider now

a tuple [p1, . . . , pn] which has exactly m occurrences of c, where n ≥ 1. Let us consider the cases

of subtypes (4a) and (4b) separately.

If [p1, . . . , pn] = [ c9, F, . . . ,F ] has type (4a), where n ≥ 1, then let us consider a new tuple

[p′1, . . . , p
′
n+1] obtained from [p1, . . . , pn] by splitting p1 into c and 9:

[p′1, . . . , p
′
n+1] := [ c, 9, F, . . . ,F ].

This tuple itself has type (3a) and all of its subtuples [p′i, . . . , p
′
j], where 1 ≤ i ≤ j ≤ n + 1, are
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either of types (2b) or (3a) if i = 1, or they have less than m occurrences of c if i > 1, since they

do not contain the first c in p′1. Now, let us rewrite an A∞-condition (1.5) in a simplified notation

(without indices):

∑
f ′(1⊗ . . .⊗ 1⊗ b⊗ 1⊗ . . .⊗ 1) =

∑
b(f ′ ⊗ . . .⊗ f ′).

Let us apply this equation to the tuple [p′1, . . . , p
′
n+1], that is to the element sp′1⊗ . . .⊗ sp′n+1. Each

term on the right-hand-side will have the form bl(x1 . . . xl) where xi are the values of f ′ on the sub-

tuples of [p′1, . . . , p
′
n+1] which are all predefined by the previous steps and by inductive assumption.

On the left-hand-side, our b can be either b1 or b2, since the input category is a dg-category. If it

is b1, then it is basically the differential (up to the shifts), and if it is b2, then it is a path composi-

tion. The terms with b1 are basically the values of f ′ on the tuples of type [p′1, . . . , ∂(p′i), . . . , p
′
n+1]

where 1 ≤ i ≤ n + 1. If i = 1, then this becomes [∂(c), p′2, . . . , p
′
n+1] which has less than m

occurrences of c, because ∂(c) ∈ A = kΩ[Λ] is a linear composition of old paths by definition.

If i > 1, then this becomes [c, . . . , ∂(p′i), . . . , p
′
n+1] which is a linear combination of paths of

type (3a). Thus the terms with b1 on the left-hand-side have predefined values from the previ-

ous steps or from the inductive assumption. Now, let us consider the terms on the left-hand-side

with b2. These terms correspond to the values of f ′ on the tuples of type [p′1, . . . , p
′
ip
′
i+1, . . . , p

′
n+1],

where 1 ≤ i ≤ n. If i = 1, then this becomes our original tuple [p1, . . . , pn]. If i > 1, then the

result has type (3a) which has the predefined value of f ′. Summarizing, all terms in our equation

applied to [p′1, . . . , p
′
n+1] have predefined values except for a single term which is ± of the value of

f ′ on the original tuple [p1, . . . , pn]. Thus, we extend f ′ onto this tuple from this linear equation.

A similar argument can be applied in the situation when

[p1, . . . , pn] = [�, . . . ,�, � cF, F, . . . ,F]

has type (4b), where n ≥ 1. Let us denote by k the position of the term � cF in this expression,
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where 1 ≤ k ≤ n. In this case, we consider the tuple

[p′1, . . . , p
′
n+1] := [�, . . . ,�, �, cF, F, . . . ,F]

of type (3b) obtained from [p1, . . . , pn] by splitting pk = � cF into p′k = � and p′k+1 = cF. By

analyzing the A∞-condition on this tuple, we similarly see that on the right-hand-side all terms are

expressed in terms of the values of f ′ on the subtuples [p′i, . . . , p
′
j] of [p′1, . . . , p

′
n+1]. If such subtuple

includes the term p′k+1 = cF, that is when i ≤ k+1 ≤ j, then it either has the same type (3b) when

i ≤ k or has one of types (2b), (3a) or (4a) when i = k+ 1. Otherwise, it has less occurrences of c.

Similarly, on the left hand side, the terms with b1 are the linear combinations of the values of f ′

on the tuples of type [�, . . . , ∂(�), . . . ,�, �, cF, F, . . . ,F], [�, . . . ,�, ∂(�), cF, F, . . . ,F],

[�, . . . ,�, �, cF, F, . . . , ∂(F), . . . ,F] which all are linear combinations of tuples of type (3b),

and [�, . . . ,�, �, ∂(cF), F, . . . ,F] which by Leibniz rule becomes a sum of

[�, . . . ,�, �, ∂(c)F, F, . . . ,F]

which has less occurrences of c and [�, . . . ,�, �, c∂(F), F, . . . ,F] which is a linear combination

of paths of types (3b). When we have b2 on the left side, then we similarly either obtain the original

tuple [p1, . . . , pn] or the tuples of the same type (3b). Thus, as in the case of (4a), all terms except

for the needed one have predefined values, which allows us to define the value of f ′ on the original

tuple [p1, . . . , pn] in a unique way from the linear equation.

This concludes our construction of the functor f ′.

3.1.3 Checking A∞-correctness

In the previous section, we defined the map f ′ : TsA′ → sB by applying the A∞-conditions to

certain tuples of paths. However, in order to prove that f ′ is a well-defined A∞-functor, we also

need to check that these A∞-conditions hold on all other possible tuples. Let us do it.

Proposition 3.10. The map f ′ defined above is an A∞-functor from A′ to B.
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In order to prove the above proposition, let us firstly examine how the validity ofA∞-conditions

on different tuples are related to each other.

Definition 3.11. We say that a map f : TsA → sB satisfies A∞-conditions on a tuple [x1, . . . , xn]

of composable morphisms in A, if the equation (1.5) holds on the input sx1 ⊗ . . .⊗ sxn.

Definition 3.12. Let [x1, . . . , xn] be a tuple of composable morphisms inA, where n ≥ 1. We will

call tuples of kind [xi, . . . , xj], where 1 ≤ i ≤ j ≤ n, the subtuples of [x1, . . . , xn]. We will also

call tuples of kinds [x1, . . . , ∂(xi), . . . , xn], where 1 ≤ i ≤ n, and [x1, . . . , xixi+1, . . . , xn], where

1 ≤ i < n, the reductions of [x1, . . . , xn].

Lemma 3.13. Let [x1, . . . , xn] be a tuple of composable morphisms in A, where n ≥ 1. If a map

f : TsA → sB satisfiesA∞-conditions on this tuple, all its subtuples, and all its reductions, except

for a single reduction, then it satisfies A∞-conditions on the other reduction as well.

Proof. Let us denote π := pr1 : TsB → sB. Then A∞-conditions (1.5) are equivalent to equation

πbf = πfb, where f and b are defined from the components fi and bi via (1.4) and (1.6). By

assumption, it holds on the given tuple [x1, . . . , xn], hence we can apply b1 to both sides of this

equation and obtain that b1bf = b1fb holds on [x1, . . . , xn] as well. Similarly, we get the equa-

tion bmbf = bmfb on [x1, . . . , xn] for any m ≤ n, since πbf = πfb holds on all subtuples of

[x1, . . . , xn]. This implies that πbbf = πbfb on [x1, . . . , xn]. However, πbbf = 0, since bb = 0

in B. Thus πbfb = 0 on [x1, . . . , xn]. Similarly, we have πfbb = 0 on [x1, . . . , xn] since bb = 0

in A. Thus π(bf)b = 0 = π(fb)b on [x1, . . . , xn]. However, by definition, the latter equation is

equal to the sum of equations πbf = πfb on all possible reductions of the tuple [x1, . . . , xn]. By

assumption, all except for one of these equations hold, hence the other one holds as well.

Now, we are ready to prove our statement.

Proof of Proposition 3.10. In order to prove the statement, we need to check that f ′ satisfies

A∞-conditions on all possible tuples [p1, . . . , pn] of composable paths in Λ′. Let us check it type

by type.

69



If the tuple has type (1), then the A∞-conditions are satisfied by definition and strict unitality

condition.

If the tuple has type (2a), then the A∞-conditions are satisfied because f ′ coincides with f in

this case by definition, and f is an A∞-functor.

If the tuple has type (2b), then the A∞-conditions take the form of

f ′1b1(sc) = b1f
′
1(sc)

which holds by definition of f ′1(sc).

If the tuple [p1, . . . , pn] has type (3a) but not (1), where n ≥ 2, then [p1, . . . , pn] = [ c,9, . . . ,9 ],

since all the elements should be non-empty. Then the A∞-conditions on this tuple are satisfied

because they were used in order to define the value of f ′ on the corresponding reduced tuple

[ c9, . . . ,9 ] of type (4a).

If the tuple [p1, . . . , pn] has type (3b) but not (1), where n ≥ 2, then

[p1, . . . , pn] = [�, . . . ,�, cF, 9, . . . ,9 ],

since all the elements should be non-empty, and there is at least one element � before cF. Then

the A∞-conditions on this tuple are satisfied because they were used in order to define the value

of f ′ on the corresponding reduced tuple [�, . . . ,� cF,9, . . . ,9 ] of type (4b).

If the tuple [p1, . . . , pn] has type (4) but not (1), we will prove this statement by induction

on the number of occurrences of c in the tuple by using and partially the arguments we used

in constructing the values of the functor f ′ on such tuples. We will start by noticing that the

A∞-conditions are satisfied when there are no occurrences of c, since this is the type (2a) situation

which was already covered. Now, let us assume that the statement is true for tuples which have

less than m occurrences of c, where m ≥ 1, and prove that the statement holds for the tuples with

m occurrences of c as well. Let us do this by considering two subtypes (4a) and (4b) separately.

If our tuple has type (4a), where n ≥ 1, then [p1, . . . , pn] = [ c9, F, . . . ,F ]. Now, let us
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consider the corresponding tuple

[p′1, . . . , p
′
n+1] := [ c,9, F, . . . ,F ]

obtained by splitting p1 = c9 into p′1 = c and p′2 = 9. This tuple has type (3a), all its subtuples

have either type (2b), or type (3a), or have less occurrences of c. Also, all its reductions are either

our original tuple [p1, . . . , pn], or tuples of type (3a), or the tuple [ ∂(c),9, 9, . . . ,9 ] which has

less occurrences of c. We previously proved or assumed that the A∞-conditions are satisfied on all

of these tuples except for the original one, hence by Lemma 3.13, they are satisfied on the original

tuple as well.

We perform similar argument for a tuple [p1, . . . , pn] = [�, . . . ,�, � cF, F, . . . ,F] of type (4b),

where n ≥ 1. In this case we consider the tuple

[p′1, . . . , p
′
n+1] := [�, . . . ,�, �, cF, F, . . . ,F]

of type (3b). All its subtuples have either type (2b), or (3a), or (3b), or (4a), or have less occurrences

of c. Also, all its reductions are either the original tuple [p1, . . . , pn], or tuples of type (3b), or tuples

with less occurrences of c. Again, we notice that for all these tuples, except for the original one, we

have already proved the validity of A∞-conditions. Thus, we can apply Lemma 3.13 to conclude

the result on the original tuple as well. This concludes the proof of the whole statement as well,

since we have covered all possible types of tuples.

3.1.4 Building an s-homotopy between two extensions

Proposition 3.14. Any two extensions f ′ and f ′′ of the original functor f : A → B satisfying the

assumptions of Theorem 3.1 are s-homotopic.

Before proving the previous statement, let us firstly establish the following result which is

analogous to Lemma 3.13.
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Lemma 3.15. For the linear maps rn : T nsA → sB, where n ≥ 1, and two functors f, g : A → B,

let us consider Equation (B.1) stating that r defines an s-homotopy from f to g. Then, if this

equation holds on a tuple [x1, . . . , xn] of composable morphisms in A, on all its subtuples, and on

all its reductions, except for a single reduction, then it holds on the latter reduction as well.

Proof. The proof is analogous to the proof of Lemma 3.13. For π := pr1 : TsB → sB, we note

that (B.1) is equivalent to π(g − f) = π(rb + br), where r and b denote the maps TsA → TsB

defined in terms of the components ri, bi, fi and gi via (1.4) and (1.7). We can apply b1 to this

equation and get b1(g − f) = b1(rb+ br). Similarly, we get bm(g − f) = bm(rb+ br) for m > 1,

since (B.1) holds on all subtuples of [x1, . . . , xn]. Thus b(g−f) = b(rb+br) holds on [x1, . . . , xn].

However, bbr = 0, since bb = 0 in B. Also, bg = gb and bf = fb, since f and g are functors

(see Remark 1.27). Thus we have gb − fb = brb + bbr = brb. We also have rbb = 0, since

bb = 0 in A. Thus (g − f)b = gb − fb = brb = brb + rbb = (br + rb)b holds on [x1, . . . , xn].

By definition, the latter equation is decomposed into the sum of equations (B.1) applied to all

reductions of [x1, . . . , xn]. Since all of those equations except for one hold by assumption, so is

the latter one.

Now we are ready to prove our main statement.

Proof of Proposition 3.14. The process for constructing the required s-homotopy is very similar

to the process of defining the extension functor. Namely, we consider the values of this unknown

s-homotopy on the composable tuples of paths as the variables, and then we determine them from

the relation that this is indeed an s-homotopy. We also continue assuming for simplicity that f , f ′

and f ′′ are all strictly unital, as the general case reduces to this one by replacing B by B+, and by

deforming f ′ and f ′′ to strictly unital functors as in Remark 3.9.

Let us denote by rn : T nsA → sB the unknown components of an s-homotopy r between f ′

and f ′′, where n ≥ 1. The definition of such an s-homotopy can be expressed as the set of equations

on the values of rn on all possible composable tuples of paths in Λ′. Omitting the indices, we can
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write down these equations in the following simplified form:

f ′′ − f ′ =
∑

r (1⊗ . . .⊗ 1⊗ bA ⊗ 1⊗ . . .⊗ 1)

+
∑

bB (f ′′ ⊗ . . .⊗ f ′′ ⊗ r ⊗ f ′ ⊗ . . .⊗ f ′).
(3.1)

Now, let us define the values of rn as follows. On tuples of types (1), (2) and (3), we set r = 0.

On tuples [p1, . . . , pn] of type (4) but not (1), we define r similarly to how we defined f ′ in §3.1.2.

Namely, we do apply induction on the number of occurrences of c in our tuple. Then, we consider

the same tuple [p′1, . . . , p
′
n+1] as in §3.1.2 and apply (3.1) to this tuple. This will become a linear

equation for the term rn(sp1⊗ . . .⊗ spn) in which all other terms are expressed via the previously

defined values.

Thus we have constructed the map of quivers r : TsA → sB by requiring it to satisfy (3.1) on

the given subset of tuples. Now, we need to prove that this equation also holds on the rest of tuples.

We can do it similarly to how we have done it in the proof of Proposition 3.10. Namely, we see

that the equation is satisfied on tuples of type (1), (2) and (3) automatically. Indeed, for tuples of

type (1), this follows from strict unitality assumption. For tuples of type (2), this follows from the

definition of our functors f ′ and f ′′ as the extensions of f with the given value on c. And for tuples

of type (3) but not (1), this follows from the definition of r on the corresponding tuples of type (4).

Now, for tuples of type (4) but not (1), we can prove the statement by induction on the number

of occurrences of c in the same way as in the proof of Proposition 3.10. Namely, the argument is

identical, except that we are using Lemma 3.15 instead of Lemma 3.13.

3.2 Homotopy coherent monoid actions on A∞-categories

Here, we demonstrate how we can use the machinery of cellular dg-categories in order for

transferring various topological notions into anA∞-setting. In particular, our main impetus for this

work was to provide the correct and workable definition of a homotopy coherent monoid action on

A∞-categories which would have various applications to Homological Mirror Symmetry.
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3.2.1 A∞-categorical A∞-maps

Here, our aim is to transfer Definition 1.45 of a topologicalA∞-map into the setting ofA∞-cat-

egories. Namely, we will just replace all topological notion involved in the definition by their

A∞-categorical counterparts as follows.

Let us denote Ln := In−1 which are the (n − 1)-dimensional cubes parameterizing the com-

ponents of topological A∞-maps. In the A∞-categorical version, these spaces will be replaced by

the corresponding dg-cubes

Ln := ~I�(n−1)

constructed in Definition 2.57. The topological monoids will be replaced by monoids in A∞ (see

Definition A.1), and continuous functions of multiple arguments (whose input is the direct product

of spaces) will be replaced by the corresponding A∞-functors of multiple inputs.

The boundary conditions for topological A∞-maps tell us how the restriction of the n-th com-

ponent on the faces of the corresponding parameterizing cube Ln can be expressed in terms of the

previous components. The A∞-categorical version can be formulated similarly and will involve

the definition of faces of dg-cubes from §2.5.2 and the corresponding inclusion functors:

ιεn−1,k : Ln−1

∼=−−→ dεk(Ln)
⊆−−→ Ln,

where 1 ≤ k ≤ n− 1 and ε = 0, 1.

We will also need to use another A∞-functor πk,l : ~I�k, ~I�l → ~I�(k+l) defined by mapping the

pair of cells (α1 ∗ . . . ∗ αk, β1 ∗ . . . ∗ βl) into the cell α1 ∗ . . . ∗ αk ∗ β1 ∗ . . . ∗ βl, where αi and βj

are among the cells {0, 1, i} of the interval ~I. Then we define the corresponding A∞-functors

εn−1,k : Lk, Ln−k
πk−1,n−k−1−−−−−−−→ Ln−1

ιεn−1,k−−−→ Ln,

where 1 ≤ k ≤ n− 1 and ε = 0, 1, which map the pair of cells (α1 ∗ . . . ∗αk−1, αk+1 ∗ . . . ∗αn−1)

into α1 ∗ . . . ∗ αk−1 ∗ ε ∗ αk+1 ∗ . . . ∗ αn−1.
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Now, we are ready to formulate the definition.

Definition 3.16. Let (X ,MX , EX ) and (Y ,MY , EY) be two monoids in the multicategory A∞ of

A∞-categories (see Definition A.1). An A∞-categorical A∞-map F : X → Y consists of the set

of A∞-functors

Fn : Ln, X , . . . ,X︸ ︷︷ ︸
n times

−→ Y ,

for n ≥ 1, satisfying the following boundary conditions:

Fn ◦ ι0n−1,k = Fn−1 ◦ (idX , . . . , MX︸︷︷︸
k-th place

, . . . , idX ) : Ln−1, X , . . . ,X︸ ︷︷ ︸
n times

−→ Y ,

Fn ◦ 1n−1,k = MY ◦ (Fk, Fn−k) : Lk, X , . . . ,X︸ ︷︷ ︸
k times

, Ln−k, X , . . . ,X︸ ︷︷ ︸
n− k times

−→ Y ,

where n ≥ 2 and 1 ≤ k ≤ n−1, which are analogous to the boundary conditions in Definition 1.45.

We also equip F with an additional functor

Fe : ~I −→ Y

such that Fe(0) = F1(EX ) and Fe(1) = EY .

Remark 3.17. The functors Fn can be viewed as the functors from Ln to A∞(X , . . . ,X ; Y) via

equivalences ϕA∞ of §1.2.2. From this viewpoint, we can say that the boundary conditions pre-

define the values of the functors Fn on the boundary of the cube Ln = ~I�(n−1) generated by all

its cells except for the interior (n − 1)-cell i ∗ . . . ∗ i. Hence, by Theorem 3.1, such functor is

determined uniquely up to s-homotopy by its image on the interior cell.

Remark 3.18. With the above notion, we can imitate various constructs involving topological

A∞-maps in the A∞-setting. For example, we can define a composition of two A∞-categorical

A∞-maps similarly to the composition of two topological A∞-maps.
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3.2.2 Homotopy coherent actions

Now, we can define a homotopy coherent monoid action on A∞-categories as follows.

Definition 3.19. A homotopy coherent action of a monoid Γ on an A∞-category A is defined to

be an A∞-categorical A∞-map ρ from the dg-category kΓ to the A∞-category A∞(A,A), where

both categories are equipped with the structures of monoids in A∞ as described in Examples A.2

and A.3.

In other words, our definition says that a homotopy coherent action is given by the set of

A∞-functors

ρn : ~I�(n−1), kΓ, . . . ,kΓ︸ ︷︷ ︸
n times

−→ A∞(A,A),

satisfying the boundary conditions of Definition 3.16. More precisely, the first component is given

by specifying the A∞-functor

ρ1 : kΓ → A∞(A,A).

The second component is given by specifying the A∞-functor

ρ2 : ~I, kΓ,kΓ → A∞(A,A)

whose restrictions on 0, 1 ∈ Ob ~I coincide with the functors ρ1 ◦MkΓ
and MA∞(A,A) ◦ (ρ1, ρ1)

respectively. The third component is given similarly by the A∞-functor

ρ3 : ~I�2, kΓ,kΓ,kΓ → A∞(A,A)

with an analogous boundary condition on the boundary of the square ~I�2.

As follows from Remark 3.17 and Theorem 3.1, any homotopy coherent action ρ can be

uniquely recovered (up to an s-homotopy) from a quite small subset of its data. Namely, the first

component of the corresponding A∞-map is determined by specifying the collection of A∞-func-
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tors

ρ(g) : A → A for g ∈ Γ.

The second component (measuring the failure of the first component to commute with the multi-

plications) is determined by the choice of natural transformations

ηg,h : ρ(gh) −→ ρ(g)ρ(h) for g, h ∈ Γ,

which can be assumed to be natural equivalences, if needed. The higher components are de-

termined by the choice of higher coherence data on ηg,h. Namely, for n ≥ 3 we just need to

specify one homotopy for each choice of g1, . . . , gn ∈ Γ between certain A∞-transformations

ρ(g1 . . . gn)→ ρ(g1) . . . ρ(gn) defined in terms of previous components.

Remark 3.20. The above description suggests that we could define a homotopy coherent action by

just providing the functors ρ(g), the transformations ηg,h and the higher coherence data satisfying

the respective coherence conditions. Actually, one may question the need for introducing the notion

of cellular dg-categories and A∞-categorical A∞-maps and try to write down such coherence data

and conditions explicitly. However, this is not such an obvious task, as these conditions become

exponentially more complicated at each step. In fact, the problem of explicitly describing these

conditions requires performing a procedure equivalent to the one described in §2.4.1 for n-cubes

which is not trivial.

Example 3.21. If we have two equivalent A∞-categories A and B with the equivalences given by

F : A → B and G : B → A, then we can transfer monoid actions from A to B and vice versa. For

example, if ρ is an action of Γ on A, that is an A∞-map from kΓ to A∞(A,A), then we can define

the corresponding action on B by composing this A∞-map with another naturally defined A∞-map

A∞(A,A)→ A∞(B,B) whose first component is given by the functor

A∞(A,A)→ A∞(B,B), H 7→ F ◦H ◦G.
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Appendix A: Monoids in A∞

The category A∞ of the A∞-categories does not have a natural symmetric monoidal structure.

In other words, there is no natural notion of a tensor product of two A∞-categories compatible

with all the data. However, it still makes sense to talk about the monoids in A∞ by using its natural

structure of the multicategory. Here, we recall this definition and provide two examples of monoids

in A∞ used in our construction in §3.2.1.

Definition A.1 (see also [Lei04, Ex. 2.1.14]). A monoid (X ,M,E) in the multicategory A∞ is an

A∞-category X equipped with a multiplication M : X ,X → X , which is an A∞-functor of two

arguments, and a unit E : ()→ X , which is an A∞-functor of no arguments defined by picking an

object of X , satisfying the associativity law M ◦ (M, idX ) = M ◦ (idX ,M) and the right and left

unity laws M ◦ (idX , E) = idX = M ◦ (E, idX ), where idX is the identity A∞-functor of X .

Example A.2 (Composition monoid). TheA∞-category A∞(A,A) ofA∞-endofunctors of a given

A∞-category A has a natural structure of a monoid in A∞. Namely, the multiplication is given by

the composition functor

M : A∞(A,A), A∞(A,A)→ A∞(A,A),

and the unit

E : ()→ A∞(A,A)

is defined by picking the identity functor idA : A → A considered as the object in A∞(A,A).

In §A.1, we check that so-defined multiplication and unit indeed satisfy the associativity condition

M ◦ (M, id) = M ◦ (id,M) and the unity conditions M ◦ (id, E) = id = M ◦ (E, id), where

id = idA∞(A,A).
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Example A.3 (Discrete monoid). Consider an ordinary monoid, that is a set Γ equipped with a

multiplication map m : Γ× Γ→ Γ and a unit e ∈ Γ, satisfying associativity and unity conditions.

We can define a discrete dg-category kΓ corresponding to Γ as follows:

ObkΓ := Γ,

kΓ(x, x) := k1x,

kΓ(x, y) := 0 if x 6= y.

This category trivially inherits the structure of a monoid in A∞ from that in Γ. The unit in kΓ

is given by the object e and the multiplication is given by a strict A∞-functor km : kΓ,kΓ → kΓ

which acts as (x, y) 7→ m(x, y) on the objects. The functor km satisfies the associativity and unity

properties with respect to the unit e, thus endowing kΓ with the structure of monoid in A∞.

A.1 Properties of the composition functors

Here, we check that composition functors in A∞-categories satisfy the associativity and the

unity conditions, thus verifying that the composition monoid described in Example A.2 is well-

defined.

For the sake of brevity, we will be denoting the identity functors by 1. Also, we note that the

proofs becomes easier to read if we consider compositions of arbitrary functors A∞(A,B) rather

than only of endofunctors A∞(A,B), thus we consider different categories A, B, C and D, instead

of just A.

By definition from §1.2.2, for the A∞-categories A, B and C, the composition A∞-functor

M : A∞(B, C),A∞(A,B)→ A∞(A, C)
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is defined as the unique functor satisfying the following commutative diagram:

A∞(B, C),A∞(A,B),A A∞(A, C),A

A∞(B, C),B C

M,1

1,evA∞ evA∞

evA∞

We can use this property in order to prove that M satisfies associativity and unity properties even

without invoking the lengthy explicit formulas for the components of M .

Lemma A.4 (Associativity property). For A∞-categories A, B, C and D, the following holds:

M ◦ (1,M) = M ◦ (M, 1) : A∞(C,D),A∞(B, C),A∞(A,B)→ A∞(A,D).

Proof. Indeed, consider the following commutative diagram:

A∞(C,D),A∞(B,C),

A∞(A,B),A

A∞(B,D),

A∞(A,B),A
A∞(A,D),A

A∞(C,D),

A∞(A,C),A

A∞(C,D),

A∞(B,C),B
A∞(B,D),B D

A∞(A,D),A A∞(C,D), C D

D

M,1,1

1,M,1
1,1,evA∞

M◦(M,1),1

M◦(1,M),1

M,1

1,evA∞2 evA∞
1

M,1
1,evA∞

1
M,1

1,evA∞ 1

evA∞

evA∞

evA∞

1
evA∞

evA∞

In this diagram, the squares labelled by 1 commute due to the described property of M applied

for the different triples of categories among A, B, C and D. The square 2 commutes because
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both paths from its top-left to the bottom-right give (M, evA∞). Hence, the whole diagram is

commutative and we get the equality

evA∞ ◦ (1,M ◦ (M, 1)) = evA∞ ◦ (1,M ◦ (1,M)). (A.1)

As we mentioned in §1.2.2, the function

ϕA∞ : A∞
(
A∞(C,D),A∞(B, C),A∞(A,B); A∞(A,D)

)
−→ A∞

(
A∞(C,D),A∞(B, C),A∞(A,B), A; D

)
,

defined by mapping an A∞-functor

f : A∞(A,B),A∞(B, C),A∞(C,D)→ A∞(A,D)

to the functor ϕA∞(f) = evA∞ ◦(f, 1), is bijective (here, 1 = idA). However, in terms of ϕA∞, we

can rewrite Equation (A.1) as

ϕA∞
(
M ◦ (1,M)

)
= ϕA∞

(
M ◦ (M, 1)

)
,

which implies that M ◦ (M, 1) = M ◦ (1,M) due to bijectivity of ϕA∞. Hence the proof.

For proving the unity property, we will need the following lemma.

Lemma A.5. For any A∞-category A, and the functor E : ()→ A∞(A,A) defined by picking the

object idA in A∞(A,A), the following diagram of A∞-functors commutes:

A A∞(A,A),A

A

E,1

1 evA∞
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Proof. The proof follows from a simple computation of the components of the composition

evA∞ ◦(E, 1)

by using the explicit expressions for the components of evA∞ and idA.

Lemma A.6 (Right unity property). Let A and B be arbitrary A∞-categories. Then the composi-

tion functor

M : A∞(A,B),A∞(A,A)→ A∞(A,B)

and the unity functor

E : ()→ A∞(A,A), ∗ 7→ idA

satisfy the right unity property as follows:

M ◦ (1, E) = 1: A∞(A,B)→ A∞(A,B),

where 1 = idA∞(A,B).

Proof. Consider the following commutative diagram:

A∞(A,B),A A∞(A,B),A∞(A,A),A A∞(A,B),A

A∞(A,B),A B

1,E,1

1,1

M◦(1,E),1

3

M,1

1,evA∞ 1 evA∞

evA∞

In this diagram, the square 1 is commutative by the above definition of M , while the triangle 3

is commutative due to Lemma A.5. Hence, the whole diagram commutes, and we get

evA∞ ◦(1,M ◦ (E, 1)) = evA∞ ◦(1, 1).
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Similarly to the proof of Lemma A.4, let us consider the bijective function

ϕA∞ : A∞
(
A∞(A,B), A∞(A,B)

)
→ A∞

(
A∞(A,B),A; B

)
,

defined by ϕA∞(f) = evA∞ ◦(f, 1), where 1 = idA. From above, we get

ϕA∞
(
M ◦ (E, 1)

)
= evA∞ ◦(M ◦ (1, E), 1) = evA∞ ◦(1, 1) = ϕA∞

(
1
)
,

hence M ◦ (E, 1) = 1 due to bijectivity of ϕA∞.

Lemma A.7 (Left unity property). LetA and B be arbitraryA∞-categories. Then the composition

functor

M : A∞(B,B),A∞(A,B)→ A∞(A,B)

and the unity functor

E : ()→ A∞(B,B), ∗ 7→ idB

satisfy the left unity property as follows:

M ◦ (E, 1) = 1: A∞(A,B)→ A∞(A,B),

where 1 = idA∞(A,B).

85



Proof. Consider the following diagram:

A∞(A,B),A A∞(B,B),A∞(A,B),A A∞(A,B),A

B A∞(B,B),B

B

E,1,1

evA∞

M◦(E,1),1

2

M,1

1,evA∞

1

evA∞
E,1

1

3 evA∞

In this diagram, 1 commutes by definition ofM , 2 commutes since both sides produce (E, evA∞),

and 3 commutes by Lemma A.5. Thus, the whole diagram is commutative. Similarly to the proof

of Lemma A.6, we get

ϕA∞
(
M ◦ (E, 1)

)
= evA∞ ◦(M ◦ (E, 1), 1) = evA∞ = ϕA∞(1),

where ϕA∞ is the same bijective map as in Lemma A.6, and the middle equality holds due to the

commutativity of our diagram. Thus M ◦ (E, 1) = 1, hence the proof.
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Appendix B: s-homotopies and deformations of A∞-functors

Seidel in [Sei08] introduced a way of comparing A∞-functors f, g : A → B that does not

require the output category B to be unital but requires the functors to have the same images on the

objects, that is Ob f = Ob g.

Before formulating the definition, let us just notice that if two functors f, g : A → B have the

same images on the objects, then we can formally substract the corresponding maps of graded

quivers f, g : TsA → TsB. It is easy to check that the difference g − f : TsA → TsB then

becomes a (g, f)-coderivation of degree 0.

Definition B.1 (Seidel). Let two functors f, g : A → B have the same images on the objects. We

will call them s-homotopic, if there is a (g, f)-coderivation r : TsA → TsB of degree −1 such

that r0 = 0: T 0sA → sB and g − f = B1(r) is the equality of (g, f)-coderivations. Such r is

called an s-homotopy between f and g. We will denote this situation as r : f
s∼ g.

Remark B.2. In [Sei08], the functors from the above definition are called just homotopic.

We can use explicit formula for B1 in (1.8) in order to express the condition that r : f
s∼ g as

the following set of equations on the components of f , g and r:

gn − fn =
∑

bl+1+k (gj1 ⊗ . . .⊗ gjl ⊗ rp ⊗ fi1 ⊗ . . .⊗ fik)

+
∑

rl+1+k (1⊗l ⊗ bq ⊗ 1⊗k) : T nsA → sB,
(B.1)

where n ≥ 1, the first sum is taken over the decompositions n = j1 + . . .+ jl + p+ i1 + . . .+ ik

for l ≥ 0, k ≥ 0, jm ≥ 1, im ≥ 1 and p ≥ 1, and the second sum is taken over the decompositions

n = l + q + k for l ≥ 0, k ≥ 0, q ≥ 1. (The summations here are the same as in (1.8), except that

p 6= 0 due to assumption that r0 = 0.)
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Remark B.3. Note that the right-hand-side of (B.1) depends only on the components fi and gi for

i < n, and ri for i ≤ n.

B.1 Deformation Lemma and applications

The following result is a useful tool for deforming various A∞-functors.

Lemma B.4 (Deformation Lemma). Let f : A → B be an arbitrary functor and tn : T nsA → sB

be the morphisms of quivers for n ≥ 1 of degrees −1 that act identically with f on the objects.

Then the following statements hold:

(1) There exist a functor g : A → B s-homotopic to f together with an s-homotopy r : f
s∼ g

such that rn = tn. Such g and r are uniquely defined by f and t. We will denote them as

g = φt(f), and r = tf→.

(2) There exist a functor g : A → B s-homotopic to f together with an s-homotopy r : g
s∼ f

such that rn = tn. Such g and r are uniquely defined by f and t. We will denote them as

g = φ−1
t (f) and r = t→f .

Remark B.5. We can describe the situations of this lemma by using its new notations as follows:

tf→ : f
s∼ φt(f), t→f : φ−1

t (f)
s∼ f.

Proof of Lemma B.4. Let us prove only the first part, since the proof of the second part is identical.

The proof follows from (B.1) and Remark B.3. Indeed, we can use (B.1) in order to inductively

define gn from the components fi for i ≤ n, gi for i < n, and ri = ti for i ≤ n. For example, the

first two components of g will be defined as follows:

g1 =f1 + b1r1 + r1b1,

g2 =f2 + b1r2 + b2(g1 ⊗ r1 + r1 ⊗ f1) + r1b2 + r2(1⊗ b1 + b1 ⊗ 1).
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These components gn satisfy A∞-conditions, hence g is a well-defined A∞-functor which is s-ho-

motopic to f by construction, where the s-homotopy has the given components.

Lemma B.6. Let f : A → B and tn : T nsA → sB be as above, and g = φt(f).

1. If ti = 0 for i < k, then gi = fi for i < k and gk = fk ± ∂(tk).

2. If ti = 0 for i < k and ∂(tk) = 0, then gi = fi for i ≤ k.

Lemma B.7. Let A is a unital A∞-category, A+ be a compatible homotopy unital structure, and

ι : A → A+ be a corresponding strict inclusion functor. There is an A∞-functor π : A+ → A such

that πι = idA and ιπ s∼ idA+ .

Proof. We can build π by deforming the identity functor idA+ via the deformation lemma. We

define t1|A⊕kj = 0, t1(isuX ) = ±jX and ti = 0 for i ≥ 2. Then the image of φ±t (idA+) will lie inside

A, hence we can pass it through A to get π.

Remark B.8. We will see later that the above lemma also implies that the functor π is anA∞-equiv-

alence inverse to ι.

Lemma B.9. If gi : A → B is a sequence of functors identical on the objects such that the com-

ponents gik stabilize to gk for each k ≥ 1 for large enough i, then the components gk form a

well-defined functor g = limi g
i : A → B.

Proof. Indeed, we just need to check A∞-conditions for the components of g. Since the n-th

condition depends only on the components gk of g for k ≤ n, let us take i large enough so that the

first n components of gi have already stabilized to g, that is gik = gk for k ≤ n. Now, we see that g

satisfies the n-th A∞-condition because gi does.

Lemma B.10. Let gi be a sequence of functors converging to g = limi g
i in the sense of the

previous lemma, and ri : f s∼ gi be a sequence of corresponding s-homotopies such that the com-

ponents rik stabilize to rk for each k ≥ 1 for large enough i. Then the components (rk)k define an

s-homotopy r = limi r
i : f → g = limi g

i.
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Proof. Similarly to the proof of the previous lemma, for each n ≥ 1, let us notice that the n-

th component of the condition gi − f = B1(ri) can be expressed in terms of only the first n

components of gi, f and ri. Thus as soon as all these components stabilize to the first n components

of g, f and r respectively, we get the equality (g − f)n = (B1(r))n. Hence, g − f = B1(r) as

well.

Lemma B.11. Let A be a cellular dg-category and B be a strictly unital A∞-category. Then any

unital functor from A to B is s-homotopic to a strictly unital one.

Proof. Idea of the proof is to inductively deform our functor so that to make it stricter at each

step and then to take the inductive limit. Namely, at n-th step we ensure that the strict unitality

condition holds for all i ≤ n and then we choose the right deformation in order to make the functor

strict at the level n+ 1 as well.

B.2 Strict unit transformations

Here, we consider the functors from an arbitrary A∞-category A to a strictly unital A∞-cate-

gory B having the strict units isuX for each X ∈ B.

Definition B.12. For any two A∞-functors f, g : A → B such that Ob f = Ob g, let us define a

strict unit transformation isuf→g : f → g : A → B of degree 0 by specifying the components of the

corresponding (g, f)-coderivation sisuf→g of degree −1 as follows:

(
sisuf→g

)
0,X

= sisuf(X), for X ∈ A,

(
sisuf→g

)
n

= 0: T nsA → sB, for n ≥ 1.

Lemma B.13. For any strict unit transformation isuf→g : f → g : A → B, we have B1(sisuf→g) =

f − g and ∂(isuf→g) = s−1(g − f).
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Proof. Indeed, the direct computation shows that

(
B1(sisuf→g)

)
1

= b2(g1 ⊗ sisu) + b2(sisu ⊗ f1) = (f − g)1 : sA → sB,

and similarly for higher n. In other words, B1(sisuf→g) = f − g and ∂(isuf→g) = s−1(g − f).

Remark B.14. If f = g, then isuf→g = isuf→f becomes a natural transformation, since B1(sisuf→f ) =

f − f = 0.

Any (g, f)-coderivation r : TsA → TsB can be uniquely determined by its components

rn : T nsA → sB, for n ≥ 0, where the higher matrix components of r depend both on rn and

on the components of f and g. It will be useful for us to vary the functors f and g while keeping

the components rn the same. For this purpose, we introduce the following notation.

Definition B.15. Let f ′, g′ : A → B be the functors which act on the objects in the same way as

f, g : A → B respectively. For any (g, f)-coderivation r, we will denote by rf ′→g′ the (g′, f ′)-

coderivation which has the same components as r, that is (rf ′→g′)n = rn for n ≥ 0.

Lemma B.16. The strict unit transformations satisfy the following properties, where h : A → B is

another functor acting on the objects in the same way as f and g:

(1) For any (h, g)-coderivation r, we have B2(r, sisuf→g) = (−)|r|+1rf→h.

(2) For any (g, f)-coderivation r, we have B2(sisug→h, r) = rf→h.

(3) In particular, B2(sisug→h, si
su
f→g) = sisuf→h.

(4) Bn(. . . , sisuf→g, . . . ) = 0.

Proof. This follows from the trivial computations.

The immediate corollary is the following.

Lemma B.17. The transformations isuf→f for the functors f : A → B provide a set of strict units

on the A∞-category A∞(A;B).
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B.3 s-homotopies as functor equivalences

Seidel noted that if B is strongly unital, then any s-homotopy r : f
s∼ g gives rise to a natural

transformation (isuf→g + s−1r) : f → g, since B1(sisuf→g + r) = (f − g) + (g − f) = 0. In the

next lemma, we show that this tranformation is in fact an equivalence. After that, we also prove an

analogous result in a more general case when B is non-strongly unital.

Lemma B.18. Let r : f
s∼ g be an s-homotopy between the functors fromA to B where B is strictly

unital. Then (isuf→g + s−1r) : f → g is a natural equivalence.

Proof. To prove that the given natural transformation is an equivalence, we need to find both

right and left homotopy inverse to it. In fact, due to B being strict, we can explicitly build the strict

inverses to the given transformation. These strict inverses will be also defined via the s-homotopies.

Let us construct the right inverse s-homotopy r∨ : g
s∼f which satisfies the following equation:

B2(sisuf→g + r, sisug→f + r∨) = sisug→g.

By opening the brackets on the left side, applying Lemma B.16 and cancelling sisug→g, we get the

following equivalent equation:

rg→g + r∨g→g +B2(r, r∨) = 0. (B.2)

Now, let us note that if we set
(
r∨g→g

)
0

= 0, then the n-th component of B2(r, r∨) only depends

on f , g, and on the components ri and r∨i for i < n. Thus, the n-th component r∨n can be uniquely

defined from (B.2) in terms of rn and of the previous components of r and r∨.
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For example, the first three components of r∨ are defined as follows:

r∨1 =− r1,

r∨2 =− r2 − b2(r1 ⊗ r∨1 ) = −r2 + b2(r1 ⊗ r1),

r∨3 =− r3 − b2(r1 ⊗ r∨2 )− b2(r2 ⊗ r∨1 )

− b3(g1 ⊗ r1 ⊗ r∨1 )− b3(r1 ⊗ f1 ⊗ r∨1 )− b3(r1 ⊗ r∨1 ⊗ g1).

Thus isuf→g+s−1r has a right strict inverse natural transformation given by isug→f +s−1(r∨) : g →

f . Similarly, it has a left strict inverse natural transformation isug→f + s−1(∨r) : g → f for some

other homotopy ∨r : g
s∼f whose components are also uniquely defined by those of r, f and g from

the following equation:

B2(sisug→f + ∨r, sisuf→g + r) = sisuf→f .

For example, the first two components of ∨r will be the same as of r∨. This concludes the proof

that isuf→g + s−1r is an equivalence.

Remark B.19. The equation (B.2) makes sense for a non-unital category B as well. In [Sei08],

Seidel used it to define the inverse s-homotopies. He also defined the composition q
s◦ r of two

s-homotopies r : f
s∼ g and q : g

s∼ h from the analogous formula

B2(sisug→h + q, sisuf→g + r) = sisuf→h + q
s◦ r.

Now, let us generalize the previous result to the case of an arbitrary unital category B.

Lemma B.20. If B is unital and the functors f, g : A → B are s-homotopic, then they are also

naturally equivalent.

Proof. Consider some s-homotopy r : f
s∼ g. Let us compose it with the inclusion ιB : B → B+.

It gives rise to an s-homotopy r̄ : f̄
s∼ ḡ of the correspoding functors to the category B+. Since

B+ is strongly unital, the previous lemma provides us a natural equivalence (isu
f̄→ḡ + s−1r̄) : f̄ →
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ḡ : A → B+ according to the previous lemma. Now, let us compose this equivalence with the

projection functor B+ → B constructed before. The result will give us an equivalence from f to g

as well.

In particular, this implies the following.

Lemma B.21. The functors ι : A → A+ and π : A+ → A are A∞-equivalences of unital A∞-cat-

egories.
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