Academic Commons

Theses Doctoral

Regional Geographies of Extreme Heat

Raymond, Colin Spencer

Shaped by countless influences from the atmosphere, biosphere, hydrosphere, and anthroposphere acting across a wide spectrum of spatiotemporal scales, spatial variations in climate are ubiquitous. Meanwhile, the warming signal from anthropogenically elevated greenhouse-gas concentrations is emerging as an overriding determinant for more and more aspects of the climate system, extreme heat among them. In this dissertation, I explore the interaction of these two effects, and the implications of the patterns they create.

A key finding is that rapid increases in extreme heat are already occurring, by some metrics having already doubled in the past 40 years, and further nonlinear increases are expected. Another is the strong dependence of extreme heat-humidity combinations on atmospheric moisture, creating subseasonal and interannual patterns dictated by the principal source of regional warm-season moisture — pre-monsoonal advection in some cases, local evapotranspiration in others. These relationships lead to the demonstrated potential for improvements in predictive power, on the basis of sea-surface temperatures and other canonical modes of large-scale climate variability.

In contrast to this overall confidence in current temporal patterns and long-term projections, I show that extreme heat at small spatial scales is much more poorly characterized in gridded products, and that these biases are especially acute along coastlines. While summer daytime temperature differences between the shoreline of the Northeast U.S. and locations 60 km inland are often 5°C or more, I find that recent high-resolution downscaled Earth-system models typically represent no more than 25% of this difference. Across the globe, ERA-Interim reanalysis similarly underestimates extreme humid heat by >3°C, a highly significant margin given the large sensitivity of health and economic impacts to marginal changes in the most extreme conditions. I find that these biases propagate into projections, and their importance is also amplified by the large populations living in the affected areas.

Rapid mean warming is pushing the climate system to more and more frequently include extreme heat-humidity combinations beyond that which the human species has likely ever experienced. Such conditions, which had not been previously reported in weather-station data, are described in detail and some of the associated characteristics examined. Several channels of analysis highlight that these events are driven primarily by rising sea-surface temperatures in shallow subtropical gulfs, and the subsequent impingement of marine air on the coastline. Given the severity of potential impacts on infrastructure and agriculture, and the size of the populations exposed, this result underscores that major research and adaptation efforts are needed to avoid calamitous outcomes from the emergence of extreme heat-humidity combinations too severe to tolerate in the absence of artificial cooling.

This dissertation discusses strategies for advancing knowledge of extreme heat’s natural variations and its behavior under climate change, in order to design metrics, models, methodologies, and presentation types such that essential findings are translated into tangible action in the most effective way possible. Sustained and integrated efforts are necessary to transition to a climate-system management style encompassing more foresight than the effectively unplanned experiment which has been pursued so far, and which has already exacerbated extreme heat events so much.


  • thumnail for Raymond_columbia_0054D_15464.pdf Raymond_columbia_0054D_15464.pdf application/pdf 6.71 MB Download File

More About This Work

Academic Units
Earth and Environmental Sciences
Thesis Advisors
Horton, Radley M.
Ph.D., Columbia University
Published Here
September 27, 2019