Academic Commons

Articles

The Gakkel Ridge: Bathymetry, gravity anomalies, and crustal accretion at extremely slow spreading rates

Cochran, James R.; Kurras, Gregory; Edwards, Margo; Coakley, Bernard J.

The Gakkel Ridge in the Arctic Ocean is the slowest spreading portion of the global mid-ocean ridge system. Total spreading rates range from 12.7 mm/yr near Greenland to 6.0 mm/yr where the ridge disappears beneath the Laptev Shelf. Swath bathymetry and gravity data for an 850 km long section of the Gakkel Ridge from 5°E to 97°E were obtained from the U.S. Navy submarine USS Hawkbill. The ridge axis is very deep, generally 4700–5300 m, within a well-developed rift valley. The topography is primarily tectonic in origin, characterized by linear rift-parallel ridges and fault-bounded troughs with up to 2 km of relief. Evidence of extrusive volcanic activity is limited and confined to specific locations. East of 32°E, isolated discrete volcanoes are observed at 25 - 95 km intervals along the axis. Abundant small-scale volcanism characteristic of the Mid-Atlantic Ridge (MAR) is absent. It appears that the amount of melt generated is insufficient to maintain a continuous magmatic spreading axis. Instead, melt is erupted on the seafloor at a set of distinct locations where multiple eruptions have built up central volcanoes and covered adjacent areas with low relief lava flows. Between 5°E and 32°E, almost no volcanic activity is observed except near 19°E. The ridge axis shoals rapidly by 1500 m over a 30 km wide area at 19°E, which coincides with a high-standing axis-perpendicular bathymetric high. Bathymetry and side scan data show the presence of numerous small volcanic features and flow fronts in the axial valley on the upper portions of the 19°E along-axis high. Gravity data imply up to 3 km of crustal thickening under the 19°E axis-perpendicular ridge. The 19°E magmatic center may result from interaction of the ridge with a passively imbedded mantle inhomogeneity. Away from 19°E, the crust appears thin and patchy and may consist of basalt directly over peridotite. The ridge axis is continuous with no transform offsets. However, sections of the ridge have distinctly different linear trends. Changes in ridge trend at 32°E and 63°E are associated with a set of bathymetric features that are very similar to each other and to inside/outside corner complexes observed at the MAR including high-standing ‘‘inside corner’’ ridges, which gravity data show to be of tectonic rather than magmatic origin.

Geographic Areas

Files

  • thumnail for Cochran et al-03 with color figures.pdf Cochran et al-03 with color figures.pdf application/pdf 5.7 MB Download File

Also Published In

Title
Journal of Geophysical Research: Solid Earth
DOI
https://doi.org/10.1029/2002JB001830

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Published Here
June 25, 2019

Notes

From James R. Cochran: JGR only allowed two color figures at that time. I have appended a set of color figures to the end of the paper.

Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.