
Generative Modeling and Inference in Directed and
Undirected Neural Networks

Patrick Stinson

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020

c©2019

Patrick Stinson

All Rights Reserved

ABSTRACT

Generative Modeling and Inference in Directed and
Undirected Neural Networks

Patrick Stinson

Generative modeling and inference are two broad categories in unsupervised learning whose

goal is to answer the following questions, respectively: 1. Given a dataset, how do we (either

implicitly or explicitly) model the underlying probability distribution from which the data came and

draw samples from that distribution? 2. How can we learn an underlying abstract representation

of the data? In this dissertation we provide three studies that each in a different way improve upon

specific generative modeling and inference techniques. First, we develop a state-of-the-art estimator

of a generic probability distribution’s partition function, or normalizing constant, during simulated

tempering. We then apply our estimator to the specific case of training undirected probabilistic

graphical models and find our method able to track log-likelihoods during training at essentially no

extra computational cost. We then shift our focus to variational inference in directed probabilistic

graphical models (Bayesian networks) for generative modeling and inference. First, we generalize

the aggregate prior distribution to decouple the variational and generative models to provide the

model with greater flexibility and find improvements in the model’s log-likelihood of test data as well

as a better latent representation. Finally, we study the variational loss function and argue under

a typical architecture the data-dependent term of the gradient decays to zero as the latent space

dimensionality increases. We use this result to propose a simple modification to random weight

initialization and show in certain models the modification gives rise to substantial improvement

in training convergence time. Together, these results improve quantitative performance of popular

generative modeling and inference models in addition to furthering our understanding of them.

Table of Contents

List of Figures iv

List of Tables vii

Chapter 1 Introduction 1

1.1 Overview . 1

1.2 Monte Carlo methods . 3

1.3 Latent variable modeling . 7

1.4 Variational inference . 8

1.5 Undirected models . 9

Chapter 2 Partition functions from Rao-Blackwellized tempered sampling 11

2.1 Introduction . 12

2.2 Partition functions from tempered samples . 13

2.2.1 Simulated tempering . 14

2.2.2 Estimating partition functions . 15

2.2.3 Rao-Blackwellized likelihood interpretation 16

2.2.4 Initial iterations . 19

2.2.5 Bias and variance . 20

2.3 Related work . 21

2.3.1 Wang-Landau . 21

2.3.2 AIS/RAISE . 21

2.3.3 BAR/MBAR . 22

2.3.4 Thermodynamic integration . 24

2.4 Examples . 25

i

2.4.1 Gaussian mixture example and comparisons 26

2.4.2 Partition functions of RBMs . 26

2.4.3 Number of temperatures . 28

2.4.4 Tracking partition functions while training 29

2.5 Discussion . 31

Chapter 3 Decoupling aggregate priors in variational autoencoders 33

3.1 Introduction . 34

3.2 Variational Autoencoders . 36

3.3 Prior Choice . 37

3.3.1 Aggregate priors . 37

3.3.2 Decoupling . 39

3.3.3 Connection with kernel density estimation . 40

3.4 Experiments . 42

3.5 Conclusion . 45

Chapter 4 ELBO amputation: an initialization scheme for variational autoen-

coders 48

4.1 Introduction . 48

4.2 ELBO gradients . 50

4.2.1 Cross-covariance interpretation of gradient . 51

4.2.2 Potential concerns: code collapse and symmetry 53

4.2.3 Numerical simulation . 53

4.2.4 Application to sequential autoencoder . 54

4.3 Discussion . 56

Chapter 5 Conclusion 59

Bibliography 61

Appendix A Chapter 2 Appendix 69

A.1 Estimating q(βk) from a transition matrix . 69

ii

A.2 Adaptive HMC for tempering . 70

A.3 Similarity of RTS and MBAR . 73

A.4 RTS and TI-RB Continuous β Equivalence . 75

Appendix B Chapter 4 Appendix 78

B.1 Linear function . 79

B.2 Linear + ReLU function . 79

B.3 Linear + ReLU layer . 82

B.4 Linear + ReLU network . 83

Appendix C Gaussian tube prior 85

C.1 Examining latent space . 86

Appendix D Flow-based prior 89

D.1 Flow-based prior . 90

iii

List of Figures

Figure 2.1 Comparison of log Ẑk and log ĉk estimates, in some of the first eight iterations

of the initialization procedure described in Section 2.2.4, with and without Rao-

Blackwellization, with K = 100. The initial values were Ẑk = 1 for all k, and

the prior was uniform, rk = 1/K. The model is a RBM with 784 visible and 10

hidden units, trained on the MNIST dataset. Each iteration consists of 50 Gibbs

sweeps, on each of 100 parallel chains. Since in the non-Rao-Blackwellized case, the

updates are unstable and sometimes infinite, for demonstration purposes only, we

define ĉk ∝ 0.1 +
∑N

i=1 δk,k(i) and normalize. Note that in the Rao-Blackwellized

case, the values of ĉk in the final iteration are very close to those of rk, signaling that

the Ẑk’s are good enough for a last, long MCMC run to obtain the final Ẑk estimates. 17

Figure 2.2 Comparison of logZ estimation performance on a toy Gaussian Mixture

Model using an RMSE from 10 repeats. TI Riemann approximates the discrete

integral as a right Riemann sum, TI trap uses the trapezoidal method, TI trap

corrected uses a variance correction technique, TI RB uses the Rao-Blackwellized

version of TI. 26

Figure 2.3 Mean and root mean squared error (RMSE) of competing estimators of logZK

evaluated on RBMs with 784 visible units trained on the MNIST dataset. The

numbers of hidden units were 500 (Top) and 100 (Bottom). In both cases, the bias

from RTS decreases quicker than that of AIS and RAISE, and the RMSE of AIS does

not approach that of RTS at 1000 Gibbs sweeps until over an order of magnitude

later. Each method is run on 100 parallel Gibbs chains, but the Gibbs sweeps in the

horizontal axis corresponds to each individual chain. 27

iv

Figure 2.4 RMSE as a function of the number of inverse temperatures K for various

estimators. The model is the same RBM with 500 hidden units studied in Figure 2.3.

Each point was obtained by averaging over 200 estimates (20 for MBAR due to

computational costs) made from 10,000 bootstrapped samples from a long MCMC

run of 3 million samples. 29

Figure 2.5 A demonstration of the ability to track with minimal cost the mean train and

validation log-likelihood during the training of a RBM on the dna 180-dimensional

binary dataset, with 500 latent features. 31

Figure 3.1 Proposed aggregate decoupling model. The vanilla aggregate prior is shown

in black and is unchanged; u can represent either pseudoinputs or random data

subsamples. Decoupling via the delta function/network is shown in gray and dotted

lines. 40

Figure 3.2 Test ELBO terms as a function of K (static MNIST). 45

Figure 3.3 ELBO terms as a function of K (static MNIST): (a) test reconstruction

log-probability, (b) test KL(q(z)||p(z)). Asterisks indicate the values of K which

maximize the test ELBO for each model in (a) and (b). 46

Figure 3.4 Fraction of active latent units for each model as a function of K. 47

Figure 4.1 Closed-form KL gradients dominate during the beginning of training. Top:

Cosine similarity between MCMC estimated µ gradient for and closed-form µ KL

gradient during training. Middle: Same for λ gradients. Bottom: ELBO during

training. 57

Figure 4.2 Training a sequential autoencoder on MNIST. Comparison of test ELBOs

during training between zero initialization and (a) standard initialization (b) various

KL annealing schedules. The length of annealing in iterations for each schedule is

written after ‘anneal’ in the legend. 58

v

Figure A.1 An illustration of the effect of estimating the stationary distribution from the

transition matrix. Both plots show the RMSE on RBMs averaged over 20 repeats.

Experimental procedure is the same as the main text. (Left) RTS, TM, and RTM

compared on a 784-10 RBM. Because the latent dimensionality is small, mixing is

very effective and accounting for the transition matrix improves performance consis-

tently by about 10%. (Right) For an 784-200 RBM, the approximation as a Markov

transition is inaccurate, and we observe no performance improvements. 71

Figure A.2 (Left) Mixing in β under the fixed step size. (Center) Mixing in β under the

adaptive scheme. (Right) Partition function estimates under the fixed step size and

adaptive scheme after 10000 samples. Mixing in β using a fixed step size is visibly

slower than mixing using the adaptive step size, which is reflected by the error in

the partition function estimate. 73

Figure C.1 Interpolating position. Top-left : standard normal prior, top-right VampPrior,

bottom-left : SI prior, bottom-right : Gaussian tube. 87

Figure C.2 Interpolating size. Top-left : standard normal prior, top-right VampPrior,

bottom-left : SI prior, bottom-right : Gaussian tube. 87

vi

List of Tables

Table 3.1 Test log-likelihoods on three data sets. 44

vii

Acknowledgments

I first would like to thank my advisor Liam Paninski. When I joined the group, I was amazed

by the degree of engagement you had in my projects–it’s astounding to me that despite the large

volume of research being done in the group you are not only able to keep abreast of the technical

details but also contribute a steady stream of original ideas.

I would also like to thank the members of my thesis committee: Niko Kriegeskorte, Larry Ab-

bott, John Cunningham, and Rajesh Ranganath. You were instrumental in supporting a direction

for me to take to finish. I would like to thank Niko in particular not only for chairing the committee

but also for inspiring me with your far-reaching curiosity, positive attitude, and encouragement.

I would like to thank Leslie Osborne for her confidence in me. It was only after an introduction

to information theory and those fly papers that my interest in machine learning started to take off.

I thank Jason Maclean for inspiring me ultimately to take the plunge and attend graduate

school. I admired your no nonsense approach to research and the lab environment you cultivated

during my time at UChicago. You and your students treated me like one of your own.

I would also like to thank my friends. Dan, for the gym celebrity tiers and Ganon v. Ganon

matches. Uygar, for the nights working together in the office. Xuexin, for your enthusiasm for

conversation and great generosity with your time. Kenny, for our philosophical conversations that

stop time for hours. Erdem, for a friendship that would make Zizek blush. Cat, for countless

conversations and schemes.

Finally, I thank Audrey for all of her love, companionship, and support.

viii

To the jokesters who upend our precious silly notions

ix

1

Chapter 1

Introduction

“We are forced to tell the truth, we are constrained, we are condemned to admit the truth or

to discover it.” — Michel Foucault

1.1 Overview

Much of what is commonly thought of as cognition can be considered a form of inference; it is

usually not the data itself that we care about or even seem to think about but rather a more abstract

form of the data. Instead of perceiving the world as streams of ‘raw’ data from our sensory faculties,

we cut through redundancy and nuisance by perceiving on a more general and abstract level: we

see objects that belong to various conceptual hierarchies, we hear words and sentences instead of

phonemes, etc. Inference takes place at every level of complexity of life, from axonal growth cones

inferring directions of chemical gradients from the stochastic pattern of receptors binding to the

chemical molecules [Mortimer et al., 2009], to the mind’s abstraction of concepts [Tenenbaum et al.,

2011], to global inference emergent in message passing across networks of individuals (see e.g., [Xu

et al., 2014; Vehtari et al., 2014] for how this could be realized in a computational framework).

Generative modeling, the ability to generate samples from a probability distribution of interest,

2

is closely tied to inference. In many frameworks, they are learned simultaneously. Intuitively, having

a good model of the important abstract elements of the data should make it easier to generate data

that contain these elements. In other words, it’s easier to draw a chair when you know what a chair

is.

Generative modeling provides a means of general-purpose data augmentation whose impor-

tance may soon come to the forefront of research as more sophisticated models require more data,

but there is a more ambitious goal hidden in the form of a sanity check. If we are able to learn

from a dataset to in turn generate data that exhibit characteristics from that dataset, our model

may have captured in some form the causal factors that gave rise to the data in our dataset. More

succinctly, in the limit that our generative model can produce arbitrarily accurate and diverse

samples from a distribution, the model has captured all the information in that distribution.

The contributions in this thesis to generative modeling and inference are as follows: in

Chapter 2, we develop a method to estimate partition functions of hard to sample distribu-

tions, which we use to improve training of Restricted Boltzmann Machines [Smolensky, 1986].

In Chapters 3 and 4, we shift our focus to variational autoencoders [Kingma and Welling, 2014;

D.J. Rezende, 2014]. In Chapter 3, we decouple the inference and generative models by gener-

alizing the prior distribution and improve performance. In Chapter 4, we show that a simple

random weight initialization modification can lead to substantial training improvements for VAEs

with large latent dimension. We conclude with a discussion in Chapter 5. To improve the flow of

the thesis, more dense mathematical work for Chapters 2 and 4 has been moved to Appendices

A and B, respectively. We include some negative results in Appendices C and D that the reader

can omit without detriment to the rest of the thesis. For the remainder of this chapter, we pro-

vide the background necessary for easy reading of these chapters in an effort to make this work

self-contained.

3

1.2 Monte Carlo methods

Monte Carlo methods [Robert and Casella, 2013] comprise a general purpose toolbox for

estimating expectations over arbitrary (with mild restrictions) probability distributions. As we will

see, essentially all of the quantities we are interested in take the form of expectations, so their

utility cannot be overstated.

Suppose we have a function f(x) that we would like to average over some probability dis-

tribution p(x). Ignoring mild restrictions on f(·) and p(·), the strong law of large numbers tells

us

1

N

N∑

n=1

f(x(n))
a.s.−−→ Ep(x)[f(x)], (1.1)

where x(n) ∼ p(·).

In other words, we can estimate the average of a function of a random variable by simply

averaging function evaluations at random samples. Importantly, if we take an expectation over the

left hand side of (1.1), we see that our estimate is unbiased; that is, E[Ê[f(x)]] = E[f(x)].

(1.1) applies so long as we can easily sample from p(·). If p(·) isn’t easy to sample from, we

can still make use of (1.1) with a little extra work.

One option is rejection sampling. If we pick an easy to sample from distribution q(x) and can

bound p(x)/q(x) by M <∞, rejection sampling is done by following Algorithm 1.

The issue with rejection sampling is that M must be picked beforehand and cannot be arbi-

trarily large since

P (accept) = Eq
[
p(x)

Mq(x)

]
=

1

M
.

Since M is hard to pick for high dimensional distributions, rejection sampling is usually re-

served for low dimensional distributions.

4

Algorithm 1 Rejection Sampling

initialize s = 1

while s ≤ S do

Sample x ∼ q(·) and u ∼ U [0, 1].

if u > p(x)
Mq(x) then

x(s) = x

s = s+ 1

end if

end while

return {x(s)}Ss=1

A second option is importance sampling, which we can derive by noting

Ep[f(x)] =

∫
f(x)p(x)dx (1.2)

=

∫
f(x)p(x)

q(x)

q(x)
dx (1.3)

=

∫
f(x)

p(x)

q(x)
q(x)dx (1.4)

= Eq[w(x)f(x)], (1.5)

where q(x) is called the importance distribution and w(x) = p(x)
q(x) are the importance weights. If

q(x) is easy to sample from, we can just sample from it and weight our evaluations of f(x) with

x ∼ q(·) by w(x).

A potential problem with importance sampling, however, is if q(·) does not match well with

p(·) on some subset of p’s support. Intuitively, if there are regions where q(x) is small but p(x) is

large, or vice versa, the importance weights will be relatively high or low, respectively. The result is

high variance importance weights and consequently a high variance Monte Carlo estimate. As with

rejection sampling, high dimensional probability distributions often preclude importance sampling,

since the probability of such regions existing is high.

Markov Chain Monte Carlo addresses the issues brought up by rejection and importance

5

sampling by exploring the space of x ∈ X based on a series of jumps. By doing so, we trade

off having to find a suitable distribution q(·) to match p(·) globally with introducing temporal

correlations between samples.

A Markov Chain is a sequence x(1), x(2), ..., x(N) whose dynamics obey the following identity

p(x(i)) = T (x(i)|x(i−1)), (1.6)

where T (x(i)|x(i−1)) is called the transition function. To start the chain, x0 ∼ p0(x) must be

specified.

A distribution p(x) is said to be the invariant distribution of the Markov Chain specified by

T (·|·) if

lim
N→∞

P (x(N)|x(N) = x) = p(x). (1.7)

That is, we can draw samples whose distribution is arbitrarily close to p(x) by running the

Markov Chain for enough steps. For any x0, it can be shown that if T (x(i)|x(i−1)) is irreducible

(T (x(i)|x(j)) > 0 for all i, j) and aperiodic (it does not get stuck in cycles), the Markov Chain

will converge to the invariant distribution. Note in the discrete case, running a Markov Chain is

equivalent to a power iteration; consequently, we can conclude that the first eigenvector of T is the

invariant distribution p(x) (for continuous distributions, it is the first eigenfunction).

Most of the time though, we are interested in deriving a transition function from a desired

invariant distribution–not the other way around. The condition of detailed balance provides a

sufficient but not necessary condition for a transition function to have an invariant distribution

p(x):

p(x(i))T (x(i−1)|x(i)) = p(x(i−1))T (x(i)|x(i−1)). (1.8)

The Metropolis-Hastings algorithm [Metropolis et al., 1953] is derived from satisfying detailed

balance and contains a free parameter in the form of a proposal distribution. It uses the transition

6

function

T (x(i)|x(i−1)) = A(x(i)|x(i−1))g(x(i)|x(i−1)) + (1−A(x(i)|x(i−1)))δ(x(i−1)), (1.9)

for some proposal distribution g(·|·) where A(x(i)|x(i−1)) = min
(

1, p(x(i))g(x(i−1)|x(i))
p(x(i−1))g(x(i)|x(i−1))

)
.

Note that multiplying p(x) by a constant does not affect the transition function in (1.9), which

enables us to sample from unnormalized distributions.

As a special case, consider the proposal distribution g(x(i)|x(i−1)) = δ
(
x

(i)
−j = x

(i−1)
−j

)
+

p(xj |x(i−1)
−j), where x−j , x \xj , called Gibbs sampling [Geman and Geman, 1984]. It is easily

shown the probability of accepting a proposal from a conditional distribution of p(x) is 1.

A common choice for the proposal distribution is a symmetric Gaussian g(x(i)|x(i−1)) =

N (x(i)|0,Σ). Note, however, that Σ may not be easy to determine and for certain distributions a

static transition matrix will lead to poor mixing, the time taken such that a sample from the chain

is approximately from the invariant distribution. For example, consider a mixture of two isotropic

Gaussians with one component having a large variance and the other having a small variance. If Σ

is large, if we are within the flatter component, we will have good mixing, but when we transition

to the sharper component, it will be difficult to accept the large jumping proposals, since we are

already in a high density region. Conversely, if we have a small Σ, we will be able to move in the

sharper component, but movement in the flatter component will be relatively slow.

As the target distribution becomes more difficult to sample from, these simpler methods will no

longer be sufficient. We will see examples of more sophisticated methods later, including simulated

tempering [Geyer and Thompson, 1995] and Hamiltonian Monte Carlo [Neal, 2011].

7

1.3 Latent variable modeling

If we believe our data can be described in terms of more abstract but less complicated factors,

instead of directly modeling how the data behave, we can instead model how the so-called latent

variables behave and how the latent variables influence the data. The utility of such modeling is

twofold: we build a probabilistic model of the data, but given a data point, we can also infer (or

approximate) the distribution of the underlying latent variables that gave rise to the data point.

Factor analysis [Cattell, 1952] models the data as the sum of linear projections from latent

factors. The simplest case is linear Gaussian factor analysis, in which

p(z) = N (z|0, I) (1.10)

p(x|z) = N (x|µ+ Λz,Σ), (1.11)

where x represents our data and z represents our latent variables. To fit this model to the data,

we can perform Expectation Maximization (EM) [Dempster et al., 1977].

This simple mixing model has substantial limitations. In particular, the additivity of latent

factors restricts the expressiveness of the model, causing Gaussian mixture models to tend to

oversmooth. If we deviate much from the Gaussian mixture model, though, we can no longer do

EM, as we can no longer evaluate the posterior distribution, since it requires marginalization over

the latents:

p(z|x) =
p(x, z)

p(x)
=

p(x, z)∫
p(x, z)dz

, (1.12)

which cannot be evaluated in many (non-conjugate) models.

We will explore two alternatives: 1. using a generalization of EM called variational inference

[Jordan et al., 1999] to train models in which the posterior cannot be evaluated 2. using an energy-

based model in which inference is easy but sampling is hard.

8

1.4 Variational inference

Suppose we take our factor analysis model in the previous section and after taking an affine

transformation of the factors, we compose the transformation with a nonlinear function f(·) and

define x|z ∼ p(x; θ = f(Wz+ b)), where p is some density with parameters θ. f(·) induces coupling

between the latent variables, which we can see by taking a Taylor expansion of some element of

f(z), fi(z), at z0:

fi(z) = fi(z0) +∇fi(z0)T (z − z0) +
1

2
(z − z0)T∇2fi(z0)(z − z0) + · · · . (1.13)

The nonlinear coupling of latent variables endows the model with a great amount of flexibility,

enabling the latent variables to represent distinct features of the data. Additionally, since the

composition of two nonlinear functions does not reduce in the same way that linear functions do,

we can add more latent variables to the model and ‘stack’ layers such that, e.g., p(x) = p(x|θ =

f(W (1)z(1) + b(1))) and p(z(1)) = p(z(1)|θ = f(W (0)z(0) + b(0)). The price we must pay for this

flexibility is that p(z|x) is no longer tractable.

Instead, variational inference (VI) [Jordan et al., 1999] introduces a variational distribution q(·)

to approximate the posterior distribution and maximizes a lower bound on the evidence (ELBO):

L(x) = Eq(z)[log p(x, z)− log q(z)]. (1.14)

It turns out that the gap between the ELBO and the evidence is the KL-divergence between

the variational distribution and the true posterior:

log p(x) =

∫
log p(x)q(z)dz

=

∫
[log p(x, z)− log p(z|x)]q(z)dz

=

∫
[log p(x, z)− log q(z) + log q(z)− log p(z|x)]q(z)dz

= L(x) +KL(q(z)||p(z|x)). (1.15)

9

If the variational distribution takes a particular form, such as a mean-field distribution q(z) =

∏
i qi(z) and qi(·) is in the exponential family, coordinate ascent methods to optimize each qi(·)

individually can be performed. However, this can place a large constraint on the family of variational

distributions available, potentially increasing the gap between the ELBO and the evidence.

We can improve the variational distribution’s flexibility by amortizing q(z) and turning it into

a function of x, q(z|x), and optimizing the ELBO through stochastic gradient descent [Bottou,

2010]. However, the training gradient from these estimates can be relatively noisy, often requiring

design of control variates [Mnih and Gregor, 2014; Mnih and Rezende, 2016] to reduce the noise.

We can substantially reduce the noise in the ELBO gradient making use of the ‘reparameter-

ization trick’ in variational autoencoders [Kingma and Welling, 2014; D.J. Rezende, 2014]. When

the stochastic latent variable comes from a distribution that can be reparameterized as a func-

tion of parameterless ‘base’ distribution and parameters of the original latent distribution (e.g.,

z ∼ N (µ, σ2) = σ ∗ ε + µ, ε ∼ N (0, I)), we can express the ELBO gradient in terms of the latent

parameters, which often greatly reduces its variance. This, however, constrains our latent variables

to come from a class of parametric models.

1.5 Undirected models

An alternative to variational inference in directed models is the undirected energy-based model,

in which inference is exact and easy, but sampling (which is exact and easy in directed models) is

difficult.

The density of an energy-based model takes the form

p(x, z) =
1

Z
exp(−E(x, z)), (1.16)

where the energy function E(x, z) entirely determines the model.

10

Note that we do not have to specify a prior distribution on the latents, in contrast to Factor

Analysis and the directed model we will use for the variational autoencoder. It is tempting to view

the prior distribution as trivial; however, we will see in Chapter 3 that this is the fundamental

‘issue’ with the autoencoder.

In Chapter 2, we will train the Restricted Boltzmann Machine whose energy function takes

the form

ERBM(x, z) = −aTx− bT z − xTWz. (1.17)

Evaluating the conditional distributions p(x|z) and p(z|x) is easy in this model. To perform infer-

ence, a simple calculation gives

p(z|x) =

P∏

i=1

p(zi|x) =

P∏

i=1

σ(ai +W T
i z), (1.18)

where σ(·) is the sigmoid function σ(x) , 1
1+exp(−x) .

The downside to this model is that it is very difficult to produce samples from the model. In

contrast to directed models, in which one simply samples from the prior distribution over latent

variables and performs a single feedfoward pass to sample x, in the RBM, one must perform

(blockwise) Gibbs sampling by starting at some initial configuration x(0) and alternatively sampling

z(0) ∼ p(z|x(0)), x(1) ∼ p(x|z(0)), z(1) ∼ p(z|x(1)), ..., x(N) ∼ p(x|z(N−1)), where N can be of

the order of 105 to achieve proper burn-in [Salakhutdinov, 2010]. Since sampling from p(x) is

difficult, training has traditionally been done with approximate maximum likelihood methods, e.g,

contrastive divergence [Hinton, 2002], which truncate the chain before it has reached convergence

to the invariant distribution.

11

Chapter 2

Partition functions from

Rao-Blackwellized tempered sampling

David Carlson*, Patrick Stinson*, Ari Pakman*, Liam Paninski, ICML 2015

(*equal contribution)

Partition functions of probability distributions are important quantities for model evalua-

tion and comparisons. We present a new method to compute partition functions of complex and

multimodal distributions. Such distributions are often sampled using simulated tempering, which

augments the target space with an auxiliary inverse temperature variable. Our method exploits

the multinomial probability law of the inverse temperatures, and provides estimates of the par-

tition function in terms of a simple quotient of Rao-Blackwellized marginal inverse temperature

probability estimates, which are updated while sampling. We show that the method has interesting

connections with several alternative popular methods, and offers some significant advantages. In

particular, we empirically find that the new method provides more accurate estimates than An-

nealed Importance Sampling when calculating partition functions of large Restricted Boltzmann

12

Machines (RBM); moreover, the method is sufficiently accurate to track training and validation

log-likelihoods during learning of RBMs, at minimal computational cost.

2.1 Introduction

The computation of partition functions (or equivalently, normalizing constants) and marginal

likelihoods is an important problem in machine learning, statistics and statistical physics, and is

necessary in tasks such as evaluating the test likelihood of complex generative models, calculating

Bayes factors, or computing differences in free energies. There exists a vast literature exploring

methods to perform such computations, and the popularity and usefulness of different methods

change across different communities and domain applications. Classic and recent reviews include

[Gelman and Meng, 1998; Vyshemirsky and Girolami, 2008; Marin and Robert, 2009; Friel and

Wyse, 2012].

In this paper we are interested in the particularly challenging case of highly multimodal dis-

tributions, such as those common in machine learning applications [Salakhutdinov and Murray,

2008]. Our major novel insight is that simulated tempering, a popular approach for sampling from

such distributions, also provides an essentially cost-free way to estimate the partition function.

Simulated tempering allows sampling of multimodal distributions by augmenting the target space

with a random inverse temperature variable and introducing a series of tempered distributions.

The idea is that the fast MCMC mixing at low inverse temperatures allows the Markov chain to

land in different modes of the low-temperature distribution of interest [Marinari and Parisi, 1992;

Geyer and Thompson, 1995].

As it turns out, (ratios of) partition functions have a simple expression in terms of ratios of

the parameters of the multinomial probability law of the inverse temperatures. These parameters

can be estimated efficiently by averaging the conditional probabilities of the inverse temperatures

13

along the Markov chain. This simple method matches state-of-the-art performance with minimal

computational and storage overhead. Since our estimator is based on Rao-Blackwellized marginal

probability estimates of the inverse temperature variable, we denote it Rao-Blackwellized Tempered

Sampling (RTS).

In Section 2.2 we review the simulated tempering technique and introduce the new RTS

estimation method. In Section 2.3, we compare RTS to Annealed Importance Sampling (AIS) and

Reverse Annealed Importance Sampling (RAISE) [Neal, 2001; Burda et al., 2015], two popular

methods in the machine learning community. We also show that RTS has a close relationship with

Multistate Bennett Acceptance Ratio (MBAR) [Shirts and Chodera, 2008; Liu et al., 2015] and

Thermodynamic Integration (TI) [Gelman and Meng, 1998], two methods popular in the chemical

physics and statistics communities, respectively. In Section 2.4, we illustrate our method in a simple

Gaussian example and in a Restricted Boltzmann Machine (RBM), where it is shown that RTS

clearly dominates over the AIS/RAISE approach. We also show that RTS is sufficiently accurate to

track training and validation log-likelihoods of RBMs during learning, at minimal computational

cost. We conclude in Section 2.5.

2.2 Partition functions from tempered samples

In this section, we start by reviewing the tempered sampling approach. We then introduce our

procedure to estimate partition functions by tempered sampling. We note here that our approach

is useful not only as a stand-alone method for estimating partition functions, but is also essentially

free in any application using tempered sampling.

14

2.2.1 Simulated tempering

Consider an unnormalized, possibly multimodal distribution proportional to f(x), whose par-

tition function we want to compute. Our method is based on simulated tempering, a well known

approach to sampling multimodal distributions [Marinari and Parisi, 1992; Geyer and Thompson,

1995]. Simulated tempering begins with a normalized and easy-to-sample distribution p1(x) and

augments the target distribution with a set of discrete inverse temperatures {0 = β1 < β2 < ... <

βK = 1} to create a series of intermediate distributions between f(x) and p1(x), given by

p(x|βk) =
fk(x)

Zk
, (2.1)

where

fk(x) = f(x)βkp1(x)1−βk , (2.2)

and

Zk =

∫
fk(x)dx . (2.3)

ZK is the normalizing constant that we want to compute. Note that we assume Z1 = 1 and

p(x|β1) = p1(x). However, our method does not depend on this assumption. When performing

model comparison through likelihood ratios or Bayes factors, both distributions f(x) and p1(x) can

be unnormalized, and one is interested in the ratio of their partition functions. For the sake of

simplicity, we consider here only the interpolating family given in (2.2); other possibilities can be

used for particular distributions, such as moment averaging [Grosse et al., 2013] or tempering by

subsampling [van de Meent et al., 2014].

When β ∈ {βk}Kk=1 is treated as a random variable, one can introduce a prior distribution

15

r(βk) = rk, and define the joint distribution

p(x, βk) = p(x|βk)rk (2.4)

=
fk(x)rk
Zk

, (2.5)

where Zk is unknown. Instead, suppose we know approximate values Ẑk. Then we can define

q(x, βk) ∝
fk(x)rk

Ẑk
, (2.6)

which approximates p(x, βk). We note that the distribution q depends explicitly on the parameters

Ẑk. A Gibbs sampler is run on this distribution by alternating between samples from x|β and β|x.

In particular, the latter is given by

q(βk|x) =
fk(x)rk/Ẑk∑K

k′=1 fk′(x)rk′/Ẑk′
. (2.7)

Sampling as such enables the chain to traverse the inverse temperature ladder stochastically, es-

caping local modes under low β and collecting samples from the target distribution f(x) when

β = 1 [Marinari and Parisi, 1992].

2.2.2 Estimating partition functions

Letting Ẑ1 ≡ Z1 = 1, we first note that by integrating out x in (2.6) and normalizing, the

marginal distribution over the βk’s is

q(βk) =
rkZk/Ẑk∑K

k′=1 rk′Zk′/Ẑk′
. (2.8)

Note that if Ẑk is not close to Zk for all k, the marginal probability q(βk) will differ from the prior

rk, possibly by orders of magnitude for some k’s, and the βk’s will not be efficiently sampled. One

approach to compute approximate Ẑk values is the Wang-Landau algorithm [Wang and Landau,

2001; Atchade and Liu, 2010]. We use an iterative strategy, discussed in Section 2.2.4.

16

Given samples {x(i), βk(i)} generated from q(x, βk), the marginal probabilities above can sim-

ply be estimated by the normalized counts for each bin βk,
1
N

∑N
i=1 δk,k(i) . But a lower variance

estimator can be obtained by the Rao-Blackwellized [Robert and Casella, 2013] form

ĉk =
1

N

N∑

i=1

q(βk|x(i)) . (2.9)

Note that our estimates in (2.9) are unbiased estimators of (2.8), since

q(βk) =

∫
q(βk|x)q(x)dx . (2.10)

Our main idea is that the exact partition function can be expressed by ratios of the marginal

distribution in (2.8),

Zk = Ẑk
r1

rk

q(βk)

q(β1)
k = 2, . . . ,K . (2.11)

Plugging our estimates ĉk of q(βk) into (2.11) immediately gives us the consistent estimator

ẐRTS
k = Ẑk

r1

rk

ĉk
c1

k = 2, . . . ,K . (2.12)

The resulting procedure is outlined in Algorithm 2.

2.2.3 Rao-Blackwellized likelihood interpretation

We can alternatively derive (2.12) by optimizing a Rao-Blackwellized form of the marginal

likelihood. From (2.8), the log-likelihood of the {βk(i)} samples is

log q({βk(i)}Ni=1) =

N∑

i=1

log(Zk(i)) (2.13)

−N log

(
K∑

k=1

rkZk/Ẑk

)
+ const.

17

k

1 10 20 30 40 50 60 70 80 90 100
120

130

140

150

160

170

log Ẑk with Rao-Blackwellization

Exact

Iteration 8

Iteration 6

Iteration 4

Iteration 2

Iteration 1

k

1 10 20 30 40 50 60 70 80 90 100

-12

-10

-8

-6

-4

-2

0

log ĉk with Rao-Blackwellization

log rk

k

1 10 20 30 40 50 60 70 80 90 100
100

110

120

130

140

150

160

170

log Ẑk

Exact

Iteration 8

Iteration 6

Iteration 4

Iteration 2

Iteration 1

k

1 10 20 30 40 50 60 70 80 90 100

-12

-10

-8

-6

-4

-2

0

log ĉk

log rk

Figure 2.1: Comparison of log Ẑk and log ĉk estimates, in some of the first eight iterations of the

initialization procedure described in Section 2.2.4, with and without Rao-Blackwellization, with

K = 100. The initial values were Ẑk = 1 for all k, and the prior was uniform, rk = 1/K. The

model is a RBM with 784 visible and 10 hidden units, trained on the MNIST dataset. Each iteration

consists of 50 Gibbs sweeps, on each of 100 parallel chains. Since in the non-Rao-Blackwellized

case, the updates are unstable and sometimes infinite, for demonstration purposes only, we define

ĉk ∝ 0.1 +
∑N

i=1 δk,k(i) and normalize. Note that in the Rao-Blackwellized case, the values of ĉk in

the final iteration are very close to those of rk, signaling that the Ẑk’s are good enough for a last,

long MCMC run to obtain the final Ẑk estimates.

18

Algorithm 2 Rao-Blackwellized Tempered Sampling

Input: {βk, rk}k=1,...,K , N

Initialize log Ẑk, k = 2, ...,K

Initialize β ∈ {β1, ..., βK}
Initialize ĉk = 0, k = 1, ...,K

for i = 1 to N do

Transition in x leaving q(x|β) invariant.

Sample β|x ∼ (β|x)

Update ĉk ← ĉk + 1
N q(βk|x)

end for

Update ẐRTS
k ← Ẑk

r1ĉk
rk ĉ1

, k = 2, ...,K

Because βk(i) was sampled from q(β|x(i)), we can reduce variance by Rao-Blackwellizing the first

sum in (2.13), resulting in

LRB[Z] =

N∑

i=1

K∑

k=2

log(Zk)q(βk|x(i))

−N log

(
K∑

k=1

rkZk/Ẑk

)
+ const,

= N

K∑

k=2

log(Zk)ĉk (2.14)

−N log

(
K∑

k=1

rkZk/Ẑk

)
+ const .

The normalizing constants are estimated by maximizing (2.14) subject to a fixed Z1, which is

known. Setting the derivatives of (2.14) w.r.t. Zk’s to zero gives a system of linear equations

K∑

k′=2

rk′

Ẑk′

(
δk′,k
ĉk
− 1

)
Zk′ = r1 k = 2, . . . ,K

whose solution is (2.12).

19

2.2.4 Initial iterations

As mentioned above, the chain with initial Ẑk’s may mix slowly and provide a poor estima-

tor (i.e. small q(βk)’s are rarely sampled). Therefore, when the Ẑk’s are far from the Zk’s (or

equivalently, the rk’s are far from the ĉk’s), the Ẑk’s estimates should be updated.

Our estimator in (2.12) does not directly handle the case where Ẑk is sequentially updated.

We note that the likelihood approach of (2.14) is straightforwardly adapted to this case and is

straightforwardly numerically optimized (see Section 2.4.4 for details). A simpler, less computa-

tionally intensive, and equally effective strategy is as follows: start with Ẑk = 1 for all k (or a better

estimate, if known), and iterate between estimating ĉk with few MCMC samples and updating Ẑk

with the estimated ẐRTS
k using (2.12). In our experiments using many parallel Markov chains, this

procedure worked best when the updated Markov chains started from the previous last x’s, and

fresh, uniformly random sampled βk’s.

Once the Ẑk’s estimates are close enough to the Zk’s to facilitate mixing, a long MCMC chain

can be run to provide samples for the estimator. Because ĉk estimates q(βk), and q(βk) ' rk when

Ẑk ' Zk, a simple stopping criterion for the initial iterations is to check the similarity between

ĉk and rk. For example, if we use a uniform prior rk = 1/K, a practical rule is to iterate the

few-samples chains until maxk |rk − ĉk| < 0.1/K.

Figure 2.1 shows the values taken by Ẑk and ĉk in these initial iterations in a simple example.

The figure also illustrates the importance of using the Rao-Blackwellized form (2.9) for ĉk, which

dramatically reduces the noise in the estimator 1
N

∑N
i=1 δk,k(i) for q(βk).

20

2.2.5 Bias and variance

Using (2.11)-(2.12) and log(1 + x) ' x− x2/2, gives

log ẐRTS
k ≈ logZk +

∆ck
qk
− ∆c1

q1
− (∆ck)

2

2q2
k

+
(∆c1)2

2q2
1

(2.15)

where qk = q(βk) and ∆ck = ĉk − qk. Taking expectations gives

E
[
log ẐRTS

k

]
− logZk ≈

1

2

[
σ2

1

ĉ2
1

− σ2
k

ĉ2
k

]
, (2.16)

and

Var[log ẐRTS
k] ≈ σ2

1

ĉ2
1

+
σ2
k

ĉ2
k

− 2σ1k

ĉk ĉ1
(2.17)

where σ2
1 = Var[ĉ1], σ2

k = Var[ĉk], and σ1k = Cov[ĉ1, ĉk].

This shows that the bias of log Ẑk has no definite sign. This is in contrast to many popular

methods, such as AIS, which underestimates logZk [Neal, 2001], and RAISE, which overestimates

logZk [Burda et al., 2015].

From the Central Limit Theorem, the asymptotic variance of ĉk is

V ar(ĉk) =
V arq(q(βk|x))ak

N
, (2.18)

where the factor

ak = 1 + 2
∞∑

i=1

corr
[
q(βk|x(0)), q(βk|x(i))

]
(2.19)

takes into account the autocorrelation of the Markov chain. But estimates of this sum from the

MCMC samples are generally too noisy to be useful. A more practical approach is to estimate

V ar[ĉk] from ĉk estimates of many parallel MCMC chains.

21

2.3 Related work

In this section, we briefly review some popular estimators and explore their relationship to

the proposed RTS estimator (2.12).

2.3.1 Wang-Landau

A well-known approach to obtain approximate values of the Zk’s is the Wang-Landau algo-

rithm [Wang and Landau, 2001; Atchade and Liu, 2010]. The setting is similar to ours, but the

algorithm constantly modifies the Ẑk’s along the Markov chain as different βk’s are sampled. The

factors that change the Ẑk’s asymptotically converge to 1. The resulting Ẑk estimates are usu-

ally good enough to allow mixing in the (x, β) space [Salakhutdinov, 2010], but are too noisy for

purposes such as likelihood estimation [Tan, 2016].

2.3.2 AIS/RAISE

Annealed Importance Sampling (AIS) [Neal, 2001] is perhaps the most popular method in the

machine learning literature to estimate logZK . Here, one starts from a sample x1 from p1(x), and

samples a point x2, using a transition function K2(x2|x1) that leaves f2(x) invariant. The process

is repeated until one has sampled xK using a transition function that leaves f(x) invariant. The

vector (x1, x2, ..., xK) is interpreted as a sample from an importance distribution on an extended

space, while the original distribution p(xK) can be similarly augmented into an extended space.

The resulting importance weight can be computed in terms of quotients of the fk’s, and provides

an unbiased estimator for ZK/Z1, whose variance decreases linearly with K. Note that the inverse

temperatures in this approach are not random variables.

The variance of the AIS estimator can be reduced by averaging over several runs, but the

resulting value of log(ẐK) has a negative bias due to Jensen’s inequality. This in turn results in a

22

positive bias when estimating data log-likelihoods.

Recently, a related method, called Reverse Annealed Importance Sampling (RAISE) was pro-

posed to estimate the data log-likelihood in models with latent variables, giving negatively biased

estimates [Burda et al., 2015], [Z. et al., 2015]. The method performs a similar sampling as AIS,

but starts from a sample of the latent variables at βK = 1 and proceeds then to lower inverse

temperatures. In certain cases, such as in the RBM examples we consider in Section 2.4.2, one can

obtain from these estimates of the data log-likelihood an estimate of the partition function, which

will have a positive bias. The combination of the expectations of these AIS and RAISE estimators

thus ‘sandwiches’ the exact value [Burda et al., 2015], [Z. et al., 2015].

2.3.3 BAR/MBAR

Bennett’s acceptance ratio (BAR) [Bennett, 1976], also called bridge sampling [X.-L.Meng

and Wong, 1996], is based on the identity

Zk
Z1

=
Ep(x|β1)[α(x)fk(x)]

Ep(x|βk)[α(x)f1(x)]
, (2.20)

where α(x) is an arbitrary function such that
∫
f1(x)fk(x)α(x)dx < ∞, which can be chosen to

minimize the asymptotic variance. BAR has been generalized to estimate partition functions when

sampling among multiple distributions, a method termed the multistate BAR (MBAR) [Shirts and

Chodera, 2008].

Assuming that there are nk i.i.d. samples for each inverse temperature βk (N samples

{xi}i=1,...,N in total), and ∆x = log f(x) − log p1(x), the MBAR partition function estimates can

23

be obtained by maximizing the log-likelihood function [Tan et al., 2012]:

L[Z] =
1

N

N∑

i=1

log

(
K∑

k=1

nk
N

exp(− logZk + βk∆xi)

)

+

K∑

r=1

nr
N

logZr (2.21)

This method was recently rediscovered and shown to compare favorably against AIS/RAISE in [Liu

et al., 2015]. MBAR has many different names in different literatures, e.g. unbinned weighted

histogram analysis method (UWHAM) [Tan et al., 2012] and reverse logistic regression [Geyer,

1994].

Unlike RTS, MBAR does explicitly use q(β) when estimating the partition function. As a

price associated with this increased generality, MBAR requires the storage of all collected samples,

and the estimator is calculated by finding the maximum of (2.21). This likelihood function does

not have an analytic solution, and Newton-Raphson was proposed to iteratively solve this problem,

which requires O(NK2 + K3) per iteration. While RTS is less general than MBAR, RTS has an

analytic solution and only requires the storage of the ĉk statistics. We note that this objective

function is very similar to the one discussed in Section 2.4.4 for pooling across samples collected

using different Ẑk’s.

Recent work has proposed a stochastic learning algorithm based on MBAR/UWHAM [Tan

et al., 2016]. This algorithm gives updates based on the sufficient statistics ĉk with

log Ẑ
(t+1)
k = log Ẑ

(t)
k + γt

(
ĉk
rk
− ĉ1

r1

)
. (2.22)

γt is a step size that is recommended to be set to γt = t−1. We note that our estimator from (2.12)

in log space may be written in a similar form, as
(

log
(
ĉk
rk

)
− log

(
ĉ1
r1

))
, which is very related in

form to (2.22). We empirically found that when the partition function estimates are far away from

the truth, our update (2.12) dominates over (2.22). Because a first order approximation to our

24

estimator in (2.15) is the same as the term in (2.22), the updates will essentially only differ by the

selection of the step size γt when ĉk ' rk.

2.3.4 Thermodynamic integration

Thermodynamic Integration [Gelman and Meng, 1998] is derived from basic calculus identities.

Let us first assume that β is a continuous variable in [0, 1]. We again define ∆x = log f(x)−log p1(x),

and fβ(x) = f(x)βp1(x)1−β. We note that

d

dβ
logZ(β) =

∫
1

Z(β)

d

dβ
fβ(x)dx

= Ex|β[∆x], (2.23)

From calculus, we have

log

(
ZK
Z1

)
=

∫ 1

0
Ex|β[∆x]dβ = Ep(x|β)p(β)

[
∆x

p(β)

]

This equation holds for any p(β) that is positive over the range [0, 1], and provides an unbiased

estimator for logZk if unbiased samples from p(x|β) are available. This is in contrast to AIS, which

is unbiased on Zk, and biased on logZk. Given samples {x(i), β(i)}i=1,...,N , the estimator for logZK

is

̂logZK = logZ1 +
1

N

N∑

i=1

∆x(i)

p(β(i))

There are two distinct approaches for generating samples and performing this calculation in

TI. First, β can be sampled from a prior p(β), and samples are generated from fβ(x) to estimate

the gradient at the current point in β space. A second approach is to use samples generated from

simulated tempering, which can facilitate mixing. However, the effective marginal distribution q(β)

must be estimated in this case.

When β consists of a discrete set of inverse temperatures, the integral can be approximated

by the trapezoidal or Simpson’s rule. Recently, higher order moments were used to improve this

25

integration, which can help in some cases [Friel et al., 2014]. As noted by [Calderhead and Girolami,

2009], this discretization error can be expressed as a sum of KL-divergences between neighboring

intermediate distributions. If the KL-divergences are known, an optimal discretization strategy can

be used. However, this is unknown in general.

While the point of this paper is not to improve the TI approach, we note that the Rao-

Blackwellization technique we propose also applies to TI when using tempered samples. This gives

that the Monte Carlo approximation of the gradient (2.23) is

d

dβ
logZ(β)

∣∣∣∣
β=βk

'
N∑

i=1

q(βk|xi)∆xi∑N
j=1 q(βk|xj)

. (2.24)

This reduces the noise on the gradient estimates, and improves performance when the number

of bins is relatively high compared to the number of collected samples. We refer to this technique

as TI-Rao-Blackwell (TI-RB).

TI-RB is further interesting in the context of RTS, because of a surprising relationship: in

the continuous β limit, RTS and TI-RB are equivalent estimators. However, when using discrete

inverse temperatures, RTS does not suffer from the discretization error that TI and TI-RB do.

2.4 Examples

In this section, we study the ability of RTS to estimate partition functions in a Gaussian

mixture model and in Restricted Boltzmann Machines and compare to estimates from popular

existing methods. We also study the dependence of several methods on the number K of inverse

temperatures, and show that RTS can provide estimates of train- and validation-set likelihoods

during RBM training at minimal cost.

26

1000 1500 2000 2500 3000 3500 4000
−1

0

1

2

3

Number of samples

lo
g

 R
M

S
E

RTS
MBAR

TI Riemann

TI trap

TI trap corrected
TI RB

Figure 2.2: Comparison of logZ estimation performance on a toy Gaussian Mixture Model using

an RMSE from 10 repeats. TI Riemann approximates the discrete integral as a right Riemann

sum, TI trap uses the trapezoidal method, TI trap corrected uses a variance correction technique,

TI RB uses the Rao-Blackwellized version of TI.

2.4.1 Gaussian mixture example and comparisons

Figure 2.2 compares the performance of RTS to several methods, including MBAR and TI

and its variants, in a mixture of two 10-dimensional Gaussians (see Section A.2 for specific details).

The sampling was performed using a novel adaptive Hamiltonian Monte Carlo method for tempered

distributions of continuous variables, introduced in Section A.2. In this case the exact partition

function can be numerically estimated to high precision. Note that the estimators essentially give

identical performance; however, our method is the simplest to implement and use for tempered

samples, with minimal memory and computation requirements.

2.4.2 Partition functions of RBMs

The Restricted Boltzmann Machine (RBM) is a bipartite Markov Random Field model popular

in the machine learning community [Smolensky, 1986]. For the binary case, this is a generative

model over visible observations v ∈ {0, 1}M and latent features h ∈ {0, 1}J defined by log f(v, h) =

27

103 104 105

Gibbs Sweeps

450

451

452

453

454

E
st

im
at

or
M

ea
n RTS

AIS
RAISE
True

103 104 105

Gibbs Sweeps

0

0.5

1

1.5

2

2.5

E
st

im
at

or
R

M
S
E RTS

AIS
RAISE

103 104 105 106

Gibbs Sweeps

283

284

285

286

287

E
st

im
at

or
M

ea
n RTS

AIS
RAISE
True

103 104 105 106

Gibbs Sweeps

0

0.5

1

1.5

2

E
st

im
at

or
R

M
S
E RTS

AIS
RAISE

Figure 2.3: Mean and root mean squared error (RMSE) of competing estimators of logZK evaluated

on RBMs with 784 visible units trained on the MNIST dataset. The numbers of hidden units were

500 (Top) and 100 (Bottom). In both cases, the bias from RTS decreases quicker than that of AIS

and RAISE, and the RMSE of AIS does not approach that of RTS at 1000 Gibbs sweeps until

over an order of magnitude later. Each method is run on 100 parallel Gibbs chains, but the Gibbs

sweeps in the horizontal axis corresponds to each individual chain.

vT c+ vTWh+ hT b, for parameters c ∈ RM , b ∈ RJ , and W ∈ RM×J . A fundamental performance

measure of this model is the log-likelihood of a test set, which requires the estimation of the log

partition function. Both AIS [Salakhutdinov and Murray, 2008] and RAISE [Burda et al., 2015]

were proposed to address this issue. We will evaluate performance on the bias and the root mean

squared error (RMSE) of the estimator. To estimate “truth,” we estimate the true mean as the

28

average of estimates from AIS and RTS with 106 samples from 100 parallel chains. We note the

variance of these estimates was very low (≈ 0.006).

Figure 2.3 shows a comparison of RTS versus AIS/RAISE on two RBMs trained on the bina-

rized MNIST dataset (M=784, N=60000), with 500 and 100 hidden units. The former was taken

from [Salakhutdinov and Murray, 2008],1 while the latter was trained with the method of [Carlson

et al., 2015].

In all the cases we used for p1 a product of Bernoulli distributions over the v variables which

matches the marginal statistics of the training dataset, following [Salakhutdinov and Murray, 2008].

We run each method (RTS, AIS, RAISE) with 100 parallel Gibbs chains. In RTS, the number

of inverse temperatures was fixed at K=100, and we performed 10 initial iterations of 50 Gibbs

sweeps each, following Section 2.2.4. In AIS/RAISE, the number of inverse temperatures K was set

to match in each case the total number of Gibbs sweeps in RTS, so the comparisons in Figure 2.3

correspond to matched computational costs. We note that the performance of RAISE is similar to

the plots shown in [Burda et al., 2015] for these parameters.

2.4.3 Number of temperatures

An advantage of the Rao-Blackwellization of temperature information is that there is no need

to pick a precise number of inverse temperatures, as long as K is big enough to allow for good

mixing of the Markov chain. As shown in Figure 2.4, RTS’s performance is not greatly affected by

adding more temperatures once there are enough temperatures to give good mixing.

Also note that as the number of temperatures increases RTS and the Rao-Blackwellized ver-

sion of TI (TI-RB) become increasingly similar. We show explicitly in Section A.4 that they are

equivalent in the infinite limit of the number of temperatures. Due to computational costs, running

1Code and parameters available from: http://www.cs.toronto.edu/~rsalakhu/rbm_ais.html

http://www.cs.toronto.edu/~rsalakhu/rbm_ais.html

29

101 102 103

Number of Temperatures

0.2

1

5

E
st

im
a
to

r
R

M
S
E

RTS
TS
MBAR
TI
TI-RB

Figure 2.4: RMSE as a function of the number of inverse temperatures K for various estimators.

The model is the same RBM with 500 hidden units studied in Figure 2.3. Each point was obtained

by averaging over 200 estimates (20 for MBAR due to computational costs) made from 10,000

bootstrapped samples from a long MCMC run of 3 million samples.

MBAR on a large number of temperatures is computationally prohibitive. An issue when estimates

are non-Rao-Blackwellized is that the estimates eventually become unstable as we do not have

positive counts for each bin. This is addressed heuristically in the non-Rao-Blackwellized version

of RTS (TS) by adding a constant of .1 to each bin. For TI, empty bins are imputed by linear

interpolation.

2.4.4 Tracking partition functions while training

There are many approaches to training RBMs, including recent methods that do not require

sampling [Sohl-Dickstein et al., 2010; Im et al., 2015; Gabrie et al., 2015]. However, most learning

algorithms are based on Monte Carlo Integration with persistent Contrastive Divergence [Tieleman

and Hinton, 2009]. This includes proposals based on tempered sampling [Salakhutdinov, 2009;

Desjardins et al., 2010]. In these cases, the slow speed of change of the parameters and the relatively

low number of samples required by RTS, allow us to track the value of a train- and validation-set

30

likelihoods during RBM training at minimal additional cost. This allows us to avoid overfitting by

early stopping of the training. We note that there are previous more involved efforts to track RBM

partition functions, which involve additional computational and implementation efforts [Desjardins

et al., 2011].

This idea is illustrated in Figure 2.5, which shows estimates of the mean of training and

validation log-likelihoods on the dna dataset2, with 180 observed binary features, trained on a

RBM with 500 hidden units.

We first pretrain the RBM with CD-1 to get initial values for the RBM parameters. We

then run initial RTS iterations with K = 100, as in Section 2.2.4, in order to get starting log Ẑk

estimates.

For the main training effort we used the RMSspectral gradient method, with stepsize of 1e-5

and parameter λ = .99 (see [Carlson et al., 2015] for details). We considered a tempered space with

K = 100 and sampled 25 Gibbs sweeps on 2000 parallel chains between gradient updates. The

latter is a large number compared to older learning approaches [Salakhutdinov and Murray, 2008],

but is similar to that used both in [Carlson et al., 2015] and [Grosse and Salakhudinov, 2015] that

provide state-of-the-art learning techniques.

With the samples collected after each 25 Gibbs sweeps, we can estimate the ĉk’s to compute

the running partition function. To smooth the noise from such a small number of samples, we

consider partial updates of ẐK given by

Ẑ
(t+1)
K = Ẑ

(t)
K

(
r1

rK

ĉ
(t)
K

ĉ
(t)
1

)α
(2.25)

with α = 0.2, and t an index on the gradient update. Similar results were obtained with .05 < α <

.5. This smoothing is also justified by the slowly changing nature of the parameters. Figure 2.5 also

2Available from: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

31

0 2000 4000 6000 8000
Iteration

-100

-90

-80

-70

-60

-50

hlo
g
p
(v

)i

Train-RTS
Validation-RTS
Train-AIS
Validation-AIS

Figure 2.5: A demonstration of the ability to track with minimal cost the mean train and validation

log-likelihood during the training of a RBM on the dna 180-dimensional binary dataset, with 500

latent features.

shows the corresponding value from AIS with 100 parallel samples and 10,000 inverse temperatures.

Such AIS runs have been shown to give accurate estimates of the partition function for RBMs with

even more hidden units [Salakhutdinov and Murray, 2008], but involve a major computational cost

that our method avoids. Using the settings from [Salakhutdinov and Murray, 2008] adds a cost of

106 additional samples.

2.5 Discussion

In this paper, we have developed a new partition function estimation method that we called

Rao-Blackwellized Tempered Sampling (RTS). Our experiments show RTS has equal or superior

performance to existing methods popular in the machine learning and physical chemistry commu-

nities, while only requiring sufficient statistics collected during simulated tempering.

An important free parameter is the prior over inverse temperatures, rk, and its optimal selec-

tion is a natural question. We explored several parametrized proposals for rk, but in our experiments

no distribution consistently performed significantly better than the uniform. We also explored a

32

continuous β formulation, but the resulting estimates were less accurate. Additionally, we tried

subtracting off estimates of the bias, but this did not improve the results. Finally, we tried incor-

porating a variety of control variates, such as those in [Dellaportas and Kontoyiannis, 2012], but

did not find them to reduce the variance of our estimates in the examples we considered. Other

control variates methods, such as those in [Oates et al., 2015], could potentially be combined with

RTS in continuous distributions.

33

Chapter 3

Decoupling aggregate priors in

variational autoencoders

The choice of the generative model prior is an important part of designing variational au-

toencoders. The variational posterior averaged over the data distribution uniquely minimizes the

evidence lower bound (ELBO) with respect to the prior; consequently, a popular prior choice is a

direct estimate of the variational posterior by averaging a fixed number of encoding distributions.

However, since the encoding model is regularized by the prior in the ELBO, such direct coupling

of the prior and variational distribution leads to additional constraints on the encoding model,

which can limit performance. We propose a generalization of the aggregate approximation prior by

endowing it with generic ‘delta’ functions parameterized independently from the encoder, giving

rise to a more flexible prior capable of decoupling from the encoder model, which we show improves

the latent representation. We also show that when this approach is used in conjunction with a

semi-implicit aggregate prior, it greatly improves performance and gives superior log-likelihoods

compared to existing aggregate models. Finally, we draw a parallel between the decoupled semi-

implicit model and kernel density estimation.

34

3.1 Introduction

Generative modeling, which aims to learn and produce samples from a dataset’s underlying

probability distribution, is a major goal of machine learning. Variational autoencoders (VAEs)

[Kingma and Welling, 2014; D.J. Rezende, 2014] have become very popular over the past few

years partly due to their combining inference and generative modeling into one framework, with

the evidence lower bound (ELBO) on the marginal log-likelihood reflecting both the inference and

generative models. Integral to its success is the reparameterization trick, which enables stochastic

gradients of the ELBO to leverage the latent space density’s parametric form, thereby reducing

variance.

A common consequence of the latent distribution’s parametric form is that it can be overly

simplistic relative to the true posterior and cannot accurately approximate it, represented by the

gap between the ELBO and the marginal log-likelihood. Consequently, efforts have been made to

increase the variational distribution’s expressiveness including using flow-based models [Rezende

and Mohamed, 2015; Kingma et al., 2016; van den Berg et al., 2018; Chen et al., 2018], implicit

variational models [Huszar, 2017; Mescheder et al., 2017; Tran et al., 2017; Yin and Zhou, 2018;

Shi et al., 2018], adversarial models [Mescheder et al., 2017], and Bayesian nonparametric models

[Tran et al., 2016; Nalisnick and Smyth, 2017]

However, due to being regularized by the generative model’s prior, the variational distribution

may not reach its full expressive capacity even under more sophisticated encoder models. Due to

the nature of the KL-divergence penalty, the variational distribution will tend to avoid putting

probability density in regions in which the prior’s density is low [Ranganath et al., 2016], poten-

tially limiting the variational model. Another drawback of overregularization of the variational

distribution is that samples from the trained model may not be meaningful since the latent vari-

35

able is drawn from the prior’s wider density [Makhzani et al., 2016]. When the decoder model is

sophisticated enough, for example in autoregressive decoders (e.g., [van den Oord et al., 2016a;

van den Oord et al., 2016b], the KL penalty may prevent the model from learning a useful

encoding entirely [Alemi et al., 2017], and optimization heuristics must be used, including an-

nealing the KL penalty at the start of training [Bowman et al., 2016; Sønderby et al., 2016;

Serban et al., 2017] or effectively eliminating the KL penalty up to some quantity [Kingma et al.,

2016]. Additionally, specific modeling constraints can be put on the decoder to require the latent

space to be informative [Chen et al., 2017].

Designing the prior has received less attention than the variational distribution, perhaps due

to its perceived relative simplicity, or that many of the methods used to increase the expressivity of

the encoding model (e.g., flow-based and autoregressive models) can be used similarly for the prior.

In this paper, we restrict our attention to models that use for the prior an approximation of the ag-

gregate variational posterior that is either explicit [Tomczak and Welling, 2018] or (semi-) implicit

[Molchanov et al., 2019]. An alternate expression of the ELBO by [Hoffman and Johnson, 2016]

using a marginal KL penalty served as motivation for these models, as the penalty is minimized

by the aggregate variational distribution. However, we argue that alone, these approximations can

place unnecessary constraints on the encoder model and hinder overall performance. Thus, the

aggregate approximation prior still has an effect on the encoding model, despite the technique’s

motivation to simply minimize one term in the ELBO. In fact, as we show empirically, a better

prior can even increase the marginal KL if the reconstruction quality is sufficiently improved.

We propose a generic decoupling model to endow the prior with flexibility while still utilizing

information about the encoder, which we show improves reconstruction and latent representation

quality. Decoupling the semi-implicit prior in particular leads to superior test log-likelihoods over

existing aggregate methods and is robust to changes in the granularity of the aggregate approxima-

36

tion. Finally, we draw a connection between the decoupled semi-implicit model and kernel density

estimation.

3.2 Variational Autoencoders

Given some data, {xn}Nn=1, xn ∼ ptrue(x), latent variable models circumvent direct modeling

of the observed data and instead assume a set of stochastic unobserved variables z interact ac-

cording to p(z) and influence the observed variables according to p(x|z). However, the posterior

probability p(z|x) is often intractable to compute. Instead, variational inference [Jordan et al.,

1999] introduces a variational distribution q(z) that functions as a tractable approximation to the

posterior distribution.

Without access to p(z|x), variational inference aims to maximize not the marginal log-probability

log p(x) but rather an expected lower bound on it (the ELBO):

L(x) , Eq(z|x)[log p(x, z)− log q(z|x)], (3.1)

where we have amortized the variational distribution by making it a function of x. The variational

autoencoder [Kingma and Welling, 2014; D.J. Rezende, 2014] uses two separate deterministic feed-

forward neural networks to model q(z|x) and p(x|z), called the recognition (or encoder) model and

the generative model, respectively. Specification of the prior p(z) completes the model.

In contrast to undirected generative models [Dayan et al., 1995; Hinton and Salakhutdinov,

2006], sampling from the latent space requires only one feedforward ‘sweep.’ Additionally, as op-

posed to stochastic neural networks [Neal, 1992; Mnih and Gregor, 2014; Mnih and Rezende, 2016]

the simple parametric form of q(z|x) enables the use of the ‘reparameterization trick’ [Kingma and

Welling, 2014; D.J. Rezende, 2014], which expresses latent samples as functions of parameters of

the encoder, often greatly reducing the variance of the training gradients.

37

The ELBO can be rewritten as

L(x) = Eq(z|x)[log p(x, z)− log q(z|x)]

= Eq(z|x)[log p(x|z)]−DKL(q(z|x)||p(z)), (3.2)

where we can interpret the first term as encouraging the recognition model to provide latent samples

to generative model which will give rise to reconstructions that match the data, while the second

term functions as a complexity penalty.

3.3 Prior Choice

Until recently, the prior has received little attention, potentially because from a modeling

perspective, a sufficiently complex decoder p(x|z) should be able to transform a base distribution

such as the standard Gaussian into a potentially highly complicated marginal distribution over the

observed space (see e.g., [Goodfellow et al., 2014]). However, from Equation (3.2), we see that the

ELBO is regularized by the encoding distribution’s deviation from the prior, so even if a basic prior

can produce good samples with the right generative model, if the encoder cannot find a good latent

representation, the model will be poor.

3.3.1 Aggregate priors

A key observation by [Hoffman and Johnson, 2016] was that the ELBO averaged over the

training set {xn}Nn=1 can be rewritten as

L(θ, φ) =
1

N

N∑

n=1

Eq(z|xn)[log p(xn|z)]− (logN − Eq(z)[H[q(n|z)]])−KL(q(z)||p(z)) (3.3)

=
1

N

N∑

n=1

Eq(z|xn)[log p(xn|z)]−MI[n, z]−KL(q(z)||p(z)), (3.4)

where H[·] is entropy, q(n|x) = q(z|xn)pdata(xn)
q(z) = q(z|xn)∑N

i=1 q(z|xi)
, and MI[·, ·] is mutual information.

We see from Equation (3.4) that the ELBO consists of a data-dependent reconstruction term

38

which is regularized by the average mutual information between a data point and its encoding as

well as the KL divergence between the marginal variational distribution q(z) and the prior.

Since p(z) appears in the ELBO only though the penalty KL(q(z)||p(z)), the optimal prior is

q(z). Since q(z) = Ep(x)[q(z|x)], this distribution is often called the aggregate posterior.

[Tomczak and Welling, 2018] approximate this posterior by taking an average over the varia-

tional distribution conditioned on a set of pseudoinputs {uk}Kk=1 that are optimized:

pvamp(z) =
1

K

K∑

k=1

q(z|uk). (3.5)

Thus, in addition to mapping data points to the latent space, the encoding model must be

able to map the pseudoinputs such that their average density in latent space sufficiently matches

q(z). This extra constraint may give rise to less precise data encodings; for example, the encoder

may need to give pseudoinputs a higher variance in latent space to sufficiently cover q(z), and the

increase in the effective image and preimage of the encoder may come at the expense of less precise

data encoding.

Instead of using pseudoinputs, [Molchanov et al., 2019] model p(z) semi-implicitly [Yin and

Zhou, 2018] as an expectation over a set of stochastic tractable distributions

p̂SI(z) =
1

K

K∑

k=1

q(z|xIk), (3.6)

where Ik ∼ Unif{1, 2, ..., N}.

Due to the convexity of KL(q(z|x), p(z)) [Cover and Thomas, 1991], from Equation (3.2), the

ELBO evaluated under p̂(z) will be a lower bound on the ELBO under p(z).

Under this model, we do not have to map pseudoinputs in addition to real data, but there

is less flexibility in the form that p̂(z) (and therefore p(z)) can take, since it relies entirely on the

encoded real data. Since p̂(z) must be sufficiently close to q(z), this is a constraint on the encoder;

39

for example, the encoding model may lose precision in encoding the data points in order for the

latent space to be concentrated enough for a random draw of K modes to sufficiently cover it.

3.3.2 Decoupling

In order to keep the advantages of leveraging the encoding model for the prior but lessen

the potential disadvantages of doing so, we partially decouple the prior from the encoder to give

it flexibility to find a better ELBO, either through a better encoding model that isn’t heavily

penalized by the KL term or by reducing the KL term while keeping a precise encoding.

We can rewrite the latent distribution as

q(z|xk) ≡ q(z;φ(xk)), (3.7)

where φ(·) is the encoder’s mapping from data to latent parameters, e.g., φ(x) = {µ(x), σ2(x)} for

a Gaussian encoder. Decoupling is as simple as modifying the parameterization of the aggregate

prior in a way that is independent of the encoder. For example, if we wanted to decouple the

VampPrior, we would have

pvamp+∆(z) =
1

K

K∑

k=1

q(z;φ(uk) + ∆φ(uk)), (3.8)

where ∆φ(·) is any function that maps from the observed space to parameter space. Similarly, we

have

pSI+∆(z) =
1

K

K∑

k=1

q(z;φ(xIk) + ∆φ(xIk)) (3.9)

for the semi-implicit prior. This general approach is shown in Figure 3.1.

Clearly, a change in parameterization is just one way to decouple the prior from the en-

coder. In the most general sense, ∆φ(x) could be any functional mapping {q(z;φ(xk))}Kk=1 to

some density p∆(z). However, there are some reasons to decouple via parameter change within

the same family of densities. The unique minimizer of Equation (3.3) with respect to p(z) is

40

encoder φ(·)

x u

q(z|x) ≡ q(z;φ(x)) p(z) = 1
K

∑K
k=1 q(z;φ(uk))

decoupler ∆φ(·)

{∆φ(uk)}Kk=1

p∆(z) = 1
K

∑K
k=1 q(z;φ(uk) + ∆φ(uk))

Figure 3.1: Proposed aggregate decoupling model. The vanilla aggregate prior is shown in black

and is unchanged; u can represent either pseudoinputs or random data subsamples. Decoupling via

the delta function/network is shown in gray and dotted lines.

p∗(z) = Eptrue(x)[q(z;φ(x))]. It may be more accurate to estimate p∗(z) by leveraging knowl-

edge of the encoder model and keeping the integrand in the expectation of the same form. How-

ever, we acknowledge there are feasible scenarios in general in which given some samples {xk}Kk=1,

p̂(z) = 1
K

∑K
k=1 q(z;φ(xk) + ∆φk) may be an inaccurate estimate of p∗(z), for any {∆φk}Kk=1.

We tried a more general decoupling that included learning a weighted combination of den-

sities in addition to the parameter changes, but this performed worse. This is not particularly

surprising, as more complicated decoupling models leverage the encoder less. Indeed, [Molchanov

et al., 2019] found that a data-independent hierarchical semi-implicit prior performed worse than a

random average of the latent encoded distributions in Equation (3.9). Additionally, the parameter

change formulation we used is attractive considering its connection with non-parameteric density

estimation.

3.3.3 Connection with kernel density estimation

Consider the distribution p∗(z) =
∫
q(z;φ(x))ptrue(x)dx. If we receive samples {xk}Kk=1 with

corresponding inferred latent variables {zk}, we can use a kernel density estimator [Wasserman,

41

2006] with bandwidth h to give

p̂KDE(z) =
1

K

K∑

k=1

N (z|zk, h). (3.10)

If we Rao-Blackwellize [Casella and Berger, 2001] by taking the expectation over the latent variables,

we get

Eq(z|x)[p̂KDE(z)] =
1

K

K∑

k=1

q(z|xn) ~N (z|0, h), (3.11)

where ~ indicates convolution. If the encoder is Gaussian with q(z|x) = N (z|µ(xk), σ
2(xk)), the

right hand side of Equation (3.11) becomes

p̂KDE-RB(z) =
1

K

K∑

k=1

N (z|µ(xk), σ
2(xk) + h). (3.12)

Unlike standard kernel density estimation, the ELBO provides a training signal, enabling a more

sophisticated model than Equation (3.12) can provide. Specifically, we generalize h to be a function

of x (and parameterize it in log space to enable ‘negative bandwidths’ but an overall non-negative

variance for the density) and introduce a kernel biasing function ∆µ(x). Renaming h , ∆σ2(x)

recovers our decoupling model.

Interpreting the prior as kernel density estimation on the latent space opens up a large space

of models to explore. A prior that biases the model towards inductive biases, especially on the

latent representation could be created by choosing the right basis functions. For example, a good

latent space representation often entails that density is not too concentrated at particular points,

especially those corresponding to encoded training data points. A common heuristic to check for a

good latent space representation is to linearly interpolate between two encoded data points in the

latent space and verify that their outputs from the generative model change relatively smoothly

and look relatively reasonable (see, e.g., [Ulyanov et al., 2018; Bojanowski et al., 2018; Kingma and

Dhariwal, 2018]). A kernel function consisting of two (randomly or otherwise specified) connected

42

encoded datapoints whose kernel is the distance from a point to the line segment could encourage

the model towards such a representation. We implement this prior in Appendix C but do not see

improvement. This kernel function could be generalized from the distance from a line segment to

the distance from a d < dim(z) dimensional hyperplane connecting d encoded points.

3.4 Experiments

In all experiments, we followed the architecture for the non-hierarchical VAE in [Tomczak and

Welling, 2018]. For the encoding and decoding models, we used a two layer neural network with

300 hidden units per layer with a gated linear unit non-linearity [Dauphin et al., 2017]. The full

delta network had the same architecture as the encoder.

For optimization, we used Adam [Kingma and Ba, 2015] with a learning rate of 10−4, gradient

norms clipped to unity, and a patience of 50 epochs. We use a linear KL annealing [Bowman

et al., 2016] schedule during the first 100 training epochs, as in [Tomczak and Welling, 2018]. All

simulations were done in Tensorflow [Abadi et al., 2015].

Unless otherwise stated, we used the same K as reported in [Tomczak and Welling, 2018] and

[Molchanov et al., 2019]; no hyperparameters were tuned for our model. For the implicit models,

we found that selecting data points uniform randomly without replacement performed better than

independently.

For data requiring stochastic binarization, we binarized such that the expected value of each

pixel’s random value equaled its non-binarized value on [0, 1] as in [Salakhutdinov and Murray,

2008]. Since stochastic binarization can differ across studies, we trained and tested all models on

the dynamic datasets and report the maximal log-likelihood across our simulations and [Tomczak

and Welling, 2018] and [Molchanov et al., 2019] to make the comparison as generous as possible.

We first tested to see what effect decoupling would have on model performance on three

43

datasets: static MNIST [Larochelle and Murray, 2011], dynamic MNIST [Salakhutdinov and Mur-

ray, 2008], and OMNIGLOT [Lake et al., 2015]. We quantify performance with test log-likelihoods

estimated using importance sampling [Burda et al., 2016] with 5000 samples, as in [Tomczak and

Welling, 2018]. We report lower bounds on the implicit models’ log-likelihoods, since they were

evaluated using p̂(z) rather than p(z).

We show our main result in Table 3.1. We found that while decoupling with VampPrior

gives incremental improvement, decoupling the SI prior improves its performance from the worst

performing model to the best performing model, as measured by the average test log-likelihood.

Such a dramatic improvement is at first surprising; however, SI+∆’s connection with kernel density

estimation discussed in Section 3.3.3 provides an potential explanation.

In situations in which one is worried about extra computational overhead, adding a delta

network on par with the encoding model may be undesirable. We first emphasize that the delta

network is generic to the encoder architecture and can be much simpler. To test how sophisticated

of a decoupling is needed to improve performance, we tested performance on a ‘linear’ decoupling

network, using only an affine transformation to learn mappings from data space to latent parameter

space. We found that linearly decoupling often performed almost as well as decoupling using the

same architecture as the encoder (see Table 3.1).

To test each model’s robustness to hyperparameter choice, we evaluated performance as a

function of K, shown in Figure 3.2. Not only does SI+∆ reach the highest ELBO, but it is quite

robust to changes in K, especially higher values of K.

Next, we wanted to see how decoupling improved performance by decomposing the ELBO

into the quantities in Equation (3.3), shown in Figure 3.3. Decoupling improved the reconstruction

term in both models (Figure 3.3a) as expected.

Perhaps most striking about our results in Figure 3.3 is how high the marginal KL term in

44

Table 3.1: Test log-likelihoods on three data sets.

Model Static MNIST Dynamic MNIST OMNIGLOT

standard −88.56 −76.61 −104.15

VampPrior −85.57 −74.49 −101.85

VampPrior+∆ (linear) −85.25 −74.75 −100.83

VampPrior+∆ −85.24 −73.77 −101.63

SI ≥ −89.25 ≥ −79.74 ≥ −104.66

SI +∆ (linear) ≥ −85.06 ≥ −73.64 ≥ −100.86

SI +∆ ≥ −84.91 ≥ −73.36 ≥ −99.53

Figure 3.3b remained even for large values of K. Moreover, while decoupling also improved the

KL(q(z)||p(z)) term for the SI prior, it increased the term under the VampPrior (Figure 3.3b).

This result further illustrates how intertwined the encoder and prior are, especially in aggregate

models: the prior does not just influence the marginal KL term, and a good (quantified by the

ELBO) prior may have a higher marginal KL than other priors if it enables high enough quality

reconstructions.

Consistent with [Hoffman and Johnson, 2016], we found the mutual information term of the

ELBO remained relatively constant and close to its maximum of logN .

Finally, we wanted to see if the better encoding model decoupling improved the latent repre-

sentation. VAEs often suffer having a fraction of latent variables whose encoding is uninformative

of the conditioned datapoint, often called ‘posterior collapse’ or ‘mode collapse’ ([Burda et al.,

2016], [van den Oord et al., 2017], [Dieng et al., 2019]). In Figure 3.4, we compared the number

of active units in the latent representation as quantified in [Burda et al., 2016] across models as a

45

0 2000 4000 6000 8000 10000
K

106

104

102

100

98

96

94

92

90
te

st
 E

LB
O

Vamp
Vamp+
SI
SI+

Figure 3.2: Test ELBO terms as a function of K (static MNIST).

function of K using static MNIST as the dataset. We found that decoupling increased the fraction

of active units for the VampPrior for all K and increased the number of active units for K ≥ 2000,

well within the regime of best choice of K for SI.

3.5 Conclusion

In this paper, we have generalized the aggregate posterior model of the prior and decoupled

it from the encoder model. We have shown decoupling improves the latent representation, and

the semi-implicit decoupled prior achieves superior performance over existing aggregate methods

on three datasets. For the sake of comparison and simplicity, our prior model has been used

in the context of relatively simple feedforward networks; however, it can be easily plugged into

more sophisticated encoding and decoding models such as those in [Rezende and Mohamed, 2015],

[Sønderby et al., 2016], [Gulrajani et al., 2017], [Chen et al., 2017].

We have shown how the decoupled semi-implicit model can be viewed as an extension of kernel

46

0 2000 4000 6000 8000 10000
K

74

72

70

68

66

64

te
st

 re
co

ns
tru

ct
io

n

Vamp
Vamp+
SI
SI+

(a)

0 2000 4000 6000 8000 10000
K

15

16

17

18

19

20

21

22

23

te
st

 K
L

Vamp
Vamp+
SI
SI+

(b)

Figure 3.3: ELBO terms as a function of K (static MNIST): (a) test reconstruction log-probability,

(b) test KL(q(z)||p(z)). Asterisks indicate the values of K which maximize the test ELBO for each

model in (a) and (b).

density estimation in latent space, opening up new potential avenues for future modeling.

Our work has illustrated not only the importance of the prior in VAEs, but that an aggregate

estimate is not the end of the story, thus reiterating the importance of the nuances of the push and

pull between data-driven modeling and generalization.

47

0 2000 4000 6000 8000 10000
K

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

fra
ct

io
n

ac
tiv

e
un

its

Vamp
Vamp+
SI
SI+

Figure 3.4: Fraction of active latent units for each model as a function of K.

48

Chapter 4

ELBO amputation: an initialization

scheme for variational autoencoders

Variational autoencoders have become ubiquitous in unsupervised learning and deep generative

modeling, giving importance to analysis of the finer details and idiosyncrasies of the method. Using

a standard architecture, we focus on the behavior of the loss function gradient at the beginning of

training and argue that as the latent space dimensionality increases, the data-dependent gradient

decays to zero, leaving only the regularizing KL term. We optimize the model with respect to this

data-independent gradient estimate with a simple modification to the recognition model’s weight

initialization which does not add any computational overhead and does not depend on any of the

assumptions of the data. Using a sequential variational autoencoder as an example, we show that

in addition to speeding up training, models using our initialization converge significantly faster.

4.1 Introduction

Central to the canonical variational autoencoder is the reparameterization trick [Kingma and

Welling, 2014; D.J. Rezende, 2014], which rewrites the latent distribution as a function of a random

variable drawn from a parameterless base distribution and the latent distribution’s parameters, en-

49

abling differentiation of the latent variable with respect to the variational parameters, which allows

the loss function gradient estimate to leverage more information from the variational parameters,

thereby reducing the noise of the estimate.

Subsequent efforts have been made to further reduce the noise in the ELBO gradient using

control variates [Miller et al., 2017; Geffner and Domke, 2018; Roeder et al., 2017]. Many of

these methods rely on the log-derivative trick (REINFORCE) [Williams, 1992], which is simply the

identity ∇φEqφ(z)[log qφ(z)] = 0 which follows from the chain rule. The log-derivative trick itself

enables derivation of a black-box estimator of the variational gradient [Ranganath et al., 2014]

that depends only on function evaluations of the generative and variational models. Since the

model can be treated as a black box, the estimator can be used in more general settings than the

reparameterization trick, but it suffers from higher variance, although this variance can be reduced

using Rao-Blackwellization and control variates [Ranganath et al., 2014].

In this paper, we interpret the black-box form of the variational gradient as a data-dependent

cross-covariance minus a data-indepdent KL-divergence complexity penalty gradient. We show that

a common network architecture consisting of compositions of affine transformations and ReLU non-

linearities [Glorot et al., 2011] with weights initialized using a typical variance-preserving method

[Glorot and Bengio, 2010; He et al., 2015] will produce a cross-covariance between the latent

variables and the generative parameters whose distribution approaches a point mass at 0 as the

latent space dimensionality increases. We use this information to motivation a weight initialization

scheme in which the cross-covariance term in the training gradient is ignored and the objective

function corresponding to the remaining gradient term is optimized, enabling training to begin

at a better initial configuration. We apply our intialization procedure to training a sequential

autoencoder [Gregor et al., 2016] and show the training improvements from the initialization persist

long into training.

50

4.2 ELBO gradients

Our starting point is the ELBO:

L(x) = Eq(z|x)[log p(x, z)− log q(z|x)]. (4.1)

The gradient of L(x) with respect to the generative parameters θ is straightforward as the

linearity of the gradient enables it to move inside the expectation:

∇θL(x) = Eq(z|x)[∇θ log p(x, z)]. (4.2)

The gradient with respect to the variational parameters is not as simple, as the expectation

is with respect to the variation distribution. The key insight from the reparameterization trick

[Kingma and Welling, 2014; D.J. Rezende, 2014] is to express Eq(z|x)[f(z)] as an expectation over a

parameterless ‘base’ distribution q0(ε) and the latent variable z ∼ q(z|x) as a function of this base

distribution z = g(ε; θ). Once the expectation doesn’t depend on φ, the gradient can be moved

inside the integral:

∇φEq(z|x)[log p(x, z)− log q(z|x)] = ∇φEq0(ε)[log p(x, g(ε;φ))− log q(g(ε;φ)|x)] (4.3)

= Eq0(ε)[∇φ(log p(x, g(ε;φ))− log q(g(ε;φ)|x))] (4.4)

= Eq0(ε)

[
dg(ε;φ)

dφ

T

∇z(log p(x, z)− log q(z|x))

]
. (4.5)

The reparameterization trick requires that z can be represented as a differentiable function

of some parameterless distribution. However, methods that enable one to relax these assumptions

are an increasing area of research (e.g., [Ruiz et al., 2016; Jang et al., 2017; Tucker et al., 2017;

Figurnov et al., 2016]).

We can express the gradients in an alternate form by using the log-derivative trick [Williams,

1992], which uses the identity

Eqφ(z)[∇φ log qφ(z))] = 0, (4.6)

51

where we’ve made q’s parameterization φ explicit, to give us

∇φL(x) = Eqφ(z|x)[∇φ log qφ(z|x)(log p(x, z)− log qφ(z|x))]. (4.7)

(See [Ranganath et al., 2014] for full details on the derivation.)

4.2.1 Cross-covariance interpretation of gradient

For the sake of simplicity, here we set p(z) = N (0, I). If q(z|x) = N (µ, 1/λ), substituting in

{µ, λ} in for φ gives us

∇µL(x) = λEq(z|x)[(z − µ) log p(x|z)]− µ (4.8)

∇λL(x) =
1

2
Eq(z|x)[(1/λ− (z − µ)2) log p(x|z)] +

1

2
(1/λ2 − 1/λ). (4.9)

If we look at the gradient with respect to µ, we see that µ is pushed in a direction that is

proportional to z’s cross-covariance with log p(x|z) and pulled back towards µ by the KL term

to match the prior. We see similar behavior for λ’s gradient, but with respect to its reciprocal

1/λ. That the gradients break down into penalized cross-covariances makes sense intuitively, since

gradients can only represent linear dependence, which is expressed through covariance.

Intuitively, it seems reasonable to expect that a z that is generated by a randomly configured

recognition model would be uncorrelated with a log-likelihood that is generated by an independently

randomly configured generative model. If log p(x|z) has a low cross-covariance with z (or (z−µ)2),

then the gradient will reduce to −µ (or .5(1/λ2 − 1/λ)). We note that the log-likelihood is a

deterministic function of z, so a non-linear measure of dependence like mutual information is

maximal.

We will show in Appendix B that if the generative network is a series of affine transformations

and ReLUs, under a typical variance-preserving weight initialization scheme [Glorot and Bengio,

2010; He et al., 2015], as the dimensionality of z increases, the cross-covariance between z and the

52

parameters output by the generative model will go to 0. By ‘variance-preserving,’ we refer to typical

weight initialization schemes in which the variance of the weights for an input scales inversely with

the dimensionality of the inputs to keep the variance of the outputs roughly the same as that of

the inputs. To see how this works, given an input x ∈ Rd, we can calculate the variance of the dot

product with w, with wi ∼ N (0, 1/d):

Var

[
d∑

i=1

wixi

]
=

d∑

i=1

Var[wixi]

=
d∑

i=1

E[w2
i]E[x2

i]− E[wi]
2E[xi]

2

=
1

d

d∑

i=1

Var[xi]

= Var[xi]di=1

We note our result does not prove that the cross-covariance terms in (4.8) and (4.9) are equal

to zero, since log p(x|z) is a non-linear function of the variational parameters, but our result can at

least serve as motivation for empirical testing of our initialization.

Our initialization modification is extremely simple: once the recognition model is initialized

(the particular initialization scheme does not matter as long as it is variance-preserving, e.g.,

[Glorot and Bengio, 2010; He et al., 2015]), we set every entry in the matrix that determines

the linear mapping from the last hidden layer to each parameter µ and log λ to 0, such that

q(z|x) = N (0, I) = p(z) for all x, eliminating the KL term.

Another interpretation of this modification is that right after initialization, we can pre-train

the model using the data-independent KL-gradient. With our zero initialization scheme, we are

finding a solution to ∀x∇φL(x) = 0. If we wanted to avoid a fully zero intialization, we could

find the singular value decomposition of the empirical covariance of the last layer’s activations and

project a random initialization of the weights onto a linear subspace orthogonal to the first few

53

singular vectors. Although we have found that only relatively few singular vectors explain much

of the covariance, performance using pure zeros has performed better than sampling from this

orthogonal subspace.

4.2.2 Potential concerns: code collapse and symmetry

One may argue that by giving such an initialization, the latent space is not encouraged to be

a meaningful representation, since the latent space is initially simply a degenerate point mass. In

fact, it is possible that this is the worst initialization possible, since we are intentionally creating

the greatest amount of latent space ‘code collapse.’ However, any initial latent representation that

results from random initialization will induce a random topography onto the latent space that will

then need to be undone or transformed to create a mapping that maps similar data points together.

Initially mapping onto the origin circumvents having to perform this unmapping.

Another potential issue is that initializing weights to 0 might induce a symmetry in the archi-

tecture such that individual units cannot be differentiated from one another, leading to each unit in

a layer becoming identical, thus reducing the layer to a single computational unit. Intuitively, this

does not happen here because the symmetry among the latent variables is broken by the random

mapping in the generative network from latent space to image space. Thus, ∂L(x)
∂µ contains different

entries in general, and since µ(x) = Wh(x)+b, where h(x) is the last hidden layer, ∂µ
∂W is a function

of h(x) and is unaffected by the weight matrix’s value. Therefore, ∂L(x)
∂W = ∂µ

∂W

T ∂L(x)
∂µ does not take

any special or degenerate form under our initialization. An identical argument holds for λ.

4.2.3 Numerical simulation

In Section 4.2, we argued that as the dimensionality of the latent space grows, the generative

term of the ELBO, which can be interpreted as the covariance between the latent space and the

54

generative log-likelihood, will go to 0. We show this empirically in Fig. 4.1 using a single hidden

layer densely connected neural network for both the generative model and the recognition model.

The dimensionality of the latent space is 100, and the data used is the MNIST dataset restricted

to the central 8x8 square (for memory reasons, since we take one million samples from the latent

space to get extremely accurate MCMC gradients). The dimensionality of the hidden layer is 10 for

memory reasons, but we had qualitatively similar performance with a dimensionality of 100. We

see that as the model begins to train, this similarity begins to break down, as the generative model

loses its initial random configuration as it trains (and its log-likelihood becomes correlated with the

latent space). This doesn’t happen until the ELBO has already made considerable improvements,

suggesting that training the generative model gives rise to the slow and steady improvements in

the ELBO.

4.2.4 Application to sequential autoencoder

In standard applications of variational autoencoders, zero initialization may not give rise to

noticeable improvements, as the latent space dimensionality must be sufficiently high for the cross-

covariance to be dominated by the KL gradient. However, one scenario in which the latent space

dimensionality is high is when using sequential autoencoders [Gregor et al., 2016].

Sequential autoencoders represent data in a temporal sequence, rather than the output of a

single pass of e.g., a feedforward network. The advantage of this approach is that data can be

represented in a sequence of latent encodings, rather than a single encoding that must capture all

the information about the data. The following equations illustrate a basic sequential autoencoder

55

model for image data:

x̂t = x− σ(ct−1) (4.10)

rt = read(xt, x̂t, h
dec
t−1) (4.11)

henc
t = RNNenc(henc

t−1, [rt, h
dec
t−1]) (4.12)

zt = q(zt|henc
t) (4.13)

hdec
t = RNNdec(hdec

t−1, zt) (4.14)

ct = ct−1 + write(hdec
t), (4.15)

where x̂t is the error image xt − σ(ct), [·, ·] denotes concatenation of vectors, σ(·) is the sigmoid

function, and ct is the ‘canvas’ that becomes the generative model’s output as σ(cT). The read()

and write() functions are general and can be used with or without attention.

Under this framework, the KL penalties for each timestep KL(q(zt|x)||p(z)) are additive: the

latent space is effectively a concatenation of each timestep’s latent encoding. This property makes

such a model a good candidate for zero initialization.

To test this, we trained a sequential autoencoder with 10 time steps and a latent and hid-

den dimensionality of 100 on MNIST. We used Glorot initialization [Glorot and Bengio, 2010]

on all models, but there was no qualitative difference in results when using He initialization [He

et al., 2015]. Figure 4.2a shows a substantial improvement from zero initialization over normal

initialization. We also note the effective dimensionality of 1000 is much smaller than that of the

models in the original sequential autoencoder paper [Gregor et al., 2016], suggesting even better

improvements could be seen when training the larger model.

Annealing the KL term [Bowman et al., 2016; Sønderby et al., 2016] is a heuristic used to

encourage a VAE to learn a meaningful latent representation. At the start of training, models with

sophisticated decoders (e.g., [van den Oord et al., 2016a; van den Oord et al., 2016b; Kingma et al.,

56

2016]) do not need an informative latent space to improve reconstruction error; consequently, the

latent space can remain uninformative for the entirety of training while only the decoder model

learns the temporal structure of the observed data. Since this method alleviates the impact of the

KL term on the gradient, it should be compared to our method.

Figure 4.2b shows that zero initialization performs better than all the (linear) annealing sched-

ules we tried. Interestingly, the annealing schedules’ ELBOs appear to approach that of the zero

initialization as the annealing schedule is lengthened.

4.3 Discussion

We have shown that a simple weight initialization modification can have long lasting improve-

ments in training certain types of variational autoencoders. For the sake of simplicity, we used a

standard normal prior, but our procedure could be amended to more sophisticated priors, such as

a mixture of Gaussians or a VampPrior [Tomczak and Welling, 2018], for example, by modeling

the parameters of q(z|x) as those of p(z) plus the output of a neural network and zero-initializing

the last linear layer of the network.

Better-tuned weight initialization has been a significant contributing factor in enabling training

networks to use simple first order optimization rather than greedy layerwise pretraining [Hinton and

Salakhutdinov, 2006; Bengio et al., 2007] or Hessian-free optimization [Martens, 2010]. A small,

seemingly trivial multiplicative factor of
√

2 [He et al., 2015] enables the training of very deep

networks previously untrainable. We anticipate as deep learning progresses details that appear to

be minutiae at first glance will make the difference in achieving state-of-the-art performance.

57

Figure 4.1: Closed-form KL gradients dominate during the beginning of training. Top: Cosine

similarity between MCMC estimated µ gradient for and closed-form µ KL gradient during training.

Middle: Same for λ gradients. Bottom: ELBO during training.

58

0 200000 400000 600000 800000 1000000
iteration

240

220

200

180

160

140

120

100

80
EL

BO

zero init
standard

(a)

0 10000 20000 30000 40000 50000
iteration

220

200

180

160

140

120

100

EL
BO

zero init
anneal 10k
anneal 1k
anneal 100
standard

(b)

Figure 4.2: Training a sequential autoencoder on MNIST. Comparison of test ELBOs during train-

ing between zero initialization and (a) standard initialization (b) various KL annealing schedules.

The length of annealing in iterations for each schedule is written after ‘anneal’ in the legend.

59

Chapter 5

Conclusion

“All speech is demand. Every demand a request for love.” — Jacques Lacan

In this thesis, we have improved partition function estimation to improve training of undirected

graphical models, generalized a class of prior models in variational autoencoders leading to better

performance and latent representation, and modified random initialization schemes for autoencoders

to improve training convergence speed. Along the way, we have drawn parallels between several

existing methods for partition function estimation, pointed out an implicit constraint in a variant

of variational inference, and exploited symmetries in randomly initialized neural networks. Science

often requires us to get well within the weeds to make progress, but it is equally important after

all is said and done to take a step back and do some introspection.

Science exists in the interplay between theory and practice; a scientist attempts to understand

the world through hypothesizing models and subsequently testing their validity by collecting data

and comparing it to the model’s predictions. This ‘scientific method’ we learned in grade school

seems simple at first–almost a tautology–but details get in the way. Even if we ignore the looming

question of the the validity of inductive reasoning in general, there are still nuances that thwart us.

60

How do we come up with good hypotheses that are informed by past experiments but unbiased with

respect to data used to test the model’s predictions? The interplay is not without gaps; there is no

complete bridge between theoretical models and real (even fake) data, giving way to subjectivity,

interpretation, storytelling. Statistics is very good at saying no but sometimes we cannot help but

whisper in our heads, ‘Yes....’ Thus, despite our best efforts, science remains a study of ourselves.

Deep learning’s massive popularity makes it a particularly interesting case in the sociology

of science. The breadth and depth of progress deep learning has made in machine learning is

difficult to overstate, so much so that at times it can be hard to believe Yoshua Bengio’s response

to being asked what is the biggest misconception about deep learning: that it isn’t magic. In

much of science, the devil is in the details: small seemingly trivial changes to protocol (in machine

learning’s case, the model or training/testing procedure) give rise to qualitatively different results,

which in turn drive subsequent directions for theory and experiments. Hyperparameter ‘twiddling’

to achieve state-of-the-art results is a big problem in machine learning, but an even bigger problem

arises when the practitioner is unaware of the degree of arbitrariness of the study and all the other

hidden knobs left untouched. In a blog post, Andrej Karpathy writes of accidentally leaving a

model training over winter break only to come back to it giving state-of-the-art performance. Of

course, neural networks themselves are to a degree arbitrary, a subset of models in the class of

universal function approximators. A cynic could argue that the biggest factor in the success of

neural networks has been the name.

The contradictions in our attempt to separate out signal and noise is poetic, but upon further

inspection not limited to science: in any framework, there is an arbitrary starting point, assump-

tions, relations. And there is always more structure to be uncovered (or invented), more theory to

be done.

61

Bibliography

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems.

[Alemi et al., 2017] Alemi, A. A., Poole, B., Fischer, I., Dillon, J. V., A.Saurous, R., and Murphy,
K. (2017). An information-theoretic analysis of deep latent-variable models. arXiv:711.00464.

[Atchade and Liu, 2010] Atchade, Y. and Liu, J. (2010). The Wang-Landau algorithm in general
state spaces: Applications and convergence analysis. Statistica Sinica.

[Bengio et al., 2007] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy
layer-wise training of deep networks. Advances in Neural Information Processing Systems.

[Bennett, 1976] Bennett, C. (1976). Efficient estimation of free energy differences from Monte Carlo
data. Journal of Computational Physics.

[Beskos et al., 2013] Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.-M., and Stuart, A. (2013).
Optimal tuning of the hybrid Monte Carlo algorithm. Bernoulli.

[Bojanowski et al., 2018] Bojanowski, P., Joulin, A., Paz, D. L., and Szlam, A. (2018). Optimizing
the latent space of generative networks. International Conference on Machine Learning.

[Bottou, 2010] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.
CompSTAT.

[Bowman et al., 2016] Bowman, S., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., and Bengio, S.
(2016). Generating sentences from a continuous space. CoNLL.

[Burda et al., 2015] Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Accurate and conser-
vative estimates of MRF log-likelihood using reverse annealing. International Confernce on
Artificial Intelligence and Statistics.

[Burda et al., 2016] Burda, Y., Grosse, R., and Salakhutdinov, R. (2016). Importance-weighted
autoencoders. International Conference on Learning Representations.

62

[Calderhead and Girolami, 2009] Calderhead, B. and Girolami, M. (2009). Estimating Bayes fac-
tors via thermodynamic integration and population MCMC. Computational Statistics & Data
Analysis, 53(12):4028–4045.

[Carlson et al., 2015] Carlson, D., Collins, E., Hsieh, Y.-P., Carin, L., and Cevher, V. (2015).
Preconditioned spectral descent for deep learning. In Advances in Neural Information Processing
Systems, pages 2953–2961.

[Casella and Berger, 2001] Casella, G. and Berger, R. (2001). Statistical Inference. Cengage Learn-
ing.

[Cattell, 1952] Cattell, R. (1952). Factor analysis. Harper.

[Chen et al., 2018] Chen, R., Rubanova, Y., Bettencourt, J., and Duvenaud, D. (2018). Neural
ordinary differential equations. Advances in Neural Information Processing Systems.

[Chen et al., 2017] Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J.,
Sutskever, I., and Abbeel, P. (2017). Variational lossy autoencoder. International Conference on
Learning Representations.

[Cover and Thomas, 1991] Cover, T. and Thomas, J. (1991). Elements of Information Theory.
Wiley-Interscience.

[Dauphin et al., 2017] Dauphin, Y., Fan, A., Auli, M., and Grangier, D. (2017). Language modeling
with gated convolutional networks. International Conference on Machine Learning.

[Dayan et al., 1995] Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The Helmholtz
machine. Neural Computation.

[Dellaportas and Kontoyiannis, 2012] Dellaportas, P. and Kontoyiannis, I. (2012). Control variates
for estimation based on reversible Markov Chain Monte Carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 74(1):133–161.

[Dempster et al., 1977] Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B.

[Desjardins et al., 2011] Desjardins, G., Bengio, Y., and Courville, A. (2011). On tracking the
partition function. In Advances in Neural Information Processing Systems, pages 2501–2509.

[Desjardins et al., 2010] Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and Delalleau, O.
(2010). Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machines.
In International Conference on Artificial Intelligence and Statistics, pages 145–152.

[Dieng et al., 2019] Dieng, A., Kim, Y., Rush, A., and Blei, D. (2019). Avoiding latent variable
collapse with generative skip models. International Confernce on Artificial Intelligence and
Statistics.

[Dinh et al., 2017] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using
real NVP. International Conference on Learning Representations.

63

[D.J. Rezende, 2014] D.J. Rezende, S. Mohamed, D. W. (2014). Stochastic backpropagation and
approximate inference in deep generative models. International Conference on Machine Learning.

[Figurnov et al., 2016] Figurnov, M., Mohamed, S., and Mnih, A. (2016). Implicit reparameteriza-
tion gradients. Advances in Neural Information Processing Systems.

[Friel et al., 2014] Friel, N., Hurn, M., and Wyse, J. (2014). Improving power posterior estimation
of statistical evidence. Statistics and Computing.

[Friel and Wyse, 2012] Friel, N. and Wyse, J. (2012). Estimating the evidence–a review. Statistica
Neerlandica, 66(3):288–308.

[Gabrie et al., 2015] Gabrie, M., Tramel, E., and Krzakala, F. (2015). Training Restricted Blotz-
mann Machines via the Thouless-Anderson-Palmer free energy. In Advances in Neural Informa-
tion Processing Systems, pages 640–648.

[Geffner and Domke, 2018] Geffner, T. and Domke, J. (2018). Using large ensembles of control
variates for variational inference. Advances in Neural Information Processing Systems.

[Gelman and Meng, 1998] Gelman, A. and Meng, X.-L. (1998). Simulating normalizing constants:
From importance sampling to bridge sampling to path sampling. Statistical science, pages 163–
185.

[Geman and Geman, 1984] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

[Geyer and Thompson, 1995] Geyer, C. and Thompson, E. (1995). Annealing Markov chain Monte
Carlo with applications to ancestral inference. Journal of the American Statistical Association,
90(431):909–920.

[Geyer, 1994] Geyer, C. J. (1994). Estimating normalizing constants and reweighting mixtures.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of train-
ing deep feedforward neural networks. International Confernce on Artificial Intelligence and
Statistics.

[Glorot et al., 2011] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural
networks. International Confernce on Artificial Intelligence and Statistics.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio., Y. (2014). Generative adversarial nets. Advances in Neural
Information Processing Systems.

[Gregor et al., 2016] Gregor, K., Danihelka, I., Graves, A., Rezende, D., and Wierstra, D. (2016).
DRAW: A recurrent neural network for image generation. Advances in Neural Information
Processing Systems.

[Grosse et al., 2013] Grosse, R., Maddison, C., and Salakhutdinov, R. (2013). Annealing between
distributions by averaging moments. In Advances in Neural Information Processing Systems,
pages 2769–2777.

64

[Grosse and Salakhudinov, 2015] Grosse, R. and Salakhudinov, R. (2015). Scaling up natural gra-
dient by sparsely factorizing the inverse Fisher matrix. In Proceedings of the 32nd International
Conference on Machine Learning (International Conference on Machine Learning-15), pages
2304–2313.

[Gulrajani et al., 2017] Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A., Visin, F., Vazquez, D.,
and Courville, A. (2017). PixelVAE: a latent variable model for natural images. International
Conference on Learning Representations.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. ICCV.

[Hinton, 2002] Hinton, G. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Computation.

[Hinton and Salakhutdinov, 2006] Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimen-
sionality of data with neural networks. Science, 313.

[Hoffman and Johnson, 2016] Hoffman, M. D. and Johnson, M. (2016). ELBO surgery: yet an-
other way to carve up the variational evidence lower boundn. Advances in Neural Information
Processing Systems Workshops.

[Huszar, 2017] Huszar, F. (2017). Variational Inference using Implicit Distributions.
arXiv:1702.08235.

[Im et al., 2015] Im, D., Buchman, E., and Taylor, G. (2015). Understanding minimum proba-
bility flow for RBMs under various kinds of dynamics. International Conference on Learning
Representations Workshop Track.

[Jang et al., 2017] Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with
Gumbel-softmax. International Conference on Learning Representations.

[Jordan et al., 1999] Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduc-
tion to variational methods for graphical models. Machine Learning, 37:183–233.

[Kingma and Ba, 2015] Kingma, D. and Ba, J. (2015). Adam: a method for stochastic optimiza-
tion. International Conference on Learning Representations.

[Kingma and Dhariwal, 2018] Kingma, D. and Dhariwal, P. (2018). Glow: generative flow with
invertible 1x1 convolutions. Advances in Neural Information Processing Systems.

[Kingma et al., 2016] Kingma, D., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and
Welling, M. (2016). Improved variational inference with inverse autoregressive flow. Advances
in Neural Information Processing Systems.

[Kingma and Welling, 2014] Kingma, D. and Welling, M. (2014). Auto-encoding variational Bayes.
International Conference on Machine Learning.

[Lake et al., 2015] Lake, B., Salakhutdinov, R., and J.B.Tenenbaum (2015). Human-level concept
learning through probabilistic program induction. Science.

65

[Larochelle and Murray, 2011] Larochelle, H. and Murray, I. (2011). The neural autoregressive
distribution estimator. International Confernce on Artificial Intelligence and Statistics.

[Li et al., 2004] Li, Y., Protopopescu, V., and Gorin, A. (2004). Accelerated simulated tempering.
Physics Letters A.

[Liu et al., 2015] Liu, Q., Peng, J., Ihler, A., and III, J. F. (2015). Estimating the partition function
by discriminance sampling. Conference on Uncertainty and Artificial Intelligence.

[Makhzani et al., 2016] Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I. (2016). Adversarial
autoencoders. International Conference on Learning Representations.

[Marin and Robert, 2009] Marin, J.-M. and Robert, C. (2009). Importance sampling methods for
Bayesian discrimination between embedded models. arXiv preprint arXiv:0910.2325.

[Marinari and Parisi, 1992] Marinari, E. and Parisi, G. (1992). Simulated tempering: a new monte
carlo scheme. EPL (Europhysics Letters), 19(6):451.

[Martens, 2010] Martens, J. (2010). Deep learning via Hessian-free optimization. International
Conference on Machine Learning.

[Mescheder et al., 2017] Mescheder, L., Nowozin, S., and Geiger, A. (2017). Adversarial variational
bayes:unifying variational autoencoders and generative adversarial networks. International Con-
ference on Machine Learning.

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.
(1953). Equation of state calculations by fast computing machines. J Chem Phys.

[Miller et al., 2017] Miller, A., Fotit, N., DAmour, A., and Adams, R. (2017). Reducing reparam-
eterization gradient variance. Advances in Neural Information Processing Systems.

[Mnih and Gregor, 2014] Mnih, A. and Gregor, K. (2014). Neural variational inference and learning
in belief networks. International Conference on Machine Learning.

[Mnih and Rezende, 2016] Mnih, A. and Rezende, D. (2016). Variational inference for monte carlo
objectives. International Conference on Machine Learning.

[Molchanov et al., 2019] Molchanov, D., Kharitonov, V., Sobolev, A., and Vetrov, D. (2019). Dou-
bly semi-implicit variational inference. International Conference on Machine Learning.

[Mortimer et al., 2009] Mortimer, D., Feldner, J., Vaughan, T., Vetter, I., Pujic, Z., Rosoff, W.,
Burrage, K., Dayan, P., Richards, L., and Goodhill, G. (2009). A Bayesian model predicts the
response of axons to molecular gradients. PNAS.

[Nalisnick and Smyth, 2017] Nalisnick, E. and Smyth, P. (2017). Stick-breaking variational au-
toencoders. International Conference on Learning Representations.

[Neal, 2001] Neal, R. (2001). Annealed importance sampling. Statistics and Computing.

[Neal, 2005] Neal, R. (2005). Estimating ratios of normalizing constants using linked importance
sampling. arXiv preprint math/0511216.

66

[Neal, 2011] Neal, R. (2011). Handbook of Markov Chain Monte Carlo, chapter MCMC using
Hamiltonian dynamics. Chapman & Hall / CRC Press.

[Neal, 1992] Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence,
56:71–113.

[Oates et al., 2015] Oates, C., Papamarkou, T., and Girolami, M. (2015). The controlled thermo-
dynamic integral for Bayesian model evidence evaluation. Journal of the American Statistical
Association.

[Ranganath et al., 2016] Ranganath, R., Altosaar, J., Tran, D., and Blei, D. (2016). Operator
variational inference. Advances in Neural Information Processing Systems.

[Ranganath et al., 2014] Ranganath, R., Gerrish, S., and Blei, D. (2014). Black box variational
inference. International Confernce on Artificial Intelligence and Statistics.

[Rezende and Mohamed, 2015] Rezende, D. and Mohamed, S. (2015). Variational inference with
normalizing flows. International Conference on Machine Learning.

[Robert and Casella, 2013] Robert, C. and Casella, G. (2013). Monte Carlo statistical methods.
Springer Science & Business Media.

[Roeder et al., 2017] Roeder, G., Wu, Y., and Duvenaud, D. (2017). Sticking the landing: Simple,
lower-variance gradient estimators for variational inference. Advances in Neural Information
Processing Systems.

[Ruiz et al., 2016] Ruiz, F., Titsias, M., and Blei, D. (2016). The generalized reparameterization
gradient. Advances in Neural Information Processing Systems.

[Salakhutdinov, 2009] Salakhutdinov, R. (2009). Learning in markov random fields using tempered
transitions. In Advances in neural information processing systems, pages 1598–1606.

[Salakhutdinov, 2010] Salakhutdinov, R. (2010). Learning deep Boltzmann machines using adaptive
MCMC. In Proceedings of the 27th International Conference on Machine Learning (International
Conference on Machine Learning-10), pages 943–950.

[Salakhutdinov and Murray, 2008] Salakhutdinov, R. and Murray, I. (2008). On the quantitative
analysis of Deep Belief Networks. In Proceedings of the 25th International Conference on Machine
Learning, pages 872–879.

[Serban et al., 2017] Serban, I., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., and
Bengio., Y. (2017). A hierarchical latent variable encoder-decoder model for generating dialogues.
AAAI Conference on Artificial Intelligence.

[Shi et al., 2018] Shi, J., Sun, S., and Zhu, J. (2018). Kernel implicit variational inference. Inter-
national Conference on Learning Representations.

[Shirts and Chodera, 2008] Shirts, M. and Chodera, J. (2008). Statistically optimal analysis of
samples from multiple equilibrium states. The Journal of Chemical Physics, 129(12):124105.

67

[Smolensky, 1986] Smolensky, P. (1986). Information processing in dynamical systems: Founda-
tions of harmony theory. Technical report, DTIC Document.

[Sohl-Dickstein et al., 2010] Sohl-Dickstein, J., Battaglino, P., and DeWeese, M. (2010). Minimum
probability flow learning. International Conference on Machine Learning.

[Sønderby et al., 2016] Sønderby, C., Raiko, T., Maaløe, L., Sønderby, S., and Winther, O. (2016).
Ladder variational autoencoders. Advances in Neural Information Processing Systems.

[Tan et al., 2016] Tan, A., Xia, J., Zhang, B., and Levy, R. (2016). Locally weighted histogram
analysis and stochastic solution for large-scale multi-state free energy estimation. The Journal
of Chemical Physics, 144(3):034107.

[Tan, 2016] Tan, Z. (2016). Optimally adjusted mixture sampling and locally weighted histogram
analysis. Journal of Computational and Graphical Statistics.

[Tan et al., 2012] Tan, Z., Gallicchio, E., Lapelosa, M., and Levy, R. (2012). Theory of binless
multi-state free energy estimation with applications to protein-ligand binding. The Journal of
Chemical Physics, 136(14):144102.

[Tenenbaum et al., 2011] Tenenbaum, J., Kemp, C., Griffiths, T., and Goodman, N. (2011). How
to grow a mind: Statistics,structure, and abstraction. Science.

[Tieleman and Hinton, 2009] Tieleman, T. and Hinton, G. (2009). Using fast weights to improve
persistent contrastive divergence. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 1033–1040. ACM.

[Tomczak and Welling, 2018] Tomczak, J. and Welling, M. (2018). VAE with a VampPrior. Inter-
national Confernce on Artificial Intelligence and Statistics.

[Tran et al., 2017] Tran, D., Ranganath, R., and Blei, D. (2017). Hierarchical implicit models and
likelihood-free variational inference. Advances in Neural Information Processing Systems.

[Tran et al., 2016] Tran, D., Ranganath, R., and Blei, D. M. (2016). The variational Gaussian
process. International Conference on Learning Representations.

[Tucker et al., 2017] Tucker, G., Mnih, A., Maddison, C., Lawson, D., and Sohl-Dickstein, J.
(2017). REBAR: Low-variance, unbiased gradient estimates for discrete latent variable mod-
els. Advances in Neural Information Processing Systems.

[Ulyanov et al., 2018] Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2018). It takes (only) two:
Adversarial generator-encoder networks. AAAI Conference on Artificial Intelligence.

[van de Meent et al., 2014] van de Meent, J.-W., Paige, B., and Wood, F. (2014). Tempering by
subsampling. arXiv preprint arXiv:1401.7145.

[van den Berg et al., 2018] van den Berg, R., Hasenclever, L., Tomczak, J., and Welling, M. (2018).
Sylvester normalizing flows for variational inference. Conference on Uncertainty and Artificial
Intelligence.

68

[van den Oord et al., 2016a] van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016a).
Pixel recurrent neural networks. International Conference on Machine Learning.

[van den Oord et al., 2016b] van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves,
A., and Kavukcuoglu, K. (2016b). Conditional image generation with PixelCNN decoders. Ad-
vances in Neural Information Processing Systems.

[van den Oord et al., 2017] van den Oord, A., Vinyals, O., and Kavukcuoglu, K. (2017). Neural
discrete representation learning. Advances in Neural Information Processing Systems.

[Vehtari et al., 2014] Vehtari, A., Gelman, A., Sivula, T., Jylanki, P., Tran, D., Sahai, S., Blomst-
edt, P., Cunningham, J., Schiminovich, D., and Robert, C. (2014). Expectation propagation as
a way of life: A framework for Bayesian inference on partitioned data. arXiv:1412.4869.

[Vyshemirsky and Girolami, 2008] Vyshemirsky, V. and Girolami, M. (2008). Bayesian ranking of
biochemical system models. Bioinformatics, 24(6):833–839.

[Wang and Landau, 2001] Wang, F. and Landau, D. P. (2001). Efficient multiple-range random
walk algorithm to calculate the density of states. Physical Review Letters E.

[Wasserman, 2006] Wasserman, L. (2006). All of Nonparametric Statistics. Springer.

[Williams, 1992] Williams, R. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8:229–256.

[X.-L.Meng and Wong, 1996] X.-L.Meng and Wong, W. (1996). Simulating ratios of normalizing
constants via a simple identity: a theoretical exploration. Statistica Sinica, 6(4):831–860.

[Xu et al., 2014] Xu, M., Lakshminarayanan, B., Teh, Y., Zhu, J., and Zhang, B. (2014). Dis-
tributed Bayesian posterior sampling via moment sharing. Advances in Neural Information
Processing Systems.

[Yin and Zhou, 2018] Yin, M. and Zhou, M. (2018). Semi-implicit variational inference. Interna-
tional Conference on Machine Learning.

[Z. et al., 2015] Z., R. G., Ghahramani, and Adams, R. (2015). Sandwiching the marginal likelihood
using bidirectional Monte Carlo. arXiv preprint arXiv:1511.02543.

69

Appendix A

Chapter 2 Appendix

A.1 Estimating q(βk) from a transition matrix

Instead of estimating q(βk) by Rao-Blackwellizing via ck in (2.9), it is possible to estimate

q(βk) from the stationary distribution of a transition matrix. The key idea here is that the transition

matrix accounts for the sampling structure used in MCMC algorithms, whereas ck is derived using

i.i.d. samples. Suppose that we have a Gibbs sampler sequence x1 → β1 → x2 · · · → βN . For a

Gibbs sampler, this sequence can be collapsed to Markov transitions over βk with

p(βn+1 = βk|βn = βj),

=
∑

x

p(βn+1 = βk|x)p(x|βn = βj),

= Pjk.

The top eigenvector of P gives the stationary distribution over βk, which is q(βk). We briefly

mention two strategies to estimate this transition matrix. First, this matrix can simply be estimated

with empirical samples, with

Pjk ∝
∑

1{βn+1=βk,βn=βj},

70

where 1{·} is the identity function. Then q(βk) is estimated from the top eigenvector. We denote

this strategy Stationary Distribution (SD). A second approach is to Rao-Blackwellize over the

samples, where

Pjk ∝
∑

p(βn + 1 = βk|xn)1{βn=βj}.

We denote this strategy as Rao-Blackwellized Stationary Distribution (RSD).

The major drawback of this approach is that it is rare to have exact Gibbs samples over

p(x|β), but instead we have a transition operation T (xn|β, xn−1). In this case, it is unclear whether

this approach is useful. We note that in simple cases, such as a RBM with 10 hidden nodes,

RSD can sizably reduce the RMSE over RTS, as shown in Figure A.1(Left). However, in more

complicated cases when the assumption that we have a Gibbs sampler over p(x|β) breaks down,

there is essentially no change between RTS and RSD, as shown in a 200 hidden node RBM in

Figure A.1 (Right). Our efforts to correct the transition matrix for the transition operator instead

of a Gibbs sampler did not yield performance improvements.

A.2 Adaptive HMC for tempering

Here we consider sampling from a continuous distribution using Hamiltonian Monte Carlo

(HMC) [Neal, 2011]. Briefly, HMC simulates Hamiltonian dynamics as a proposal distribution for

Metropolis-Hastings (MH) sampling. In general, one cannot simulate exact Hamiltonian dynamics,

so usually one uses the leapfrog algorithm, a first order discrete integration scheme which maintains

the time-reversibility and volume preservation properties of Hamiltonian dynamics.

[Li et al., 2004] found using different step sizes improved sampling various multimodal dis-

tributions using random walk Metropolis proposal distributions. However, under their scheme,

besides step sizes being monotonically decreasing in β, it is unclear how to set these step sizes.

Additionally, in target distributions that are high-dimensional or have highly correlated variables,

71

103 104 105

Gibbs Sweeps

10-2

10-1

R
M

SE

RTS
SD
RSD

103 104 105

Gibbs Sweeps

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

R
M

SE

RTS
SD
RSD

Figure A.1: An illustration of the effect of estimating the stationary distribution from the transition

matrix. Both plots show the RMSE on RBMs averaged over 20 repeats. Experimental procedure

is the same as the main text. (Left) RTS, TM, and RTM compared on a 784-10 RBM. Because

the latent dimensionality is small, mixing is very effective and accounting for the transition matrix

improves performance consistently by about 10%. (Right) For an 784-200 RBM, the approximation

as a Markov transition is inaccurate, and we observe no performance improvements.

random walk Metropolis will work badly.

For most distributions of interest, as β decreases, p(x|β) becomes flatter; thus, for HMC, we

can expect the MH acceptance probability to decrease as a function of β, enabling us to take larger

jumps in the target distribution when the temperature is high. As the stepsize of the leapfrog

integrator gets smaller, the linear approximation of the solution to the continuous differential

equations becomes more accurate, and the MH acceptance probability increases (for an infinitely

small stepsize, the simulation is exact, and under Hamiltonian dynamics, the acceptance probability

is 1). Thus, p(accept|ε) decreases with ε. Putting this idea together, we model p(accept|β, ε) as a

logistic function for each β ∈ {0 = β1, ..., βJ = 1}

logit(p(accept|β, ε)) = w
(j)
0 + w

(j)
1 ε (A.1)

Given some data {(β(i), s(i), y(i))}i=1,...,N (y(i) = 1 if proposed sample i was accepted, and y(i) = 0

72

if it was rejected), we find

max
{w(j)}

J∑

j=1

h(w(j))

s.t. w
(j)
1 ≤ 0

g(βj , ε) ≤ g(βj−1, ε) ∀ ε

(A.2)

where

h(w(j)) =
∑

i:β(i)=βj

y(i) log(g(β(i), ε(i)))

+(1− y(i)) log(1− g(β(i), ε(i)))

and

g(βj , ε) = p(accept|βj , ε) =
1

1 + exp(−(w
(j)
0 + w

(j)
1 ε))

The last constraint can be satisfied by enforcing g(βj , εmin) ≤ g(βj−1, εmin) and g(βj , εmax) ≤

g(βj−1, εmax), as doing so will ensure g(βj , ε) ≤ g(βj−1, ε) for all ε ∈ [εmin, εmax]. Before solving

(A.2), we first run chains at fixed β = 0 and β = 1, running a basic stochastic optimization method

to adapt each stepsize until the acceptance rate is close to the target acceptance rate, which we

take to be 0.651, which is suggested by [Beskos et al., 2013]. We take these stepsizes to be εmax and

εmin, respectively. Once we have approximated p(accept|β, ε), choosing the appropriate proposal

distribution given β is simple:

ε̂opt(βj) =
logit(p(acc))− w(j)

0

w
(j)
1

If ε̂opt is outside [εmin, εmax], we project it into the interval.

Consider a target distribution of a mixture of two 10-dimensional Gaussians, each having a

covariance of 0.5I separated in the first dimension by 5. Our prior distribution for the interpolating

scheme is a zero mean Gaussian with covariance 30I. The prior was chosen by looking at a one-

dimensional projection of the target distribution and picking a zero-mean prior whose variance, σ2

73

2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Sample number

β

2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Sample number

β

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

β

lo
g
Z

(β
)

adaptive

averaged

true

Figure A.2: (Left) Mixing in β under the fixed step size. (Center) Mixing in β under the adaptive

scheme. (Right) Partition function estimates under the fixed step size and adaptive scheme after

10000 samples. Mixing in β using a fixed step size is visibly slower than mixing using the adaptive

step size, which is reflected by the error in the partition function estimate.

adequately covered both of the modes. The variance of the multidimensional prior was taken to

be σ2I, and the mean to be 0. Our prior on temperatures was taken to be uniform. We compare

the adaptive method above to simulation with a fixed step size, which is determined by averaging

all of the step sizes, in an effort to pick the optimal fixed step size. The below figures show an

improvement over the fixed step size in mixing and partition function estimation using our adaptive

scheme.

We obtained similar improvements using random walk Metropolis by varying the covariance

of an isotropic Gaussian proposal distribution. We note another scheme for discrete binary data

may be used, where the number of variables in the target distribution to “flip”, as a function of

temperature, is a parameter.

A.3 Similarity of RTS and MBAR

We also note that there is a particularly interesting relationship between the the cost function

for MBAR and the cost function for RTS. Note that Eq[nkN] is equal to q(βk) for tempered sampling.

If the values of nk
N in (2.21) are replaced by their expectation, the maximizer of (2.21) is equal to

74

the RTS estimator given in (2.12). To prove this, we first restate the the likelihood of MBAR given

in (2.21):

L[Z] =
1

N

N∑

i=1

log

(
K∑

k=1

nk
N

exp(− logZk + βk∆xi)

)

+
N∑

k=1

nk
N

logZk

The partial derivative of this likelihood with respect to logZk is given by:

∂L[Z]

∂ logZk
=
nk
N

(A.3)

− 1

N

N∑

i=1

nk
N exp(− logZk + βk∆xi)

K∑

j=1

nj
N

exp(− logZj + βj∆xi)

Replacing nk
N with its expectation for all k gives

∂L[Z]

∂ logZk
= q(βk) (A.4)

− 1

N

N∑

i=1

q(βk) exp(− logZk + βk∆xi)
K∑

j=1

q(βj) exp(− logZj + βj∆xi)

Noting that q(βk) ∝ Zk/Ẑkrk, we have

∂L[Z]

∂ logZk
= q(βk)

− 1

N

N∑

i=1

Zk
Ẑk
rk exp(− logZk + βk∆xi)

∑K
j=1

Zj

Ẑj
rj exp(− logZj + βj∆xi)

,

= q(βk)

− 1

N

N∑

i=1

exp(− log Ẑk + βk∆xi)∑K
j=1 exp(− log Ẑj + βj∆xi)

,

= q(βk)−
1

N

N∑

i=1

q(βk|xi),

= q(βk)− ĉk . (A.5)

75

Setting the partial derivative to 0 and substituting the definition of q(β) into (A.5) gives a solution

of

Zk/Ẑkrk∑K
j=1 Zj/Ẑjrj

= ĉk, (A.6)

which is identical to the RTS update in (2.12).

Hence, the similarity of MBAR and RTS will depend on how far the empirical counts vary from

their expectation.

A.4 RTS and TI-RB Continuous β Equivalence

We want to show the relationship mentioned in 2.3.4, which we repeat here:

log

(
ẐK
Z1

)(RTS)

=

∫ 1

0

d

dβ

(
log ĉβ − log rβ + log Ẑβ

)
dβ,

=

∫ 1

0

∑
i q(β|xi)∆xi∑
j q(β|xj)

dβ .

Note that we can write the statistics ck as

ck =

N∑

i=1

q(βk|xi)

=

N∑

i=1

exp
(
βk∆xi + log rk − log Ẑk

)

∑K
k′=0 exp

(
βk′∆xi + log rk′ − log Ẑk′

)

The continuous version of this replaces the index k by β, and

cβ =
N∑

i=1

q(β|xi)

=
N∑

i=1

exp
(
β∆xi + log rβ − log Ẑβ

)

∫ 1
0 exp

(
α∆xi + log rα − log Ẑα

)
dα

76

The continuous form of the RTS estimator can be written as an integral:

log
ZK
Z1

=
(

log cβ − log rβ + log Ẑβ

)∣∣∣
β=1

−
(

log cβ − log rβ + log Ẑβ

)∣∣∣
β=0

=

∫ 1

0

d

dβ

(
log cβ − log rβ + log Ẑβ

)
dβ (A.7)

We first analyze the derivative of cβ, which is

d

dβ
log cβ

=
d

dβ
log

N∑

i=1

exp
(
β∆xi + log rk − log Ẑk

)

∫ 1
0 exp (α∆xi + log rα − log zα) dα

=
1

∑N
i=1

exp(β∆xi+log rβ−log Ẑβ)∫ 1
0 exp(α∆xi+log rα−log Ẑα)dα

×
N∑

i=1

exp
(
β∆xi + log

rβ

Ẑβ

)
d
dβ

(
β∆xi + log

rβ

Ẑβ

)

∫ 1
0 exp

(
α∆xi + log rα − log Ẑα

)
dα

=
∑

i

q(β|xi) d
dβ

(
β∆xi + log rβ − log Ẑβ

)

∑
j q(β|xj)

=

[∑

i

q(β|xi)∑
j q(β|xj)

∆xi

]
+

d

dβ
(log rβ − log Ẑβ) (A.8)

The last line follows since
∑N

i=1
q(β|xi)∑
j q(β|xj)

= 1. The d
dβ (log rβ − log Ẑβ) term in (A.7) and (A.8)

simply cancel.

We stress that while the continuous formulation of RTS and TI-RB are equivalent in the continuous

limit, in the discrete case RTS does not suffer from discretization error. And we reiterate that RTS

is of course limited to the case when samples are generated by the joint tempered distribution

q(x, β).

Parallels between other methods and Thermodynamic Integration can be drawn as well. As

77

noted in [Neal, 2005], the log importance weight for AIS can be written as

logw =
K∑

k=2

(βk − βk−1)∆xk (A.9)

and thus can be thought of as a Riemann sum approximation to the numerical integral under a

particular sampling approach.

78

Appendix B

Chapter 4 Appendix

In this section, we examine Cov[z, θ(z)] = Ez[zθ(z)] − Ez[z]Ez[θ(z)], where θ(z) is a function

we model with increasing complexity: first a linear function, then a linear function followed by a

ReLU nonlinearity [Glorot et al., 2011], then a collection of linear+ReLU functions corresponding

to a single layer of a neural network, and then finally a sequence of layers to make a complete

neural network. Such an architecture is currently one of the most commonly used architectures

and includes (nonpooling) convolutional networks. We omit biases, as they are typically initialized

to 0.

For each function θ(z), we find an expression for the distribution of the cross-covariance and

show that as the dimensionality of the latent space dz increases, the distribution converges to a

point mass at 0. More specificially, the cross-covariance between z and the network output is

Gaussian distributed with mean 0 and covariance that scales inversely with the dimensionality of

z.

For simplicity, we assume weight initialization draws values i.i.d from N (0, 1
nin

), where nin is

the dimensionality of the input. This initialization keeps forward-propagated variances the same

and is called ‘Lecun normal’ initialization. He initialization [He et al., 2015] multiplies this value by

79

√
2 to account for on average half of ReLU units being activated to 0. Glorot/Xavier initialization

[Glorot and Bengio, 2010] uses an inverse variance of (nin + nout)/2 in an attempt to balance

forward- and back-propagated variances.

B.1 Linear function

In the linear case, θ(z) = wT z, giving a cross-covariance of

Ez[zwT z]− Ez[z]Ez[wT z] = E[zzT]w − E[z]E[wT z]

= Λ−1w,

which gives us

Cov[z, θ(z)] ∼ N (0, 1/dzΛ
−2). (B.1)

B.2 Linear + ReLU function

Consider θ(z) = relu(wT z), which is a basic building block of many neural networks. Recall

relu(x) , max(x, 0).

We begin by evaluating Ez[relu(wT z)]. We can eliminate the non-linearity inside the expecta-

tion by rewriting the integral as over a linear function constrained to the positive halfspace induced

by w defined as H+
w , {z : wT z ≥ 0}:

Ez[relu(wT z)] =

∫

z
I(wT z > 0)wT zp(z)dz (B.2)

=

∫

H+
w

wT zp(z)dz (B.3)

= wT
(∫

H+
w

zp(z)dz

)
(B.4)

.

80

Next, we reparameterize z as the transformation of a standard normal random variable ε ∼

N (0, I) as z = Λ−1/2ε + µ. The corresponding inequality constraint on ε is w̃T ε ≥ −wTµ, where

w̃ , Λ−1/2w, to give
∫

H+
w

zp(z)dz = Λ−1/2

∫

H+
w̃

εp(ε)dε+ µ (B.5)

where H+
w̃ , {ε : w̃T ε ≥ −µTw}.

We can perform a change of variables by rotating the hyperplane that defines our halfspace

so that it is orthogonal to ε1’s axis and parallel to all others. In other words we can choose an

orthonormal matrix M such that Mw̃ = ||w̃||e1, where ei is the ith unit vector. If we define ε̃ ,Mε

then the inequality constraint halfspace becomes

{ε : w̃T ε ≥ −µTw} = {ε : (Mw̃)T (Mε) ≥ −µTw} (B.6)

= {ε̃ : (||w̃||e1)T ε̃ ≥ −µTw} (B.7)

= {ε̃ : ε̃1 ≥ −µTw/||w̃||} , H+
Mw̃. (B.8)

This rotation enables the Gaussian integral’s dimensions to decouple, enabling taking expectations

separately and all of the expectations over the real line zeroing out:

∫

H+
w̃

εp(ε)dε = MT

∫

H+
Mw̃

ε̃p(ε̃)dε̃

= MT

[
e1

∫

ε̃1≥−µTw/||w̃||
ε̃1p(ε̃1)dε̃1 + e2

∫ ∞

−∞
ε̃2p(ε̃2)dε̃2+

· · ·+ edz

∫ ∞

−∞
ε̃dzp(ε̃dz)dε̃dz

]

= MT

[√
2π

(
1− Φ

(
−µ

Tw

||w̃||

))
exp

(
(µTw)2

2||w̃||2
)
e1 + (1− e1)0

]

=
√

2π

(
1− Φ

(
−µ

Tw

||w̃||

))
exp

(
(µTw)2

2||w̃||2
)

w̃

||w̃||

= βΛ−1/2w, (B.9)

where β ,
√

2π (1− Φ (−α)) exp
(
1/2α2

)
and α , µTw

2||w̃|| .

81

By the linearity of the expectation, we get

Ez[z] = Λ−1/2Eε[ε] + µ = βΛ−1w + µ. (B.10)

The second moment is found in the same way:

Eε[εεT] = I +
(δ − 1)

wTΛ−1w
Λ−1/2wwTΛ−1/2, (B.11)

where δ ,
∫∞
−µTw/wTΛ−1w x

2 exp(−1/2x2)dx / 2.5.

Putting this in terms of z gives

Ez[zzT] = Eε[(Λ−1/2ε+ µ)(Λ−1/2ε+ µ)T]

= Λ−1/2Eε[εεT]Λ−1/2 + βΛ−1wµT + βµwTΛ−1 + µµT

= Λ−1 + βΛ−1wµT + βµwTΛ−1 + µµT

Putting this together, we have

Cov[z, relu(wT z)] = Ez[zrelu(wT z)]− Ez[z]Ez[relu(wT z)] (B.12)

= (1− Φ(−α))(Λ−1 + βΛ−1wµT)w (B.13)

= (1− Φ(−α))(Λ−1w + βΛ−1wwTµ) (B.14)

This is just the linear case plus a covariance correction factor for w and scaled by the proba-

bility of z being in the positive halfspace of w. The second term is small relative to the first one,

since the magnitude of each element in wwT scales inversely with the square of the dimensionality

of z, dz, whereas the magnitude of each element of the first term scales inversely with dz.

82

B.3 Linear + ReLU layer

If we have multiple linear units within a layer represented by Wz instead of wT z, the cross-

covariance is now a matrix instead of a vector:

Cov[z, relu(Wz)] =
[
Cov[z, relu(W T

1 z)],Cov[z, relu(W T
2 z)],

· · · ,Cov[z, relu(W T
dh
z)]
]
, (B.15)

where dh is the number of hidden units in the layer.

The parameters of p(x|z) (before non-linearities) are determined by a linear combination of

the activations of the last layer

θ = V relu(Wz), (B.16)

where Vi,j ∼ N (0, 1
dh
I). This transformation gives us

Ez[zθi]− Ez[z]Ez[θi] =

dh∑

j=1

Vij(1− Φ(−αj))
(
Λ−1Wj + βjΛ

−1WjW
T
j µ
)
, (B.17)

where α and β are now vectors of length dh.

The linear combination preserves the cross-covariance scaling; that is, the covariance Cov[z, θi]

will be equal to the average covariance across Cov[z, relu(W T
j z)]

dh
j=1.

83

B.4 Linear + ReLU network

We are now interested in a multilayer neural network in which the tth layer’s activation can

be written as

z(t) = relu(W (t)z(t−1)) (B.18)

= relu(W (t)relu(W (t−1)z(t−2))) (B.19)

= relu(W (t)relu(W (t−1)relu(W (t−2) · · ·W (2)relu(W (1)z(0)) · · ·))). (B.20)

We can rewrite each ReLU unit as

relu(Wz) = Ω+
W (z)Wz, (B.21)

where Ω+
W (z) , diag([I(z ∈ H+

Wi
)]dhi=1).

In other words, for a fixed z, the ReLU can be thought of as a linear transformation Wz where

certain rows of W are zeroed out depending on z. Thus, z space is broken up into 2dh partitions

corresponding to all the possible binary strings Ω+
W (z) can take. Within each partition, the ReLU

function reduces to a linear transformation.

Consider the transformation of z through two ReLU layers

z̃ = relu(W relu(V z)) (B.22)

= relu(WΩ+
V (z)V z) (B.23)

= relu(W̃z), (B.24)

where W̃ ,WΩ+
V (z)V .

84

Looking at the i, jth element in W̃ , we have

W̃ij =
H∑

k=1

WikΩkkVkj (B.25)

=

H∑

k=1

Ωkkuk, (B.26)

where uk , WikVjk comes from a normal product distribution of mean 0 and variance 1/dh
2.

Looking at the variance of Ωkkuk, we get

Var[Ωkkuk] = E[(Ωkkuk)
2]− E[Ωkkuk]

2 (B.27)

= E[Ωkku
2
k] = E[Ωkk]E[u2

k] =
1

2dh
2 . (B.28)

If dh is sufficiently large, the Central Limit Theorem gives us

W̃ij =

dh∑

k=1

Ωkkuk (B.29)

∼ N
(

0,
1

2dh

)
. (B.30)

If we follow [He et al., 2015] and multiply our initialized weight matrices by
√

2, we get

z̃ = relu(W̃z), W̃ij ∼ N
(

0,
1

dh

)
, (B.31)

thus reducing to the single layer ReLU case in Section B.3. By induction, we can reduce any length

composition of layers in this way.

85

Appendix C

Gaussian tube prior

In Chapter 3, after showing that the SI+∆ prior is very similar to modeling the prior as a

Gaussian kernel density estimator over the observed latent variables, we suggested using different

kernel functions for problems with different inductive biases, etc.

The Gaussian tube prior differs from a typical kernel density estimator in that the distance is

from a point z to the line z1z2, instead of a single point z1 or z2. We use a Gaussian kernel over

that distance, giving

Kh(z; z1, z2) ∝ exp
(
−.5d2

h(z, z1z2)
)
, (C.1)

where dh(·, ·) represents a Mahalanobis distance parameterized by h.

This formulation is motivated by a common test for a good latent representation being that

the latent variables along the line segment between two latent points inferred from two data points

should have a relatively high density and thus look reasonable, ideally giving rise to a smooth

transition between the two latent points.

The pairs in Equation (C.1) can be picked deterministically or stochastically. We found picking

pairs of points stochastically with a probability inversely proportional to their distance from each

86

other worked best. The KDE formulation of the prior is then

p̂(z) ,
1

Ñ

Ñ∑

k=1

K
(k)
h (z; zi, zj). (C.2)

We note that this basis function is just one of many that can be constructed; for example, one

could model a non-constant density along the line segment or take the distance from a hyperplane

for the Gaussian kernel.

C.1 Examining latent space

We created a toy dataset to test the interpretability of a model’s latent space. The dataset

consists of squares with all pixels value 1 whose size and position change on a background of 0.

After the model has been trained by optimizing the ELBO, we take two data points, sample from

the latent space q(z|x) for each, and interpolate several latent points between each sampled latent

point. We then look at the resulting p(x|z) for each of these latent points.

We choose the two data points to interpolate between to be extremes of one abstract aspect

of the dataset. Each data point in the set is determined by two values–size and position–so we look

at interpolations across these attributes. The first interpolation fixes the size of the square and

changes its position from right to left. The second interpolation fixes the position of the square at

a corner and decreases its size from large to small. According to the intuition behind the heuristic,

the interpolations should show a smooth transition between the two endpoints.

An explanation for the Gaussian tube not performing significantly better than all the com-

petitor priors can be given in the form of a counterexample. Suppose we had a perfectly smooth

latent space that interpolated perfectly. Consider adding an invertible function f−1(z) at the top of

the generative model, i.e., the new generative model is now p̃(x|z) = p(x|f−1(z)), and transforming

our latent space z ∼ q(z|x) into z̃ ∼ f(z). The new model is equivalent to the old model, but the

87

Figure C.1: Interpolating position. Top-left : standard normal prior, top-right VampPrior, bottom-

left : SI prior, bottom-right : Gaussian tube.

Figure C.2: Interpolating size. Top-left : standard normal prior, top-right VampPrior, bottom-left :

SI prior, bottom-right : Gaussian tube.

latent space may not have the same interpolation properties as the original model.

So, the interpolation heuristic presupposes a particular smoothness to the generative model,

88

but the fact that we can often successfully interpolate across the latent space in trained models is

interesting and may say something about how neural networks organize themselves as they train.

89

Appendix D

Flow-based prior

Here we propose the use of a flow-based prior distribution in variational autoencoders and

argue that in contrast to using a simple prior and flexible posterior approximation, it is better to

use a flexible prior and a simple variational approximation.

As we have seen, the ELBO can be written as

L(x) = Eq(z|x)[log p(x, z)− log q(z|x)]

= Eq(z|x)[log p(x|z)]−KL(q(z|x)||p(z)), (D.1)

where we have shown before that the gap between the variational lower bound and the marginal

log-likelihood represents the difference between the variational distribution and the true posterior

log p(x) = KL(q(z|x)||p(z|x)) + L(x). (D.2)

This serves as motivation for a more flexible variational distribution to enable q(z|x) to come

from a wider model class so it can match p(z|x) more accurately and make the ELBO a better

representation of the marginal log-likelihood. However, we argue two points: 1. in the interest of

an interpretable latent space, a simple variational distribution is desirable 2. the VAE’s complexity

penalties may be easier to minimize when p(z) is more complicated than q(z|x).

90

The first point is straightforward. For the second point, let us consider an alternate expression

for the average ELBO over a dataset given by [Hoffman and Johnson, 2016]:

L(θ, φ) =
1

N

N∑

n=1

Eq(z|xn)[log p(xn|z)]− (logN − Eq(z)[H[q(n|z)]])−KL(q(z)||p(z)) (D.3)

where H[·] is entropy, q(n|x) = q(z|xn)pdata(xn)
q(z) = q(z|xn)∑N

i=1 q(z|xi)
, and MI[·, ·] is mutual information.

[Hoffman and Johnson, 2016] notes that the mutual information term is consistently close to

its maximum of logN , indicating a low amount of overlap between q(z|x). If q(z|x) is multimodal

and p(z) is simple, to create a good overlap between q(z) and p(z), the different modes of q(z|x)

may have to intersperse themselves to match the smooth density of p(z), but this would likely

decrease the information in the latent code, unless the encoder model and/or flow model were

extremely precise and the increase in proximity of modes did not lead to higher density overlap and

thus loss of information. Since it has been shown that the latent space organizes itself to maximize

mutual information, the latent space may ‘refuse’ to overlap the modes of q(z), thus keeping the

KL penalty high.

When q(z|x) is simple and p(z) is multimodal, the picture is far less complicated. Each q(z|x)

can correspond a mode in p(z), giving rise to a high degree of overlap between marginal distributions

but still a high degree of separation between latent encodings.

D.1 Flow-based prior

Flow-based models [Rezende and Mohamed, 2015; Dinh et al., 2017; Kingma and Dhariwal,

2018] make q(z|x) more flexible by passing z0 ∼ q0(z|x) through a number of invertible functions:

z = fK ◦ fK−1 ◦ · · · ◦ f1(z0), (D.4)

giving

log q(z|x) = log q0(z0)−
K∑

i=1

log

∣∣∣∣det
∂fk
∂zk

∣∣∣∣ , (D.5)

91

where zk , fk ◦ fk−1 ◦ · · · f1(z0).

An important aspect of this framework is the Law of the Unconscious Statistician (LOTUS),

given by

Eq(z)[g(z)] = Eq0(z0)[g(fK ◦ fK−1 ◦ · · · ◦ f1(z0))], (D.6)

which enables us to take expectations with respect to q(z) without explicitly knowing q(z). This

makes the ELBO easy to calculate:

L(x) = Eq(z|x)[log p(x, z)− log q(z|x)]

= Eq0(z0)

[
log p(x, z)− log q0(z0) +

K∑

i=1

log

∣∣∣∣det
∂fk
∂zk

∣∣∣∣

]
. (D.7)

If the prior instead of the variational distribution is augmented with flows, we cannot use

LOTUS as given, since our expectation is over q(z|x) rather than p(z). However, given z ∼ q(z|x),

we can invert all of our flows to find the corresponding z0 that gives z = fK ◦ fK−1 ◦ · · · ◦ f1(z0):

z0 = f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
K (z). (D.8)

Now we can use LOTUS for p(z):

L(x) = Eq(z|x)

[
log p0(z0)−

K∑

i=1

log

∣∣∣∣det
∂fk
∂zk

∣∣∣∣+ log p(x|z)− log q(z|x)

]
(D.9)

= Eq(z|x)

[
log p0(z0) +

K∑

i=1

log

∣∣∣∣∣det
∂f−1

k

∂zk

∣∣∣∣∣+ log p(x|z)− log q(z|x)

]
. (D.10)

We use as our flow functions the affine transformations used in Real-NVP [Dinh et al., 2017], as

their inverses have a simple closed form and are computationally easy to evaluate. Note that in Eqn

(D.10), only the inverse needs to be calculated, so it is computationally equivalent to calculating

the standard forward direction.

Sadly, however, we did not find an improvement in using a flow-based p(z) over using a flow-

based q(z|x) in our experiments.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Monte Carlo methods
	1.3 Latent variable modeling
	1.4 Variational inference
	1.5 Undirected models

	2 Partition functions from Rao-Blackwellized tempered sampling
	2.1 Introduction
	2.2 Partition functions from tempered samples
	2.2.1 Simulated tempering
	2.2.2 Estimating partition functions
	2.2.3 Rao-Blackwellized likelihood interpretation
	2.2.4 Initial iterations
	2.2.5 Bias and variance

	2.3 Related work
	2.3.1 Wang-Landau
	2.3.2 AIS/RAISE
	2.3.3 BAR/MBAR
	2.3.4 Thermodynamic integration

	2.4 Examples
	2.4.1 Gaussian mixture example and comparisons
	2.4.2 Partition functions of RBMs
	2.4.3 Number of temperatures
	2.4.4 Tracking partition functions while training

	2.5 Discussion

	3 Decoupling aggregate priors in variational autoencoders
	3.1 Introduction
	3.2 Variational Autoencoders
	3.3 Prior Choice
	3.3.1 Aggregate priors
	3.3.2 Decoupling
	3.3.3 Connection with kernel density estimation

	3.4 Experiments
	3.5 Conclusion

	4 ELBO amputation: an initialization scheme for variational autoencoders
	4.1 Introduction
	4.2 ELBO gradients
	4.2.1 Cross-covariance interpretation of gradient
	4.2.2 Potential concerns: code collapse and symmetry
	4.2.3 Numerical simulation
	4.2.4 Application to sequential autoencoder

	4.3 Discussion

	5 Conclusion
	Bibliography
	A Chapter 2 Appendix
	A.1 Estimating q(k) from a transition matrix
	A.2 Adaptive HMC for tempering
	A.3 Similarity of RTS and MBAR
	A.4 RTS and TI-RB Continuous Equivalence

	B Chapter 4 Appendix
	B.1 Linear function
	B.2 Linear + ReLU function
	B.3 Linear + ReLU layer
	B.4 Linear + ReLU network

	C Gaussian tube prior
	C.1 Examining latent space

	D Flow-based prior
	D.1 Flow-based prior

