Academic Commons

Theses Doctoral

Design of functional materials from molecular building blocks

Voevodin, Anastasia

This dissertation is a summary of my research developing the synthesis and assembly of functional materials from nanoscale building blocks and studying their emergent properties.

Chapter 1 introduces superatoms as exciting atomically precise supramolecular building blocks for materials design. Bottom-up assembly of these superatoms into materials with increased dimensionality (0D, 1D, 2D, and 3D) offers exciting opportunities to create novel solid-state compounds with tailored functions for widespread technological applications. I review recent advances to assemble superatomic materials and focus on assemblies from metal chalcogenide clusters and fullerenes. In subsequent chapters, I employ several of these nanoscale superatoms as the precursors to functional materials.

Chapter 2 describes the synthesis and structural characterization of a hybrid solid-state compound assembled from two building blocks: a nickel telluride superatom and an endohedral fullerene. Although a varied library of binary superatomic solids has been assembled from fullerenes, this is the first demonstration of a superatomic assembly using an endohedral fullerene as a building block. Lu3N@C80 fullerenes are dimerized in this new solid-state compound with an unpreceded orientation of the encapsulated metal nitride cluster. I explore the structural characterization of this material supported with computational evidence to explain the dimerization and orientation of the endohedral fullerenes.

In Chapter 3 I begin to detail my exploration into assembling superatoms at micro and meso-scales –which will be the focus of Chapters 3-5. Polymers offer attractive mechanical and self-assembly properties that when combined with the attractive redox, optical, and magnetic properties of molecular clusters, these materials chart new paths to developing advanced materials and technologies. Chapter 3 describes charge transfer interactions between perylene diimide and cobalt telluride superatoms that drive the assembly of a solid-state compound from these two building blocks and inspired the design of a diblock copolymer template.

Chapters 4 and 5 detail the synthesis and characterization of a polymer with functionalized cobalt selenide side units. I describe a cationic homopolymer in Chapter 4 and diblock copolymer in Chapter 5 synthesized from ring opening polymerization of norbornene-derived monomers. Chapter 4 describes potential applications of the homopolymer system such as thin film fabrication. Chapter 5 discusses the self-assembly of the redox-active diblock copolymer into cross-linkable vesicle structures that can encapsulate molecular cargo.

Finally, in Chapter 6 I introduce a new molecular building block to form gold metal surface bonds. Bisaminocyclopropenylidenes (BACs) are a class of carbenes that, much like N-heterocyclic carbenes, have been widely employed for catalysis but have yet to be explored for materials design. This chapter describes the structure and binding orientation of a BAC on an Au(111) surface.

Each of these chapters illustrates how the synthetic flexibility of molecular building blocks enables the design of functional materials with tunable properties.


This item is currently under embargo. It will be available starting 2020-07-15.

More About This Work

Academic Units
Thesis Advisors
Roy, Xavier Sylvain
Ph.D., Columbia University
Published Here
September 24, 2019
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.