Symmetry properties of natural frequency and mode shape sensitivities in symmetric structures

Bartilson, Daniel Thomas; Jang, Jinwoo; Smyth, Andrew W.

When updating a finite element (FE) model to match the measured properties of its corresponding structure, the sensitivities of FE model outputs to parameter changes are of significant interest. These sensitivities form the core of sensitivity-based model updating algorithms, but they are also used for developing reduced parametrizations, such as in subset selection and clustering. In this work, the sensitivities of natural frequencies and mode shapes are studied for structures having at least one plane of reflectional symmetry. It is first shown that the mode shapes of these structures are either symmetric and anti-symmetric, which is used to prove that natural frequency sensitivities are equal for symmetric parameters. Conversely, mode shape sensitivities are shown to be unequal for symmetric parameters, as measured by cosine distance. These topics are explored with a small numerical example, where it is noted that mode shape sensitivities for symmetric parameters exhibit similar properties to asymmetric parameters.


Also Published In

Mechanical Systems and Signal Processing

More About This Work

Academic Units
Civil Engineering and Engineering Mechanics
Published Here
April 29, 2020