Academic Commons

Articles

Suppression of Harmaline Tremor by Activation of an Extrasynaptic GABAA Receptor: Implications for Essential Tremor

Handforth, Adrian; Kadam, Pournima A.; Kosoyan, Hovsep P.; Eslami, Pirooz

Background: Metabolic imaging has revealed excessive cerebellar activity in essential tremor patients. Golgi cells control cerebellar activity by releasing gamma-aminobutyric acid (GABA) onto synaptic and extrasynaptic receptors on cerebellar granule cells. We postulated that the extrasynaptic GABAA receptor-specific agonist THIP (gaboxadol; 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) would suppress tremor in the harmaline model of essential tremor and, since cerebellar extrasynaptic receptors contain α6 and δsubunits, would fail to do so in mice lacking either subunit.

Methods: Digitally measured motion power, expressed as 10–16 Hz power (the tremor bandwidth) divided by background 8–32 Hz motion power, was accessed during pre-harmaline baseline, pre-THIP harmaline exposure, and after THIP administration (0, 2, or 3 mg/kg). These low doses were chosen as they did not impair performance on the straight wire test, a sensitive test for psychomotor impairment. Littermate δ wild-type and knockout (Gabrd+/+, Gabrd–/–) and littermate α6 wild-type and knockout (Gabra6+/+, Gabra6–/–) mice were tested.

Results: Gabrd+/+ mice displayed tremor reduction at 3 mg/kg THIP but not 2 mg/kg, and Gabra6+/+ mice showed tremor reduction at 2 and 3 mg/kg. Their respective subunit knockout littermates displayed no tremor reduction compared with vehicle controls at either dose.

Discussion: The loss of anti-tremor efficacy with deletion of either δ or α6 GABAA receptor subunits indicates that extrasynaptic receptors containing both subunits, most likely located on cerebellar granule cells where they are highly expressed, mediate tremor suppression by THIP. A medication designed to activate only these receptors may display a favorable profile for treating essential tremor.

Files

Also Published In

Title
Tremor and Other Hyperkinetic Movements
DOI
https://doi.org/10.7916/D8JW9X9K

More About This Work

Academic Units
Center for Parkinson's Disease and Other Movement Disorders
Published Here
February 14, 2019
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.