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ABSTRACT

Computational Design of Structures for Enhanced Failure Resistance

Jonathan Brent Russ

The field of structural design optimization is one with great breadth and depth in many

engineering applications. From the perspective of a designer, three distinct numerical methodologies

may be employed. These include size, shape, and topology optimization, in which the ordering

typically (but not always) corresponds to the order of increasing complexity and computational

expense. This, of course, depends on the particular problem of interest and the selected numerical

methods. The primary focus of this research employs density-based topology optimization with the

goal of improving structural resistance to failure.

Beginning with brittle fracture, two topology optimization based formulations are proposed in

which low weight designs are achieved with substantially increased fracture resistance. In contrast

to the majority of the current relevant literature which favors stress constraints with linear elastic

physics, we explicitly simulate brittle fracture using the phase field method during the topology

optimization procedure. In the second formulation, a direct comparison is made against results

obtained using conventional stress-constrained topology optimization and the improved performance

is numerically demonstrated. Multiple enhancements are proposed including a numerical efficiency

gain based on the Schur-complement during the analytical sensitivity analysis and a new function

which provides additional path information to the optimizer, making the gradient-based optimization

problem more tractable in the presence of brittle fracture physics.

Subsequently, design for ductile failure and buckling resistance is addressed and a numerically

efficient topology optimization formulation is proposed which may provide significant design

improvements when ductile materials are used and extreme loading situations are anticipated. The

proposed scheme is examined regarding its impact on both the peak load carrying capacity of the

structure and the amount of external work required to achieve this peak load, past which the structure

may no longer be able to support any increase in the external force. The optimized structures are



also subjected to a post-optimization verification step in which a large deformation phase field

fracture model is used to numerically compare the performance of each design. Significant gains in

structural strength and toughness are demonstrated using the proposed framework.

Additionally, the failure behavior of 3D-printed polymer composites is investigated, both

numerically and experimentally. A large deformation phase field fracture model is derived under the

assumption of plane-stress for numerical efficiency. Experimental results are compared to numerical

simulations for a composite system consisting of three stiff circular inclusions embedded into a

soft matrix. In particular, we examine how geometric parameters, such as the distances between

inclusions and the length of initial notches affect the failure pattern in the soft composites. It is

shown that the mechanical performance of the system (e.g. strength and toughness) can be tuned

through selection of the inclusion positions which offers useful insight for material design.

Finally, a size optimization technique for a cardiovascular stent is proposed with application to a

balloon expandable prosthetic heart valve intended for the pediatric population born with Congenital

Heart Disease (CHD). Multiple open heart surgical procedures are typically required in order to

replace the original diseased valve and subsequent prosthetic valves with those of larger diameter

as the patient grows. Most expandable prosthetic heart valves currently in development to resolve

this issue do not incorporate a corresponding expandable conduit that is typically required in a

neonate without a sufficiently long Right Ventricular Outflow Tract (RVOT). Within the context of a

particular design, a numerical methodology is proposed for designing a metallic stent incorporated

into the conduit between layers of polymeric glue. A multiobjective optimization problem is solved,

not only to resist the retractive forces of the glue layers, but also to ensure the durability of the

stent both during expansion and while subject to the anticipated high cycle fatigue loading. It

is demonstrated that the surrogate-based optimization strategy is effective for understanding the

trade-offs between each performance metric and ultimately efficiently arriving at a single optimized

design candidate. Finally, it is shown that the desired expandability of the device from 12mm to

16mm inner diameter is achievable, effectively eliminating at least one open heart surgical procedure

for certain children born with CHD.
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Chapter 1

Introduction

1.1 Background and motivation

1.1.1 Topology optimization for brittle fracture resistance

The field of optimal structural design is fascinating one with a great deal of breadth. Within this

context, topology optimization has enjoyed a large amount of success since its introduction in the

work of Bendsøe and Kikuchi [1]. In particular, with recent advancements in additive manufacturing

techniques, many of the resulting designs can be physically realized [2]. This method has been

applied to a wide variety of interesting engineering problems and has had a large impact across

many fields. Deaton and Grandhi [3] provide an excellent survey of the field, including multiphysics

applications and other recent advancements. Brittle fracture is one such type of failure physics

which, in general, a designer might wish to avoid.

Failure prevention has historically been included in topology optimization formulations via

stress-constraints in which the material is not allowed to exceed some percentage of the yield stress.

This has been explored in many works ([4, 5, 6, 7, 8] to only name a few). In recent years, the use of

topology optimization incorporating material damage in the formulation has received increasingly

more attention. Originally explored by Bendsøe and Diaz [9], the effect of material degradation has

been included in topology optimization procedures in a number of works. Jansen et al. [10] model

damage as a loss of stiffness in regions with a fixed shape in order to increase structural redundancy.

Amir and Sigmund [11] maximize the stiffness of a reinforced concrete structure through optimal

layout of steel reinforcing bars in concrete, which explicitly included nonlocal damage. Amir [12]

extended this idea to simultaneously optimize the steel reinforcement bars and concrete, again
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including nonlocal damage, in order to produce minimum weight designs. James and Waisman

[13] also explicitly model the evolution of brittle damage and directly constrain the local damage

intensity. Multiple load cases were considered and a damage superposition approach was explored

in James and Waisman [14]. The extension to ductile materials will be discussed in the subsequent

section.

Similar to brittle damage, albeit less frequently, brittle fracture resistance has also been explored

previously. Challis et al. [15] used a level-set approach and obtained brittle fracture resistance

via minimization of an aggregate objective including the elastic energy released by virtual crack

extension. Kang et al. [16] employed the J-integral at predefined locations in the design domain in

order to predict crack propagation. In both of these works, fracture propagation was not explicitly

modeled. Subsequently, Xia et al. [17] and Da et al. [18] used the phase field fracture method in

order to increase the fracture resistance of a two phase composite structure. The topology of an

inclusion phase was optimized to increase the resistance to brittle fracture via work maximization.

This followed the work of San and Waisman [19] in which the arrangement of inclusions in a

polymer composite microstructure was optimized for rupture resistance, also explicitly simulating

fracture via the phase field method.

The phase field approach to fracture modeling, based on the work of Francfort and Marigo

[20], Bourdin et al. [21], Miehe et al. [22, 23, 24] and others, has many important benefits over

other approaches. The method has been widely adopted due to its ease in handling complex crack

topologies through an additional scalar field equation. This additional field equation governs the

evolution of the crack topology and, therefore, removes the complexities associated with explicitly

tracking the fracture surface. In the context of density-based topology optimization the use of a

fixed design mesh is very convenient (as also mentioned in Da et al. [18]).

Here it should be noted that there are now several different topology optimization approaches,

including the traditional density-based method [1], a level-set method [25], a phase field method [26,

27], and others (see [28, 3] ). In this thesis the density-based design parameterization is employed

rather than the phase field method for topology optimization, which is distinct from the phase field
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method for fracture modeling. All subsequent references to the phase field method refer to phase

field fracture.

While great progress has been made in the field of topology optimization for brittle failure

resistance, much of the work avoids the explicit modeling of brittle fracture during the optimization

procedure, assumes cracks form at locations known a-priori, or is only intended for changing the

topology of an inclusion phase in a composite structure. In this context, we wish to extend the

current state-of-the-art further into the realm of homogeneous material brittle fracture and determine

whether explicitly modeling the fracture physics during the optimization procedure introduces some

advantages or disadvantages over current techniques.

1.1.2 Topology optimization for ductile failure and buckling resistance

While design for resistance to brittle failure is quite important in many fields, design for

ductile failure and buckling resistance poses multiple additional layers of complexity in many

engineering specialties. In the context of extreme contingency load cases when the primary

structural components are comprised of a ductile material, failure is typically associated with a

complete loss of the structure’s integrity and load carrying capacity. Exceeding a structure’s peak

load carrying capacity may result in ductile fracture or buckling of structural components and,

therefore, should be carefully considered during the design process.

Elastoplastic continuum topology optimization has been studied quite extensively since the

work of Swan and Kosaka [29] and Maute et al. [30]. In [30] the importance of considering both

elastoplastic and buckling responses is mentioned explicitly in the introduction, although the paper

deals only with the material nonlinearity. Since these works, there have been significant additional

strides taken along similar lines with a few particular ones we wish to note, including [31, 32, 33,

34, 35]. Amir [36] used elastoplasticity as a means to enforce stress constraints. Inertial effects

have been included in some rate-independent [37] and rate-dependent [38, 39] plasticity works.

Additionally, finite strain kinematics have been considered in [40, 38, 39] for example. These

works are particularly impressive due to the difficulties associated with element inversion in low
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density regions. Alberdi and Khandelwal [39] have partially remedied this problem via bi-material

optimization in which voids are no longer present. Notable related work in the context of multiscale

topology optimization with elastoplastic material effects includes [41, 42] for instance. Finally, and

more recently, Fin et al. [43] proposed a limit analysis technique to increase a structures peak load.

However, this seems to rely on a perfect elastic-plastic material model which is limited to certain

classes of materials. A material which exhibits a significant amount of strain hardening would not

be accounted for.

While structural failure in topology optimization has traditionally focused on brittle failure

as mentioned in the previous subsection, ductile failure has also been handled in a number of

interesting ways. These include directly constraining local failure/damage indicators [44, 45, 46]

that are uncoupled from (i.e. do not affect) the forward analyses. However, these works typically

employ 𝑝-norm aggregation functions to enforce the local constraints. These uncoupled damage

indicators are typically preferred for reasons of computational efficiency and robustness, as is

mentioned explicitly in [45]. This strategy is in contrast to the explicit simulation of damage

during the optimization procedure as was done in Li et al. [47] with a local damage model and,

subsequently, in Li et al. [48] which included the use of a nonlocal damage model, which helped

alleviate mesh dependency in the forward analyses.

In the context of the density-based topology optimization formulation, the sensitivity analysis of

the functions involved in the mathematical optimization statement is of the utmost importance due

primarily to the large number of design variables defined in a typical topology optimization problem.

To this end we use the adjoint framework set forth by Michaleris et al. [49] and subsequently

expanded upon by Alberdi et al. [50]. While Fin et al. [43] remark on the cost of the sensitivity

analysis of the incremental formulation, if many increments are required for a particular problem,

perhaps techniques such as those noted in Wang et al. [51] could be used in order to significantly

reduce this expense, or check-pointing techniques could be employed such as those in [52].

Finally, to the best of our knowledge, none of the aforementioned works have included the

effects of structural buckling in their optimization formulations, which may be the actual failure
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mode of a structure in many situations. Design for buckling using continuum topology optimization

formulations appears to have begun with the efforts of Neves at al. [53] in which the critical

buckling load factor was maximized. Since then a number of papers have emerged including

those accounting for geometric nonlinearity [54, 55, 56, 57, 58] for which the nonlinear buckling

sensitivity analysis was first presented in Reitinger and Ramm [59]. In the more specific context

of buckling of microstructures, the works [60, 61] are also noteworthy. Among the many issues

encountered in continuum topology optimization in the context of buckling, the appearance of

pseudo buckling modes in regions of low density has received significant attention [62, 63, 64].

More recently, Ferrari and Sigmund [65] have “revisited” the use of small deformation, linear elastic

buckling analysis, and provided a set of useful studies which included comparisons with aggregation

functions such as the one used in Chin and Kennedy [66]. Subsequently, Ferrari and Sigmund [67]

proposed a method for large scale topology optimization including buckling constraints using a

multi-level solution strategy.

None of the aforementioned continuum buckling works have included the effects of elastoplastic

material response. This may be due to a number of factors, the most important of which being the

very large computational burden associated with not only a nonlinear forward analysis in which

large deformation kinematics may be used and arc-length methods may be required, but also the

sensitivity analysis associated with buckling load factors. The buckling load factors themselves also

may no longer be physically meaningful due to the assumption of linearity, particularly with regards

to the stress response, when the eigenproblem is solved. Nonetheless, notable literature include

the work of Kaliszky and Logo [68] in which elastoplastic material response of truss structures

is considered along with compressive stress constraints for buckling resistance, and Schwarz and

Ramm [69] which demonstrate the direct (rather than adjoint) sensitivity analysis for use in shape

optimization of structures including elastoplasticity, large deformations, and buckling.

Since both ductile failure and buckling of a structure under a particular load are possible, it is

clear that a designer should consider these failure modes in the design process if large contingency

loads are expected. However, due to the inherent computational expense of simulating the large
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deformation ductile failure and/or buckling of a structure this concept has not yet been achieved

in the topology optimization literature. Therefore, we wish to provide a computationally efficient

framework for practicing designers that provides both resistance to ductile failure and buckling of

structural members.

1.1.3 Failure behavior of hyperelastic composites

While design for brittle and ductile failure resistance is clearly of great importance in engineering

applications, ultimately the computational methods used during the design phase are only useful if

they are sufficiently accurate. Since fracture of many engineering materials is still quite difficult to

predict with high accuracy, validation exercises are extraordinarily important. One very interesting,

intellectually rich area of potential research is in the field of soft composite failure modeling.

Polymeric composites are versatile high performance materials that are widely used in a variety of

engineering applications. These composites, typically consisting of a polymer matrix reinforced

by hard-inclusions, offer significant advantages over pure polymers. For example, well-designed

combinations of these components may lead to superior mechanical and thermal properties that are

infeasible using a single material [70]. In particular, since the strength and stiffness of the inclusion

phase is typically much higher than those of the matrix material, the stiffness of the composite is

typically improved in addition to the material toughness due to the treacherous path cracks must

traverse through the matrix in order for the structure to fail catastrophically.

The use of 3D-printing for rapid manufacturing of polymer composites has gained significant

attention in the last two decades [71]. This additive manufacturing technique can produce polymer

composites with complex geometries and precise inclusion positions/shapes specified using computer

aided design software. However, while the addition of inclusions in a polymer matrix may enhance

its strength, it may also decrease its toughness [72]. In particular, a different arrangement of

inclusions may entirely alter the failure pattern of the polymer composite, thereby affecting its

macroscopic properties.

Theoretical and numerical predictions together with the observed performance of natural
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and biological materials indicate that microstructural design holds significant potential for the

development of superior materials. The physical realization of these ideas relies on advances

in material fabrication techniques and the ability to produce microstructures at various length

scales. Thus, for example, Slesarenko et al. [73, 74] experimentally realized the underlining failure

mechanisms in nacre-like 3D-printed composite structures. In particular, they observed distinct

single-step and two-step failure modes in the soft interfaces depending on the loading direction

relative to microstructures. Buehler and co-authors [75, 76] employed 3D-printing to illustrate

the improved toughness performance of the numerically predicted bio-inspired composites based

on mineralized natural materials with soft interfaces. Ryvkin et al. [77] realized fault-tolerant

lattice structures through pre-designed failure in weak links, thus, preventing damage propagation,

and promoting even damage distribution. Alternative strategies such as crack tip blunting [75],

microstructure-guided crack deflection [78], and shielding [79] have been successfully demonstrated

for 3D-printed composites. Liu and Li [80] reported increased fracture toughness in 3D-printed

composites due to weak wavy interfaces. We note, however, that the fracture behavior of the soft

materials is rate-sensitive [81], and this aspect can play an important role in the failure mechanisms

of dynamically loaded composites [82].

Computational modeling of polymer composite failure at large deformation remains a significant

challenge. Beyond the hyperelastic material modeling and complex geometries, numerical methods

that attempt to model fracture must be able to capture crack nucleation at multiple arbitrary spatial

locations and crack propagation along complex trajectories while accounting for crack coalescence

and branching. Furthermore, these methods should also be numerically robust (e.g. capable of

handling large element distortions), insensitive to the choice of mesh discretization, and well-posed

(e.g. convergent under mesh refinement).

The phase field method is one such promising method that has emerged in the past two decades

[20, 21, 22, 23, 24], and has already been explored in a variety of areas including quasi-brittle

fracture [83, 84, 85, 86], ductile fracture [87, 88, 89, 90], fracture of geological materials including

hydraulic fracture [91, 92, 93, 94], interphasial fracture [95, 86, 96], anisotropic fracture [97], bone
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fracture [98], and fracture of viscoelastic materials [98]. In the phase field method, the discrete

crack surface is approximated by a diffusive crack representation via an auxiliary scalar field. The

evolution of the fracture surface is captured by an additional PDE, which can be derived variationally

[21] or using thermodynamic principles [87]. The majority of phase field methods published in

the literature require only a few parameters, including one controlling the width of the diffusive

fracture surface 𝑙0, and either the critical energy release rate, 𝐺𝑐, or the critical tensile energy density

Ψ𝑐, which may be viewed as material parameters (although the more recent cohesive phase field

methods treat the length scale simply as a numerical regularization parameter).

In the context of large strain fracture of hyperelastic materials, several notable phase field

fracture methods have been published. Miehe et al. [99] was the first to propose large deformation

brittle fracture formulation for rubbery polymers. Wu et al. [100] proposed a stochastic fracture

analysis of rubber reinforced with carbon black inclusions, which provided insight for better design

of these materials. Subsequent work by San and Waisman proposed optimization of the particle

locations in a soft polymer matrix to achieve more failure resistant designs [101].

Raina and Miehe [102] and Gultekin et al. [103] studied the fracture of soft biological tissues

accounting for anisotropic hyperelasticity with different fiber orientations. Talamini et al. [104]

proposed a new energy split in the phase field formulation to account for chain bond deformation,

which resulted in a modified phase field driving force. This formulation was later extended by Mao

and Anand [105] to model fracture of polymeric gel. Bilgen and Weinberg [106] also developed

new ad-hoc driving forces, which were motivated by general fracture mechanics considerations.

Kumar et al. [107] derived toughness functions to model the fracture and healing of elastomers

undergoing large deformations. Yin et al. [108] studied fracture of exotic natural structures

(Bouligand structures), and compared their numerical results with 3D-printed samples. Additionally,

rate dependent rubber fracture has been studied by Loew et al. [109] and Yin and Kaliske [110].

It should be noted that, as with most numerical methods, there are also drawbacks of the

phase field method when compared with other techniques. A few important cons, such as the

computational cost, are discussed in the work of Wu et al. [111]. Advancements in mesh adaptivity

8



seek to alleviate some of the computational burden (see [112] for example). Additionally, in classical

phase field models the strength of the material is tied to the length scale (see Borden et al. [83] for

1D analysis).

Finally, it is important to mention other interesting failure models for soft materials that have

been proposed. In particular, the work of Volokh on hyperelasticity with softening, based on the

idea of energy limiters, and more recently the material sink formulation [113, 114, 115] also seems

to be promising.

While all of the aforementioned work significantly contributes to either our physical understanding

of soft composites or our ability to numerically predict their failure behavior, very few works

combine the two in order to enhance our collective knowledge. In this context, we wish to provide

not just a simple validation exercise for one particular version of phase field fracture, but also use it

in conjunction with experimental data in an effort to better understand the failure behavior of soft

composite materials with hard inclusions.

1.1.4 Cardiovascular stent design for an expandable valved conduit

Congenital heart disease (CHD) affects an estimated 40,000 children per year in the United States

alone [116, 117, 118], within which an estimated 20% of cases involve abnormalities in the right

ventricular outflow tract (RVOT) [116, 119] and may require pulmonary valve replacement. This

typically involves multiple invasive surgeries to replace the diseased original valve and subsequent

prosthetic replacement valves with those of increasingly larger diameter as the patient grows

into adulthood [120, 121]. Multiple experimental and numerical studies in the existing literature

have contributed to eventually resolving this important issue [122, 123, 124, 125, 126, 127, 128].

While strides have been made in recent years towards the development of an expandable prosthetic

valve replacement [129, 130, 131], none of the current designs yet incorporate an integrated and

expandable conduit for concomitant repair of the RVOT [132]. Therefore, the design need for a

corresponding expandable replacement conduit clearly exists.

One particularly attractive option for achieving this incorporates a metallic stent (which may
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be optimized) in the valved region. A number of relevant works exist in the literature regarding

the computational design of cardiovascular stents, however the vast majority are designed for

coronary arteries. The review articles of Bressloff et al. [133] and Karanasiou et al. [134] provide

comprehensive summaries of the current state of the art, including stent materials, geometric

parameterizations, and quantitative performance metrics. Numerical stent optimization and parameter

studies have been performed for stents constructed of various materials including nitinol [135, 136],

316L stainless steel [137, 138, 139, 140, 141, 142, 143, 136], cobalt chromium [144], and various

polymers [145, 146, 147].

Size optimization techniques may be employed, examining the impact of geometric parameters

such as the width and thickness of the stent struts. While most works utilize low-dimensional

geometric parameterizations or compare the performance of existing stent geometries, others

increase the design freedom using techniques in shape optimization with mesh-morphing [148, 149]

or a design parameterization based on nonuniform rational B-splines (NURBS) [150].

Desired mechanical properties vary across the literature but generally include measures of

fatigue resistance, peak stress or strain, radial recoil, foreshortening, flexibility, and expansion

uniformity (i.e. whether the dog-boning phenomena occurs [140, 151, 152]). Within the specific

context considered in this dissertation, we are interested in achieving uniform permanent expansion

of the entire device using a non-compliant balloon, in addition to optimizing performance metrics

related to stent durability and expandability.

Typical stent expansion finite element simulations involve large deformations, contact, and

material nonlinearity (e.g. hyperelasticity, elastoplasticity) all of which greatly increase the

computational expense. In order to alleviate some of the numerical burden, the majority of existing

works employ surrogate-based optimization techniques using relatively few detailed computational

analyses. To this end, Kriging-based surrogate models have dominated much of the literature [135,

153, 152, 151, 145, 154, 155, 156, 157], although others have used polynomial based response

surfaces [146], or provide a comparison of multiple approaches [156].

It should also be noted that most of the aforementioned works typically only employ structural
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finite element analyses due primarily to the generally larger numerical expense of computational

fluid dynamics (CFD) simulations. However a few works have also investigated stent design for

hemodynamic performance [154, 158, 159]. In the current context, the stent is not directly in the

flow path, therefore mitigating the need for CFD simulations at this particular stage of the design

process.

1.2 Dissertation outline

In Chapters 2 and 3, we propose two topology optimization based formulations for computationally

achieving low weight structural designs with enhanced resistance to brittle fracture. The failure

physics are explicitly simulated during the optimization process utilizing the phase field method

for brittle fracture. A density-based topology optimization formulation is used and the analytical

sensitivities of the relevant functions used in each mathematical optimization problem statement

are derived. Additionally, a numerical efficiency gain based on the Schur-complement is presented

for use during the analytical sensitivity computation. In the first formulation, the phase field

approximation of the fracture surface energy is directly constrained in order to provide the desired

resistance to brittle failure. In the second, a new objective function is proposed which provides

additional path information to the optimizer. Increased local control of the topology is introduced

via a smoothed threshold function in the phase field fracture formulation and a constraint relaxation

continuation scheme is proposed to alleviate some numerical difficulty during the initial optimization

iterations.

Subsequently, a new formulation is proposed in Chapter 4 for incorporating local ductile failure

constraints and buckling resistance into elastoplastic structural design. While a lot of recent

progress has been made within the context of continuum topology optimization with elastoplasticity

and buckling separately, these phenomena are typically not considered together. The proposed

formulation is computationally efficient and robust, partly due to its reliance on small strain

kinematics and a separation of the elastoplastic response from the buckling load factors computed

during the optimization procedure. An aggregate objective function is constructed in which the total
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work in an elastoplastic analysis is maximized and an aggregation function of the load factors from

a separate linear elastic buckling analysis is included. Additionally, local ductile failure constraints

are handled via a framework without aggregation functions and a new pseudo buckling mode filter

is proposed. Each of the resulting designs are then subject to a verification step in which a large

strain ductile failure model is used in order to compare the performance of the optimized designs

obtained for three numerical examples. The results demonstrate that structural responses such

as peak load carrying capacity and total external work required to reach the peak load may be

significantly improved using the suggested framework.

In Chapter 5, we investigate the failure behavior of 3D-printed polymer composites undergoing

large deformation. Experimental results are compared to numerical simulations using the phase field

fracture method with an energetic threshold and a numerically efficient plane-stress implementation.

The developed numerical/experimental strategy is applied to a composite system consisting of three

stiff circular inclusions embedded into a soft matrix. In particular, we examine how geometric

parameters, such as the distances between inclusions and the length of initial notches, affect the

failure pattern in the soft composites. We observe complex failure sequences including crack

arrest and secondary crack initiation in the bulk material. It is demonstrated that our numerical

simulations capture these essential features of the composite failure behavior and the numerical

results are in good agreement with the experiments. We find that the mechanical performance of the

composites (i.e. strength and toughness) can be tuned through selection of the inclusion positions.

These findings offer useful insight for the design of soft composite materials with improved failure

resistance.

In Chapter 6 we investigate the design of a cardiovascular stent for potential use in a balloon

expandable valved conduit. More specifically, we consider a polymeric replacement conduit within

which a prosthetic valve resides. The valve itself is assumed to be constructed using a polymeric

material (similar to that of the conduit) and is adhered to the conduit via an intermediate polymeric

glue layer. After an initial device implantation, valve expansion can occur through transcatheter

balloon dilation of the entire device, which would permanently deform to a larger desired diameter.
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However, the region in which the polymeric glue resides would likely undergo smaller permanent

dilation than the rest of the device due to differences in the mechanical properties of the conduit

material and the polymeric glue. In order to counteract the anticipated retractive behavior in the

valved region, a stent can be inserted between the inner valve structure and the outer conduit. A

numerical strategy for the design of an appropriate stent in this specific context is proposed to

achieve this goal. Additionally, metrics associated with both resistance to ductile fracture and high

cycle fatigue are concurrently optimized. Due to the large computational expense of each high-

fidelity finite element expansion simulation, a surrogate-based optimization technique is employed.

The defined multiobjective optimization problem is then solved using the surrogate functions

and a highly effective algorithm for obtaining a set of Pareto-optimal designs. The associated

trade-offs between various performance metrics are then graphically illustrated. Subsequently,

a normalized aggregate objective function with unit weighting is also employed within a single

objective optimization problem in order to identify one optimized design candidate with high

performance.

Finally, concluding remarks are provided in Chapter 7, along with a summary of the main

contributions of this thesis and plans for future work and improvement.
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Chapter 2

A topology optimization formulation for brittle fracture resistance

This chapter is published as a journal article in: J. B. Russ and H. Waisman, “Topology

optimization for brittle fracture resistance”, Computer Methods in Applied Mechanics and Engineering,

vol. 347, pp. 238–263, Apr. 2019, doi: 10.1016/j.cma.2018.12.031.

2.1 Introduction

In this chapter we explore the use of topology optimization for obtaining minimum weight

designs with higher brittle fracture resistance by directly constraining the phase field approximation

of the fracture surface energy. A single material phase is considered and the total weight is

minimized. Additionally, we investigate the use of the two most common energy splits and

degradation functions in the phase field formulation. As previously discussed in Da et al. [18],

the phase field approximation for fracture has many benefits in topology optimization including

the use of a fixed design mesh in which crack nucleation is handled naturally. We derive the path-

dependent sensitivities for the relevant functions via a computationally-efficient adjoint formulation

and illustrate a Schur-complement type approach at the element level during the sensitivity analysis.

The remainder of the chapter is organized as follows: In Section 2.2 we review the governing

equations for quasi-static brittle fracture via the standard phase field formulation and provide the

details of the finite element discretization. We then review the density-based design parameterization,

define the optimization problem, and derive the analytical sensitivities in Section 2.3. The

effect of the energy split, degradation function, and length scale parameter in the phase field

fracture formulation is investigated briefly in Section 2.4, along with two numerical examples that

demonstrate the effectiveness of this approach.
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2.2 Standard phase field fracture formulation

In this section we briefly summarize the phase field description of quasistatic, brittle fracture

adopted herein. Following the work of Francfort and Marigo [20], Bourdin et al. [21] and Miehe

et al. [22, 23], we provide a short derivation of the two-field coupled problem for brittle crack

evolution. Subsequently, the details of the finite element discretization are provided.

2.2.1 Phase field formulation for brittle fracture

In [20], the variational approach to brittle fracture is introduced as an energy minimization

problem for a continuum body, Ω. In the absence of body forces and point loads, the total potential

energy of a solid is defined as

Π(u, Γ) =
∫
Ω\Γ

𝜓𝑒 (∇u)𝑑𝑉 +
∫
Γ

𝐺𝑐𝑑𝑆 −
∫
𝜕Ω𝑡
t · u𝑑𝑆 (2.2.1)

in which u is the displacement field, Γ represents the crack surface, 𝐺𝑐 is the Griffith-type critical

energy release rate, and t represents any external tractions applied to the body’s surface. The stored

elastic energy density, 𝜓𝑒, is a function of the displacement gradient, ∇u. The first term in the

expression represents the amount of elastic energy stored in the material, while the second term is

the crack surface energy or the energy dissipated due to crack formation. The final term represents

the work due to the external forces.

Fracture surface energy approximation

In the phase field approach, Equation (2.2.1) is approximated with a spatially-regularized

functional in which the fracture surface energy is replaced by an elliptic functional of a scalar field,

𝑑 ∈ [0, 1], and its gradient [21].

𝜓 𝑓 (Γ) =
∫
Γ

𝐺𝑐𝑑𝑆 ≈ 𝜓̂ 𝑓 (𝑑) = 𝐺𝑐

∫
Ω

(
1

4𝑙0
𝑑2 + 𝑙0∇𝑑 · ∇𝑑

)
𝑑𝑉 (2.2.2)
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In this way, a sharp crack discontinuity is approximated by a diffuse crack topology with a small

width, 𝑙0, spatially-regularizing the original problem. The minimization of this functional yields the

diffuse crack topology [21, 22], which is illustrated in Figure 2.1.

𝑑 (x) = Arg
{

inf
𝑑∈SΓ

𝜓̂ 𝑓 (𝑑)
}

(2.2.3)

SΓ = {𝑑 | 𝑑 ∈ 𝐻1, 𝑑 (x) = 1 when x ∈ Γ} (2.2.4)

Note that 𝑑 is the phase field parameter, SΓ is the set of admissible fields satisfying the Dirchlet-type

conditions on the crack surface, 𝐻1 is the Sobolev function space defined below, and x signifies the

spatial location in the domain.

𝐻1 =

{
𝑣

��� ∫
Ω

𝑣2𝑑x < +∞, and
∫
Ω

|∇𝑣 |2𝑑x < +∞
}

(2.2.5)

∂Ω Ω

Γ

∂Ωt

∂Ωu

∂Ω Ω

Γ

2l0

∂Ωt

∂Ωu

0

1

d

Figure 2.1: Phase field approximation of a sharp crack discontinuity

Stored elastic energy approximation

The stored elastic energy is additively decomposed into contributions from tensile and compressive

energy, such that

𝜓𝑒 (ε, 𝑑) = 𝜓−𝑒 (ε) + (𝑔(𝑑) + 𝑘)𝜓+𝑒 (ε) (2.2.6)
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The elastic free energy is assumed to be a function of the phase field, 𝑑, and the small strain tensor,

ε, which is defined as the symmetric gradient of the displacement field.

ε(u) = 1
2

(
∇u + ∇u𝑇

)
(2.2.7)

The tensile component of the energy is degraded by the action of a so-called degradation

function, 𝑔(𝑑), which must satisfy certain requirements [22]. Additionally, 𝑘 is a small parameter

representing the artificial residual strength of the material [22], however, Borden et al. [83] remark

that its inclusion appears to be unnecessary. In all subsequent examples in this chapter 𝑘 is set to

10−8.

Note that the stress may be obtained directly from the elastic potential through standard

arguments in thermodynamics. That is,

σ =
𝜕𝜓−𝑒
𝜕ε︸︷︷︸
σ−

+(𝑔(𝑑) + 𝑘)
𝜕𝜓+𝑒
𝜕ε︸︷︷︸
σ+

(2.2.8)

where σ is the damaged stress tensor and σ−/σ+ are the undamaged, compressive and tensile stress

tensors, respectively.

The degradation function, 𝑔(𝑑), can drastically affect the amount of elastic energy degradation

caused by nonzero values of the phase field. Here we use the parameterized cubic function given

in Equation (2.2.9), proposed in Borden [160]. The parameter, 𝑠, controls the initial slope, and,

consequently, the amount of elastic energy degradation that results from moderate values of the

phase field. Increasingly brittle behavior can be obtained by decreasing this parameter. Setting

𝑠 = 2, the quadratic degradation function is recovered.

𝑔(𝑑) = (𝑠 − 2) (1 − 𝑑)3 + (3 − 𝑠) (1 − 𝑑)2 (2.2.9)

Here we provide the anisotropic degradation of the elastic energy based on two energy splits.
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The first is the volumetric-deviatoric split proposed in Amor et al. [161],

𝜓−𝑒 (ε) =
𝜅

2
〈tr[ε]〉2− (2.2.10)

𝜓+𝑒 (ε) =
𝜅

2
〈tr[ε]〉2+ + 𝜇ε𝑑𝑒𝑣 : ε𝑑𝑒𝑣 (2.2.11)

where 𝜅 is the undegraded material bulk modulus, 𝜇 is the undegraded material shear modulus,

tr[·] is the trace operator, and ε𝑑𝑒𝑣 : ε𝑑𝑒𝑣 =
∑
𝑖, 𝑗 𝜀

𝑑𝑒𝑣
𝑖 𝑗
𝜀𝑑𝑒𝑣
𝑖 𝑗

. Note that for an isotropic, linear elastic

material 𝜅 = 𝐸/(3(1 − 2𝜈)) and 𝜇 = 𝐸/(2(1 + 𝜈)), where 𝐸 and 𝜈 are the elastic modulus and

Poisson’s ratio, respectively. The deviatoric strain tensor, ε𝒅𝒆𝒗 , represents the deviatoric projection

of the strain tensor. It is given by

ε𝑑𝑒𝑣 = P𝑑𝑒𝑣 : ε =
(
I − P𝑣𝑜𝑙

)
: ε = ε − tr[ε]

3
1 (2.2.12)

where I is the fourth order identity tensor, 1 is the second order identity tensor, and P𝑣𝑜𝑙 /P𝑑𝑒𝑣 are the

fourth order volumetric/deviatoric projection tensors, respectively. Note that P𝑣𝑜𝑙 = 1
3 (1 ⊗ 1). The

second and fourth order identity tensors are defined as 1 = 𝛿𝑖 𝑗e𝑖 ⊗e 𝑗 and I = 𝛿𝑖𝑘𝛿 𝑗 𝑙e𝑖 ⊗e 𝑗 ⊗e𝑘 ⊗e𝑙 ,

where 𝛿𝑖 𝑗 is the Kronecker delta and {e𝑖} represents the basis vectors. Finally, the Macaulay

brackets, 〈·〉±, are defined such that 〈·〉+ = max (·, 0) and 〈·〉− = min (·, 0). This energy split results

in the constitutive relationship,

σ = (𝑔(𝑑) + 𝑘)
(
𝜅 〈tr[ε]〉+ 1 + 2𝜇ε𝑑𝑒𝑣

)
+ 𝜅 〈tr[ε]〉− 1 (2.2.13)

An alternative energy split based on a principal/spectral decomposition of the strain tensor, as
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presented by Miehe et al. [22], takes the following form

ε =
3∑︁
𝑎=1

𝜀𝑎n𝑎 ⊗ n𝑎 (2.2.14)

𝜓−𝑒 (ε) =
𝜆

2
〈𝜀1 + 𝜀2 + 𝜀3〉2− + 𝜇

(
〈𝜀1〉2− + 〈𝜀2〉2− + 〈𝜀3〉2−

)
(2.2.15)

𝜓+𝑒 (ε) =
𝜆

2
〈𝜀1 + 𝜀2 + 𝜀3〉2+ + 𝜇

(
〈𝜀1〉2+ + 〈𝜀2〉2+ + 〈𝜀3〉2+

)
(2.2.16)

in which {(𝜀𝑎,n𝑎), 𝑎 = 1, 2, 3} are the eigenpairs or principal strains and principal directions of

the strain tensor and (𝜆, 𝜇) are the standard lame parameters of the undamaged material. Note that

𝜆 = 𝐸𝜈/((1 + 𝜈) (1 − 2𝜈)). The resulting constitutive law takes the following form,

σ = (𝑔(𝑑) + 𝑘)
(
𝜆 〈tr[ε]〉+ 1 + 2𝜇ε+

)
+ 𝜆 〈tr[ε]〉− 1 + 2𝜇ε− (2.2.17)

where

ε+ =
3∑︁
𝑎=1
〈𝜀𝑎〉+n𝑎 ⊗ n𝑎 (2.2.18)

ε− =
3∑︁
𝑎=1
〈𝜀𝑎〉−n𝑎 ⊗ n𝑎 (2.2.19)

The effect of the energy split on the optimization results will be briefly explored in Section 2.4.

Regularized total potential energy

With the above approximations at hand, the total potential energy in Equation (2.2.1) may be

written in regularized form.

Π̃(u, 𝑑) =
∫
Ω

(
𝜓−𝑒 (ε(u)) + (𝑔(𝑑) + 𝑘)𝜓+𝑒 (ε(u)

)
𝑑𝑉

+ 𝐺𝑐

∫
Ω

(
1

4𝑙0
𝑑2 + 𝑙0∇𝑑 · ∇𝑑

)
𝑑𝑉 −

∫
𝜕Ω𝑡
t · u𝑑𝑆

(2.2.20)

At a minimum, the first variation of the total potential with respect to the displacement and

19



phase field must vanish, 𝛿Π̃ = 0. Application of this principle and the divergence theorem yields the

following result

𝛿Π̃(u, 𝑑) = −
∫
Ω

(∇ · σ) · 𝛿u𝑑𝑉 +
∫
𝜕Ω

(n · σ − t) · 𝛿u𝑑𝑆

+
∫
Ω

(
𝜕𝑔

𝜕𝑑
𝜓+𝑒 +

𝐺𝑐

2𝑙0
𝑑 − 2𝐺𝑐𝑙0∇ · ∇𝑑

)
𝛿𝑑 𝑑𝑉

+ 2𝐺𝑐𝑙0

∫
𝜕Ω

(n · ∇𝑑) 𝛿𝑑 𝑑𝑆 = 0

(2.2.21)

Since this must hold for all admissible variations in the displacement and phase field we arrive at

the strong form of the governing equations

∇ · σ = 0 in Ω (2.2.22)

𝐺𝑐

2𝑙0
𝑑 − 2𝐺𝑐𝑙0∇ · ∇𝑑 = −𝜕𝑔

𝜕𝑑
𝜓+𝑒 in Ω (2.2.23)

n · σ = t on 𝜕Ω𝑡 (2.2.24)

u = û on 𝜕Ω𝑢 (2.2.25)

n · ∇𝑑 = 0 on 𝜕Ω (2.2.26)

where the additional Dirichlet boundary condition has been added (Equation (2.2.25)) and 𝜕Ω𝑡 ∩

𝜕Ω𝑢 = ∅. Equation (2.2.22) is the usual linear momentum equation for static equilibrium in the

absence of body forces, Equation (2.2.23) governs the evolution of the phase field, and Equation

(2.2.26) enforces the no flux requirement of the phase field through the body’s surface.

Finally, in order to enforce irreversibility of crack growth, the local history field proposed in

Miehe et al. [23] is used in place of 𝜓+𝑒 on the right hand side of Equation (2.2.23). Note that in the

equation below, 𝑡, is not an actual time variable but a pseudo-time variable representing the load

increments.

H(x, 𝑡) = max
𝜏∈[0,𝑡]

𝜓+𝑒 (x, 𝜏) (2.2.27)
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2.2.2 Finite element discretization

The weak form of the governing equations is obtained in the usual manner by multiplication

of the strong form equations with admissible test functions, integration over the domain, and

application of the divergence theorem. The test functions are denoted w𝑢 and 𝑤𝑑 for the linear

momentum and phase field equations, respectively. The residual form of the equations for the

displacement field, 𝑅𝑢, and phase field, 𝑅𝑑 , can then be written as follows

𝑅𝑢 =

∫
Ω

σ : ∇w𝑢𝑑𝑉 −
∫
𝜕Ω𝑡
t ·w𝑢𝑑𝑆 = 0 (2.2.28)

𝑅𝑑 =

∫
Ω

(
𝐺𝑐

2𝑙0
𝑑 𝑤𝑑 + 2𝐺𝑐𝑙0∇𝑑 · ∇𝑤𝑑 +

𝜕𝑔

𝜕𝑑
𝑤𝑑 H

)
𝑑𝑉 = 0 (2.2.29)

We search for 𝑢𝑖 ∈ S𝑢𝑖 and 𝑑 ∈ S𝑑 such that Equations (2.2.28) and (2.2.29) are satisfied ∀𝑤𝑢
𝑖
∈

V𝑤𝑢
𝑖 and ∀𝑤𝑑 ∈ V𝑤𝑑 where these function spaces are defined below. Note that 𝐻1 corresponds to

the previous definition in Equation (2.2.5).

S𝑢𝑖 = {𝑢𝑖 | 𝑢𝑖 ∈ 𝐻1, & 𝑢𝑖 = 𝑢̂𝑖 on 𝜕Ω𝑢} (2.2.30)

S𝑑 = {𝑑 | 𝑑 ∈ 𝐻1} (2.2.31)

V𝑤𝑢
𝑖 = {𝑤𝑢𝑖 | 𝑤𝑢𝑖 ∈ 𝐻1, & 𝑤𝑢𝑖 = 0 on 𝜕Ω𝑢} (2.2.32)

V𝑤𝑑 = {𝑤𝑑 | 𝑤𝑑 ∈ 𝐻1} (2.2.33)

The above equations are then discretized and solved incrementally using the finite element method.

The 2D domain is partitioned using 4-node quadrilateral elements and the approximate displacement

field and phase field are both interpolated with bilinear shape functions such that

u(x) ≈Nu(x)ū, 𝑑 (x) ≈N𝑑 (x)d̄ (2.2.34)

ε(u(x)) ≈ Bu(x)ū, ∇𝑑 (x) ≈ B𝑑 (x)d̄ (2.2.35)
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The interpolation matrices for the displacement and phase field are represented by Nu and N𝑑 ,

respectively, while the vectors of the nodal degrees of freedom are denoted by ū and d̄. Similarly,

the matrices Bu and B𝑑 contain the derivatives of the relevant shape functions. The discretized

residual equations then become

Rū =

∫
Ω̂

B𝑇
uσ̂ 𝑑𝑉 −

∫
𝜕Ω̂𝑡
N𝑇

ut 𝑑𝑆 = 0 (2.2.36)

Rd̄ =

∫
Ω̂

(
𝐺𝑐

2𝑙0
N𝑇

dNd + 2𝐺𝑐𝑙0B
𝑇
dBd

)
d̄ 𝑑𝑉 +

∫
Ω̂

𝜕𝑔(Ndd̄)
𝜕𝑑

N𝑇
d H 𝑑𝑉 = 0 (2.2.37)

where, σ̂ is the stress tensor in Voigt notation and Ω̂ represents the discretized domain.

For each increment in load, marked by an increase in the pseudo-time variable 𝑡, the nodal

solution is updated monolithically via a Newton-Raphson type iterative scheme, as follows

©­­«
ū

d̄

ª®®¬(𝑘+1) =
©­­«
ū

d̄

ª®®¬(𝑘) −

Jūū Jūd̄

Jd̄ū Jd̄d̄


−1

(𝑘)

©­­«
Rū

Rd̄

ª®®¬(𝑘) (2.2.38)

where 𝑘 signifies the iteration number for a fixed pseudo-time increment. Each term in the monolithic

jacobian is computed as defined below

Jūū =
𝜕Rū

𝜕ū
=

∫
Ω̂

B𝑇
uDBu 𝑑𝑉 (2.2.39)

Jūd̄ =
𝜕Rū

𝜕d̄
=

∫
Ω̂

𝜕𝑔(Ndd̄)
𝜕𝑑

B𝑇
uσ̂
+Nd 𝑑𝑉 (2.2.40)

Jd̄ū =
𝜕Rd̄

𝜕ū
=

∫
Ω̂

𝜕𝑔(Ndd̄)
𝜕𝑑

N𝑇
d

𝜕H(ε(Buū))
𝜕ū

𝑑𝑉 (2.2.41)

Jd̄d̄ =
𝜕Rd̄

𝜕d̄
=

∫
Ω̂

((
𝐺𝑐

2𝑙0
+ 𝜕

2𝑔(Ndd̄)
𝜕𝑑2 H

)
N𝑇

dNd + 2𝐺𝑐𝑙0B
𝑇
dBd

)
𝑑𝑉 (2.2.42)

The constitutive matrix,D, used in Equation (2.2.39), is related to the tensor form of the stress-

strain constitutive law. Generally, the linearization of the constitutive law may be expressed with a

fourth-order tensor, C = 𝜕σ
𝜕ε . The fourth-order constitutive tensor for the volumetric deviatoric split
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of the elastic energy may be expressed as follows,

C =
𝜕σ

𝜕ε
=


(𝑔(𝑑) + 𝑘)

(
𝜅P𝑣𝑜𝑙 + 2𝜇P𝑑𝑒𝑣

)
, if tr[ε] > 0

𝜅P𝑣𝑜𝑙 + (𝑔(𝑑) + 𝑘)
(
2𝜇P𝑑𝑒𝑣

)
, otherwise

(2.2.43)

A more complex representation of this fourth order tensor is required in the case of the spectral split

of the elastic energy. This is provided in A.1. The jacobian and residual equations are integrated

using a standard second-order gauss quadrature rule and the irreversibility requirement is enforced

via a history variable stored at each quadrature point.

2.2.3 Alternative formulation of the discrete equations

Due to the nature of the irreversibility constraint, the value of an objective or constraint function

may become dependent on the incremental solution path. When computing the path dependent

sensitivities of these functions it is convenient to replace the history function,H (defined in Equation

(2.2.27)), with an additional degree of freedom in the monolithic system.

These additional equations take the form

𝐻𝑛+1(ξ𝑖) = 0 =


ℎ𝑛+1(ξ𝑖) − ℎ𝑛 (ξ𝑖), if 𝜓+𝑒 (ξ𝑖) < ℎ𝑛 (ξ𝑖)

ℎ𝑛+1(ξ𝑖) − 𝜓+𝑒 (ξ𝑖), otherwise
(2.2.44)

where ξ𝑖 corresponds to the 𝑖𝑡ℎ quadrature point in the global finite element mesh, 𝜓+𝑒 (ξ𝑖) =

𝜓+𝑒 (ε(Bu(ξ𝑖)ū𝑛+1)), and where the superscript (·)𝑛 implies the quantity corresponds to pseudo-

time, 𝑡𝑛. Note that this additional equation at each quadrature point replaces the history function,

H , with the new independent variable, ℎ.

Augmenting the previous monolithic residual vector with the additional gauss point equations,

Hh =
[
𝐻𝑛+1(ξ1), . . . , 𝐻𝑛+1(ξ𝑁𝑔𝑝 )

]
(where 𝑁𝑔𝑝 is the total number of quadrature points in the finite
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element model) we have

R𝑛 =

©­­­­­«
Rū

Rd̄

Hh

ª®®®®®¬

𝑛

(2.2.45)

where the history function,H , inRd̄ (Equation (2.2.37)) is replaced with the independent variable,

ℎ(ξ𝑖), when the integrand is evaluated at the corresponding quadrature point. The new jacobian of

this augmented system then takes on the following block structure

𝜕R

𝜕z
=



𝜕Rū
𝜕ū

𝜕Rū

𝜕d̄
0

0
𝜕Rd̄

𝜕d̄

𝜕Rd̄
𝜕h

𝜕Hh
𝜕ū 0 𝜕Hh

𝜕h


(2.2.46)

where z is the augmented solution vector,

z =

©­­­­­«
ū

d̄

h

ª®®®®®¬
(2.2.47)

2.3 Topology optimization formulation

As discussed in the introduction, we are interested in obtaining minimum weight designs with

an increased strength prior to fracture. In this section, the density-based design parameterization

is first presented. Subsequently, the optimization problem is clearly defined and the filtering and

projection schemes used in this chapter are then provided. Finally, in the last subsection, the

analytical, path-dependent sensitivities are derived.
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2.3.1 Design parameterization

Consistent with the well-known SIMP formulation (Solid Isotropic Material with Penalization

[162, 163]), each finite element within the discretized domain is parameterized with a pseudo-

density, 𝜌𝑒, which is allowed to vary continuously in the range (0, 1]. A pseudo-density of 1

corresponds to an element completely filled with material, while a value of ≈ 0 approximates a

void in the domain. The pseudo-density for an element enters the constitutive relation through the

computation of an effective elastic modulus,

𝐸 = 𝜌
𝑝
𝑒 𝐸0 (2.3.1)

where 𝐸0 is the elastic modulus corresponding to the solid material and 𝑝 is the SIMP penalization

parameter. Values of 𝑝 greater than one make elements with intermediate densities less efficient

and, consequently, the optimizer will drive the solution closer to a desired "black and white" (or

0-1) design.

In order to effectively address the subsequently mentioned difficulties in Section 2.3.3 and 2.3.4,

the design variables, θ, are filtered and projected. Therefore the element pseudo-density, 𝜌𝑒, that

enters into Equation (2.3.1), is actually a composite function

𝜌𝑒 = 𝜌𝑒 ( 𝜌̂𝑒 (θ)) (2.3.2)

where θ is controlled by the optimizer, { 𝜌̂𝑒} are the filtered design variables, and {𝜌𝑒} are the

projection of the filtered design variables.

2.3.2 Optimization problem statement

In order to achieve minimum weight designs with more resistance to fracture, we minimize the

total volume fraction subject to a lower bound constraint on the compliance, 𝐶𝑚𝑖𝑛, and an upper

bound constraint on the phase field approximation of the fracture surface energy, 𝜓̂𝑚𝑎𝑥
𝑓

. Minimizing
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the volume fraction is equivalent to minimizing the weight since we use only a single material with

uniform density in the analyses. A lower bound is placed on the compliance since an enforced

displacement loading is utilized for stability of the optimization procedure (due to the effect of

strain softening). Since there is a nonzero displacement assigned to some degrees of freedom, this

constraint has the effect of placing a lower bound on the reaction force at those degrees of freedom

at the final time step. The upper bound on the fracture energy functional effectively constrains the

level of accumulated phase field, which indirectly increases the fracture resistance of the design.

The mathematical optimization problem statement is defined to be

minimize
θ

1
𝑉𝑡𝑜𝑡𝑎𝑙

𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝜌𝑒 (θ)𝑉𝑒

subject to 𝜃𝑚𝑖𝑛 ≤ 𝜃𝑒 ≤ 1, 𝑒 = 1, . . . , 𝑁𝑒𝑙𝑒𝑚

𝐶𝑚𝑖𝑛 ≤ f𝑇u

𝜓̂ 𝑓 ≤ 𝜓̂𝑚𝑎𝑥𝑓

R𝑖 = 0, 𝑖 = 1, . . . , 𝑁𝑠𝑡𝑒𝑝𝑠

in which 𝑉𝑒 is the volume of element, Ω𝑒, 𝑉𝑡𝑜𝑡𝑎𝑙 is the total design domain volume, f is the external

force vector, 𝜓̂ 𝑓 is the fracture energy functional from Equation (2.2.2), and the final constraint

equation requires equilibrium and history variable consistency at each load step of the forward

analyses. A flowchart of the optimization procedure is provided in Figure 2.2.

The displacement loads applied in the examples provided in Section 2.4 typically do not induce

fracture of the topologies. Consequently, the approximation of the fracture surface energy does

not have the typical physical meaning, but rather simply represents the energy dissipated from the

accumulation of phase field. However, we note here that the fracture energy functional provides a

natural aggregation function for the phase field. Alternative aggregation functions might also be

used such as the p-norm type function used in [6, 13] for example.
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Figure 2.2: Flow chart illustrating the optimization procedure
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2.3.3 Density filter

As is now common in density-based topology optimization, a density filter may be applied in

order to remove instabilities such as checkerboard patterns and to provide mesh independence as is

discussed in Sigmund and Petersson [164]. The gaussian weighting function proposed in Bruns

and Tortorelli [165] is applied to the densities within a specified radius, introducing a design length

scale which regularizes the problem. The design variables may be filtered utilizing a filter matrix of

weighting coefficients,𝑊𝑒 𝑗 ,

𝜌̂𝑒 =

𝑁𝑒𝑙𝑒𝑚∑︁
𝑗=1

𝑊𝑒 𝑗𝜃 𝑗 (2.3.3)

in which the components of the matrix are

𝑊𝑒 𝑗 =
𝑤𝑒 𝑗∑𝑁𝑒𝑙𝑒𝑚

𝑖=1 𝑤𝑒𝑖
(2.3.4)

𝑤𝑒 𝑗 =


exp

(
− 𝑟2

𝑒 𝑗

𝑟2
𝑚𝑖𝑛

)
, if 𝑟𝑒 𝑗 ≤ 𝑟𝑚𝑖𝑛

0, otherwise

(2.3.5)

where 𝑟𝑒 𝑗 = | |X𝑒 − X 𝑗 | |2 is the distance between the centroids of elements Ω𝑒 and Ω 𝑗 . The

parameter 𝑟𝑚𝑖𝑛 controls the length scale of features in the final topology.

2.3.4 Density projection

The filtered densities are then projected in order to help eliminate much of the transition region

(with densities between 0 and 1) that is created by the filtering scheme. We employ a projection that

is consistent with previous work by Guest et al. [166] and Wang et al. [167] that assists in obtaining

black and white designs.

𝜌𝑒 =
tanh(𝛽𝜂) + tanh(𝛽( 𝜌̂𝑒 − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂)) (2.3.6)
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Note here that 𝜂 governs the density threshold at which the projection takes place and 𝛽 governs the

strength of the projection operation. These effects are illustrated in Figure 2.3.
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(a) Effect of 𝛽 for 𝜂 = 0.5
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Figure 2.3: Plots of the projection function in Equation (2.3.6)

In all subsequent analyses 𝜂 is fixed at 0.5 and 𝛽 is increased slowly from an initial value of 1

up to a maximum value of 10 during the optimization procedure.

2.3.5 Derivation of analytical sensitivities

The dimension of the design space is exceptionally large in most topology optimization

formulations. Therefore, optimizers which utilize the gradients of the objective and constraint

functions are typically used. Consequently, it is highly desirable to be able to compute analytical

derivatives of these functions with respect to the design variables efficiently.

As is now standard in density-based topology optimization, we use a computationally efficient,

path-dependent adjoint method which is based on the previous work of Micheleris [49]. The

path-dependence arises due to the irreversibility condition for the evolution of the phase field

(i.e. enforced via Equation (2.2.27)). Due to the alternate formulation of the governing equations

provided in Section 2.2.3, the augmented residual equation (Equation (2.2.45)) at pseudo-time 𝑡𝑛,

becomes a function of only the pseudo-densities and the augmented solution vector at the current
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and previous time step.

R𝑛 = R𝑛
(
ρ, z𝑛, z𝑛−1

)
, where 𝑛 = 1, . . . , 𝑁𝑠𝑡𝑒𝑝𝑠 (2.3.7)

The objective and constraint functions given in Section 2.3.2 may all be represented as a general

function of the design variables and the solution vector at the final time increment, 𝑓 (ρ, z𝑁 ), where

we have used the short-hand notation, 𝑁 = 𝑁𝑠𝑡𝑒𝑝𝑠. Augmenting this function with the sum of the

inner product of the residual at each time increment (Equation (2.3.7)) and an unknown vector, ψ𝑛

(referred to as an adjoint vector hereafter), we have

𝑓 (ρ, z𝑁 , . . . , z0) = 𝑓 (ρ, z𝑁 ) +
𝑁∑︁
𝑛=1
ψ𝑛

𝑇

R𝑛
(
ρ, z𝑛, z𝑛−1

)
(2.3.8)

where the value of the function and its derivative remain unchanged since the residual must always

vanish due to equilibrium requirements. Here, we assume the structure is initially unloaded and

undamaged so that z0 = 0. Taking the derivative of this augmented function with respect to a single

element density, 𝜌𝑒, results in the following expression

𝑑 𝑓

𝑑𝜌𝑒
=
𝜕 𝑓

𝜕𝜌𝑒
+ 𝜕 𝑓

𝜕z𝑁
𝑑z𝑁

𝑑𝜌𝑒
+

𝑁∑︁
𝑛=1
ψ𝑛

𝑇

(
𝜕R𝑛

𝜕𝜌𝑒
+ 𝜕R

𝑛

𝜕z𝑛
𝑑z𝑛

𝑑𝜌𝑒
+ 𝜕R𝑛

𝜕z𝑛−1
𝑑z𝑛−1

𝑑𝜌𝑒

) (2.3.9)

where, upon grouping terms, we obtain

𝑑 𝑓

𝑑𝜌𝑒
=
𝜕 𝑓

𝜕𝜌𝑒
+

𝑁∑︁
𝑛=1
ψ𝑛

𝑇 𝜕R𝑛

𝜕𝜌𝑒
+

(
𝜕 𝑓

𝜕z𝑁
+ψ𝑁𝑇 𝜕R

𝑁

𝜕z𝑁

)
𝑑z𝑁

𝑑𝜌𝑒
+

𝑁−1∑︁
𝑛=1

(
ψ (𝑛+1)

𝑇 𝜕R𝑛+1

𝜕z𝑛
+ψ𝑛𝑇 𝜕R

𝑛

𝜕z𝑛

)
𝑑z𝑛

𝑑𝜌𝑒

(2.3.10)

Choosing the adjoint vectors ψ𝑛, 𝑛 = 1, . . . , 𝑁 , such that the terms in parentheses disappear,

we avoid the costly derivatives of the finite element fields with respect to the design variables.
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The adjoint vectors are then obtained beginning with ψ𝑁 and cycling backwards through the load

increments via the solutions of the linear systems below.

[
𝜕R𝑁

𝜕z𝑁

]𝑇
ψ𝑁 = − 𝜕 𝑓

𝜕z𝑁
(2.3.11)[

𝜕R𝑛

𝜕z𝑛

]𝑇
ψ𝑛 = −

[
𝜕R𝑛+1

𝜕z𝑛

]𝑇
ψ𝑛+1, 𝑛 = 𝑁 − 1, . . . , 1 (2.3.12)

Once the adjoint vectors are obtained, the derivative in Equation (2.3.10) simplifies to

𝑑 𝑓

𝑑𝜌𝑒
=
𝜕 𝑓

𝜕𝜌𝑒
+

𝑁∑︁
𝑛=1
ψ𝑛

𝑇 𝜕R𝑛

𝜕𝜌𝑒
(2.3.13)

where 𝜕R𝑛

𝜕𝜌𝑒
is a simple computation, performed at the element level. The required explicit derivatives

for the compliance and fracture energy functional constraints used in this chapter are provided in

Section 2.3.6.

Note that the necessary derivatives are with respect to the design variables, θ. Hence the chain

rule is required due to Equation (2.3.2),

𝑑 𝑓

𝑑𝜃 𝑗
=

𝑁𝑒𝑙𝑒𝑚∑︁
𝑖=1

𝑑 𝑓

𝑑𝜌𝑖

𝑑𝜌𝑖

𝑑𝜌̂𝑖

𝑑𝜌̂𝑖

𝑑𝜃 𝑗
(2.3.14)

=

𝑁𝑒𝑙𝑒𝑚∑︁
𝑖=1

𝑑 𝑓

𝑑𝜌𝑖

𝑑𝜌𝑖

𝑑𝜌̂𝑖
𝑊𝑖 𝑗 (2.3.15)

where 𝑊𝑖 𝑗 is the previously presented filter matrix which may be constructed once and reused

throughout the optimization procedure.

Adjoint vector solution technique

The solution of the aforementioned linear systems demands much more effort than the linear

solves required in the forward analyses due to the additional equation at every quadrature point.

Defining 𝑁𝑒𝑔𝑝 as the number of quadrature points in a typical finite element, Ω𝑒, the dimension of

the resulting linear system increases by the factor 𝑁𝑒𝑔𝑝 × 𝑁𝑒𝑙𝑒𝑚, which can be very large with respect
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to the total number of nodal degrees of freedom. Consequently, it is beneficial to avoid the naive

solution of this larger system.

In this particular problem, the quadrature point degrees of freedom are independent of each other

so we employ a special solution technique via a Schur-complement type approach at the element

level, rather than the global level. This concept will be illustrated for functions like the compliance

and fracture energy functional which are not an explicit function of the quadrature point variables.

In an effort to make the derivation in this section clearer, we group the nodal degrees of freedom

into a vector, ȳ = [ ū; d̄ ], which yields the following system at the global level corresponding to

Equation (2.3.11). 
𝜕Rȳ

𝜕ȳ
𝜕Rȳ

𝜕h

𝜕Rh
𝜕ȳ

𝜕Rh
𝜕h


𝑇 ©­­­­«
ψȳ

ψh

ª®®®®¬
=

©­­­­«
− 𝜕 𝑓
𝜕ȳ

0

ª®®®®¬
(2.3.16)

Rearranging this system of equations via the Schur-complement and noting that 𝜕Rh
𝜕h = I we obtain

( [
𝜕Rȳ

𝜕ȳ

]
−

[
𝜕Rȳ

𝜕h

] [
𝜕Rh

𝜕ȳ

] )𝑇
ψȳ = −𝜕 𝑓

𝜕ȳ
(2.3.17)

ψh = −
[
𝜕Rȳ

𝜕h

]𝑇
ψȳ (2.3.18)

which must first be solved at the global level for ψȳ and, subsequently, at the element level for

each component of ψh. Conveniently, the global linear operator on the left hand side of Equation

(2.3.17) is simply the transpose of the jacobian used in the forward analyses.

Subsequent adjoint vectors may be obtained in a manner consistent with Equation (2.3.12). In

order to illustrate this, we first provide the detailed form of the linear operator on the right hand side
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of the same equation.

[
𝜕R𝑛+1

𝜕z𝑛

]
=


0 0

0 𝜕H𝑛+1

𝜕h𝑛

 (2.3.19)

𝜕𝐻𝑛+1
𝑖

𝜕ℎ𝑛
𝑗

=


−1 , if 𝑖 = 𝑗 and 𝜓+

𝑛+1
𝑒 (ξ𝑖) < ℎ𝑛 (ξ𝑖)

0 , otherwise
(2.3.20)

With this diagonal matrix structure at hand, Equation (2.3.12) takes the form


𝜕R𝑛

ȳ

𝜕ȳ𝑛
𝜕R𝑛

ȳ

𝜕h𝑛

𝜕R𝑛
h

𝜕ȳ𝑛 I


𝑇 ©­­­­«
ψ𝑛ȳ

ψ𝑛
h

ª®®®®¬
= −


0 0

0 𝜕H𝑛+1

𝜕h𝑛


©­­­­«
ψ𝑛+1ȳ

ψ𝑛+1
h

ª®®®®¬
=

©­­­­«
0

ψ̂𝑛+1
h

ª®®®®¬
(2.3.21)

where

ψ̂𝑛+1h ≡ −𝜕H
𝑛+1

𝜕h𝑛
ψ𝑛+1h (2.3.22)

Performing the Schur-complement of this global system we have

([
𝜕R𝑛

ȳ

𝜕ȳ

]
−

[
𝜕R𝑛

ȳ

𝜕h

] [
𝜕R𝑛

h

𝜕ȳ

])𝑇
ψ𝑛ȳ = −

[
𝜕R𝑛

h

𝜕ȳ

]𝑇
ψ̂𝑛+1h (2.3.23)

ψ𝑛h = ψ̂𝑛+1h −
[
𝜕R𝑛

ȳ

𝜕h

]𝑇
ψ𝑛ȳ (2.3.24)

which has two nice properties. The first is the global linear operator on the left hand side of Equation

(2.3.23) is simply the transpose of the jacobian used in the forward analyses at the 𝑛𝑡ℎ step just as

before. Secondly, the global right hand side of Equation (2.3.23) and (2.3.24) may be assembled at

the element level, so the global linear operators on the right hand side of each equation need not be

formed explicitly.

This approach significantly reduces the computational effort required to obtain the path-
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dependent sensitivities, especially in the case of many load increments. The much larger matrix in

Equation (2.2.46) is never formed explicitly and only the much smaller matrices used in the forward

analyses are factored. To the author’s best knowledge, this approach is unique in that the solution is

obtained without explicitly performing a global Schur-complement solution of the linear system

during the sensitivity analysis.

2.3.6 Required derivatives for analytical sensitivities

The analytical sensitivity derivation previously provided in Section 2.3.5 was completed for a

general function of the design variables and the solution vector at the final time increment, 𝑓 (ρ, z𝑁 ).

In order to complete this derivation for a specific function of this form, we must provide the

expressions for the partial derivatives, 𝜕 𝑓

𝜕z𝑁
and 𝜕 𝑓

𝜕𝜌𝑒
. In this section, these will be explicitly given

for the compliance and fracture energy functional used as constraint functions in this chapter.

Compliance derivatives

The compliance function used herein is the inner product of the external force vector, f , and the

vector of nodal displacements, u. In order to make this derivation clearer, we partition these vectors

into components corresponding to the Dirichlet-type boundary condition on the displacement field,

(·)𝐷 , and components which are free, (·)𝐹 . With this notation at hand, the compliance function may

be written as

𝐶 (ρ, z𝑁 ) =
©­­«
f𝐷

f𝐹

ª®®¬
𝑇 ©­­«
u𝐷

u𝐹

ª®®¬ (2.3.25)

Note that, due to equilibrium requirements and the use of displacement control, the components of

the external force vector, f𝐹 , are zero. Therefore this expression simplifies to 𝐶 (ρ, z𝑁 ) = f𝑇
𝐷
u𝐷 .
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Taking the partial derivative of this expression with respect to 𝜌𝑒 gives the following result

𝜕𝐶

𝜕𝜌𝑒
=
𝜕f𝐷
𝜕𝜌𝑒

𝑇

u𝐷 + f𝑇𝐷
�

�
���

0
𝜕u𝐷
𝜕𝜌𝑒

(2.3.26)

Since u𝐷 is known, we only need to compute 𝜕f𝐷
𝜕𝜌𝑒

. Note that, since this formulation is quasi-static,

the internal force must equal the external force in order to satisfy equilibrium. Identifying the

internal force vector, f𝑖𝑛𝑡 , from the residual in Equation (2.2.36), we see that 𝜕f𝐷
𝜕𝜌𝑒

may be computed

via the expression

𝜕f𝑖𝑛𝑡
𝜕𝜌𝑒

=

∫
Ω̂

B𝑇
u
𝜕σ̂

𝜕𝜌𝑒
𝑑𝑉 (2.3.27)

at the corresponding Dirichlet degrees of freedom. Recall that 𝜌𝑒 enters the expression for the stress

tensor through the effective elastic modulus, 𝐸 (Equation (2.3.1)). Since the stress is linear in 𝐸 ,

we simply replace 𝐸 with the partial derivative, 𝜕𝐸
𝜕𝜌𝑒

= 𝑝 𝜌
𝑝−1
𝑒 𝐸0, in the stress computation in order

to obtain the necessary derivative, 𝜕σ̂
𝜕𝜌𝑒

, above.

Subsequently, we provide the partial derivative of the compliance function with respect to the

solution vector at the final time increment, z𝑁 . Noting again that the Dirichlet degrees of freedom

are known and constant we obtain the following expression,

𝜕𝐶

𝜕z𝑁
=

[
𝜕f𝐷
𝜕z𝑁

]𝑇
u𝐷 (2.3.28)

This may be computed via a summation of the rows of the monolithic jacobian matrix at the final

time increment corresponding to the Dirichlet displacement degrees of freedom, multiplied by the

corresponding prescribed displacement.

Fracture energy functional derivatives

The required derivatives of the fracture energy functional (𝜓̂ 𝑓 in Equation (2.2.2)) are simple to

compute. Since there is no explicit dependence on the pseudo-densities, we see that 𝜕𝜓̂ 𝑓
𝜕𝜌𝑒

= 0. Next
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we compute the partial derivative with respect to the solution vector at the final time increment,
𝜕𝜓̂ 𝑓

𝜕z𝑁
. First, we substitute the phase field finite element approximations (i.e. Equations (2.2.34) and

(2.2.35) ) into the expression for the fracture energy functional,

𝜓̂ 𝑓 (N𝑑d̄) = 𝐺𝑐

∫
Ω̂

(
1

4𝑙0
(
N𝑑d̄

)2 + 𝑙0
(
B𝑑d̄

)
·
(
B𝑑d̄

) )
𝑑𝑉 (2.3.29)

where we see that 𝜕𝜓̂ 𝑓

𝜕ū𝑁
= 0 and 𝜕𝜓̂ 𝑓

𝜕h𝑁
= 0. The only nonzero part of the required derivative is with

respect to the phase field and may be expressed as follows

𝜕𝜓̂ 𝑓

𝜕d̄
= 𝐺𝑐

∫
Ω̂

(
1

2𝑙0
N𝑇
𝑑N𝑑d̄ + 2𝑙0B𝑇

𝑑B𝑑d̄

)
𝑑𝑉 (2.3.30)

completing the expression, 𝜕𝜓̂ 𝑓
𝜕z𝑁

.

Sensitivity verification

The Schur-complement procedure to compute the path-dependent sensitivities is verified for the

following example problem by computing the approximate sensitivities numerically with simple

finite differences for each element in the domain. The geometry, mesh, and boundary conditions are

shown in Figure 2.4a and the phase field is shown on the deformed shape at the peak load in Figure

2.4b. A prescribed downward displacement is linearly increased to a value of 0.1mm and then

linearly decreased to a value of 0.05mm in order to trigger the path-dependence due to irreversibility.

Relevant material properties used in this example are provided in Table 2.1, corresponding to a mild

steel. In this example, the length scale parameter, 𝑙0, is set to 0.5𝑚𝑚 and the pseudo-densities are

initialized to 0.9.

Table 2.1: Material properties for mild steel [168]

𝐸0 [GPa] 𝜈 𝐺𝑐 [𝑘𝐽/𝑚2]
200 0.29 12

The finite element mesh consists of 812 4-node quadrilateral elements. A simple forward
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(a) Geometry and mesh (b) Phase field at peak load

Figure 2.4: Verification problem for analytical sensitivity computation

difference approximation of the sensitivities is used such that for a function, 𝑓 (ρ), the sensitivity is

approximated by

𝑑𝑓

𝑑𝜌𝑒
≈
𝑓 (𝜌1, . . . , 𝜌𝑒 + Δ𝜌𝑒, . . . , 𝜌𝑁𝑒𝑙𝑒𝑚) − 𝑓 (𝜌1, . . . , 𝜌𝑒, . . . , 𝜌𝑁𝑒𝑙𝑒𝑚)

Δ𝜌𝑒
(2.3.31)

where a full, nonlinear finite element analysis is required for each element density perturbation. In

this procedure the density perturbation and density exponent were set to Δ𝜌𝑒 = 10−5 and 𝑝 = 3,

respectively.

Both, the compliance and fracture energy functional sensitivities are verified and the results are

illustrated in Figure 2.5. Note that the sensitivities have been sorted consistently from smallest to

largest value for clarity. It can be seen that numerical differentiation and the analytical calculation

based on the Schur-complement give nearly identical results.

2.4 Numerical examples

In this section we present two examples demonstrating the effectiveness of this approach. In

the first example (the portal frame structure) an investigation into the effect of the energy split

(volumetric-deviatoric/principal) from Section 2.2.1 is also explored. Additionally, we investigate
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(a) Compliance sensitivity
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(b) Fracture energy sensitivity

Figure 2.5: Numerical verification of the analytical sensitivities

the effect of the degradation function (cubic/quadratic) on the final topology and also explore the

change in the fracture energy functional sensitivities with respect to changes in the length scale

parameter, 𝑙0, and the degradation function, 𝑔(𝑑).

The solution of the forward problem is implemented in the finite element program, FEAP

[169], which leverages the PETSc library for parallel, sparse linear algebra [170]. Additionally, the

open source interior point optimizer, IPOPT [171], is used in which the analytical gradients of the

objective and constraint functions are utilized. This optimizer provides a nice C++/Fortran interface

through which it is convenient to couple a finite element solver. An L-BFGS style update of the

hessian of the Lagrangian is used by the optimizer with the maximum number of associated history

vectors set to 30. Additionally, the solver convergence tolerance was set to 10−5 as is discussed in

Lambe et al. [172]. Mesh generation was performed using CUBIT [173] and post-processing was

completed using Paraview [174] and Matplotlib [175]. Finally, note that the lower bound on the

pseudo-densities, 𝜌𝑚𝑖𝑛, is set to 0.001 in all subsequent analyses. The corresponding lower bound

on the design variables is obtained by substituting 𝜌𝑚𝑖𝑛 for 𝜌𝑒 and 𝜃𝑚𝑖𝑛 for 𝜌̂𝑒 into Equation (2.3.6)

and solving for 𝜃𝑚𝑖𝑛 given a specified value of 𝛽.
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2.4.1 Portal frame

In the following example, the portal frame structure shown in Figure 2.6 is subjected to a

prescribed downward displacement distributed over a narrow area at the top of the frame. The

geometry is discretized with 7,636 quadrilateral elements and the relevant material and numerical

parameters are provided in Table 2.1 and 2.2, respectively.

4.5 m

2
.2

5 
m

0.
7

5  
m

û

0.35 m

0.1 m

Figure 2.6: Portal frame geometry and finite element mesh

Table 2.2: Portal frame numerical parameters

𝑟𝑚𝑖𝑛 [𝑚] 𝑝 𝐶𝑚𝑖𝑛 [𝑘𝐽]
0.1 3 14

In this example we first compare the effect of the energy split, which determines the evolution

of the phase field parameter, on the final topology of the structure. In order to draw a comparison

between the two, we take the following approach. Consistent with previous work [176, 83], we
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view the length scale parameter as a material parameter and calibrate the model response using

the two energy splits to yield similar force-displacement curves. First, we set the length scale

using the principal split to 𝑙0 = 0.1𝑚. All of the element pseudo-densities are set to 1 and the

frame is loaded until fracture. Subsequently the volumetric-deviatoric energy split is used and

the force-displacement curve is approximately calibrated to that of the principal split using the

length scale parameter. Since more of the stored elastic energy is typically degraded when using the

volumetric-deviatoric split, the value of 𝑙0 is decreased to 0.045𝑚 during calibration. The resulting

force-displacement curves are provided in Figure 2.7 and the crack topologies are given in Figure

2.8. In this study we use the quadratic degradation function, presented in Equation (2.2.9), by

setting the parameter 𝑠 = 2. It is clearly seen that both approaches give a similar response of the

original non-optimized structure, which serves as the basis for the following comparison.
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Figure 2.7: Result of force-displacement curve calibration

After calibration, each model (with the respective length scale parameter) is optimized first

without the fracture energy functional constraint and subsequently with it. A peak downward

prescribed displacement of 1.9𝑚𝑚 is applied. This corresponds to a value which nearly induces

fracture at the re-entrant corner when the optimal topology using only linear elastic physics (shown
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(a) Principal split (b) Volumetric-deviatoric split

Figure 2.8: Phase field crack topologies with different elastic energy splits

in Figure 2.9a) is selected. Note that this load does not induce fracture in any of the subsequent

locally optimal designs. The load should be chosen large enough to induce non-negligible values

of phase field. This simply avoids the potential numerical difficulties associated with computing

the value of the fracture energy functional and its sensitivity with values near machine precision.

The authors have obtained nearly identical results for this example using half of the specified

applied displacement. The resulting topologies without the fracture energy functional constraint are

provided in Figure 2.9 along with the topology resulting from simple linear elastic physics. Here

we see that the designs obtained without the additional constraint are all quite similar.

(a) Linear elastic (b) Principal split (c) Vol-dev split

Figure 2.9: Topologies obtained without a fracture energy functional constraint

In order to draw a qualitative comparison of the resulting constrained topologies, the upper

bound on the fracture energy functional, 𝜓̂𝑚𝑎𝑥
𝑓

, is slowly decreased (in each case to a different value)

until the optimization problem becomes infeasible. Infeasibility is marked by the inability of the

optimizer to satisfy the constraints within 500 iterations.

As shown in Figure 2.10, the fracture energy functional constraint produces very different

topologies with the different energy splits in this example. When using the volumetric-deviatoric
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split, the center region of the frame is filled in with full density due to the introduction of phase

field throughout this region. In contrast, the principal split results in very little phase field creation

at the top of the frame which is primarily in compression (see Figure 2.11). Consequently, a much

larger hole is placed in this region.

(a) Principal split (b) Volumetric-deviatoric split

Figure 2.10: Topologies obtained with a fracture energy functional constraint

(a) Principal split (b) Volumetric-deviatoric split

Figure 2.11: Phase field comparison at final load step

Subsequently each of the resulting designs with and without the fracture energy functional

constraint are loaded until fracture. The resulting force-displacement and fracture energy functional

curves are provided in Figure 2.12. The optimized result using the principal split results in a

19.85% increase in the peak load prior to fracture, compared with a 15.79% increase using the

volumetric-deviatoric split. The numerical results are tabulated in Table 2.3. Note that the optimized

structure using the principal split of the elastic energy results in a lower volume fraction and a more
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fracture-resistant design. Again we note that the lower volume fraction implies a lower weight

structure since we use a single material with uniform density.

Consequently, in the subsequent examples, only results obtained using the principal energy split

are presented. Figure 2.13 illustrates the optimizer convergence histories for both energy splits,

demonstrating that the fracture energy functional constraint is active in each final design.

Table 2.3: Portal frame results (FEC = Fracture Energy Constraint)

Energy Split FEC Volume Fraction Peak Load [𝑀𝑁] 𝜓̂𝑚𝑎𝑥
𝑓
[𝐽]

Principal No 0.382 8.06 172
Principal Yes 0.435 9.66 86
Vol-Dev No 0.389 7.98 255
Vol-Dev Yes 0.443 9.24 178
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Figure 2.12: Force-displacement (a) and fracture energy functional (b) curves. Note that FEC =
Fracture Energy Constraint

Finally, since we select the principal split of the elastic energy for the aforementioned reasons,

we provide exclusively the results using the principal split versus the linear elastic results in Figure

2.14 for clarity.
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Figure 2.13: Convergence history for each energy split demonstrating that the fracture energy
functional constraint is active. The pseudo-densities are uniformly initialized to 0.5 and the final
converged designs correspond to Figure 2.10.
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Figure 2.14: Force-displacement (a) and fracture energy functional (b) curves using the principal
split of the elastic energy and the quadratic degradation function for the three topologies given in
Figures 2.9a, 2.9b, and 2.10a Note that the linear elastic curves correspond to the forward problem,
employing the phase field method for fracture using the optimal topology obtained without the
phase field method (illustrated in Figure 2.9a)

Portal frame results using cubic degradation function

Next, we briefly investigate the effect of the parameterized cubic degradation function (provided

in Equation (2.2.9)), which was originally proposed by Borden [160]. To this end, we set 𝑠 = 0.5

and repeat the portal frame optimization procedure using the principal split of the elastic energy.
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Both quadratic/cubic degradation functions are illustrated in Figure 2.15. Since increasingly brittle

behavior is obtained with the cubic function, a larger displacement must be applied in order to

achieve a non-negligible level of phase field. Hence, a downward displacement of 2.65𝑚𝑚 is applied

and the corresponding minimum compliance, 𝐶𝑚𝑖𝑛, is set to 28𝑘𝑁 (versus the 1.9𝑚𝑚 and 14𝑘𝑁

using the quadratic degradation function). These values were selected using the cubic degradation

function and topology from Figure 2.9a. The applied displacement was increased until the value

of the fracture energy functional matched the value using the quadratic degradation function, the

same topology, and the previously applied displacement of 1.9𝑚𝑚. At this new load level, the

corresponding compliance (28𝑘𝑁) was set as the new lower bound. This procedure serves as the

basis for our comparison. The upper bound on the fracture energy functional is slowly decreased,

again, until the problem becomes infeasible, consistent with the previously presented methodology.

The resulting topology is provided in Figure 2.16 and the associated force-displacement curves

are given in Figure 2.17a. Although one may not compare the resulting topologies directly since

the physics and constraint bounds are different, we note that the resulting topologies have almost

indistinguishable general features. Therefore, in this example, the designs do not appear to be

sensitive to the degradation function selected.

As shown in Figure 2.17a, the cubic degradation function results in the expected increasingly

brittle behavior with less softening prior to fracture. The design obtained using the quadratic

degradation function results in a 38.4% increase in the peak load with respect to the linear elastic

design (i.e. the topology given in Figure 2.9a), while the design obtained using the cubic degradation

function results in a 42.8% increase.

Finally, note that it is merely a coincidence that the resulting force-displacement curves are

similar for the linear elastic design using the cubic degradation function and for the topology

obtained by constraining the fracture energy functional with a quadratic degradation function. In

the former case, the cubic degradation function effectively gives the material response increased

strength, while in the latter the strength is gained by changing the topology of the structure.
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Figure 2.15: Degradation function in Equation (2.2.9)

(a) Quadratic (𝑠 = 2) (b) Cubic (𝑠 = 0.5)

Figure 2.16: Topology obtained using a cubic degradation function, compared with the quadratic
degradation function result from Figure 2.10 (both results were obtained by constraining the fracture
energy functional)

Effect of 𝑙0 and 𝑔(𝑑) on the fracture energy functional sensitivities

Finally we investigate the sensitivity of the optimization procedure with respect to the length

scale parameter, 𝑙0, and the degradation function, 𝑔(𝑑). By changing the material behavior, one

may drastically change the constraint functions themselves. In general, it is difficult to compare

results or number of optimization iterations directly since topology optimization problems are

usually non-convex. In order to provide some potentially useful insight in an optimizer-independent
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Figure 2.17: Force-displacement (a) and fracture energy functional (b) curves for two different
degradation functions (FEC = Fracture Energy Constraint, LE = Linear Elastic Design). Note that
the linear elastic design refers to the optimal topology obtained without the phase field method
(illustrated in Figure 2.9a), however the curves shown correspond to the forward problem, employing
the phase field method for fracture.

manner, we present the sensitivity contours of the fracture energy functional, 𝜓̂ 𝑓 (Equation (2.2.2)),

corresponding to three different values of this constraint function, each differing by an order of

magnitude. It is very difficult to say anything about the nonlinearity of this function in the design

space since the dimension of the design space is so large, however, we believe this simple strategy

for a fixed design provides some insight.

The portal frame example is used, along with the principal split of the elastic energy. The

projection parameter, 𝛽, from Equation (2.3.6) is set to 1 in order to have negligible effect on the

resulting sensitivities. Baseline contours using identical parameters from Section 2.4.1 are first

presented. Since changing 𝑙0 or the degradation function results in different values of 𝜓̂ 𝑓 before

fracture, a different prescribed displacement load is applied in each case in order to achieve the

same value of 𝜓̂ 𝑓 . The parameters used for this comparison are given in Table 2.4 and the three

different values of 𝜓̂ 𝑓 are given in Table 2.5. The largest of the three values corresponds to a state

of the system that is closest to fracture.

The resulting 𝜓̂ 𝑓 sensitivity contours for each case are provided in Figure 2.18 and the peak

sensitivity magnitudes are given in Table 2.6. For each corresponding value of 𝜓̂ 𝑓 , the change in
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Table 2.4: Parameters used for 𝜓̂ 𝑓 sensitivity comparison

𝑙0 [mm] 𝑠 from Equation (2.2.9)

Baseline parameters 0.1 2 (quadratic)

Effect of 𝑙0 0.2 2 (quadratic)

Effect of 𝑔(𝑑) 0.1 0.5 (cubic)

Table 2.5: Investigated values of the fracture energy functional, 𝜓̂ 𝑓

𝜓̂ 𝑓 [𝐽] 3.45 34.5 345

magnitude of the peak sensitivity varying either 𝑙0 or 𝑔(𝑑) is of interest.

(a) (3.45𝐽, 0.1𝑚𝑚, 2) (b) (34.5𝐽, 0.1𝑚𝑚, 2) (c) (345𝐽, 0.1𝑚𝑚, 2)

(d) (3.45𝐽, 0.2𝑚𝑚, 2) (e) (34.5𝐽, 0.2𝑚𝑚, 2) (f) (345𝐽, 0.2𝑚𝑚, 2)

(g) (3.45𝐽, 0.1𝑚𝑚, 0.5) (h) (34.5𝐽, 0.1𝑚𝑚, 0.5) (i) (345𝐽, 0.1𝑚𝑚, 0.5)

Figure 2.18: Fracture energy functional, 𝜓̂ 𝑓 , sensitivity contours. Subcaptions contain the tuple (𝜓̂ 𝑓 ,
𝑙0, 𝑠) from Table 2.4 and 2.5.

Based on the data provided in Table 2.6, the effect of increasing the length scale parameter,

𝑙0, is a relatively modest decrease in the peak sensitivity magnitude for each value of the fracture

energy functional. Since the peak sensitivity does not change drastically from a change in 𝑙0, it

seems that there is little numerical benefit (from an optimizer perspective) to choosing a different

value. Consequently, the authors believe 𝑙0 should be selected in the usual manner (i.e. such that the
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Table 2.6: Peak 𝜓̂ 𝑓 sensitivity magnitudes (percent difference with respect to the peak sensitivity
magnitude using the baseline parameters from Table 2.4 are provided in parentheses)

𝜓̂ 𝑓 = 3.45𝐽 𝜓̂ 𝑓 = 34.5𝐽 𝜓̂ 𝑓 = 345𝐽
Baseline param. 7.3𝑒-2 (-) 1.1𝑒0 (-) 5.1𝑒1 (-)

Effect of 𝑙0 7.0𝑒-2 (-4.1%) 9.0𝑒-1 (-15.9%) 2.5𝑒1 (-50.6%)

Effect of 𝑔(𝑑) 1.1𝑒-1 (59.4%) 2.6𝑒0 (144.3%) 2.7𝑒3 (5159.5%)

material response is more accurate).

However, changing the degradation function has a much larger impact on the peak sensitivity.

In the case corresponding to the largest value of the fracture energy functional, the peak sensitivity

increases by two orders of magnitude! Therefore, it is possible that if, during the optimization

procedure, the applied load results in a system state that is very close to the softening point for

the trial topology (corresponding to a larger value of the fracture energy functional), use of the

cubic degradation function may result in a large change in the constraint sensitivities. Consequently,

in this case, optimizer convergence may be impacted. Assuming the material response can be

adequately captured using the quadratic degradation function, it is likely beneficial from a numerical

perspective to avoid the use of the cubic degradation function. This is especially true in this case

since the resulting topologies do not appear to be substantially different.

2.4.2 Cantilever Beam

In this example, a simple cantilever beam problem is investigated. The geometry, mesh, and

boundary conditions are illustrated in Figure 2.19. The mesh consists of approximately 10,000

quadrilateral elements and the same material parameters from the previous example (shown in Table

2.1) are used with the exception of 𝑙0 which is set to 2𝑚𝑚. Additionally, the quadratic degradation

function, presented in Equation (2.2.9), is employed in this example by setting the parameter 𝑠 = 2.

The right edge of the beam is subjected to a prescribed downward displacement of 0.45𝑚𝑚.

This value is selected using the optimal topology from a linear elastic problem subject to the same

compliance constraint (Figure 2.20a). When this topology is loaded, a prescribed displacement
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Figure 2.19: Cantilever beam geometry, mesh, and boundary conditions

of 0.45𝑚𝑚 is slightly larger than the fracture inducing displacement. The relevant numerical

optimization parameters for this problem are provided in Table 2.7 and three optimized topologies

are presented in Figure 2.20.

Table 2.7: Cantilever beam numerical parameters

𝑟𝑚𝑖𝑛 [𝑚𝑚] 𝑝 𝐶𝑚𝑖𝑛 [𝐽] 𝜓̂𝑚𝑎𝑥
𝑓
[𝐽]

2.0 3 480 1.5

Figure 2.20a corresponds to the optimal result for a linear elastic material model with only

the compliance constraint. Figure 2.20b illustrates the topology using the coupled linear elastic

with phase field material model also without a constraint on the fracture energy functional. Note

that in this case the thickness of the members must be increased in order to satisfy the compliance

requirement since some of the elastic energy is degraded by the presence of nonzero phase field

values. Nevertheless, the general topology is close to the linear elastic design.

Finally, Figure 2.20c shows the optimal topology obtained when placing the fracture energy

functional constraint on the design. It is clear that this topology is significantly different from

the other two, which were obtained without this additional constraint. The design is no longer
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(a) Linear elastic (b) Compliance constraint only

(c) Constrained fracture energy functional

Figure 2.20: Cantliever beam optimized topologies

symmetric due to the constraint reinforcing regions with high tensile energy. This is similar to the

effect noted in Duysinx [177] where different stress limits are imposed in tension and compression.

Additionally, this asymmetry is also noted in Liu et al. [178] in which a multi-material structure is

studied with material interfaces primarily undergoing compression in the optimized designs.

The resulting values of the relevant functions are provided in Table 2.8. We note that for a 26.5%

increase in the volume fraction with respect to the linear elastic design (8.7% additional volume

fraction), the design resulting from the fracture energy functional constraint results in a 121.1%

increase in the peak load prior to fracture. The corresponding load displacement and fracture energy

functional curves for each design are provided in Figure 2.21 and the fractured states are illustrated

in Figure 2.22. It can be seen that this approach results in a design with significantly increased

strength when compared with the design obtained using only linear elastic physics.
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Table 2.8: Cantilever beam results

Volume Fraction Peak Load [𝑀𝑁] 𝜓̂𝑚𝑎𝑥
𝑓
[𝐽]

Linear Elastic 0.328 0.862 −
Compliance Constraint Only 0.363 1.165 5.8
Constrained Fracture Energy 0.415 1.906 1.5
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Figure 2.21: Cantilever beam force-displacement (a) and fracture energy functional (b) curves.
Note that the linear elastic curves correspond to the forward problem, employing the phase field
method for fracture using the optimal topology obtained without the phase field method (illustrated
in Figure 2.22a)

2.5 Conclusion

A framework utilizing density-based topology optimization for producing structures that are

more resistant to brittle fracture is proposed which employs the phase field formulation for brittle

fracture prediction. It is shown that constraining the phase field approximation of the fracture energy

before fracture may induce large topological changes that result in a higher load carrying capacity

prior to fracture. Two examples are provided which demonstrate the effectiveness of this approach.

Additionally, we briefly explore the use of the two most common stored elastic energy splits and

degradation functions in the literature, concluding that the use of the spectral energy split along

with the typical quadratic degradation function may be preferred.
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(a) Linear elastic (b) Compliance constraint only

(c) Constrained fracture energy functional

Figure 2.22: Final phase field fracture contours corresponding to Figure 2.21
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Chapter 3

An improved optimization formulation for brittle fracture resistance

This chapter is published as a journal article in: J. B. Russ and H. Waisman, “A novel topology

optimization formulation for enhancing fracture resistance with a single quasi-brittle material”,

International Journal for Numerical Methods in Engineering, vol. 121, no. 13, pp. 2827–2856,

2020, doi: 10.1002/nme.6334.

3.1 Introduction

With respect to the previous chapter, here we propose several significant enhancements for

obtaining fracture resistance of structures comprised of a single quasi-brittle material. A new

function, which we refer to as the integrated fracture energy, is introduced into an aggregate

objective that provides additional path information to the optimizer. This aggregate objective

function, comprised of the volume fraction and the integrated fracture energy, is minimized,

providing low-weight structures with significantly increased strength prior to fracture. As mentioned

in the previous chapter, no fracture took place during the optimization iterations. Fracture is avoided

due to the sudden change in system state before and after crack propagation significantly impacting

optimizer convergence as a result of large discontinuities in the constraint functions chosen (e.g.

the compliance and fracture energy). However, the functions proposed in this chapter provide the

optimizer with additional information through the function sensitivities that allows fracture to take

place during the initial design iterations with significantly less impact on optimizer convergence.

Additionally, due to the significant nonlinearity associated with brittle fracture, we propose a

constraint relaxation continuation scheme which assists the optimizer in finding an unfractured

topology during these initial iterations.
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Additionally, a phase field fracture formulation with an energetic threshold presented in Miehe

et al. [24] is employed in order to avoid damage accumulation at low stress levels (here we note

an energetic threshold had previously been proposed by Pham et al. [179] among others). This

also greatly enhances the local control of the topology during the optimization process since phase

field only accumulates in regions in which the energetic threshold has been exceeded as opposed to

everywhere with nonzero tensile energy. Although this method has been used before in similar works

[18, 17], here it takes on additional importance. Namely, since the optimizer eventually arrives at a

set of designs that do not fracture under the prescribed load, this local accumulation of phase field

acts as a fracture indicator in regions where cracks may nucleate. Since the magnitude of the phase

field in these regions is typically much less than 1 in later iterations, it is important for the phase

field to only accumulate locally in regions in which cracks may nucleate so that the sensitivities

drive relevant local topological changes. Without the energetic threshold, structural members that

are in tension are artificially strengthened due to the unnecessary energy degradation caused by the

accumulation of nonzero phase field values (this phenomenon was also noted in the previous chapter

for the cantilever beam example). In the current chapter, this energetic crack driving force is also

smoothed in an effort to improve the convergence characteristics of the optimization process. This

allows nonzero function sensitivities to be computed even in regions in which the tensile energy

density does not exceed the critical value, avoiding the discontinuity in the derivative when the

tensile energy density is close to the threshold but has not yet exceeded it.

The remainder of the chapter is organized as follows: In Section 3.2 we review the governing

equations for quasi-static brittle fracture via the phase field formulation and introduce our smooth

version of the energetic threshold proposed in Miehe et al. [24]. We then provide the details of the

density-based design parameterization, define the optimization problem, and derive the analytical

sensitivities in Section 3.3. Additionally, we compare the analytical sensitivities of the chosen

objective and constraint functions against those in the previous chapter in an effort to justify our

selection. Finally, the results from two benchmark numerical examples are presented in Section 3.4.
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3.2 Phase field fracture model with energetic threshold

In this section we outline a phase field fracture formulation with energetic threshold based on the

work of Miehe et al. [24], along with the details of the finite element discretization and numerical

solution method.

3.2.1 Phase field fracture formulation

In a manner similar to the standard phase field fracture formulation outlined in Section 2.2, the

total potential energy of a continuum body, Ω, may be expressed as

Π(u, Γ) = 𝑊𝑒𝑙𝑎𝑠 (∇u) +𝑊 𝑓 𝑟𝑎𝑐 (Γ) −𝑊𝑒𝑥𝑡 (u) (3.2.1)

in which the stored elastic energy, 𝑊𝑒𝑙𝑎𝑠, is a function of the displacement gradient (∇u), the

fracture surface energy, 𝑊 𝑓 𝑟𝑎𝑐, depends on the crack surface, and we assume the external work,

𝑊𝑒𝑥𝑡 , is only a function of the displacement field. Here we let u represent the displacement field

and Γ represent the crack surface. Similar approximations of these quantities are used in which the

key difference rests in the phase field approximation of the fracture surface energy. As presented

in Miehe et al. [24], a strain criterion with an energetic threshold may be introduced in order to

prevent degradation of the elastic energy at low stress levels. This updated model is used in this

chapter where the fracture surface energy approximation may be expressed as

𝑊̂ 𝑓 𝑟𝑎𝑐 (𝑑) =
∫
Ω

2𝜓𝑐
(
𝑑 + 2𝑙20∇𝑑 · ∇𝑑

)
𝑑𝑉 (3.2.2)

in which 𝜓𝑐 represents a critical fracture energy per unit volume and the length scale, 𝑙0, controls

the width of the regularized fracture surface. A comparison of a Mode-I fracture using the phase

field model with and without the energy threshold is provided in Figure 3.1 (both of these methods

are detailed in Miehe et al. [24] ). It is clear that use of the energetic threshold prevents much of the

accumulation of phase field away from the fracture surface, thereby avoiding unnecessary elastic
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energy degradation. The absolute difference between the phase field in Figures 3.1a and 3.1b is

provided in Figure 3.2a for convenience. Additionally we provide a force-displacement curve in

Figure 3.2b which is intended to illustrate the significant deviation from linear elastic behavior

without the energetic threshold.

(a) Without energy threshold (b) With energy threshold

Figure 3.1: Mode-I fracture modeled with and without the energy threshold
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(b) Force-displacement behavior

Figure 3.2: (a) Absolute difference between the phase field in Figure 3.1a and 3.1b. (b) Force-
displacement comparison with responses calibrated to the same the peak load

The stored isotropic elastic energy density is additively decomposed into tensile and compressive

components according to [23],

𝜓𝑒 (ε, 𝑑) = 𝜓−𝑒 (ε) + (𝑔(𝑑) + 𝑘)𝜓+𝑒 (ε) (3.2.3)
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where the energy split based on a spectral decomposition of the strain tensor is used [22] (expressed

as ε =
∑3
𝑎=1 𝜀𝑎n𝑎 ⊗ n𝑎 where {(𝜀𝑎,n𝑎), 𝑎 = 1, 2, 3} represent the principal strains and associated

directions). The compressive and tensile elastic energy densities may be defined as

𝜓−𝑒 (ε) =
𝜆

2
〈𝜀1 + 𝜀2 + 𝜀3〉2− + 𝜇

(
〈𝜀1〉2− + 〈𝜀2〉2− + 〈𝜀3〉2−

)
(3.2.4)

𝜓+𝑒 (ε) =
𝜆

2
〈𝜀1 + 𝜀2 + 𝜀3〉2+ + 𝜇

(
〈𝜀1〉2+ + 〈𝜀2〉2+ + 〈𝜀3〉2+

)
(3.2.5)

in which (𝜆, 𝜇) are the standard lame parameters of the undamaged material. Note that 𝜆 =

𝐸𝜈/((1+𝜈) (1−2𝜈)) and 𝜇 = 𝐸/(2(1+𝜈)), where 𝐸 and 𝜈 are the elastic modulus and Poisson’s ratio,

respectively. The Macaulay brackets are defined such that 〈·〉+ = max(·, 0) and 〈·〉− = min(·, 0).

The total stored elastic energy is then obtained via integration over the volume.

𝑊̂𝑒𝑙𝑎𝑠 (ε, 𝑑) =
∫
Ω

𝜓𝑒 (ε, 𝑑)𝑑𝑉 (3.2.6)

The phase field parameter, 𝑑, affects the stored elastic energy via the action of the so-called

degradation function, 𝑔(𝑑) = (1 − 𝑑)2. In addition to the phase field parameter, the stored elastic

energy is postulated to be a function of the small strain tensor, ε, defined as the symmetric gradient

of the displacement field, ε(u) = 1
2
(
∇u + ∇u𝑇

)
. Finally, we include a small constant parameter, 𝑘 ,

in order to ensure the problem remains well-posed [22]. In all subsequent examples in this chapter

𝑘 is set to 10−8.

Note that the stress may be obtained directly from the elastic potential through standard

arguments in thermodynamics. That is,

σ =
𝜕𝜓−𝑒
𝜕ε︸︷︷︸
σ−

+(𝑔(𝑑) + 𝑘)
𝜕𝜓+𝑒
𝜕ε︸︷︷︸
σ+

(3.2.7)

where σ is the damaged stress tensor and σ−/σ+ are the undamaged, compressive and tensile stress
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tensors, respectively. The constitutive law then takes the following form,

σ = (𝑔(𝑑) + 𝑘)
(
𝜆 〈tr[ε]〉+ 1 + 2𝜇ε+

)
+ 𝜆 〈tr[ε]〉− 1 + 2𝜇ε− (3.2.8)

where ε+ and ε+ may be expressed via ε± =
∑3
𝑎=1 〈𝜀𝑎〉±n𝑎 ⊗ n𝑎. Note that 1 is the second order

identity tensor defined as 1 = 𝛿𝑖 𝑗e𝑖 ⊗ e 𝑗 , in which 𝛿𝑖 𝑗 is the Kronecker delta and {e𝑖} represents an

orthonormal basis.

Inserting the energy approximations in Equations (3.2.2) and (3.2.6) into the total potential

energy in Equation (3.2.1), performing some algebra, and applying standard variational arguments

yields the strong form of the governing equations.

∇ · σ = 0 in Ω (3.2.9)

2𝜓𝑐𝑑 − 8𝑙20𝜓𝑐∇ · ∇𝑑 − 2(1 − 𝑑) (𝜓+𝑒 − 𝜓𝑐) = 0 in Ω (3.2.10)

n · σ = t on 𝜕Ω𝑡 (3.2.11)

u = û on 𝜕Ω𝑢 (3.2.12)

n · ∇𝑑 = 0 on 𝜕Ω (3.2.13)

Equation (3.2.9) represents quasi-static equilibrium in the absence of body forces while Equation

(3.2.10) governs the evolution of the phase field. Finally, Equation (3.2.10) is modified in order to

enforce irreversibility of crack growth. The local history field,H , proposed in Miehe et al. [23],

is used in order to ensure the local crack driving force is nondecreasing. Note that in the equation

below, 𝑡, is a pseudo-time variable related to the incremental external loading.

H(x, 𝑡) = max
𝜏∈[0,𝑡]

〈
𝜓+𝑒 (x, 𝜏) − 𝜓𝑐

〉
+ (3.2.14)

In an effort to improve the convergence characteristics of the optimization procedure introduced

later, the argument of the max operator is smoothed via a Kreisselmeier-Steinhauser-type function
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controlled by the smoothing parameter, 𝜂𝑘𝑠. This is similar to the smoothed damage evolution law

described in James and Waisman [13]. The smooth approximation, H𝑠, where H𝑠 ≈ H , may be

expressed as

H𝑠 (x, 𝑡) = max
𝜏∈[0,𝑡]

𝜓+𝑒 (x, 𝜏)
𝜂𝑘𝑠

ln
[
1 + exp

(
𝜂𝑘𝑠

(
1 − 𝜓𝑐

𝜓+𝑒 (x, 𝜏)

))]
(3.2.15)

We propose this form in order to delay a potential numerical overflow of the exponential function

and maintain the accuracy of the approximation (i.e. we avoid having large numbers within the

exponential function which are typical of a tensile energy density, 𝜓+𝑒 (x, 𝜏) for certain engineering

problems). The argument is set to 0 whenever 𝜓+𝑒 is 0 in order to avoid the singularity and the effect

of 𝜂𝑘𝑠 is illustrated in Figure 3.3. Note that the smooth threshold has very little effect on the physics,

as is demonstrated in A.2. The final phase field equation is provided below.
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Figure 3.3: Threshold function versus smooth replacement for 𝜓𝑐 = 100

2𝜓𝑐𝑑 − 8𝑙20𝜓𝑐∇ · ∇𝑑 − 2(1 − 𝑑)H𝑠 = 0 in Ω (3.2.16)

3.2.2 Finite element discretization

The weak form of the governing equations is obtained in the usual manner by multiplication

of the strong form equations with admissible test functions, integration over the domain, and
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application of the divergence theorem. The test functions are denoted w𝑢 and 𝑤𝑑 for the linear

momentum and phase field equations, respectively. The residual form of the equations for the

displacement field, 𝑅𝑢, and phase field, 𝑅𝑑 , can then be written as follows

𝑅𝑢 =

∫
Ω

σ : ∇w𝑢𝑑𝑉 −
∫
𝜕Ω𝑡
t ·w𝑢𝑑𝑆 = 0 (3.2.17)

𝑅𝑑 =

∫
Ω

(
2𝜓𝑐𝑑 𝑤𝑑 + 8𝑙20𝜓𝑐∇𝑑 · ∇𝑤

𝑑 − 2(1 − 𝑑)H𝑠 𝑤
𝑑
)
𝑑𝑉 = 0 (3.2.18)

The above equations are then discretized and solved incrementally using the finite element method

with appropriately chosen finite dimensional subspaces. The 2D domain is partitioned using 4-node

quadrilateral elements and the same Lagrange basis functions are used for the test and trial spaces,

consistent with the Galerkin formulation. Within an element, the approximate displacement field

and phase field are both interpolated with bilinear shape functions such that

u(x) ≈Nu(x)ū, 𝑑 (x) ≈N𝑑 (x)d̄ (3.2.19)

ε(u(x)) ≈ Bu(x)ū, ∇𝑑 (x) ≈ B𝑑 (x)d̄ (3.2.20)

The symbolic representation of the global interpolation matrices for the displacement and phase

field are denoted byNu andN𝑑 , respectively, while the vectors of the nodal degrees of freedom are

represented with ū and d̄. Similarly, the matricesBu andB𝑑 contain the derivatives of the relevant

shape functions. The global discretized residual equations may then be expressed as

Rū =

∫
Ω̂

B𝑇
uσ̂ 𝑑𝑉 −

∫
𝜕Ω̂𝑡
N𝑇

ut 𝑑𝑆 = 0 (3.2.21)

Rd̄ =

∫
Ω̂

(
2𝜓𝑐N𝑇

dNd + 8𝑙20𝜓𝑐B
𝑇
dBd

)
d̄ 𝑑𝑉−∫

Ω̂

2(1 −Ndd̄)N𝑇
d H𝑠 𝑑𝑉 = 0

(3.2.22)

where, σ̂ is the stress tensor in Voigt notation and Ω̂ represents the discretized domain. Note that

although we express the global residual form for convenience, in practice the contributions are
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computed element-wise and assembled into the global system.

For each increment in load, the nodal solution may be obtained by an iterative Newton method,

in which the solution is updated via the linearized nodal residual equations until a tolerance on the

relative 𝑙2-norm of the residual is obtained. Grouping these equations,Ry = [Rū ;Rd̄], and the

degrees of freedom, y = [ū ; d̄], we have

y (𝑘+1) = y (𝑘) −
[
𝜕R(𝑘)y

𝜕y

]−1

R(𝑘)y (3.2.23)

where the superscript 𝑘 implies the quantity corresponds to iteration 𝑘 and the Jacobian matrix may

be expressed as

J =

[
𝜕Ry

𝜕y

]
=


Jūū Jūd̄

Jd̄ū Jd̄d̄

 (3.2.24)

In contrast to the previous chapter in which the nodal solution was updated monolithically,

Equation (3.2.23) is replaced with a staggered update of each nodal variable via the following

equations,

ū(𝑘+1) = ū(𝑘) −
[
J (𝑘)ūū

(
ū(𝑘) , d̄(𝑘)

)]−1
R(𝑘)ū

(
ū(𝑘) , d̄(𝑘)

)
(3.2.25)

d̄(𝑘+1) = d̄(𝑘) −
[
J (𝑘)
d̄d̄

(
ū(𝑘+1) , d̄(𝑘)

)]−1
R(𝑘)

d̄

(
ū(𝑘+1) , d̄(𝑘)

)
(3.2.26)

Each of the relevant terms in the jacobian matrix may be computed as defined below.

Jūū =
𝜕Rū

𝜕ū
=

∫
Ω̂

B𝑇
uDBu 𝑑𝑉 (3.2.27)

Jd̄d̄ =
𝜕Rd̄

𝜕d̄
=

∫
Ω̂

(
(2𝜓𝑐 + 2H𝑠)N𝑇

dNd + 8𝑙20𝜓𝑐B
𝑇
dBd

)
𝑑𝑉 (3.2.28)

Jūd̄ =
𝜕Rū

𝜕d̄
=

∫
Ω̂

−2(1 −Ndd̄)B𝑇
uσ̂
+Nd 𝑑𝑉 (3.2.29)

Jd̄ū =
𝜕Rd̄

𝜕ū
=

∫
Ω̂

2(1 −Ndd̄)N𝑇
d

𝜕H𝑠

𝜕ū
𝑑𝑉 (3.2.30)

The constitutive matrix,D, used in Equation (3.2.27), is related to the tensor form of the stress-strain
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constitutive law which we have explicitly provided in A.1. The jacobian and residual equations

are integrated using a standard 4-point Gauss quadrature rule for a quadrilateral element and

the irreversibility requirement is enforced via a history variable stored at each quadrature point.

Additionally, the staggered solution algorithm is outlined below. Note that this procedure is largely

identical to that of Miehe et al. [23] except that we employ the residual convergent variant of the

original algorithm, in a manner similar to [180].

Algorithm 1 Iterative staggered update of nodal degrees of freedom, (ū, d̄)
1. 𝑡 ← 0
2. ū, d̄← 0
3. while 𝑡 < 𝑡 𝑓 𝑖𝑛𝑎𝑙 do
4. 𝑡 ← 𝑡 + Δ𝑡
5. û← min(𝑡, 1.0) · û 𝑓 𝑖𝑛𝑎𝑙 {Update prescribed displacements}
6. 𝑘 ← 0
7. while | |R(𝑘)ū | |2 / | |R

(0)
ū | |2 > 10−8 or | |R(𝑘)

d̄
| |2 / | |R(0)d̄

| |2 > 10−8 do
8. 𝑘 ← 𝑘 + 1
9. Compute J (𝑘)ūū andR(𝑘)ū

10. Update ū via Equation (3.2.25)

11. UpdateH𝑠 using updated ū

12. Compute J (𝑘)
d̄d̄

andR(𝑘)
d̄

13. Update d̄ via Equation (3.2.26)

14. end while
15. end while

3.2.3 Expanded form of the discretized equations

Path-dependence is introduced into the governing equations via the history variable in Equation

(3.2.15) in order to satisfy irreversibility requirements for the evolution of the phase field. Consequently,

functions used in the optimization problem definition which have a dependence on the field quantities

(u, 𝑑) will also be dependent on the solution path. Computation of the function sensitivities in this

case may be simplified by introducing another independent variable, ℎ, at every quadrature point

in the domain which replaces the history function, H𝑠. This is similar to the procedure outlined

in Alberdi et al. [50] for the local variables of a plasticity model which evolve in time according
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to their own rules. Additionally, introducing this new independent variable during the sensitivity

analysis allows the residual equations to be written such that they depend only on the solution at the

current and previous time steps, rather than the entire time history preceding the current time (since

the history function is a maximum over all previous time increments).

The evolution of this new quantity is controlled by a corresponding additional equation which is

added to the monolithic system. Note that the number of additional equations is also equal to the

number of quadrature points in the finite element mesh. These equations take the following form

𝐻𝑛+1(ξ𝑖) = 0 =


ℎ𝑛+1(ξ𝑖) − ℎ𝑛 (ξ𝑖), if 𝛼(ξ𝑖) < ℎ𝑛 (ξ𝑖)

ℎ𝑛+1(ξ𝑖) − 𝛼(ξ𝑖), otherwise
(3.2.31)

where ξ𝑖 corresponds to the 𝑖𝑡ℎ quadrature point in the global finite element mesh and 𝛼 represents

the argument of the max operator in Equation (3.2.15), namely,

𝛼(ξ𝑖) =
𝜓+𝑒 |ξ𝑖
𝜂𝑘𝑠

ln
[
1 + exp

(
𝜂𝑘𝑠

(
1 − 𝜓𝑐

𝜓+𝑒 |ξ𝑖

))]
(3.2.32)

where the superscript (·)𝑛 implies the quantity corresponds to pseudo-time, 𝑡𝑛. Note that Equation

(3.2.31) essentially replaces the max operator in the history function (e.g. if the current value of 𝛼

is smaller than the previous, set the history function value equal to the previous, otherwise update

the history function with the current value). This updated form makes the residual equations at

time step (𝑖) dependent on only the solution at time step (𝑖) and (𝑖 − 1) rather than all previous

increments as previously mentioned. As a result, a less complex structure may be used during the

sensitivity analysis since the residual at step (𝑖) has the form R(𝑖) = R(𝑖) (ρ, z (𝑖) , z (𝑖−1)) with z

being the augmented solution vector defined below. Clearly this form requires far fewer derivatives

than the form used during the forward analyses since the original residual equations depend on all

previous solution states due to the maximum over all previous time present in Equation (3.2.15).

We form a monolithic system consisting of the displacement and phase field residual equations,

augmented with the additional gauss point equations,Hh =
[
𝐻𝑛+1(ξ1), . . . , 𝐻𝑛+1(ξ𝑁𝑔𝑝 )

]
(where
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𝑁𝑔𝑝 is the total number of quadrature points in the finite element model) which results in

R =

©­­­­­«
Rū

Rd̄

Hh

ª®®®®®¬
(3.2.33)

Note that the history function, H𝑠, in Rd̄ (Equation (3.2.22)) is replaced with the independent

variable, ℎ(ξ𝑖), when the integrand is evaluated at the corresponding quadrature point. The new

jacobian of this augmented system then takes on the following block structure

𝜕R

𝜕z
=



𝜕Rū
𝜕ū

𝜕Rū

𝜕d̄
0

0
𝜕Rd̄

𝜕d̄

𝜕Rd̄
𝜕h

𝜕Hh
𝜕ū 0 𝜕Hh

𝜕h


(3.2.34)

where z represents the augmented solution vector,

z =

©­­­­­«
ū

d̄

h

ª®®®®®¬
(3.2.35)

As previously mentioned, this new system structure will allow a less complex algorithm to be

constructed and used for computing analytical sensitivities of the functions used in the optimization

problem definition. This algorithm is presented later in Section 3.3.4.

3.3 Topology optimization formulation

In this section, the density-based design parameterization is first presented. Subsequently, the

optimization problem is clearly defined and the selection of the objective and constraint functions is

motivated. The filtering and projection schemes used in this chapter are presented and the analytical,
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path-dependent sensitivities for each of the relevant functions are derived. Finally, we draw a

comparison between the sensitivities of the functions used in this chapter and the previous in order

to further justify our selection.

3.3.1 Design parameterization

Consistent with the well-known SIMP formulation (Solid Isotropic Material with Penalization

[162, 163]), each finite element within the discretized domain is parameterized with a pseudo-

density, 𝜌𝑒, which is allowed to vary continuously in the range [0, 1]. A pseudo-density of 1

corresponds to an element completely filled with material, while a value of 0 approximates the effect

of a void in the domain. The pseudo-density for an element typically enters the constitutive relation

through the computation of effective material properties which we compute using the relations,

𝐸 =
(
𝜖𝑒 + (1 − 𝜖𝑒) 𝜌𝑝1

𝑒

)
𝐸0 (3.3.1)

𝜓𝑐 =
(
𝜖𝑑 + (1 − 𝜖𝑑) 𝜌𝑝2

𝑒

)
𝜓𝑐0 (3.3.2)

where 𝐸0 and 𝜓𝑐0 represent the properties corresponding to the solid material. The ersatz parameters

𝜖𝑒 and 𝜖𝑑 are taken to be 10−8 and 10−4, respectively. In order to prevent spurious cracks in

low density regions we take 𝑝2 < 𝑝1 beginning initially with 𝑝1 = 3 and 𝑝2 = 1.5, and

gradually increasing these parameters over the course of the optimization process to 𝑝1 = 4.5

and 𝑝2 = 3. Additionally, as detailed in Section 3.3.3, the design variables (θ) are filtered and

projected. Therefore the element pseudo-density (𝜌𝑒) in the material interpolations above is actually

a composite function

𝜌𝑒 = 𝜌𝑒 ( 𝜌̂𝑒 (θ)) (3.3.3)

where θ is controlled by the optimizer, { 𝜌̂𝑒} are the filtered design variables, and {𝜌𝑒} are the

projection of the filtered design variables.
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3.3.2 Optimization problem statement

Qualitatively, we seek low weight structures that have a significantly increased resistance

to fracture when compared with designs obtained from classical weight minimization problems

modeled with only linear elastic physics. Our mathematical optimization approach to achieve this is

outlined below.

An aggregate objective function, which consists of the material volume fraction, Λ(ρ), and a

new function, referred to as the integrated fracture energy, Ξ(ρ, 𝑑), is minimized. Minimization of

the volume fraction is equivalent to weight minimization since we consider only a single material

with uniform weight density, while penalization of the integrated fracture energy provides the

desired fracture resistance. Consequently, we search for Pareto optimal designs with a tradeoff

between structural weight and fracture resistance. Due to the use of a displacement-controlled

loading scheme, a lower bound constraint is placed on the total work, 𝑊 (ρ,u, 𝑑). The resulting

mathematical optimization problem statement is expressed as

minimize
θ

Λ(ρ) + 𝜔 · Ξ(ρ, 𝑑)

subject to 0 ≤ 𝜃𝑒 ≤ 1, 𝑒 = 1, . . . , 𝑁𝑒𝑙𝑒𝑚

𝑊𝑚𝑖𝑛 ≤ 𝑊 (ρ,u, 𝑑)

R(𝑖) = 0, 𝑖 = 1, . . . , 𝑁𝑠𝑡𝑒𝑝𝑠

where 𝜔 is a user-specified weighting factor, which may be regarded as a penalty parameter,

penalizing the creation of fracture surfaces. Each of the relevant functions is defined below along

with its numerically integrated form. Note that Ξ and 𝑊 are integrated in pseudo-time using the

trapezoidal rule and in space using a standard 4-point (i.e. 𝑁𝑞𝑢𝑎𝑑 = 4) Gauss quadrature rule. The

subscript (·)𝑒𝑞 implies the quantity is evaluated at the 𝑞𝑡ℎ quadrature point of element 𝑒 and a
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superscript (·) (𝑖) signifies the quantity is evaluated at the 𝑖𝑡ℎ pseudo-time increment.

Λ(ρ) = 1∫
Ω̂
𝑑𝑉

∫
Ω̂

𝜌 𝑑𝑉 =
1

𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝑉𝑒

𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝜌𝑒 𝑉𝑒 (3.3.4)

Ξ(ρ, 𝑑) =
∫ 𝑡

0
𝑊̂ 𝑓 𝑟𝑎𝑐 𝑑𝜏 ≈

𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑖=1

1
2

(
𝑊̂
(𝑖)
𝑓 𝑟𝑎𝑐
+ 𝑊̂ (𝑖−1)

𝑓 𝑟𝑎𝑐

)
Δ𝜏(𝑖) (3.3.5)

𝑊 (ρ,u, 𝑑) =
∫ 𝑡

0

∫
Ω̂

σ : ¤ε 𝑑𝑉 𝑑𝜏

≈
𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑖=1

𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝑁𝑞𝑢𝑎𝑑∑︁
𝑞=1

1
2

(
σ (𝑖)𝑒𝑞 + σ

(𝑖−1)
𝑒𝑞

)
:
(
ε(𝑖)𝑒𝑞 − ε

(𝑖−1)
𝑒𝑞

)
𝑤𝑒𝑞

(3.3.6)

Note that 𝑤𝑒𝑞 represents the quadrature weight multiplied by the jacobian of the isoparametric

mapping, 𝑉𝑒 represents the volume of element 𝑒, ¤ε is the derivative of the strain tensor with respect

to pseudo-time, and 𝑊̂ 𝑓 𝑟𝑎𝑐 is numerically computed as follows,

𝑊̂
(𝑖)
𝑓 𝑟𝑎𝑐
≈
𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝑁𝑞𝑢𝑎𝑑∑︁
𝑞=1

2𝜓𝑐
(
𝑑𝑒𝑞 + 2𝑙20∇𝑑𝑒𝑞 · ∇𝑑𝑒𝑞

)
· 𝑤𝑒𝑞 (3.3.7)

The final set of constraint equations involving the augmented residual vectors, {R(𝑖)}, are

enforced during the forward analyses and represent quasi-static equilibrium requirements and

history variable evolution at each load step. A flowchart of the optimization solution procedure is

provided below in Figure 3.4.

It is important to note that the work,𝑊 , and integrated fracture energy, Ξ, were selected for a

specific reason which will become more apparent in Section 3.3.4. The compliance function that is

typically used in classical weight minimization problems with assumed linear elasticity (i.e. f𝑇u

with external force vector, f ) is only a function of the system state at the end of the forward analyses

and, consequently, is avoided for reasons described below. In contrast to this, the external work is a

function of the state throughout the entire solution path. Work quantities have been exploited in
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Figure 3.4: Flow chart illustrating the optimization procedure

many previous works ([45, 181, 18] to name only a few).

In the context of brittle fracture, functions of only the end state will almost certainly be

discontinuous in the design variables. This presents a difficulty for gradient-based optimizers which

rely on smoothness of the objective and constraint functions. Here we make an effort to explain this

concept with the end-compliance and fracture energy functions used in previous chapter, motivating

a clearer justification for the work and integrated fracture energy functions chosen herein. For

example, take a given structural topology, which we refer to as Design A, that does not satisfy a

minimum stiffness constraint (either work or end-compliance). Assume that Design A does not

fracture under the applied load. The optimizer will attempt to increase the stiffness at the next design

iteration and we refer to this updated topology as Design B. The increase in stiffness may result in

fracture for the given applied load. This situation is illustrated in Figure 3.5a. The end-compliance

of Design B is almost negligible due to the energy dissipated by fracture, while the compliance

of Design A is comparatively large. However, the work corresponding to Design B is larger than

that of Design A, which better reflects the increase in stiffness. Although the work function may

still be discontinuous in the design variables, the jump in value is almost certainly smaller than

the associated jump in the compliance due to the contribution of the pre-fracture load history.

Additionally, the end-compliance contains very little information with regard to the structural state

prior to fracture. This will be briefly explored in Section 3.3.4 via a comparison of the function
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sensitivities.

(a) (b)

Figure 3.5: (a) Example force vs. displacement curves for two similar topologies. The end state of
Design A corresponds to point A, and the end state of Design B corresponds to point B. Design A
clearly has a higher end-compliance than Design B, which has fractured. However, this comparison
does not reflect the additional work over the load history required to impart the same displacement
load on Design B. This additional work corresponds to the blue-shaded region. (b) Example fracture
energy vs. time curves illustrating the additional area under the curve resulting from a fracture
occuring sooner in time for a particular topology (Design C) versus a topology which fractures later
in time (Design D). The additional area is shaded in blue and corresponds to the increase in the
integrated fracture energy function.

In light of these ideas, we propose to minimize the integrated fracture energy, Ξ, in place of

the crack surface functional in Equation (3.2.2). Although the integrated fracture energy does not

have a physical meaning, it has two nice properties: (1) It is a function of the system state at each

increment in time and, consequently, provides additional path information to the optimizer through

the function sensitivities (this is explored in Section 3.3.4). (2) A decrease in the function value

corresponds to a decrease in the crack length and/or a delay in the time at which fracture occurs,

both of which are desirable for fracture resistance. An increase in the fracture energy corresponds

to an increase in the crack length which results in a larger area under the fracture energy vs. time

curve. Additionally, a delay in the time at which fracture occurs also corresponds to a decrease in

total area under the curve since the fracture energy is nondecreasing in time due to irreversibility

requirements. This additional area is illustrated in Figure 3.5b. Design C fractures earlier in time
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than Design D which generates additional area under the curve, corresponding to an increase in the

integrated fracture energy function equal to the area of the blue-shaded region.

Finally, we detail a continuation scheme that is used in which the lower bound on the work

function,𝑊𝑚𝑖𝑛, is relaxed during the first few optimization iterations. Due to the nonlinearity of a

brittle fracture process, it can be difficult for the optimizer to satisfy the work constraint initially

due to the presence of cracks. Since the drive to enter the feasible region is often stronger than

the drive to lower the objective function value, we relax the constraint lower bound according to

Algorithm 2 below, where 𝛼𝑟 is the relaxation coefficient in the new constraint equation provided in

Equation (3.3.8). Note that 𝛼𝑟 is a parameter between 0 and 1 that is gradually increased to 1 over

the first 20 iterations in the subsequent numerical examples.

𝛼𝑟 ·𝑊𝑚𝑖𝑛 ≤ 𝑊 (ρ,u, 𝑑) (3.3.8)

Algorithm 2 Constraint relaxation coefficient, 𝛼𝑟 , continuation scheme
1. for 𝑖𝑡𝑒𝑟 = 1 to 𝑁𝑖𝑡𝑒𝑟𝑠 do
2. if (𝑖𝑡𝑒𝑟 ≤ 10) then
3. 𝛼𝑟 ← 0.5
4. else if (𝑖𝑡𝑒𝑟 ≤ 20) then
5. 𝛼𝑟 ← 0.5 + 1

20 (𝑖𝑡𝑒𝑟 − 10)
6. else
7. 𝛼𝑟 ← 1
8. end if
9. end for

3.3.3 Density filter and projection

In order to alleviate checkerboard patterns and other numerical instabilities, a density filter may

be applied which also provides a necessary regularization for mesh-independence as discussed

in Sigmund and Petersson [164]. The filtering scheme proposed in Bruns and Tortorelli [165],

based on a gaussian-type weighting function is used in this chapter. This procedure introduces a
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topological length-scale, 𝑟𝑚𝑖𝑛, which regularizes the problem, provided that a mesh with sufficiently

fine discretization is used. The design variables may be filtered utilizing a pre-constructed filter

matrix of weighting coefficients,𝑊𝑒 𝑗 ,

𝜌̂𝑒 =

𝑁𝑒𝑙𝑒𝑚∑︁
𝑗=1

𝑊𝑒 𝑗𝜃 𝑗 (3.3.9)

in which the components of the matrix are

𝑊𝑒 𝑗 =
𝑤𝑒 𝑗∑𝑁𝑒𝑙𝑒𝑚

𝑖=1 𝑤𝑒𝑖
(3.3.10)

𝑤𝑒 𝑗 =


exp

(
− 𝑟2

𝑒 𝑗

𝑟2
𝑚𝑖𝑛

)
, if 𝑟𝑒 𝑗 ≤ 𝑟𝑚𝑖𝑛

0, otherwise

(3.3.11)

where 𝑟𝑒 𝑗 = | |X𝑒 −X 𝑗 | |2 is the distance between the centroids of elements 𝑒 and 𝑗 .

Although increasing the SIMP penalization parameters, 𝑝1 and 𝑝2, tends to produce structures

with pseudo-densities closer to 0 or 1, the filtering scheme inevitably creates a transition region with

intermediate pseudo-density values. In order to eliminate much of this transition region we employ

a projection scheme based on the work of Guest et al. [166] and Wang et al. [167].

𝜌𝑒 =
tanh(𝛽𝜂) + tanh(𝛽( 𝜌̂𝑒 − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂)) (3.3.12)

Note here that 𝜂 governs the density threshold at which the projection takes place and 𝛽 governs the

strength of the projection operation. In all subsequent analyses 𝜂 is fixed at 0.5 while a continuation

scheme is used to update 𝛽 as described in Algorithm 3 below, where 𝛽 is progressively increased

in increments of 0.75 until a maximum value of 20 is reached. Note that 𝛽 is restricted to 1 during

the first 100 optimization iterations in order to avoid additional unnecessary nonlinearity and local

minima.
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Algorithm 3 Continuation scheme applied to projection parameter, 𝛽
1. 𝛽← 1
2. for 𝑖𝑡𝑒𝑟 = 1 to 𝑁𝑖𝑡𝑒𝑟𝑠 do
3. if (𝑖𝑡𝑒𝑟 > 100) and (𝑖𝑡𝑒𝑟 divisible by 15) then
4. 𝛽← 𝛽 + 0.75
5. 𝛽← min(𝛽, 20)
6. end if
7. end for

3.3.4 Derivation of analytical sensitivities

Due primarily to the large number of design variables in most topology optimization problems,

along with computationally expensive finite element simulations, gradient based optimization

methods are clearly preferred. Here we compute the analytical gradients using a computationally

efficient, path-dependent adjoint method, based on the work of Michaleris et al. [49].

As a result of the expanded form of the governing equations provided in Section 3.2.3, the

augmented residual (Equation (3.2.33)) evaluated at pseudo-time 𝑡𝑛, only depends on the pseudo-

densities and the augmented solution vector at pseudo-time 𝑡𝑛−1 and 𝑡𝑛.

R𝑛 = R𝑛
(
ρ, z𝑛, z𝑛−1

)
, where 𝑛 = 1, . . . , 𝑁𝑠𝑡𝑒𝑝𝑠 (3.3.13)

The objective and constraint functions given in Section 3.3.2 may all be represented as a general

function of the design variables and the solution vector at the each time increment, 𝑓 (ρ, z𝑁 , . . . , z1),

where we have used the short-hand notation, 𝑁 = 𝑁𝑠𝑡𝑒𝑝𝑠. Augmenting this function with the sum of

the inner product of the residual at each time increment (Equation (3.3.13)) and an unknown vector,

ψ𝑛 (referred to as an adjoint vector hereafter), we have

𝑓 (ρ, z𝑁 , . . . , z1) = 𝑓 (ρ, z𝑁 , . . . , z1) +
𝑁∑︁
𝑛=1
ψ𝑛

𝑇

R𝑛
(
ρ, z𝑛, z𝑛−1

)
(3.3.14)

where the value of the function and its derivative remain unchanged since the residual must vanish

for any given set of pseudo-densities. Taking the derivative of this augmented function with respect
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to a single element density, 𝜌𝑒, results in the following expression

𝑑 𝑓

𝑑𝜌𝑒
=
𝜕 𝑓

𝜕𝜌𝑒
+

𝑁∑︁
𝑛=1

𝜕 𝑓

𝜕z𝑛
𝑑z𝑛

𝑑𝜌𝑒
+

𝑁∑︁
𝑛=1
ψ𝑛

𝑇

(
𝜕R𝑛

𝜕𝜌𝑒
+ 𝜕R

𝑛

𝜕z𝑛
𝑑z𝑛

𝑑𝜌𝑒
+ 𝜕R𝑛

𝜕z𝑛−1
𝑑z𝑛−1

𝑑𝜌𝑒

) (3.3.15)

where, upon grouping terms, we obtain

𝑑 𝑓

𝑑𝜌𝑒
=
𝜕 𝑓

𝜕𝜌𝑒
+

𝑁∑︁
𝑛=1
ψ𝑛

𝑇 𝜕R𝑛

𝜕𝜌𝑒
+

(
𝜕 𝑓

𝜕z𝑁
+ψ𝑁𝑇 𝜕R

𝑁

𝜕z𝑁

)
𝑑z𝑁

𝑑𝜌𝑒
+

𝑁−1∑︁
𝑛=1

(
ψ (𝑛+1)

𝑇 𝜕R𝑛+1

𝜕z𝑛
+ψ𝑛𝑇 𝜕R

𝑛

𝜕z𝑛
+ 𝜕 𝑓

𝜕z𝑛

)
𝑑z𝑛

𝑑𝜌𝑒

(3.3.16)

Choosing the adjoint vectors ψ𝑛, 𝑛 = 1, . . . , 𝑁 , such that the terms in parentheses disappear,

we avoid the costly derivatives of the finite element fields with respect to the design variables.

The adjoint vectors are then obtained beginning with ψ𝑁 and cycling backwards through the load

increments via the solutions of the linear systems below.

[
𝜕R𝑁

𝜕z𝑁

]𝑇
ψ𝑁 = − 𝜕 𝑓

𝜕z𝑁

𝑇

(3.3.17)[
𝜕R𝑛

𝜕z𝑛

]𝑇
ψ𝑛 = −

[
𝜕R𝑛+1

𝜕z𝑛

]𝑇
ψ𝑛+1 − 𝜕 𝑓

𝜕z𝑛

𝑇

, 𝑛 = 𝑁 − 1, . . . , 1 (3.3.18)

Since the quadrature point degrees of freedom are independent of one another we employ the same

adjoint vector solution technique presented in Russ and Waisman [182], in which these degrees of

freedom are condensed out of the system at the element level. Once the adjoint vectors are obtained,

the derivative in Equation (3.3.16) simplifies to

𝑑 𝑓

𝑑𝜌𝑒
=
𝜕 𝑓

𝜕𝜌𝑒
+

𝑁∑︁
𝑛=1
ψ𝑛

𝑇 𝜕R𝑛

𝜕𝜌𝑒
(3.3.19)

where 𝜕R𝑛

𝜕𝜌𝑒
is a quick computation, performed at the element level.
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The derivative computation in this section is performed with respect to a pseudo-density, 𝜌𝑒.

However, the optimizer requires the derivative of the relevant functions with respect to the design

variables, θ. Therefore we employ the chain rule due to Equation (3.3.3), which results in the final

derivatives

𝑑 𝑓

𝑑𝜃 𝑗
=

𝑁𝑒𝑙𝑒𝑚∑︁
𝑖=1

𝑑 𝑓

𝑑𝜌𝑖

𝑑𝜌𝑖

𝑑𝜌̂𝑖

𝑑𝜌̂𝑖

𝑑𝜃 𝑗
(3.3.20)

=

𝑁𝑒𝑙𝑒𝑚∑︁
𝑖=1

𝑑 𝑓

𝑑𝜌𝑖

𝑑𝜌𝑖

𝑑𝜌̂𝑖
𝑊𝑖 𝑗 (3.3.21)

where𝑊𝑖 𝑗 is the filter matrix presented in Section 3.3.3.

Work function explicit derivatives

In order to complete the derivation of the analytical sensitivities of the work function in Equation

(3.3.6) we provide the unspecified derivatives 𝜕 𝑓

𝜕𝜌𝑒
and 𝜕 𝑓

𝜕z in Equations (3.3.17), (3.3.18), and

(3.3.19). Note that the work function may be re-written in the following form

𝑊 (ρ, z𝑁 , . . . , z1) = 1
2

∫
Ω̂

σ (𝑁) :
(
ε(𝑁) − ε(𝑁−1)

)
𝑑𝑉 (3.3.22)

+ 1
2

𝑁−1∑︁
𝑖=1

∫
Ω̂

σ (𝑖) :
(
ε(𝑖+1) − ε(𝑖−1)

)
𝑑𝑉 (3.3.23)

where we assume that the body is initially unloaded so that ε(0) = 0. Note that we have switched

back to continuous integration in space in the derivation in order to simplify the notation by avoiding

the subscripts associated with element and quadrature point numbers. We may compute the partial

derivative with respect to an element pseudo-density with the following expression

𝜕𝑊

𝜕𝜌𝑒
=

1
2

∫
Ω̂

𝜕σ (𝑖)

𝜕𝜌𝑒
:
(
ε(𝑁) − ε(𝑁−1)

)
𝑑𝑉 (3.3.24)

+ 1
2

𝑁−1∑︁
𝑖=1

∫
Ω̂

𝜕σ (𝑖)

𝜕𝜌𝑒
:
(
ε(𝑖+1) − ε(𝑖−1)

)
𝑑𝑉 (3.3.25)
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Recall that 𝜌𝑒 enters the expression for the stress tensor through the effective elastic modulus, 𝐸

(Equation (3.3.1)). Since the stress is linear in 𝐸 , we simply replace 𝐸 with the partial derivative,

𝜕𝐸
𝜕𝜌𝑒

= (1 − 𝜖𝑒) 𝑝1 𝜌
𝑝1−1
𝑒 𝐸0, in the stress computation in order to obtain the necessary derivative,

𝜕σ
𝜕𝜌𝑒

, above.

Next we compute each of the components of the second required partial derivative, 𝜕𝑊
𝜕z =[

𝜕𝑊
𝜕ū ,

𝜕𝑊

𝜕d̄
, 𝜕𝑊
𝜕h

]
, separately. The derivative with respect to the displacement degrees of freedom may

be computed using index notation and the Einstein summation convention.

Final (𝑁 𝑡ℎ) pseudo-time increment:

𝜕𝑊

𝜕ū(𝑁)
=

1
2

∫
Ω̂

𝜕𝜎
(𝑁)
𝑖 𝑗

𝜕ū(𝑁)

(
𝜀
(𝑁)
𝑖 𝑗
− 𝜀(𝑁−1)

𝑖 𝑗

)
𝑑𝑉

+ 1
2

∫
Ω̂

𝜎
(𝑁)
𝑖 𝑗

𝜕𝜀
(𝑁)
𝑖 𝑗

𝜕ū(𝑁)
𝑑𝑉

(3.3.26)

All other pseudo-time increments (𝑖 = 𝑁 − 1, . . . , 1):

𝜕𝑊

𝜕ū(𝑖)
=

1
2

∫
Ω̂

𝜕𝜎
(𝑖)
𝑖 𝑗

𝜕ū(𝑖)

(
𝜀
(𝑖+1)
𝑖 𝑗
− 𝜀(𝑖−1)

𝑖 𝑗

)
𝑑𝑉

+ 1
2

∫
Ω̂

(
𝜎
(𝑖−1)
𝑖 𝑗
− 𝜎 (𝑖+1)

𝑖 𝑗

) 𝜕𝜀
(𝑖)
𝑖 𝑗

𝜕ū(𝑖)
𝑑𝑉

(3.3.27)

Note that the required partial derivatives above can be expressed simply using the matrix notation

from Section 3.2.2, in which 𝜕σ̂
𝜕ū =D ·Bū and 𝜕ε̂

𝜕ū = Bū. Similarly we may compute the derivative

with respect to the phase field degrees of freedom.

Final (𝑁 𝑡ℎ) pseudo-time increment:

𝜕𝑊

𝜕d̄(𝑁)
=

1
2

∫
Ω̂

𝜕𝜎
(𝑁)
𝑖 𝑗

𝜕d̄(𝑁)

(
𝜀
(𝑁)
𝑖 𝑗
− 𝜀(𝑁−1)

𝑖 𝑗

)
𝑑𝑉 (3.3.28)
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All other pseudo-time increments (𝑖 = 𝑁 − 1, . . . , 1):

𝜕𝑊

𝜕d̄(𝑖)
=

1
2

∫
Ω̂

𝜕𝜎
(𝑖)
𝑖 𝑗

𝜕d̄(𝑖)

(
𝜀
(𝑖+1)
𝑖 𝑗
− 𝜀(𝑖−1)

𝑖 𝑗

)
𝑑𝑉 (3.3.29)

Note that this partial derivative may be computed with the expression, 𝜕𝜎𝑖 𝑗
𝜕d̄

= −2(1 −N𝑑d̄)𝜎+𝑖 𝑗N𝑑 .

Additionally, the work function does not depend explicitly on the quadrature point degree of freedom,

ℎ. Therefore, 𝜕𝑊
𝜕h = 0.

Integrated fracture energy function explicit derivatives

The required derivatives of the integrated fracture energy function, Ξ, (Equation (3.3.5)) are

less complex to compute. Since this function does not have any explicit dependence on ū or h

we have 𝜕Ξ
𝜕ū = 0 and 𝜕Ξ

𝜕h = 0, leaving only the derivative with respect to the phase field, 𝜕Ξ
𝜕d̄

, and

pseudo-densities, 𝜕Ξ
𝜕𝜌𝑒

, to be computed. Beginning with the pseudo-density derivative, we have

𝜕Ξ

𝜕𝜌𝑒
=

𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑖=1

1
2

©­«
𝜕𝑊̂
(𝑖)
𝑓 𝑟𝑎𝑐

𝜕𝜌𝑒
+
𝜕𝑊̂
(𝑖−1)
𝑓 𝑟𝑎𝑐

𝜕𝜌𝑒

ª®¬Δ𝜏(𝑖) (3.3.30)

where,

𝜕𝑊̂
(𝑖)
𝑓 𝑟𝑎𝑐

𝜕𝜌𝑒
≈
𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝑁𝑞𝑢𝑎𝑑∑︁
𝑞=1

2
𝜕𝜓𝑐

𝜕𝜌𝑒

(
𝑑𝑒𝑞 + 2𝑙20∇𝑑𝑒𝑞 · ∇𝑑𝑒𝑞

)
· 𝑤𝑒𝑞 (3.3.31)

and the derivative 𝜕𝜓𝑐
𝜕𝜌𝑒

= (1 − 𝜖𝑑)𝑝2 𝜌
𝑝2−1
𝑒 𝜓𝑐0 due to Equation (3.3.2). The derivative with respect

to the phase field may be expressed as,

Final (𝑁 𝑡ℎ) pseudo-time increment:

𝜕Ξ

𝜕d̄(𝑁)
=

(
Δ𝑡 (𝑁)

2

)
𝜕𝑊̂
(𝑁)
𝑓 𝑟𝑎𝑐

𝜕d̄(𝑖)
(3.3.32)
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All other pseudo-time increments (𝑖 = 𝑁 − 1, . . . , 1):

𝜕Ξ

𝜕d̄(𝑖)
=

(
Δ𝑡 (𝑖−1) + Δ𝑡 (𝑖)

2

)
𝜕𝑊̂
(𝑖)
𝑓 𝑟𝑎𝑐

𝜕d̄(𝑖)
(3.3.33)

where the required derivative is with respect to the phase field and may be expressed as

𝜕𝑊̂
(𝑖)
𝑓 𝑟𝑎𝑐

𝜕d̄(𝑖)
=

∫
Ω̂

2𝜓𝑐
(
N𝑑 + 2𝑙20 d̄

(𝑖)𝑇B𝑇
𝑑B𝑑

)
𝑑𝑉 (3.3.34)

completing the expressions.

Sensitivity verification

The path-dependent work and integrated fracture energy function sensitivities are numerically

verified in this section for the portal frame example problem with geometry and boundary conditions

as shown in Figure 3.6. Note that a symmetry boundary condition is used to decrease the number of

elements. A prescribed downward displacement is linearly increased to a value of 10mm and then

linearly decreased to a value of 5mm in order to trigger the path-dependence due to irreversibility.

The inhomogeneous pseudo-density field, mesh, and phase field distribution are illustrated in Figure

3.7. Relevant material and numerical parameters are provided in Table 3.1 in which the material

properties correspond to a mild steel [168].

Table 3.1: Material and numerical parameters

𝐸0 [GPa] 𝜈 𝜓𝑐 [𝐺𝐽/𝑚3] 𝑙0 [𝑚] 𝛽 𝑟𝑚𝑖𝑛 [𝑚] 𝜂𝑘𝑠 Δ𝑡 [𝑠] Δ𝜌𝑒

200 0.29 306 0.1 3 0.3 30 0.05 10−6

The finite element mesh consists of 572 4-node quadrilateral elements. A central difference

approximation of the sensitivities is used such that for a function, 𝑓 (ρ), the sensitivity is numerically

approximated by

𝑑𝑓

𝑑𝜌𝑒
≈
𝑓 (𝜌1, . . . , 𝜌𝑒 + Δ𝜌𝑒, . . . , 𝜌𝑁𝑒𝑙𝑒𝑚) − 𝑓 (𝜌1, . . . , 𝜌𝑒 − Δ𝜌𝑒, . . . , 𝜌𝑁𝑒𝑙𝑒𝑚)

2Δ𝜌𝑒
(3.3.35)
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Figure 3.6: Sensitivity verification problem geometry / boundary conditions

(a) Inhomogeneous pseudo-density field (b) Phase field

Figure 3.7: Sensitivity verification problem densities and phase field

where a full, nonlinear finite element analysis is required for each element density perturbation.

Both, the work and integrated fracture energy sensitivities are verified and the results are

illustrated in Figure 3.8. Note that the sensitivities have been sorted consistently from smallest to

largest value for clarity. It can be seen that numerical differentiation and the analytical calculation

presented previously give nearly identical results.
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(b) Integrated fracture energy

Figure 3.8: Numerical verification of the analytical sensitivities

Sensitivity comparison

As mentioned previously, the work and integrated fracture energy functions used in the

optimization problem definition contain information about the system state at each incremental

step of the load history. This is in contrast to functions of only the end state of the system, like

the compliance and fracture energy functional which were used in the previous chapter. These

two functions are provided below in Equations (3.3.36) and (3.3.37), respectively, in which f𝑒𝑥𝑡

represents the global external force vector and 𝐺𝑐 represents the critical energy release rate.

𝐶 (ρ, ū, d̄) = f𝑇𝑒𝑥𝑡ū (3.3.36)

𝜓̂ 𝑓 (𝑑) = 𝐺𝑐

∫
Ω̂

(
1

4𝑙0
𝑑2 + 𝑙0

����∇𝑑����22) 𝑑𝑉 (3.3.37)

Here we briefly examine this idea for a single example problem via a comparison of the function

sensitivities. The portal frame example with geometry described in Figure 3.6 is used with a

discretization of 11,454 quadrilateral elements. A peak downward displacement of 𝑢̂ = 10mm is

applied and the projection parameter, 𝛽, along with all of the pseudo-densities are set to 1. The

parameters used in this section are provided in Table 3.2.

Figure 3.9 illustrates the phase field fracture at the end state of the simulation. For this specific
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Table 3.2: Sensitivity comparison problem material and numerical parameters

𝐸0 [GPa] 𝜈 𝜓𝑐 [𝐺𝐽/𝑚3] 𝑙0 [𝑚] 𝑟𝑚𝑖𝑛 [𝑚] 𝜂𝑘𝑠 Δ𝑡 [𝑠] 𝑡 𝑓 𝑖𝑛𝑎𝑙 [𝑠]
200 0.29 306 0.05 0.1 30 0.01 1

loading, we provide the analytical sensitivity contours for the work and compliance in Figure 3.10

and the integrated fracture energy and fracture energy in Figure 3.11.

It is clear from Figure 3.10 that the work function contains more information from the solution

path than the compliance, as is evidenced by the additional sensitivity corresponding to elements

near the re-entrant corner and throughout the crack path. A similar situation is observed when

comparing the integrated fracture energy and fracture energy sensitivities in Figure 3.11. In Figure

3.11a one can see a region of positive sensitivity just below the re-entrant corner due to the function

dependence on the pre-cracked state. When the integrated fracture energy is minimized, this small

region of positive sensitivity drives the removal of those elements from the design. This results in

the eventual elimination of the re-entrant corner even when the loading induces fracture and allows

the optimizer to eventually find a topology which does not fail completely under the applied load.

Figure 3.9: Fractured state for sensitivity comparison

It is also instructive to look at the magnitude of the sensitivities relative to the peak value across

all elements on a line plot. This is provided for both pairs of functions in Figure 3.12. The magnitude

of each sensitivity vector is normalized by the 𝑙∞-norm in order to facilitate a comparison of relative

magnitudes across all elements in the domain. It is clear from the figures that the work and integrated

fracture energy functions are more sensitive throughout the domain than their counterparts.
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(a) Work (b) Compliance

Figure 3.10: Comparison of work and compliance sensitivities (note that the compliance function
was used in the previous chapter)

(a) Integrated Fracture Energy (b) Fracture Energy

Figure 3.11: Comparison of integrated fracture energy and fracture energy sensitivities (note that
the fracture energy function was used in the previous chapter)
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3.4 Numerical examples

In this section we present the numerical results for two benchmark problems; the Portal Frame

and the L-bracket. The finite element solution is implemented in FEAP [169], which leverages the

PETSc library for parallel, sparse linear algebra [170]. The optimization problem is solved using

the method of moving asymptotes (MMA) [183], with default optimization parameters. The final

pseudo-time, 𝑡 𝑓 𝑖𝑛𝑎𝑙 , is set to 1𝑠. Since we are interested in minimum weight designs with higher

strength, we provide the efficiency measure given by Equation (3.4.1), which represents the percent

increase in the strength-to-weight ratio with respect to the design obtained with only linear elastic

physics, minimizing the volume fraction subject to only the work constraint (note that we refer to

this metric as the “gain"). In this equation 𝑃 refers to the peak load (or strength) while Λ refers

to the volume fraction. Quantities with the 𝑏𝑎𝑠𝑒 subscript correspond to the base design obtained

using linear elasticity.

𝐺𝑎𝑖𝑛(𝑃,Λ) =
(
𝑃

Λ
· Λ𝑏𝑎𝑠𝑒
𝑃𝑏𝑎𝑠𝑒

− 1
)
· 100% (3.4.1)

3.4.1 Portal frame

In this example the portal frame geometry in Figure 3.6 is discretized with 11,454 quadrilateral

elements. The numerical parameters used are presented in Table 3.3. A peak downward displacement

of 𝑢̂ = 10mm is applied to a small portion of the top of the frame (location shown in Figure 3.6).

Table 3.3: Portal frame material and numerical parameters

𝐸0 [GPa] 𝜈 𝜓𝑐 [𝐺𝐽/𝑚3] 𝑙0 [𝑚] 𝑟𝑚𝑖𝑛 [𝑚] 𝜂𝑘𝑠 Δ𝑡 [𝑠] 𝑊𝑚𝑖𝑛 [𝑘𝐽]
200 0.29 306 0.05 0.1 30 0.04 80

The optimized topologies for five (5) different cases are presented in Figure 3.13. The first is

obtained using only linear elastic physics and minimizing the volume fraction subject to the work

constraint (i.e. the aggregate objective weight, 𝜔, is set to 0 since Ξ is not defined). Next the stress

minimization result is provided using the formulation of Le et al. [6] briefly summarized in A.3.
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Finally, we include the phase field fracture physics and minimize the aggregate objective function

previously presented in Section 3.3.2 with three different values of the weighting parameter, 𝜔, each

varying by two orders of magnitude. The upper bound on the volume fraction used in the stress

minimization formulation is selected to exactly match the volume fraction resulting from including

the fracture physics and setting the weighting parameter, 𝜔 = 1𝑒4. The same force and finite

element mesh are used, along with identical density projection and SIMP exponent continuation

schemes. It is clear from the figure that the re-entrant corner is removed from all three topologies

with nonzero weighting parameter, 𝜔. This behavior is in sharp contrast to the behavior observed in

the previous chapter. Additionally we obtain the expected behavior from the stress minimization

algorithm which also removes the re-entrant corner from the design.

Since the phase field only increases in regions of the domain which exceed the tensile energy

threshold, the locality of the topological change is provided by the integrated fracture energy

function without the use of special aggregation techniques. This feature bears similarity to other

works with a threshold including [36, 13] for example. In Figure 3.14 a plot of the phase field is

provided at the final optimization iteration. As shown in the figure, no fully developed cracks are

present however the phase field is still nonzero at multiple places in the domain, behaving as an

indicator of potential fracture. Additionally, we provide a few illustrations of fracturing topologies

at the beginning of the optimization process in Figure 3.15 for the example with 𝜔 = 1𝑒0. The

optimizer decreases the densities just below the re-entrant corner and places a hole at the crack tip

which is slowly moved toward the fracture initiation point until it is eliminated.

The optimized topologies are then loaded until failure and the corresponding numerical results

are provided in Table 3.4. The associated force and fracture energy vs. displacement curves are

provided in Figure 3.16 with the corresponding fractured topologies shown in Figure 3.17. The

design corresponding to stress minimization with linear elasticity performs very well with respect

to the design imposing only the work constraint. In fact, although the peak load is lower than the

peak load considering fracture in the optimization process, it is of comparable magnitude. However,

this increase in strength comes at the cost of larger volume fraction, which negatively impacts the
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(a) Work Only (b) Stress Minimization

(c) 𝜔 = 1𝑒0 (d) 𝜔 = 1𝑒2

(e) 𝜔 = 1𝑒4

Figure 3.13: Optimized portal frame topologies

strength-to-weight ratio. This is evidenced by the difference in gain (Equation (3.4.1)) presented in

Table 3.4 in which we were able to achieve a 67.5% increase in strength-to-weight ratio versus the

54.7% increase provided by the stress-minimization algorithm.

Table 3.4: Portal frame numerical results. The peak load is provided in units of 𝑀𝑁 and the
integrated fracture energy, Ξ, is provided in units of 𝐽 · 𝑠. Note that the gain is computed via
Equation (3.4.1).

Volume Fraction Peak Load Ξ Gain

Work Only 0.301 10.6 − −
Stress Min. 0.369 20.1 − 54.7%
Weight, 𝜔 = 1𝑒0 0.346 20.2 7.3𝑒-4 65.8%
Weight, 𝜔 = 1𝑒2 0.356 21.0 6.5𝑒-5 67.5%
Weight, 𝜔 = 1𝑒4 0.369 21.4 1.7𝑒-6 64.7%
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(a) 𝜔 = 1𝑒0 (b) 𝜔 = 1𝑒2

(c) 𝜔 = 1𝑒4

Figure 3.14: Phase field plot at the final design iteration for each of the three portal frame topologies
obtained including the fracture physics

(a) Iteration 2 (b) Iteration 5

(c) Iteration 6 (d) Iteration 7

Figure 3.15: Optimizer design changes during the first few optimization iterations with 𝜔 = 1𝑒0.
The phase field fracture is illustrated in yellow using a lower cutoff of 0.9
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Figure 3.16: Portal frame (a) force vs. displacement and (b) fracture energy (𝑊̂ 𝑓 𝑟𝑎𝑐) vs. displacement
curves.

Clearly, the higher strength-to-weight ratio comes at a higher computational cost when compared

with the designs based on linear elasticity with stress minimization. The bulk of the computational

effort takes place during the forward problem in which fracture surfaces are initiating and propagating.

However, since cracks generally do not form in the later optimization iterations most of the effort is

expended during approximately 10-15 of the total 500 iterations with the remainder requiring far

less computational effort. Finally, we complete this example with the optimizer convergence plots

for each of the three relevant functions in Figure 3.18.
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(a) Work Only (b) Stress Minimization

(c) 𝜔 = 1𝑒0 (d) 𝜔 = 1𝑒2

(e) 𝜔 = 1𝑒4

Figure 3.17: Optimized portal frame topologies loaded until failure
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Figure 3.18: Portal frame optimizer convergence history for the (a) volume fraction, (b) work, and
(c) integrated fracture energy. Note that the work constraint is active for each design.

3.4.2 L-bracket

Next, the L-bracket geometry presented in Figure 3.19 is discretized into 13,337 quadrilateral

elements. The numerical parameters used are presented in Table 3.5. A peak downward displacement

of 𝑢̂ = 0.6mm is applied to the right-most edge of the bracket.

Table 3.5: L-bracket material and numerical parameters

𝐸0 [GPa] 𝜈 𝜓𝑐 [𝐺𝐽/𝑚3] 𝑙0 [𝑚𝑚] 𝑟𝑚𝑖𝑛 [𝑚𝑚] 𝜂𝑘𝑠 Δ𝑡 [𝑠] 𝑊𝑚𝑖𝑛 [𝐽]
200 0.29 306 1 2 30 0.04 125
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Figure 3.19: L-bracket geometry / boundary conditions

The optimized topologies for five (5) different cases are presented in Figure 3.20. The first

is obtained using only linear elastic physics and minimizing the volume fraction subject to the

work constraint while the second corresponds to the stress minimization result with the formulation

outlined in A.3. In the three remaining cases we include the phase field fracture physics and

minimize the aggregate objective function previously presented in Section 3.3.2 with the same three

values of the weighting parameter, 𝜔, used in the previous example. Similar to the case of the

portal frame structure, we see from the figure that the re-entrant corner is removed from all three

topologies with nonzero weighting parameter, 𝜔. A plot of the phase field at the final optimization

iteration is provided in Figure 3.21 , showing the absence of cracks in the final designs, but also the

presence of nonzero phase field values behaving as indications of potential crack initiation points.

A few fractured topologies during the initial iterations are provided in Figure 3.22. The optimizer

places holes in the density field in order to arrest the crack in addition to decreasing the densities

above and below the re-entrant corner in order to ultimately eliminate the fracture initiation.

Note that the stress minimization design also removes the re-entrant corner as expected. We

set the volume fraction limit equal to that of the design obtained with the fracture physics setting

𝜔 = 1𝑒4 and apply an identical load just as in the previous example. Unlike the case of the portal
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frame which performs well with a p-norm parameter of 𝑝 = 10, the L-bracket is more challenging

to obtain a well-performing result. In order to remedy this we use a continuation scheme, initially

setting 𝑝 = 10 for the first 100 iterations and increasing it by 2 every 20 iterations up to a maximum

value of 30. Finally we also decrease the MMA optimizer “move" limit to 0.1 to abate some of the

nonlinearity.

(a) Work Only (b) Stress Minimization (c) 𝜔 = 1𝑒0

(d) 𝜔 = 1𝑒2 (e) 𝜔 = 1𝑒4

Figure 3.20: Optimized L-bracket topologies

The optimized topologies are then loaded until failure and the numerical results are provided

in Table 3.6 with the corresponding fractured topologies illustrated in Figure 3.24. Note that the

topologies which have removed the re-entrant corner fail in other regions of the structure as expected

since the stress concentration is no longer present. The associated force and fracture energy versus

displacement curves are provided in Figure 3.23.

92



(a) 𝜔 = 1𝑒0 (b) 𝜔 = 1𝑒2 (c) 𝜔 = 1𝑒4

Figure 3.21: Phase field plot at the final design iteration for each of the three L-bracket topologies
obtained including the fracture physics

(a) Iteration 2 (b) Iteration 4

(c) Iteration 5 (d) Iteration 8

Figure 3.22: Optimizer topology changes during the first few optimization iterations with 𝜔 = 1𝑒0.
The phase field fracture is illustrated in yellow using a lower cutoff of 0.9
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Table 3.6: L-bracket numerical results. The peak load is provided in units of 𝑘𝑁 and the integrated
fracture energy, Ξ, is provided in units of 𝐽 · 𝑠. Note that the gain is computed via Equation (3.4.1).

Volume Fraction Peak Load Ξ Gain

Work Only 0.314 254 − −
Stress Min. 0.373 474 − 57.1%
Weight, 𝜔 = 1𝑒0 0.336 439 2.1𝑒-3 61.5%
Weight, 𝜔 = 1𝑒2 0.354 484 3.3𝑒-5 69.0%
Weight, 𝜔 = 1𝑒4 0.373 509 2.2𝑒-7 68.7%
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Figure 3.23: L-bracket (a) force vs. displacement and (b) fracture energy (𝑊̂ 𝑓 𝑟𝑎𝑐) vs. displacement
curves.

Note that while all of the topologies are quite different from one another, a similar trend has

emerged in terms of the gain (Equation (3.4.1)) presented in Table 3.6. The stress minimization

formulation results in a large increase in the structural strength at the cost of increased volume/weight,

which yields a gain of 57.1%. In contrast the formulation presented herein is able to produce a

result with a 69.0% gain, which is a considerably large increase, even compared to the result

using stress minimization. Additionally we note that while the strength is larger for the stress

minimization formulation than the corresponding strength obtained using 𝜔 = 1𝑒0, the volume is

also considerably higher. Finally, we provide the optimizer convergence history plots for the three

relevant functions in Figure 3.25.
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(a) Work Only (b) Stress Minimization (c) 𝜔 = 1𝑒0

(d) 𝜔 = 1𝑒2 (e) 𝜔 = 1𝑒4

Figure 3.24: Optimized L-bracket topologies loaded until failure

3.5 Conclusion

A new method for obtaining structures with an increased resistance to brittle fracture was

presented and tested on two benchmark numerical examples. It is demonstrated that the phase field

fracture method with a smooth energetic threshold, along with a new aggregate function of the

phase field parameter, provides an effective driver for topological changes that result in enhanced

fracture resistance. Additionally, this new formulation allows the gradient based MMA optimizer to

find and converge to designs which do not fracture under the prescribed loading conditions, even

though the brittle fracture physics produce strong discontinuities in most functions of the system

state when a loading that induces fracture is applied during the optimization process. This is in

clear and sharp contrast to the formulation presented in the previous chapter in which fracture

95



0 100 200 300 400 500
Iteration Number

0.3

0.4

0.5

0.6

0.7

0.8
V

ol
u

m
e

F
ra

ct
io

n
ω = 1e0

ω = 1e2

ω = 1e4

(a)

0 100 200 300 400 500
Iteration Number

40

60

80

100

120

W
or

k
[J

]

ω = 1e0

ω = 1e2

ω = 1e4

(b)

0 100 200 300 400 500
Iteration Number

10−11

10−9

10−7

10−5

10−3

10−1

101

In
te

gr
at

ed
F

ra
ct

u
re

E
n

er
gy

[J
·s

]

ω = 1e0

ω = 1e2

ω = 1e4

(c)

Figure 3.25: L-bracket optimizer convergence history for the (a) volume fraction, (b) work, and (c)
integrated fracture energy

was not allowed to take place during the optimization iterations due to the convergence difficulties

resulting from the very nonlinear physics and lack of sufficiently effective information in the

function sensitivities. A judicious selection of objective and constraint functions is essential to

obtaining better design performance when the brittle fracture physics are explicitly modeled during

optimization. It is shown that this new formulation allows the optimizer to effectively update the

design in order to reduce and ultimately remove cracks which have formed during the optimization

process. Additionally, we have shown that the proposed formulation produces designs which remove

re-entrant corners, consistent with intuition and also in contrast with our previous results. The

numerical results provided are compared to the those obtained using linear elasticity; one in which
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the volume is minimized subject to only a work constraint and a second formulation for stress

minimization subject to a volume constraint as proposed by Le et al. [6]. It is demonstrated for

the examples provided that the stress-formulation does a noteworthy job of producing structures

with comparable strength. However, in terms of the provided gain in strength-to-weight ratio, the

formulation proposed in this chapter produces designs with significant increases in performance.

While the produced topologies bear some similar characteristics to the stress minimization result,

such as the removal of re-entrant corners, the designs created by the proposed formulation are

actually shown to be quite different. Additionally, we note the convenience of avoiding the use of

aggregation functions and clustering techniques in the current formulation due to the naturally local

nature of phase field formation which provides the desired local topological control.

97



Chapter 4

An optimization formulation for ductile failure and buckling resistance

This chapter is published as a journal article in: J. B. Russ and H. Waisman, “A novel

elastoplastic topology optimization formulation for enhanced failure resistance via local ductile

failure constraints and linear buckling analysis,” Computer Methods in Applied Mechanics and

Engineering, vol. 373, p. 113478, 2020, doi: 10.1016/j.cma.2020.113478.

4.1 Introduction

In this chapter we demonstrate an efficient and robust framework to increase a structure’s peak

load capacity and the total external work required to achieve the peak load, by including elastoplastic

material behavior and failure resistance with respect to both ductile fracture and buckling. Since

most structures are typically loaded in “force-control" rather than in “displacement-control", once a

structure’s peak load capacity is exceeded it is typical for the structure to either undergo fracture

or buckling of structural members. If the load is not decreased past this point, further unstable

structural behavior can result, potentially including structural collapse. Therefore we wish to not

only increase the peak load capacity, but also the external work required to ultimately achieve this

peak load. This may be viewed as a desired increase in the structural toughness, which is not only

accompanied by an increase in strength but also an increase in the structural ductility.

To this end, we concentrate our efforts on structures consisting primarily of metals or other

materials with relatively stiff elastic regions such that small deformation plasticity models may

be used along with a separate linear elastic buckling analysis. At each optimization iteration two

analyses are conducted with the same candidate topology. One incremental elastoplastic analysis

in which a small strain 𝐽2-plasticity model is employed in order to compute the total work and
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uncoupled ductile failure indicators, and a separate linear elastic analysis in which the linear elastic

buckling load factors are calculated. The results from the two analyses (which include the total work

from the elastoplastic analysis and an aggregation function of the buckling load factors from the

linear buckling analysis) are then combined into new aggregate objective function in which the local

ductile failure constraints are handled via an adaptation of the Augmented Lagrangian framework

of Senhora et al. [184, 7] . In addition to using the strain energy buckling mode filter introduced by

[64], we also propose an additional buckling mode filter for highly localized modes in high density

regions which we have encountered in the examples we tested. Finally, the large deformation phase

field fracture formulation of Borden et al. [90] is used in order to evaluate the post-optimized

topologies in lieu of desired experimental verification. Both the nonlinear elastoplastic hardening

function, the ductile failure criterion used in this study, and particular parameters of the failure model

are calibrated to available test data for Aluminum 2024-T351 presented in Bao and Wierzbicki [185,

186] in a genuine effort to demonstrate realistic performance gains. Additionally, we provide the

external work computed at the load applied during the optimization procedure for the optimized

topologies using both the small strain formulation and the large strain formulation. This provides

an interesting metric for determining whether the small strain kinematics assumed during the

optimization procedure adequately captured the structural response for the numerical examples

explored herein.

The sections of this chapter may be summarized as follows. In Section 4.2 we briefly describe

the standard small deformation 𝐽2-plasticity model used in this chapter, along with the finite element

implementation and the mean-dilatation method chosen to alleviate volumetric locking effects.

Additionally we provide the details of the local ductile failure criterion selected for use during the

optimization procedure. Section 4.3 provides a brief summary of the linear buckling analysis used

herein. The details of the density based design parameterization are presented in Section 4.4, along

with the optimization problem definition, sensitivity analyses, an overview of the optimization

procedure, and other important details. These include the local constraint enforcement methodology

along with an additional procedure used to identify and remove other pseudo buckling modes from
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consideration. Section 4.5 summarizes the large deformation ductile phase field model implemented

and used for verification of optimized design performance where key aspects of the model are

briefly summarized. The results from three numerical examples are shown in Section 4.6 which

demonstrate the performance improvements one might observe in practice. Section 4.7 provides a

short summary of results, concluding remarks, and suggestions for future improvements.

4.2 Nonlinear finite element analysis used during optimization

In this section we provide a brief summary of the classical associative 𝐽2-plasticity model and

the finite element formulation. A small strain formulation, rather than one based on large strain

kinematics, is used for numerical robustness and efficiency during the optimization procedure, along

with a nonlinear Voce-type hardening law [187]. The justification for using small strain kinematics

during the optimization procedure is addressed in the numerical results section. The small strain

tensor, ε, is assumed to be additively decomposed into elastic and plastic parts, namely ε = ε𝑒 + ε𝑝.

The Cauchy stress tensor, σ, is split into its volumetric and deviatoric components according

to σ = 𝑝I + s, where 𝑝 is the pressure or hydrostatic stress, s is the deviatoric stress, and I is

the second order identity tensor. The local equations for associative 𝐽2-plasticity with isotropic

hardening are summarized below (de Souza Neto et al. [188]),

s = 2𝜇P𝑑𝑒𝑣 : (ε − ε𝑝) (4.2.1)

Φ(σ, 𝛼) = 𝜎𝑣𝑚 − 𝜎𝑦 (𝛼) (4.2.2)

ε𝑝 = ¤𝛾 𝜕Φ
𝜕σ

= ¤𝛾 N (4.2.3)

¤𝛼 = ¤𝛾 (4.2.4)

with yield function, Φ, along with the KKT conditions (Φ(σ, 𝛼) ≤ 0, ¤𝛾Φ(σ, 𝛼) = 0, ¤𝛾 ≥ 0) and

the complementarity condition ( ¤𝛾 ¤Φ = 0). Note that 𝜎𝑣𝑚 =

√︃
3
2s : s, is the von Mises stress measure

and the elasticity is assumed to be linear where 𝜇 represents the classical shear modulus, which is

related to elastic modulus (𝐸) and Poisson’s ratio (𝜈) via 𝜇 = 𝐸/(2 (1 + 𝜈)) for an isotropic material.

100



Also note the use of “:" indicates the typical tensorial double contraction operator. The fourth order

deviatoric projection tensor, P𝑑𝑒𝑣
𝑖 𝑗 𝑘𝑙

= I𝑠
𝑖 𝑗 𝑘𝑙
− 1

3𝛿𝑖 𝑗𝛿𝑘𝑙 , is used where I𝑠
𝑖 𝑗 𝑘𝑙

= 1
2
(
𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘

)
is the

fourth order symmetric identity tensor and 𝛿𝑖 𝑗 is the Kronecker delta. Additionally, we have used

the notation 𝛾 for the plastic multiplier and N ≡ 𝜕Φ
𝜕σ =

√︃
3
2

s
| |s| | for the normal to yield surface.

The yield stress (𝜎𝑦) is a function of the equivalent plastic strain (𝛼) and is defined through the

Voce-type hardening expression,

𝜎𝑦 (𝛼) = 𝜎𝑦0 + 𝐻𝛼 + 𝑌∞ (1 − exp (−𝛿𝛼)) (4.2.5)

where 𝜎𝑦0 is the initial yield stress, 𝐻 is the linear hardening modulus, and both 𝑌∞ and 𝛿 control

the saturation portion of the hardening curve. This hardening function adequately describes the

hardening of the Aluminum 2024-T351 plate material considered herein.

Global equilibrium for the continuum body, Ω, must then be obtained for a set of prescribed

displacements (u = ū on the Dirichlet boundary 𝜕Ω𝑑) and surface tractions (t on the Neumann

boundary 𝜕Ω𝑛). Here we use the mean dilatation approach [189, 190] which is usually obtained via

a three-field variational principle with potential, Π = Π (u𝑛+1,Θ𝑛+1, 𝑝𝑛+1),

Π =

∫
Ω

[
1
2
𝜅Θ2

𝑛+1 + 𝜇ε
𝒆𝒅𝒆𝒗

𝒏+1 : ε𝒆
𝒅𝒆𝒗

𝒏+1 + 𝑝𝑛+1 (∇ · u𝑛+1 − Θ𝑛+1)
]
𝑑𝑉

−
∫
𝜕Ω𝑛

t𝑛+1 · u𝑛+1 𝑑𝑆
(4.2.6)

where Θ is a volume-like independent variable, 𝜅 is the bulk modulus, and quantities with the (·)𝑛+1

subscript correspond to pseudo-time, 𝑡𝑛+1, using the standard backward Euler time integration. Note

that due to the small strain formulation we have not distinguished between the reference and current

configurations of the body, Ω. Additionally we define relevant strain quantities below.

ε𝑛+1 = P𝑑𝑒𝑣 : ∇𝑠u𝑛+1 +
1
3
Θ𝑛+1I (4.2.7)

ε𝑒
𝑑𝑒𝑣

𝑛+1 = P𝑑𝑒𝑣 :
(
ε𝑛+1 − ε𝑝𝑛+1

)
(4.2.8)
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The variational equations of this energy functional may then be expressed as

∫
Ω

[s𝑛+1 : ∇𝛿u + 𝑝𝑛+1∇ · 𝛿u] 𝑑𝑉 −
∫
𝜕Ω𝑛

t𝑛+1 · 𝛿u 𝑑𝑆 = 0 (4.2.9)∫
Ω

𝛿𝑝 (∇ · u𝑛+1 − Θ𝑛+1) 𝑑𝑉 = 0 (4.2.10)∫
Ω

𝛿Θ (𝜅Θ𝑛+1 − 𝑝𝑛+1) 𝑑𝑉 = 0 (4.2.11)

in which the divergence theorem has been used where appropriate. Next, we introduce the standard

bilinear approximation within a given finite element for (u𝑛+1, 𝛿u) with shape function matrix,N 𝑢,

shape function gradient matrix,B𝑢, and shape function divergence matrix,B𝑢
𝑑𝑖𝑣

,

u𝑛+1 ≈N 𝑢ū𝑛+1 𝛿u ≈N 𝑢𝛿ū

∇u𝑛+1 ≈ B𝑢ū𝑛+1 ∇𝛿u ≈ B𝑢𝛿ū

∇ · u𝑛+1 ≈ B𝑢
𝑑𝑖𝑣ū𝑛+1 ∇ · 𝛿u ≈ B𝑢

𝑑𝑖𝑣𝛿ū

(4.2.12)

where ū𝑛+1 and 𝛿ū represent the nodal displacement vector and nodal test function values, respectively.

Using piecewise constant interpolations for (Θ𝑛+1, 𝛿Θ, 𝑝𝑛+1, 𝛿𝑝) over a given finite element (Ω𝑒),

and using standard arguments regarding the nodal test function values, the equations are reduced to

the following

R𝑒
𝑛+1 =

∫
Ω𝑒

B𝑢𝑇 : s𝑛+1 𝑑𝑉 + 𝑝𝑛+1
∫
Ω𝑒

B𝑢𝑇

𝑑𝑖𝑣 𝑑𝑉 −
∫
𝜕Ω𝑒𝑛

N 𝑢𝑇 t𝑛+1 𝑑𝑆 (4.2.13)

Θ𝑛+1 =
1
𝑉𝑒

∫
Ω𝑒

B𝑢
𝑑𝑖𝑣ū𝑛+1 𝑑𝑉 (4.2.14)

𝑝𝑛+1 = 𝜅Θ𝑛+1 (4.2.15)

where we have labeled the elemental residual vector. For a given displacement field, the values of

Θ𝑛+1 and 𝑝𝑛+1 are known and can be substituted into the residual expression, resulting in a single

set of equations to be solved for the displacement field. The elemental residual vectors are then

assembled into their global counterpart, R, via standard finite element assembly operations. Global
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equilibrium is then obtained iteratively using Newton’s method over a given time increment via the

standard update of the form

ū(𝑘+1)
𝑛+1 = ū(𝑘)

𝑛+1 − J
(𝑘)−1

𝑛+1 R(𝑘)
𝑛+1 (4.2.16)

for a given Newton iteration, 𝑘 . The global Jacobian matrix, J , is assembled from the elemental

Jacobian matrices,

J 𝑒𝑛+1 =

∫
Ω𝑒

B𝑢𝑇 : C𝑑𝑒𝑣𝑛+1 : B𝑢 𝑑𝑉 + 𝜅

𝑉𝑒

(∫
Ω𝑒

B𝑢𝑇

𝑑𝑖𝑣 𝑑𝑉

) (∫
Ω𝑒

B𝑢
𝑑𝑖𝑣 𝑑𝑉

)
(4.2.17)

where C𝑑𝑒𝑣
𝑛+1 is the deviatoric part of the algorithmic consistent tangent operator arising from the

common backward Euler time integration of the constitutive response. This is provided in B.1

along with the standard return mapping algorithm. The local residual equations governing the local

material constitutive response are based upon the return mapping algorithm and, therefore, differ

between elastic and plastic loading. For elastic loading we have the local residual expressions for

quadrature point 𝑞 of element 𝑒,

H
𝑒𝑞
𝑛 =


𝛼𝑛 − 𝛼𝑛−1

Δ𝛾𝑛

ε
𝑝
𝑛 − ε𝑝𝑛−1


=


0

0

0


(4.2.18)

whereas for plastic loading we have the following expressions.

H
𝑒𝑞
𝑛 =


𝛼𝑛 − 𝛼𝑛−1 − Δ𝛾𝑛√︃
3
2s𝑛 : s𝑛 − 𝜎𝑦 (𝛼𝑛)

ε
𝑝
𝑛 − ε𝑝𝑛−1 − Δ𝛾𝑛N𝑛


=


0

0

0


(4.2.19)

In our subsequent treatment the local residual equations are notationally grouped into a single vector,

H , analogous to the global residual, R, such that H contains all of the local residual equations
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corresponding to every quadrature point in the global finite element mesh. A standard 4-point Gauss

quadrature rule is used within each element to perform the numerical integration. The Newton

iteration procedure is carried out in each time increment until the relative residual achieves the

desired tolerance (i.e. | |R(𝑘)
𝑛+1 | |/| |R

(0)
𝑛+1 | | < 10−8).

4.2.1 Ductile failure indicators

As previously mentioned in the introduction, rather than explicitly including the failure physics

in the forward analyses used during the optimization problem, we use a ductile failure indicator that

is uncoupled from the forward analyses (i.e. it does not have any effect on the forward problem, but

rather serves as an indication of where ductile failure may occur at some location in the domain).

This value may then be locally constrained during the optimization procedure in order to provide

the desired resistance to ductile failure. While there have been a great number of uncoupled ductile

failure criteria that have been proposed and examined (see [186, 191, 192] for instance) and also

used within the context of elastoplastic response in topology optimization [44, 45, 46], here we

choose a single failure criterion to demonstrate the idea.

The ductile failure criteria used in the aforementioned topology optimization works include

the CrachFEM criteria of [193] and also the more classical Johnson-Cook failure criterion [194].

Since many of the criteria predict a certain equivalent plastic strain at failure (𝛼 𝑓 ) as a function of

particular stress/strain measures, it is typical to use an integral approximation due to the generally

nonlinear strain path that a material point will be subjected to over a load history [195, 193],

𝐷 𝑓 =

∫ 𝛼 𝑓 𝑖𝑛𝑎𝑙

0

1
𝛼 𝑓 (𝜂)

𝑑𝛼 (4.2.20)

where we have introduced the stress triaxiality, 𝜂 =
𝑝

𝜎𝑣𝑚
. While this is generally only applicable to

monotonically loaded structures (e.g. no stress reversals) it provides an adequate approximation for

use herein. The criteria can then be calibrated such that its value equals 1 when failure is predicted

at a material point. It is well known that ductile failure of metals is clearly influenced by the stress
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triaxiality as was previously shown extensively in other works [196, 186, 191]. Although more

recent work has shown additional dependence on the Lode’s angle [197, 198], we choose not to

incorporate these effects here for simplicity. To this end we have chosen to use the Johnson-Cook

failure criterion (which has also been used in [46]),

𝛼 𝑓 (𝜂) = 𝑑1 + 𝑑2 exp
(
𝑑3𝜂

)
(4.2.21)

with three material parameters (𝑑1, 𝑑2, and 𝑑3) in this study. The calibration of these three parameters

is briefly discussed in B.2.1, which resulted in the parameter set (𝑑1 = 0.0728, 𝑑2 = 1.1355,

𝑑3 = −2.8013). As will be explained in more detail later, this ductile fracture criterion is used during

the optimization process and is constrained to be some number less than 1 at every quadrature point,

in a manner similar to how the stress might be constrained to be less than some fraction of the yield

strength in a typical stress-based topology optimization problem. Again, this is done in order to drive

creation of designs with some level of ductile failure resistance in a more computationally efficient

manner than the alternative method of explicitly simulating ductile failure during the optimization

process.

4.3 Linear buckling analysis

The linear elastic buckling analysis presented in Ferrari and Sigmund [65] is used in this chapter

and is briefly summarized here, while the handling of pseudo-buckling modes and sensitivity

analysis will be presented later. We start by assuming the structure is comprised of a material

with a purely linear elastic constitutive response, subject the model to the same fixed displacement

boundary conditions and apply a surface traction in the same direction and at the same location as

the displacement loading in the elastoplastic forward analysis. Identical material parameters for

the linear elastic part of the elastoplastic model are used in these analyses. The initial stress results
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from the solution of the classical static equilibrium problem of linear elasticity,

K𝐿ū𝐿 = f0 (4.3.1)

where we useK𝐿 to describe the standard linear elastic stiffness matrix, and ū𝐿 to distinguish the

nodal displacements obtained via this solution from the elastoplastic solution presented in Section

4.2. The external force vector, f0, arises due to the reference applied traction load. The critical load

factor, 𝜆1, which predicts buckling if the load f0 were amplified by its magnitude, may then be

estimated by means of an eigenvalue problem,

K𝐿φ𝑖 = −𝜆𝑖K𝜎φ𝑖 (4.3.2)

where φ𝑖 corresponds to the buckling mode shape, andK𝜎 represents the geometric or initial stress

matrix which may be computed according to de Borst et al. [199]. As some authors have suggested

[65], it may be better from a computational standpoint to solve the eigenproblem,

K𝜎φ𝑖 = 𝜇𝑖K𝐿φ𝑖 (4.3.3)

where 𝜆𝑖 = −1/𝜇𝑖 due to the indefinite nature of the matrix K𝜎. In this case one is interested

in the largest algebraic eigenvalues of the system. While this did work with more reliability, we

have found that the formulation presented in [55] was more robust when solved using the standard

Krylov-Schur eigensolver in the large scale parallel eigenanalysis package, SLEPc [200]. Finally,

we also use the KS-aggregation function (in order to place more weight on the lowest buckling

load factor). This is important since oftentimes multiple buckling modes must be considered due to

mode swapping and it additionally renders the gradient unique in the case of eigenvalues which are

not simple [201]. The final buckling function used in the optimization problem is the following,

𝐵𝐾𝑆 =
1
𝜉𝑘𝑠

ln

(∑︁
𝑖∈B

exp (𝜉𝑘𝑠𝜇𝑖)
)

(4.3.4)
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where 𝜉𝑘𝑠 is the aggregation parameter that controls the degree to which the function approximates

the eigenvalue corresponding to the smallest load factor. Note that B represents a set of computed

eigenvalues and ultimately only includes the set of eigenvalues, {𝜇𝑖}, corresponding to buckling

modes which are not deemed to be pseudo-modes that have developed in low density or highly

localized regions. These issues are addressed in Section 4.4.4.

4.4 Density-based topology optimization formulation

In this section we first outline the proposed density-based design parameterization used for the

elastoplastic and structural buckling analyses performed during the topology optimization procedure.

Our goal is to increase the structural strength including the amount of external work required to reach

this state (after which any external load increase may be subsequently accompanied by structural

softening in the form of either buckling or ductile fracture). We formulate the multiobjective

optimization problem and briefly discuss the PDE-based filter and projection scheme used in this

chapter. Additionally, the local constraint enforcement method is presented, along with an additional

filtering scheme for highly-localized pseudo buckling modes that often arise during the linear elastic

buckling analyses. The complete optimization procedure is then summarized with a flow diagram

for clarity. In the final subsection, we provide the analytical, adjoint-based derivation of the relevant

function sensitivities.
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4.4.1 Density-based design parameterization

Elastoplasticity model design parameterization

The geometry is parameterized using a SIMP formulation [162, 163] with an ersatz material

stiffness parameter used in the elastoplastic forward analyses as follows,

𝐸 = (𝜖𝑒 + (1 − 𝜖𝑒)𝜌𝑝𝑒 )𝐸 𝑠𝑜𝑙𝑖𝑑 (4.4.1)

𝐻 = (𝜖𝑝 + (1 − 𝜖𝑝)𝜌𝑞𝑒 )𝐻𝑠𝑜𝑙𝑖𝑑 (4.4.2)

𝜎𝑦0 = (𝜖𝑝 + (1 − 𝜖𝑝)𝜌
𝑞
𝑒 )𝜎𝑠𝑜𝑙𝑖𝑑𝑦0 (4.4.3)

𝑌∞ = (𝜖𝑝 + (1 − 𝜖𝑝)𝜌𝑞𝑒 )𝑌 𝑠𝑜𝑙𝑖𝑑∞ (4.4.4)

The elastic ersatz material parameter, 𝜖𝑒, is set to 10−8 while the plastic ersatz material parameter,

𝜖𝑝, is set to 10−4 for all examples in this chapter. In a manner similar to Amir [36] we apply

continuation on the penalization exponents as follows. Initially the exponents are set to (𝑝 = 1,

𝑞 = 0.5) for the first 10 iterations and subsequently increased by 0.1 every 10 subsequent iterations

up to a maximum value of (𝑝 = 4, 𝑞 = 3.5). This strategy, combined with the projection technique

detailed in a subsequent subsection, proved to be effective for arriving at 0/1 designs and provided a

smoother optimization process.

Linear buckling model design parameterization

Consistent with [62] we choose different elastic modulus interpolations for the linear elastic

stiffness matrix, K𝐿 , and the initial stress matrix, K𝜎. As discussed in [62], this is in order to

hinder the appearance of many pseudo-buckling modes in low density regions. Here the same

interpolation strategy is used.

𝐸𝐿 = (10−6 + (1 − 10−6)𝜌𝑝𝑒 )𝐸 𝑠𝑜𝑙𝑖𝑑 (4.4.5)

𝐸𝜎 = 𝜌
𝑝
𝑒 𝐸

𝑠𝑜𝑙𝑖𝑑 (4.4.6)
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While this strategy does generally decrease the number of pseudo-buckling modes which appear,

in our experience there are many examples in which a great number of pseudo modes are still

present. Perhaps the ersatz stiffness, 10−6, in Equation (4.4.5) should also be adjusted along with

the continuation scheme imposed on the density exponent, 𝑝. Rather than exploring this strategy,

a different method is imposed which will be discussed in Section 4.4.4. Also, we note that the

SIMP exponent, 𝑝, is the same as the exponent, 𝑝, presented in the previous subsection for the

elastoplastic parameterization. The same continuation scheme mentioned there also applies.

4.4.2 Density filter and projection schemes

PDE-based density filter

In order to alleviate checkerboard patterns and other numerical instabilities, a density filter is

applied to the design variables, θ = [𝜃1, . . . , 𝜃𝑁𝑒𝑙𝑒𝑚], which are controlled by the optimizer. This

also provides an effective strategy for dealing with issues of mesh-dependence as discussed in

Sigmund and Petersson [164]. Here we use a PDE-based filter based on the work of Lazarov and

Sigmund [202] which allows the algorithm to be easily parallelized using an existing finite element

framework and the same design mesh discretization. The filtering scheme introduces a design

length scale, 𝑟𝑚𝑖𝑛, which helps alleviate the problem of mesh-dependence [62]. The filtered design

variables, 𝜌̂, are obtained from the solution of the following boundary value problem,

−𝑟2∇2 𝜌̂ + 𝜌̂ = 𝜃 , in the domain, Ω (4.4.7)

∇𝜌̂ · n = 0 , on the boundary, 𝜕Ω, with outward normal n (4.4.8)

where the parameter 𝑟 controls the length scale of features in the final topology (i.e. 𝑟 = 𝑟𝑚𝑖𝑛/(2
√

3)

where 𝑟𝑚𝑖𝑛 is related to the classical filter radius shown in [165] as discussed in [202]), and 𝜃 again

represents the design variables controlled by the optimizer. The numerical solution of this PDE

is obtained using the Galerkin finite element method with piece-wise continuous bilinear basis

functions to discretize the filtered density field in the manner discussed in [202].
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Filtered density projection

While it is true that increasing the SIMP penalization parameters, (𝑝, 𝑞), tends to produce

structures with pseudo-densities closer to 0 or 1, the filtering scheme inevitably creates a transition

region with intermediate density values. In order to eliminate much of this transition region we

employ a projection scheme beginning with the work of Guest et al. [166] and subsequently

modified in Wang et al. [167].

𝜌𝑒 (𝜌𝑒 (θ)) =
tanh(𝛽𝜂) + tanh(𝛽( 𝜌̂𝑒 − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂)) (4.4.9)

Note here that 𝜂 governs the density threshold at which the projection takes place and 𝛽 governs the

strength of the projection operation. In all subsequent analyses 𝜂 is fixed at 0.5 while a continuation

scheme is used to update 𝛽 during the optimization procedure. The parameter 𝛽 is progressively

increased in increments of 0.5 every 20 iterations from an initial value of 1 to a maximum value

of 10. The value of 𝛽 = 1 is kept constant, however, for the first 300 iterations in order to prevent

unnecessary nonlinearity before a well-defined topology emerges (analogous to the strategy of Amir

[36]).

4.4.3 Optimization problem statement/formulation

The goal of the formulation we propose is to maximize the peak load carrying capacity of the

structure and the external work required to reach this state, by increasing not only the resistance to

ductile fracture through the imposition of local failure constraints, but also the resistance to buckling

of structural members by including the buckling load factors obtained from a linear buckling

analysis in the objective function itself. Compared with previous work on elastoplastic topology

optimization several novel features are presented. The first being that the total work is included in

an aggregate objective function along with the KS-function of the buckling load factors from the

linear elastic analysis. Including Equation (4.3.4) in the objective function is intended to provide

additional support for members that are in compression and may be more sensitive to buckling.
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The second feature includes the manner in which the local ductile failure constraints are imposed.

Namely, the Augmented Lagrangian method that is used in place of traditional aggregation functions

and is outfitted with suggested improvements for the ductile failure constraints imposed herein.

This will be further discussed later in this section. Finally, the optimal results are verified using a

more realistic finite deformation analysis with ductile failure predicted via the phase field fracture

method. This model is briefly outlined in Section 4.5. Formally, we write the final mathematical

optimization problem we wish to solve,

minimize
θ=[𝜃1,...,𝜃𝑁𝑒𝑙𝑒𝑚 ]

− 𝜔1
𝑊 (θ, {ū𝑖}, {c𝑖})

𝑊 𝑠𝑐𝑎𝑙𝑒
+ 𝜔2

𝐵𝐾𝑆 (θ, ū𝐿)
𝐵𝑠𝑐𝑎𝑙𝑒
𝐾𝑆

+ 𝜔3 𝐴𝐿 (θ, {ū𝑖}, {c𝑖})

subject to 0 ≤ 𝜃𝑒 ≤ 1, 𝑒 = 1, . . . , 𝑁𝑒𝑙𝑒𝑚

Λ(θ) ≤ Λ𝑚𝑎𝑥

R(𝑖) (θ, {ū𝑖}, {c𝑖}) = 0, 𝑖 = 1, . . . , 𝑁𝑠𝑡𝑒𝑝𝑠

H (𝑖) (θ, {ū𝑖}, {c𝑖}) = 0, 𝑖 = 1, . . . , 𝑁𝑠𝑡𝑒𝑝𝑠

K𝐿 (θ)ū𝐿 = f0

K𝜎 (θ, ū𝐿)𝜙𝑖 = 𝜇𝑖K𝐿 (θ)𝜙𝑖 for 𝑖 ∈ B

(4.4.10)

where we introduce the user-defined weighting factors {𝜔𝑖 | 𝑖 ∈ {1, 2, 3} & 𝜔𝑖 ≥ 0}, (𝑊 𝑠𝑐𝑎𝑙𝑒, 𝐵𝑠𝑐𝑎𝑙𝑒
𝐾𝑆

)

are scale factors for the corresponding functions, and we use the notation {ū𝑖} and {c𝑖} to describe

the set of nodal displacement and local state variables at each increment, 𝑖 = 1, . . . , 𝑁𝑠𝑡𝑒𝑝𝑠, where

𝑁𝑠𝑡𝑒𝑝𝑠 is the number of increments employed during the elastoplastic forward analysis. Note that

the local state variables we have used are the equivalent plastic strain, plastic multiplier increment,

and plastic strain tensor (c = {𝛼,Δ𝛾, ε𝑝}) which will be important during the sensitivity analysis.

Each function will be briefly described in more detail below. The buckling function, 𝐵𝐾𝑆 (θ, ū𝐿),

was previously provided in Equation (4.3.4).

Additionally, an upper bound (Λ𝑚𝑎𝑥) constraint is placed on the volume fraction, denoted by Λ

111



and defined in Equation (4.4.11) where 𝑉𝑡𝑜𝑡𝑎𝑙 represents the design domain volume.

Λ(θ) = 1∫
Ω
𝑑𝑉

∫
Ω

𝜌(θ) 𝑑𝑉 =
1

𝑉𝑡𝑜𝑡𝑎𝑙

𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝜌𝑒𝑉𝑒 (4.4.11)

Finally, we briefly provide the rationale for the scale factors (𝑊 𝑠𝑐𝑎𝑙𝑒, 𝐵𝑠𝑐𝑎𝑙𝑒
𝐾𝑆

) and how they

are updated. Due to aggregated nature of the objective function, it is important for the individual

functions to be normalized in some manner. Over the course of the optimization problem, the

magnitudes of the functions are changing, sometimes by orders of magnitude. This is due to multiple

factors, including the continuation scheme on the SIMP penalty exponents (𝑝 and 𝑞), which are

updated every 10 optimization iterations. In order for the fixed weights 𝜔1, 𝜔2, and 𝜔3 to have a

consistent effect, we set the scaling parameters𝑊 𝑠𝑐𝑎𝑙𝑒 = 𝑊 and 𝐵𝑠𝑐𝑎𝑙𝑒
𝐾𝑆

= 𝐵𝐾𝑆 every 10 optimization

iterations, at the same iteration as the update of the SIMP penalization parameters 𝑝 and 𝑞. This

strategy has proven to be very effective for the examples we have encountered. Additionally, since

they are not updated every iteration, we have experienced no stability or oscillatory issues with the

optimization process.

Remark. The linear buckling analysis problem presented in Section 4.3 is a pseudo-problem that

is not intended to accurately capture the physics of the physical problem. Rather the elastoplastic

problem is intended for this purpose. The linear buckling analysis is significantly unphysical due

largely to its constitutive assumption of linear elasticity in which the material stiffness is generally

much higher than the same material which has been loaded beyond its elastic limit. Therefore,

although one might use the same displacement-based loading in the buckling analysis as is used in

the elastoplastic analysis, the two loadings are still not equivalent since the imparted loads depend

on the constitutive response. Since this is the case, we use the force-based loading scheme for the

linear buckling problem, in accordance with the existing literature, and apply the load in a direction

consistent with the elastoplastic problem. The linear elastic buckling problem is only exploited for

its capability to produce a function in which the sensitivities drive structural support for members

that are in compression. This provides our desired resistance to buckling failure.
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Remark. The 𝐵𝐾𝑆 function is minimized rather than constrained for a specific reason. Since the

linear buckling analysis is a pseudo-problem that is weakly connected to the physical problem, it is

not clear a-priori what upper bound one should place on this function. Thus, it is beneficial from a

practical perspective to minimize it rather than constrain it, although there is no theoretical argument

against constraining this function if a designer wishes to do so. Similarly, while one could constrain

the part of the Augmented Lagrangian corresponding to the local failure constraints, we do not

do so for two primary reasons. The first is simply to be consistent with the optimization theory,

which is discussed in Nocedal and Wright [203]. The second, more practical reason, is that this

part of the Augmented Lagrangian tends to be quite nonlinear in the design variables. Since most

optimizers drive strongly toward the feasible region when a constraint is not satisfied, constraining

this function may result in large design changes over few iterations. In order to avoid this, it is

beneficial to include it in the objective function rather than directly constrain it.

Total work function

The total work function may be written in its typical integral form in addition to the numerically

integrated form using the trapezoid rule,

𝑊 (θ, {ū𝑖}, {c𝑖}) =
∫ 𝑡 𝑓 𝑖𝑛𝑎𝑙

0

∫
Ω

σ : ¤ε 𝑑𝑉 𝑑𝑡

≈
𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑛=1

𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝑁𝑞𝑢𝑎𝑑∑︁
𝑞=1

1
2

(
σ (𝑛)𝑒𝑞 + σ

(𝑛−1)
𝑒𝑞

)
:
(
ε(𝑛)𝑒𝑞 − ε

(𝑛−1)
𝑒𝑞

)
𝑤𝑒𝑞

(4.4.12)

where the notation (·)𝑒𝑞 implies the quantity corresponds to the 𝑞-th quadrature point of element

𝑒 and 𝑤𝑒𝑞 is the Jacobian of the elemental mapping multiplied by the corresponding quadrature

weight.

Local ductile failure constraint enforcement

In order to increase resistance to ductile fracture, we enforce the local ductile failure constraints

at each quadrature point in the finite element mesh. To this end we employ a new strategy based
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on the work of Senhora et al. [184, 7] for stress constraints. This strategy removes the need for

aggregation functions and clustering strategies as the number of local constraints increases. Given a

local inequality constraint, 𝑔𝑞 (θ, {ū𝑖}, {c𝑖}) ≤ 0, a common Augmented Lagrangian strategy [203]

may be used to enforce it, resulting in a function of the following form appended to the original

objective.

𝐴𝐿 (θ, {ū𝑖}, {c𝑖}) =
𝑁𝑞𝑢𝑎𝑑∑︁
𝑞=1

(
𝜆𝑞𝑔𝑞 (θ, {ū𝑖}, {c𝑖}) +

𝜇𝑞

2
𝑔𝑞 (θ, {ū𝑖}, {c𝑖})2

)
(4.4.13)

Note (𝜆𝑞, 𝜇𝑞, 𝑔𝑞 (θ, {ū𝑖}, {c𝑖})) represent the Lagrange multiplier, penalty parameter, and local

ductile fracture constraint function at each quadrature point, 𝑞, all to be discussed later in more

detail.

The local constraint function previously proposed in the context of stress-constrained linear

elastic problems takes the following form for a stress measure (𝜎𝑞 = 𝜎𝑞 (θ, ū𝐿)) within a given

finite element 𝑒, at quadrature point 𝑞,

𝑔𝑞 (𝜎𝑞) =


𝜌3
𝑒

(
𝜎𝑞
𝜎𝑚𝑎𝑥
− 1

)2
, if 𝜎𝑞 > 𝜎𝑚𝑎𝑥

0, otherwise
(4.4.14)

where 𝜎𝑚𝑎𝑥 is the desired upper bound. The authors have found this method to work well in the

context of linear elastic response but suggest a few modifications in order to potentially enhance its

performance, particularly for the ductile failure constraints imposed in this chapter.

Before moving further we remind the reader that our local constraint to be enforced at each

quadrature point is 𝐷 𝑓 ≤ 𝐷𝑚𝑎𝑥 where 𝐷 𝑓 is computed using the Equations (4.4.15) and (4.4.16)

below, and 𝐷𝑚𝑎𝑥 is the user specified upper bound. As previously explained in Section 4.2, the

local ductile failure indicator 𝐷 𝑓 is calibrated such that a value greater than or equal to 1 signifies

a prediction of ductile failure of the material locally. Enforcing an upper bound, 𝐷𝑚𝑎𝑥 , on this

quantity which is less than 1 everywhere in the domain for a given external load then provides the
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ductile failure resistance we desire.

𝐷 𝑓𝑞 (θ, {ū𝑖}, {c𝑖}) =
∫ 𝛼

𝑓 𝑖𝑛𝑎𝑙
𝑞

0

1

𝑑1 + 𝑑2 exp
(
𝑑3𝜂𝑞

) 𝑑𝛼𝑞
≈ 1

2

𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑛=1

(
𝑓
(𝑛)
𝑞 + 𝑓 (𝑛−1)

𝑞

) (
𝛼
(𝑛)
𝑞 − 𝛼(𝑛−1)

𝑞

) (4.4.15)

where 𝑓 (𝑛)𝑞 ≡ 1

𝑑1 + 𝑑2 exp
(
𝑑3𝜂
(𝑛)
𝑞

) (4.4.16)

Note that this function is always positive for 𝑑1, 𝑑2 ≥ 0. An analogous form to Equation (4.4.14)

would result in a local constraint function,

𝑔𝑞 (𝐷 𝑓𝑞 ) =


𝜌3
𝑒

(
𝐷 𝑓𝑞

𝐷𝑚𝑎𝑥
− 1

)2
, if 𝐷 𝑓𝑞 > 𝐷𝑚𝑎𝑥

0, otherwise
(4.4.17)

where the arguments, 𝐷 𝑓𝑞 = 𝐷 𝑓𝑞 (θ, {ū𝑖}, {c𝑖}), have been dropped for clarity. Empirically, we

have found this form to be quite nonlinear in the design variables. This is due in part to the density

exponent, the curvature of the function, and the zero derivative of the function when the constraint

is satisfied. To this end, the functional form we propose may be expressed as,

𝑔𝑞 (𝐷 𝑓𝑞 ) =


𝜌0.5
𝑒

(
𝜁1

(
𝐷 𝑓𝑞

𝐷𝑚𝑎𝑥

)2
+ (𝜁2 − 2𝜁1)

𝐷 𝑓𝑞

𝐷𝑚𝑎𝑥
+ 𝜁1

)
, if 𝐷 𝑓𝑞 > 𝐷𝑚𝑎𝑥

𝜌0.5
𝑒 𝜁2

(
𝐷 𝑓𝑞

𝐷𝑚𝑎𝑥

)
, otherwise

(4.4.18)

where 𝜁1 > 0 and 𝜁2 ≥ 0 are two additional parameters we have introduced. Note that the function

is C1 in 𝐷 𝑓𝑞 and that the parameter selection 𝜁1 = 1 and 𝜁2 = 0 recovers the original function of

Equation (4.4.17) with the exception of the density exponent replacement from 3 to 0.5. The density

exponent has been reduced to 0.5 similar to the qp-relaxation of Bruggi [204], which also helps to

reduce the nonlinearity of the function in the design variables. The parameter 𝜁1 > 0 controls the

second derivative of the function when the constraint is not satisfied. Herein we set 𝜁1 = 0.5 which
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makes the second derivative of the function half that of the function in Equation (4.4.17), further

reducing the nonlinearity.

Additionally, we have included the parameter 𝜁2 which provides the designer the option of

allowing a nonzero function sensitivity when the constraint is satisfied. For the numerical examples

presented herein we have set 𝜁2 = 10−8 which has little effect on the resulting designs for the

examples provided in Section 4.6. Later, larger values might be explored in order to determine

whether the nonzero derivative has a positive impact on optimizer performance. Continuation

schemes might also be employed for one or both parameters which make the function less nonlinear

and help smooth the function sensitivities during the initial design iterations, while subsequently

gently changing their values in later iterations so that the function is ultimately similar to Equation

(4.4.17). We leave these exercises for future research and improvement but do not dwell on them

further herein. The effects of the parameters are graphically shown in Figure 4.1.

0.0 0.5 1.0 1.5
Dfq

Dmax

0.01

0.10

0.20

0.25

g q

1 = 1, 2 = 0
1 = 1, 2 = 0.01
1 = 0.5, 2 = 0
1 = 0.5, 2 = 0.01

Figure 4.1: Demonstration of the effect of the new parameters 𝜁1 and 𝜁2 on Equation (4.4.18) for
𝜌𝑒 = 1.

Finally we update the Lagrange multipliers and penalties in the following manner. For the first

50 optimization iterations the values are held fixed. Subsequently, every 5 optimization iterations,

the values are updated according to the following equations at every quadrature point in the finite

element mesh. Note also that the parameters, 𝜇𝑞, are updated independently at every quadrature
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point, rather than using a single penalty parameter, 𝜇.

𝜆𝑞 =


max

(
𝜆𝑞 + 𝜇𝑞 · 𝑔𝑞, 0

)
, if 𝐷 𝑓𝑞 > 𝐷𝑚𝑎𝑥

𝜆𝑞 , otherwise
(4.4.19)

𝜇𝑞 =


1.05 · 𝜇𝑞 , if 𝐷 𝑓𝑞 > 𝐷𝑚𝑎𝑥

𝜇𝑞 , otherwise
(4.4.20)

4.4.4 Buckling mode filters

We employ the strain energy buckling mode filter of Gao et al. [64] which is based upon an

elemental criterion rather than the nodal criterion presented earlier in Gao and Ma [63]. While

Ferrari and Sigmund [65] mention they did not see this issue for the example that they tested, we

have seen the issue in both the portal frame example and the cantilever beam example explored

in this chapter. However, we remark the L-bracket example did not have much issue with pseudo-

buckling modes, although there were some pseudo modes occasionally detected and removed via

this criterion. The standard parameters that are outlined in [64] to identify pseudo modes are used

and we do not elaborate further on this point.

However, a different issue was also experienced that the strain energy filter mentioned above did

not resolve. For examples such as the portal frame and cantilever beam, highly localized, clearly

spurious buckling modes were observed in regions of high density which were under compression.

Figure 4.2 illustrates one such example, and highlights the region where the downward traction is

applied for the portal frame. In an effort to remove these spurious modes, we have implemented the

following method which is efficient, parallelizable, and seemed to be effective for the examples we

tested. This approach is briefly described below.
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Figure 4.2: Portal frame localized pseudo-buckling mode at an intermediate optimization iteration.
Pseudo-density field contours are depicted (𝜌𝑒 = 0 (blue), 𝜌𝑒 = 1 (red)).

Take for example a single buckling mode, φ𝑖, which we normalize according to the 𝑙∞-norm

and refer to this normalized vector as v ≡ φ𝑖
| |φ𝑖 | |∞ . The most active parts of the vector, v, now have

components with absolute values closer to 1 (note that another approach might be to normalize

the vector such that the node with the largest norm of its vector displacement is 1 rather than

our component-wise strategy). Therefore, if more than a large percentage, 𝜉𝑣%, of the vector

components consists of absolute values less than 𝑣𝑡ℎ𝑟𝑒𝑠ℎ � 1 then regardless of the element density

field, one might conclude that this vector is a highly localized pseudo-buckling mode of the type

shown in Figure 4.2. In this chapter we use very conservative values for these parameters (𝜉𝑣 = 90%,

𝑣𝑡ℎ𝑟𝑒𝑠ℎ = 0.02). Put in a different way, we do not consider any buckling modes for which 90%

or more of the vector contains values less than 2% of the largest value. A relatively high (90%)

threshold is used in order to ensure real buckling modes are not unintentionally removed, even

though this has prevented the removal of several localized buckling modes in some cases. However,

as the optimization procedure progresses towards a 0/1 solution, this becomes much less of an issue

in our experience. We compute between 50 and 100 buckling modes (depending on the problem

and the number of pseudo modes we observe) which are then passed through both filter algorithms.

The first 6 of the filtered buckling modes are then included in the set B, although this number could

easily be changed if needed for some specific problem.
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4.4.5 Optimization process and methodology

Here we provide a clear diagram illustrating the flow of information and a macroscopic view of

the entire optimization procedure. This is illustrated in Figure 4.3.

Start

Initialize Quantities:

𝑖𝑡𝑒𝑟 = 1
{𝜃𝑒} = {0.4}

{𝑝, 𝑞, 𝛽} = {1, 0.5, 1}
{𝜆𝑞} = {0.01}
{𝜇𝑞} = {0.1}
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{𝐵𝐾𝑆, 𝜕𝐵𝐾𝑆𝜕θ }

𝐵𝐾𝑆𝑊

{𝑊, 𝐴𝐿, , 𝜕𝑊
𝜕θ ,

𝜕𝐴𝐿
𝜕θ } {𝑊 𝑠𝑐𝑎𝑙𝑒, 𝐵𝑠𝑐𝑎𝑙𝑒

𝐾𝑆
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{ 𝑓 , 𝜕 𝑓
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θ
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𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

no

θ

Figure 4.3: Flow chart illustrating the optimization procedure

Initially, the SIMP exponents, projection parameter (𝛽), and Lagrange multipliers with associated

penalty parameters are all initialized, along with the design variables, θ. The design variables are

then filtered and projected as described in Section 4.4.2 to obtain the physical density variables, ρ,

used in the forward analyses. Subsequently, two separate forward analyses are conducted with the

same density variables, ρ. The first is the elastoplastic analysis in which the total work and local

ductile failure indicators are computed. The second is the linear elastic buckling analysis, in which

the aggregated form of the buckling load factors is computed after employing the pseudo-buckling

mode filters described in Section 4.4.4. The sensitivities of the functions are then determined

separately as is outlined in the following subsection and scale factors for the total work and buckling
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aggregation function are determined as outlined previously. Subsequently, the aggregate objective

function and its sensitivity is formed. We perform a fixed number of 700 iterations (unless otherwise

noted) for each optimization problem. Note that this could also be replaced by a convergence

check based on whichever convergence criteria is desired. Finally, the optimizer updates the

design variables and the SIMP penalty exponents, projection parameter (𝛽), Lagrange multipliers,

and penalties are potentially updated as previously described in Sections 4.4.1, 4.4.2, and 4.4.3,

respectively.

4.4.6 Sensitivity analysis

Since the elastoplastic analysis and the linear buckling analysis are treated separately, two

sensitivity analyses corresponding to each solution are performed. The buckling sensitivity analysis

ultimately reduces to

𝜕𝐵𝐾𝑆

𝜕𝜌𝑒
=

1∑
𝑖∈B exp (𝜉𝑘𝑠𝜇𝑖)

∑︁
𝑖∈B

exp (𝜉𝑘𝑠𝜇𝑖)
𝜕𝜇𝑖

𝜕𝜌𝑒
(4.4.21)

where,

𝜕𝜇𝑖

𝜕𝜌𝑒
= φ𝑇𝑖

(
𝜕K𝜎

𝜕𝜌𝑒
− 𝜇𝑖

𝜕K𝐿

𝜕𝜌𝑒

)
φ𝑖 − v𝑇𝑖

𝜕K𝐿

𝜕𝜌𝑒
ū𝐿 (4.4.22)

and the adjoint vector v𝑖 is obtained via the solution of the adjoint problem [205],

K𝐿v𝑖 = φ
𝑇
𝑖

𝜕K𝜎

𝜕ū𝐿
φ𝑖 (4.4.23)

which completes the sensitivity analysis for the 𝐵𝐾𝑆 function. Note that these results are contingent

upon the buckling mode shapes being normalized such that φ𝑇
𝑖
K𝐿φ𝑖 = 1.

The work and failure constraint function sensitivities take significantly more effort compute,

primarily due to the path dependent, incremental nature of the problem. We begin with a general

function ( 𝑓 ) of the global state ({ū𝑖}), local state ({c𝑖}), and element densities ρ ≡ {𝜌𝑒, 𝑒 =
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1...𝑁𝑒𝑙𝑒𝑚}, and subsequently augment the function (to form 𝑓 ) with the summation of inner products

between the global/local equilibrium vectors at every load step and corresponding unknown adjoint

vectors, λn
R

and λn
H

.

𝑓 (ρ, {ū𝑖}, {c𝑖}) = 𝑓 (ρ, {ū𝑖}, {c𝑖})

+
𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑛=1

λ𝑛
𝑇

𝑅 R𝑛 (ρ, ū𝑛, ū𝑛−1, c𝑛, c𝑛−1)

+
𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑛=1

λ𝑛
𝑇

𝐻 H𝑛 (ρ, ū𝑛, ū𝑛−1, c𝑛, c𝑛−1)

(4.4.24)

Taking the total derivative of this function with respect to 𝜌𝑒, regrouping terms, and applying typical

arguments one arrives at a system of equations which may be solved to determine the unknown

adjoint vectors and decrease the overall computational expense of the sensitivity analysis when the

number of design variables is large.

For the final time increment, 𝑛 = 𝑁𝑠𝑡𝑒𝑝𝑠, we have,

𝜕R𝑛

𝜕ū𝑛

𝑇

λ𝑛𝑅 +
𝜕H𝑛

𝜕ū𝑛

𝑇

λ𝑛𝐻 = − 𝜕 𝑓
𝜕ū𝑛

𝑇

(4.4.25)

𝜕R𝑛

𝜕c𝑛

𝑇

λ𝑛𝑅 +
𝜕H𝑛

𝜕c𝑛

𝑇

λ𝑛𝐻 = − 𝜕 𝑓
𝜕c𝑛

𝑇

(4.4.26)

while for 𝑛 < 𝑁𝑠𝑡𝑒𝑝𝑠 one must solve the system,

𝜕R𝑛

𝜕ū𝑛

𝑇

λ𝑛𝑅 +
𝜕H𝑛

𝜕ū𝑛

𝑇

λ𝑛𝐻 = − 𝜕 𝑓
𝜕ū𝑛

𝑇

− 𝜕R𝑛+1
𝜕ū𝑛

𝑇

λ𝑛+1𝑅 −
𝜕H𝑛+1
𝜕ū𝑛

𝑇

λ𝑛+1𝐻 (4.4.27)

𝜕R𝑛

𝜕c𝑛

𝑇

λ𝑛𝑅 +
𝜕H𝑛

𝜕c𝑛

𝑇

λ𝑛𝐻 = − 𝜕 𝑓
𝜕c𝑛

𝑇

− 𝜕R𝑛+1
𝜕c𝑛

𝑇

λ𝑛+1𝑅 −
𝜕H𝑛+1
𝜕c𝑛

𝑇

λ𝑛+1𝐻 (4.4.28)

for the unknown adjoint vectors. Labeling the right hand side of Equations (4.4.25) and (4.4.27) with

Fu and Equations (4.4.26) and (4.4.28) with Fc for conciseness, the equations may be re-arranged
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such that,

(
𝜕R𝑛

𝜕ū𝑛
− 𝜕R𝑛

𝜕c𝑛

𝜕H𝑛

𝜕c𝑛

−1 𝜕H𝑛

𝜕ū𝑛

)𝑇
λ𝑛𝑅 = Fu +

𝜕R𝑛

𝜕c𝑛

𝜕H𝑛

𝜕c𝑛

−1
Fc (4.4.29)

λ𝑛𝐻 =
𝜕H𝑛

𝜕c𝑛

−1 (
Fc −

𝜕H𝑛

𝜕ū𝑛
λ𝑛𝑅

)
(4.4.30)

which facilitates the formation of both the left and right hand side of Equation (4.4.29) at the

element level prior to global assembly since all of the gauss point local variables are independent of

one another (as mentioned and used in [182, 206]). Therefore the matrix inverse in the equations is

much cheaper to compute than that of the original system, which need never be explicitly formed or

solved (eliminating the need for constructing the new sparsity pattern and larger matrix structures as

well). Once the adjoint vector, λ𝑛
𝑅

, is known, the calculation of λ𝑛
𝐻

can be locally performed very

rapidly at the element level. With the set of adjoint vectors known, the sensitivity of the original

function may then be computed via

𝑑𝑓

𝑑𝜌𝑒
=
𝑑 𝑓

𝑑𝜌𝑒
=
𝜕 𝑓

𝜕𝜌𝑒
+
𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑛=1

λ𝑛
𝑇

𝑅

𝜕R𝑛

𝜕𝜌𝑒
+
𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑛=1

λ𝑛
𝑇

𝐻

𝜕H𝑛

𝜕𝜌𝑒
(4.4.31)

which consists of simple explicit derivatives to compute within each element.

Global residual derivatives

In the absence of tractions applied during the elastoplastic analyses, the elemental residual

vectors take the form,

R𝑒
𝑛 =

∫
Ω𝑒

B𝑢𝑇 : s𝑛 𝑑𝑉 + 𝑝𝑛
∫
Ω𝑒

B𝑢𝑇

𝑑𝑖𝑣 𝑑𝑉 (4.4.32)
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as previously presented in Section 4.2. The following explicit derivatives may then be defined.

𝜕R𝑒
𝑛

𝜕𝜌𝑒
=

∫
Ω𝑒

2
𝑑𝜇

𝑑𝜌𝑒
B𝑢𝑇 : P𝑑𝑒𝑣 :

(
ε𝑛 − ε𝑝𝑛

)
𝑑𝑉 + 𝑑𝜅

𝑑𝜌𝑒
Θ𝑛+1

∫
Ω𝑒

B𝑢𝑇

𝑑𝑖𝑣 𝑑𝑉

𝜕R𝑒
𝑛

𝜕ū𝑛
=

∫
Ω𝑒

2𝜇B𝑢𝑇 : P𝑑𝑒𝑣 : B𝑢 𝑑𝑉 + 𝜅

𝑉𝑒

(∫
Ω𝑒

B𝑢𝑇

𝑑𝑖𝑣 𝑑𝑉

) (∫
Ω𝑒

B𝑢
𝑑𝑖𝑣 𝑑𝑉

)
𝜕R𝑒

𝑛

𝜕ε
𝑝
𝑛

=

∫
Ω𝑒

−2𝜇B𝑢𝑇 : P𝑑𝑒𝑣 𝑑𝑉

𝜕R𝑒
𝑛

𝜕𝛼𝑛
=
𝜕R𝑒

𝑛

𝜕Δ𝛾𝑛
=
𝜕R𝑒

𝑛+1
𝜕ū𝑛

=
𝜕R𝑒

𝑛+1
𝜕ε

𝑝
𝑛

=
𝜕R𝑒

𝑛+1
𝜕𝛼𝑛

=
𝜕R𝑒

𝑛+1
𝜕Δ𝛾𝑛

= 0

Local residual derivatives

The explicit derivatives of the local residual equations previously defined in Equation (4.2.18)

and (4.2.19) are provided in this section. In the case of elastic loading the required derivatives are,

𝜕H
𝑒𝑞
𝑛

𝜕𝜌𝑒
=


0

0

0


𝜕H

𝑒𝑞
𝑛

𝜕ū𝑛
=


0

0

0


𝜕H

𝑒𝑞

𝑛+1
𝜕ū𝑛

=


0

0

0


𝜕H

𝑒𝑞
𝑛

𝜕𝛼𝑛
=


1

0

0


𝜕H

𝑒𝑞
𝑛

𝜕Δ𝛾𝑛
=


0

1

0


𝜕H

𝑒𝑞
𝑛

𝜕ε
𝑝
𝑛

=


0

0

I𝑠


𝜕H

𝑒𝑞

𝑛+1
𝜕𝛼𝑛

=


−1

0

0


𝜕H

𝑒𝑞

𝑛+1
𝜕Δ𝛾𝑛

=


0

0

0


𝜕H

𝑒𝑞

𝑛+1
𝜕ε

𝑝
𝑛

=


0

0

−I𝑠


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while for plastic loading the derivatives become more complex and are provided below.

𝜕H
𝑒𝑞
𝑛

𝜕𝜌𝑒
=


0

𝑎𝑛

0


𝜕H

𝑒𝑞
𝑛

𝜕ū𝑛
=


0

A𝑛 : B𝑢

A𝑛 : B𝑢


𝜕H

𝑒𝑞

𝑛+1
𝜕ū𝑛

=


0

0

0


𝜕H

𝑒𝑞
𝑛

𝜕𝛼𝑛
=


1

− 𝑑𝜎𝑦
𝑑𝛼

��
𝛼𝑛

0


𝜕H

𝑒𝑞
𝑛

𝜕Δ𝛾𝑛
=


−1

0√︃
3
2

s𝒏
| |s𝑛 | |


𝜕H

𝑒𝑞
𝑛

𝜕ε
𝑝
𝑛

=


0

−A𝑛

I𝑠 + A𝑛


𝜕H

𝑒𝑞

𝑛+1
𝜕𝛼𝑛

=


−1

0

0


𝜕H

𝑒𝑞

𝑛+1
𝜕Δ𝛾𝑛

=


0

0

0


𝜕H

𝑒𝑞

𝑛+1
𝜕ε

𝑝
𝑛

=


0

0

−I𝑠


Note that the notation 𝑑𝜎𝑦

𝑑𝛼

��
𝛼𝑛

refers to the derivative 𝑑𝜎𝑦
𝑑𝛼

evaluated at 𝛼𝑛. We have used the following

definitions to simplify the above expressions.

𝑎𝑛 ≡
𝑑𝜇

𝑑𝜌𝑒

√
6

| |s𝑛 | |
s𝑛 :

(
ε𝑛 − ε𝑝𝑛

)
−

(
𝑑𝜎𝑦0

𝑑𝜌𝑒
+ 𝑑𝐻
𝑑𝜌𝑒

𝛼𝑛 +
𝑑𝑌∞
𝑑𝜌𝑒
(1 − exp (−𝛿𝛼𝑛))

)
A𝑛 ≡

√
6𝜇

s𝑛
| |s𝑛 | |

A𝑛 ≡
𝜇
√

6Δ𝛾𝑛
| |s𝑛 | |

(
P𝑑𝑒𝑣 −

s𝑛
| |s𝑛 | |

⊗ s𝑛
| |s𝑛 | |

)
The work and AL functions both depend on the element pseudo-densities and the global/local

state variables. The derivatives 𝜕 𝑓

𝜕𝜌𝑒
, 𝜕 𝑓

𝜕ū𝑛
, and 𝜕 𝑓

𝜕c𝑛
appear in Equations (4.4.25), (4.4.26), (4.4.27),

(4.4.28), and (4.4.31) and must therefore be provided in order to complete the sensitivity analysis

for a given function. These explicit derivatives are provided in the next subsection. Finally, due to

the filtering and projection schemes presented in Section 4.4.2, the chain rule must be employed in

order to obtain the final required derivatives of the functions with respect to the design variables, θ.

This is performed as discussed in [202].
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Work function explicit derivatives

Note that the work function may be re-written in the following form where we use the shorter

notation, 𝑁 ≡ 𝑁𝑠𝑡𝑒𝑝𝑠, for clarity

𝑊 (ρ, {ū𝑖}, {c𝑖}) =
1
2

∫
Ω

σ𝑁 : (ε𝑁 − ε𝑁−1) 𝑑𝑉

+ 1
2

𝑁−1∑︁
𝑛=1

∫
Ω

σ𝑛 : (ε𝑛+1 − ε𝑛−1) 𝑑𝑉

and where we assume that the body is initially unloaded so that ε0 = 0. We may compute the partial

derivative with respect to an element pseudo-density with the following expression

𝜕𝑊

𝜕𝜌𝑒
=

1
2

∫
Ω

𝜕σ𝑁
𝜕𝜌𝑒

: (ε𝑁 − ε𝑁−1) 𝑑𝑉 +
1
2

𝑁−1∑︁
𝑛=1

∫
Ω

𝜕σ𝑛
𝜕𝜌𝑒

: (ε𝑛+1 − ε𝑛−1) 𝑑𝑉 (4.4.33)

𝜕σ𝑛
𝜕𝜌𝑒

=
𝑑𝜅

𝑑𝜌𝑒
Θ𝑛I + 2

𝑑𝜇

𝑑𝜌𝑒
P𝑑𝑒𝑣 :

(
ε𝑛 − ε𝑝𝑛

)
(4.4.34)

The derivatives with respect to global and local state variables at particular time steps are slightly

more tedious to compute and are grouped according to those corresponding to the state at the final

time increment and those of previous increments.

Final (𝑁 𝑡ℎ) pseudo-time increment:

𝜕𝑊

𝜕ū𝑁
=

1
2

∫
Ω

(ε𝑁 − ε𝑁−1) : (2𝜇P𝑑𝑒𝑣) : B𝑢𝑑𝑉

+ 1
2

(∫
Ω

(ε𝑁 − ε𝑁−1) : I 𝑑𝑉
) (

𝜅

𝑉𝑒

∫
Ω

B𝑢
𝑑𝑖𝑣𝑑𝑉

)
+ 1

2

∫
Ω

(σ𝑁 + σ𝑁−1) : B𝑢𝑑𝑉

(4.4.35)

𝜕𝑊

𝜕ε
𝑝

𝑁

=
1
2

∫
Ω

(ε𝑁 − ε𝑁−1) : (−2𝜇P𝑑𝑒𝑣) 𝑑𝑉 (4.4.36)

𝜕𝑊

𝜕𝛼𝑁
=

𝜕𝑊

𝜕Δ𝛾𝑁
= 0 (4.4.37)
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All other pseudo-time increments (𝑛 = 𝑁 − 1, . . . , 1):

𝜕𝑊

𝜕ū𝑛
=

1
2

∫
Ω

(ε𝑛+1 − ε𝑛−1) : (2𝜇P𝑑𝑒𝑣) : B𝑢𝑑𝑉

+ 1
2

(∫
Ω

(ε𝑛+1 − ε𝑛−1) : I 𝑑𝑉
) (

𝜅

𝑉𝑒

∫
Ω

B𝑢
𝑑𝑖𝑣𝑑𝑉

)
+ 1

2

∫
Ω

(σ𝑛−1 − σ𝑛+1) : B𝑢𝑑𝑉

(4.4.38)

𝜕𝑊

𝜕ε
𝑝
𝑛

=
1
2

∫
Ω

(ε𝑛+1 − ε𝑛−1) : (−2𝜇P𝑑𝑒𝑣) 𝑑𝑉 (4.4.39)

𝜕𝑊

𝜕𝛼𝑛
=

𝜕𝑊

𝜕Δ𝛾𝑛
= 0 (4.4.40)

AL function explicit derivatives

The AL function is a summation of terms which are each related to a unique gauss quadrature

point. Therefore, we only need to provide the derivatives for a general quadrature point, 𝑞, in an

element, 𝑒, whose piece of the function in Equation (4.4.13) may be abbreviated as

𝑓𝑞 = 𝜆𝑞𝑔𝑞 (𝜌𝑒, 𝐷 𝑓𝑞 ) +
𝜇𝑞

2
𝑔𝑞 (𝜌𝑒, 𝐷 𝑓𝑞 )2 (4.4.41)

where over a given optimization iteration 𝜆𝑞 and 𝜇𝑞 are constant and we have made a notational

substitution where 𝑔𝑞 is now a function of the integrated damage criterion (𝐷 𝑓𝑞 = 𝐷 𝑓𝑞 ({ū𝑖}, {c𝑖}))

at the corresponding quadrature point for convenience. We start with the derivative of this function

with respect to 𝜌𝑒.

𝜕 𝑓𝑞

𝜕𝜌𝑒
=

(
𝜆𝑞
𝜕𝑔𝑞

𝜕𝜌𝑒
+ 𝜇𝑞𝑔𝑞 (𝜌𝑒, 𝐷 𝑓𝑞 )

𝜕𝑔𝑞

𝜕𝜌𝑒

)
(4.4.42)

𝜕𝑔𝑞

𝜕𝜌𝑒
=


1
2𝜌
−0.5
𝑒

(
𝜁1

(
𝐷 𝑓𝑞

𝐷𝑚𝑎𝑥

)2
+ (𝜁2 − 2𝜁1)

𝐷 𝑓𝑞

𝐷𝑚𝑎𝑥
+ 𝜁1

)
, if 𝐷 𝑓𝑞 > 𝐷𝑚𝑎𝑥

1
2𝜌
−0.5
𝑒 𝜁2

(
𝐷 𝑓𝑞

𝐷𝑚𝑎𝑥

)
, otherwise

(4.4.43)
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The derivatives with respect to the state variables may be written more concisely by taking the

derivative with respect to a general state variable, 𝜒,

𝜕 𝑓𝑞

𝜕𝜒
=

(
𝜆𝑞

𝜕𝑔𝑞

𝜕𝐷 𝑓𝑞

+ 𝜇𝑞𝑔𝑞 (𝜌𝑒, 𝐷 𝑓𝑞 )
𝜕𝑔𝑞

𝜕𝐷 𝑓𝑞

)
𝜕𝐷 𝑓𝑞

𝜕𝜒
(4.4.44)

where,

𝜕𝑔𝑞

𝜕𝐷 𝑓𝑞

=


𝜌0.5
𝑒

( 2𝜁1𝐷 𝑓𝑞

(𝐷𝑚𝑎𝑥)2
+ 𝜁2−2𝜁1

𝐷𝑚𝑎𝑥

)
, if 𝐷 𝑓𝑞 > 𝐷𝑚𝑎𝑥

𝜌0.5
𝑒

(
𝜁2

𝐷𝑚𝑎𝑥

)
, otherwise

(4.4.45)

and now it remains only to determine the derivatives,
𝜕𝐷 𝑓𝑞

𝜕𝜒
for 𝜒 ∈ {{ū𝑖}, {c𝑖}}. For convenience

we make the following definition, ℎ𝑛 (𝜂𝑛) ≡ 1
𝑑1+𝑑2 exp (𝑑3𝜂𝑛) , to again further simplify notation.

Final (𝑁 𝑡ℎ) pseudo-time increment:

𝜕𝐷 𝑓𝑞

𝜕ū𝑁
=

1
2
(𝛼𝑁 − 𝛼𝑁−1)

𝜕ℎ𝑁

𝜕ū𝑁
(4.4.46)

𝜕𝐷 𝑓𝑞

𝜕𝛼𝑁
=

1
2
(ℎ𝑁 + ℎ𝑁−1) (4.4.47)

𝜕𝐷 𝑓𝑞

𝜕ε
𝑝

𝑁

=
1
2
(𝛼𝑁 − 𝛼𝑁−1)

𝜕ℎ𝑁

𝜕ε
𝑝

𝑁

(4.4.48)

𝜕𝐷 𝑓𝑞

𝜕Δ𝛾𝑁
= 0 (4.4.49)

All other pseudo-time increments (𝑛 = 𝑁 − 1, . . . , 1):

𝜕𝐷 𝑓𝑞

𝜕ū𝑛
=

1
2
(𝛼𝑛+1 − 𝛼𝑛−1)

𝜕ℎ𝑛

𝜕ū𝑛
(4.4.50)

𝜕𝐷 𝑓𝑞

𝜕𝛼𝑛
=

1
2
(ℎ𝑛−1 − ℎ𝑛+1) (4.4.51)

𝜕𝐷 𝑓𝑞

𝜕ε
𝑝
𝑛

=
1
2
(𝛼𝑛+1 − 𝛼𝑛−1)

𝜕ℎ𝑛

𝜕ε
𝑝
𝑛

(4.4.52)

𝜕𝐷 𝑓𝑞

𝜕Δ𝛾𝑛
= 0 (4.4.53)
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With the final required derivatives,

𝜕ℎ𝑛

𝜕ū𝑛
=

−𝑑2𝑑3 exp
(
𝑑3𝜂𝑛

)
(
𝑑1 + 𝑑2 exp

(
𝑑3𝜂𝑛

))2

(
𝜅

𝑉𝑒𝜎𝑣𝑚

(∫
Ω𝑒

B𝑢
𝑑𝑖𝑣 𝑑𝑉

)
− 𝑝𝑛
√

6𝜇
𝜎2
𝑣𝑚

s𝑛
| |s𝑛 | |

: B𝑢

)
(4.4.54)

𝜕ℎ𝑛

𝜕ε
𝑝
𝑛

=

−𝑑2𝑑3 exp
(
𝑑3𝜂𝑛

)
(
𝑑1 + 𝑑2 exp

(
𝑑3𝜂𝑛

))2

(
𝑝𝑛
√

6𝜇
𝜎2
𝑣𝑚

s𝑛
| |s𝑛 | |

)
(4.4.55)

(4.4.56)

Sensitivity verification

In order to verify the sensitivity calculation previously outlined, we employ the portal frame

geometry with dimensions and boundary conditions illustrated in Figure 4.6. Figure 4.4 illustrates

the non-uniform density field and element numbering scheme. The finite element mesh consists of

880 quadrilateral elements and a filter radius of 2.75mm (𝑟𝑚𝑖𝑛 = 2.75𝑚𝑚, approximately 3 times

the element size). The elastoplastic analysis consisted of a prescribed downward displacement of

1.0mm (i.e. 𝐿𝑦 → 𝑢̄𝑦 = −1.0𝑚𝑚), while the linear elastic buckling analysis was carried out with

a downward traction load of 1000 𝑁
𝑚𝑚

with assumed unit thickness (i.e. 𝐿𝑦 → t = [0,−1000] 𝑁
𝑚𝑚

).

The SIMP penalization parameters are set to 𝑝 = 2 and 𝑞 = 1.5, while the projection parameter 𝛽 is

set to 2.0. We set 𝐷𝑚𝑎𝑥 equal to 0.1 and take 50 equally spaced time-increments in the elastoplastic

forward analysis.
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Figure 4.4: Sensitivity verification problem (a) non-uniform density field and (b) element numbering.

The sensitivities are verified via a typical central difference approximation for each of the 4

functions used during the optimization procedure. Namely, for a function, 𝑓 (𝜌1, . . . , 𝜌𝑒, . . . , 𝜌𝑁 ),

we have,

𝜕 𝑓

𝜕𝜌𝑒
≈ 𝑓 (𝜌1, . . . , 𝜌𝑒 + Δ𝜌, . . . , 𝜌𝑁 ) − 𝑓 (𝜌1, . . . , 𝜌𝑒 − Δ𝜌, . . . , 𝜌𝑁 )

2Δ𝜌
(4.4.57)

where we have used Δ𝜌 = 10−5. The comparison is made in Figure 4.5 via numerical and analytical

sensitivities computed for all 880 elements in the finite element mesh. The subplots of the relative

error demonstrate the accuracy of the sensitivity analysis.
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Figure 4.5: Analytical vs. numerical sensitivity verification for all 4 relevant functions.

4.5 Ductile phase field fracture model used for design verification

A verification step is completed after optimization in order to more accurately approximate the

performance of the optimized structures. Since a small strain formulation without explicit failure

modeling is used during the optimization procedure, we employ a large deformation, ductile phase

field fracture model in order to better predict the actual structural responses and compare their

characteristics. A similar formulation to the one proposed in Borden et al. [90] is employed herein,

where we have omitted inertial forces and used a mean-dilatation technique for volumetric locking

in place of the higher-order basis functions used the aforementioned work. This particular model is

chosen for the post-optimization verification evaluation since it incorporates the stress triaxiality in

the fracture driving force (which is critical in the context of ductile failure as was shown in [196]).

In this section we provide a very brief summary of the formulation and detail a few minor
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changes to the model that we have employed. For the sake of brevity, the reader is referred to [90]

for details regarding the return mapping algorithm and the derivation of the governing equations

while we provide a few highlights below for convenience.

Starting from the multiplicative split of the deformation gradient into elastic and plastic parts

(i.e. F = F 𝑒F 𝑝), the hyperelastic response is governed by a stored elastic energy per unit volume

of the form,𝑊 (Θ, C̄,C 𝑝) = 𝑈 (Θ) + 𝑊̄ (C̄,C 𝑝). The volumetric strain energy density is defined as

𝑈 (Θ) = 𝜅

2

(
1
2

(
Θ2 − 1

)
− ln (Θ)

)
(4.5.1)

where 𝜅 is the bulk modulus and Θ is the volume-like independent variable used in the mean

dilatation formulation [190]. The isochoric component of the strain energy density is

𝑊̄ (C̄,C 𝑝) = 𝜇

2

(
C̄ : C 𝑝−1 − 3

)
(4.5.2)

where 𝜇 is the shear modulus, C̄ = 𝐽−2/3F 𝑇F is the isochoric right Cauchy-Green tensor, and

C 𝑝 = F 𝑝𝑇F 𝑝 is the plastic right Cauchy-Green tensor. We represent the phase field by the variable

𝑐 ∈ [0, 1] in which 𝑐 = 0 corresponds to undamaged material and 𝑐 = 1 corresponds to fully

damaged material. Consistent with the aforementioned work, we use the cubic degradation function,

𝑔(𝑐) = (1 − 𝑘𝑒)
(
(𝑠 − 2) (1 − 𝑐)3 + (3 − 𝑠) (1 − 𝑐)2

)
+ 𝑘𝑒 (4.5.3)

where 𝑘𝑒 is a small residual stiffness parameter for the fully broken (i.e. 𝑐 = 1) material and

𝑠 controls the initial slope of the degradation function. A value of 𝑠 = 10−4 is used along with

𝑘𝑒 = 10−6. The degradation function is used to form the damaged strain energy density, 𝑊̂ , which
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is split into parts corresponding to tensile and compressive components.

𝑊̂ (Θ, C̄,C 𝑝) = 𝑔(𝑐)𝑊+(Θ, C̄,C 𝑝) +𝑊−(Θ) (4.5.4)

𝑊+(Θ, C̄,C 𝑝) =


𝑈 (Θ) + 𝑊̄ (C̄,C 𝑝) if Θ ≥ 1

𝑊̄ (C̄,C 𝑝) otherwise
(4.5.5)

𝑊−(Θ) =


0 if Θ ≥ 1

𝑈 (Θ) otherwise
(4.5.6)

The Kirchoff stress may then be obtained via derivatives of the energy density expressions and

appropriate push-forward operations to obtain,

τ +𝑣𝑜𝑙 =


𝐽𝑒𝑝I if Θ ≥ 1

0 otherwise
(4.5.7)

τ +𝑑𝑒𝑣 = 𝜇P𝑑𝑒𝑣 : b̄𝑒 (4.5.8)

τ− =


0 if Θ ≥ 1

𝐽𝑒𝑝I otherwise
(4.5.9)

τ = 𝑔(𝑐)τ +𝑣𝑜𝑙 + 𝑔(𝑐)τ
+
𝑑𝑒𝑣 + τ

− (4.5.10)

where 𝐽𝑒 = detF 𝑒, 𝑝 is the pressure stress, b̄𝑒 = 𝐽𝑒
−2/3
F 𝑒F 𝑒𝑇 is the isochoric elastic left Cauchy-

Green tensor, and 𝑔(𝑐) is the volume average of the degradation function within a given finite

element, Ω𝑒
0, in the reference configuration (note this arises due to the use of the mean dilatation

formulation). In an analogous manner to the small strain mean dilatation method outlined in Section
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4.2, the pressure (𝑝) and volume-like variable (Θ) are ultimately computed using

Θ =
1
𝑉 𝑒0

∫
Ω𝑒0

𝐽 𝑑𝑉0 (4.5.11)

𝑝 = 𝑈′(Θ) = 𝜅

2

(
Θ − 1

Θ

)
(4.5.12)

𝑔(𝑐) = 1
𝑉 𝑒0

∫
Ω𝑒0

𝑔(𝑐) 𝑑𝑉0 (4.5.13)

since 𝐽 = detF = 𝐽𝑒 due to isochoric plastic flow (i.e. detF 𝑝 = 1). Note we have distinguished the

volume of finite element Ω𝑒
0 in the reference configuration with the notation 𝑉 𝑒0 .

The weak form of the governing equations over a single element, neglecting inertial effects and

surface tractions, and using a standard backward Euler incremental integration scheme with the

increment number indicated by the subscript (·)𝑛, may be expressed as,

∫
Ω𝑒0

τ𝑛 :
(
∇0𝛿u · F −1

𝑛

)
𝑑𝑉0 = 0 (4.5.14)∫

Ω𝑒0

(
𝜂𝑣
𝑐𝑛 − 𝑐𝑛−1

Δ𝑡
+ 𝐺𝑐

2𝑙0
𝑐𝑛 𝛿𝑐 + 2𝐺𝑐𝑙0∇0𝑐𝑛 · ∇0𝛿𝑐

)
𝑑𝑉0 =∫

Ω𝑒0

(
𝑔′(𝑐𝑛)𝑊+ + 𝑔′𝑝 (𝑐𝑛)

〈
𝑊𝑝 −𝑊0

〉)
𝛿𝑐 𝑑𝑉0

(4.5.15)

where the artificial numerical viscosity of Miehe [22] is included in the phase field equation. Note

that a few key parameters have been introduced and ∇0 refers to the gradient with respect to the

reference configuration. The parameter 𝜂𝑣 represents the artificial viscosity, 𝐺𝑐 is the critical

fracture energy, 𝑙0 is the phase field length scale parameter which governs the width of the diffuse

approximation of the sharp crack surface, 𝛿𝑐 is the test function associated with the phase field

equation, and𝑊𝑝 is the effective plastic work contributing to fracture with a threshold parameter,

𝑊0. Note we have also used the notation 〈𝑥〉 = (𝑥 + |𝑥 |) /2.

There are two additional key features of the formulation that we should mention here. The first

is the existence of the plastic degradation function, 𝑔𝑝 (𝑐), which degrades the radius of the yield
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surface with yield function,

𝑓 (s, 𝛼) = | |s| | − 𝑔𝑝 (𝑐)
√︂

2
3
𝜎𝑦 (4.5.16)

where the yield stress, 𝜎𝑦, takes the same form introduced in Section 4.2. We take the same cubic

degradation function for 𝑔𝑝 (𝑐) as the one defined in Equation (4.5.3) with the exception that 𝑘𝑒 is

set to 10−3 in order to mitigate excessive mesh distortion in near completely degraded elements (i.e.

elements with 𝑐 ≈ 1) by allowing the pseudo-deformation to be compressible hyperelasticity rather

than isochoric plasticity.

The second key feature of the model is the definition of the effective plastic work density rate

which is modified to include the effect of the stress triaxiality,

¤𝑊𝑝 = ¤𝛾
| |s| |
𝜙

(4.5.17)

𝜙(𝑝, s) = 𝑑1 + 𝑑2 exp
(
𝑑3

𝑝

| |s| |

)
(4.5.18)

where the pressure (𝑝) was previously defined in Equation (4.5.12), ¤𝛾 is the plastic multiplier rate

for the model, and the variables (𝑑1,𝑑2,𝑑3) are parameters to be calibrated to the specific material

behavior. Also notice that with respect to the parameters in Equation (4.2.21), the hat, ˆ(·), has been

removed to emphasize that they are distinct.

Finally, we provide the material parameters used for all subsequent examples in this chapter.

The elastoplastic parameters provided in Table 4.1 are used in both the small strain formulation

during the optimization procedure and in the large strain ductile failure model outlined in this

section. The parameters associated with the phase-field fracture formulation are provided in Table

4.2. The selection of these parameters is briefly discussed in B.2.2.
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Table 4.1: Elastoplasticity model parameters

𝐸 [𝑀𝑃𝑎] 𝜈 𝜎𝑦0 [𝑀𝑃𝑎] 𝐻 [𝑀𝑃𝑎] 𝑌∞ [𝑀𝑃𝑎] 𝛿

74633.0 0.3 344 95.42 268.8 9.996

Table 4.2: Fracture model parameters

𝜂𝑣 𝐺𝑐

[
𝑘𝐽/𝑚𝑚2] 𝑙0 [𝑚𝑚] 𝑊0

[
𝑁 ·𝑚𝑚
𝑚𝑚3

]
𝑑1 𝑑2 𝑑3

5(10−3) 108 0.25 200 0.193 8.592 -4.630

4.6 Numerical examples

Three numerical examples demonstrating an array of different results are presented. The forward

analyses and sensitivity computations were implemented in an in-house code, developed using

the deal.II [207] C++ finite element library in a massively parallel framework. The parallel linear

algebra is carried out using Trilinos [208] for the analyses involving elastoplasticity and phase field

fracture, while PETSc [209] is used along with SLEPc [210] in order to perform the linear elastic

solution and subsequent buckling eigenanalysis. Once the sensitivities are obtained, an in-house

developed C++ code is used to perform the update of the design variables using the method of

moving asymptotes (MMA) [183] , in which the subproblem is solved efficiently using IPOPT

[171]. Default MMA parameters are used with the exception of the move limit which is set to 0.1

[211].

For each example, four different optimized geometries are obtained for comparison where

we describe the notation used to refer to each design in Table 4.3. When buckling analysis is

not included in an optimization problem, the linear elastic equilibrium and eigenvalue problem

constraints present in Equation (4.4.10) are omitted. The values of the weights ({𝜔𝑖}) in Equation

(4.4.10) are kept constant across examples. Note that these values have been empirically found to
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work well for the examples studied herein, however they may need to be adjusted for other problems.

We elaborate further on our selection rationale for the interested reader in Remark 4.6 below.

Table 4.3: Short hand notation for each optimized geometry detailing what is included in the
objective function with 𝜔 weights corresponding to those shown in Equation (4.4.10).

Design Work (𝑊) Buckling (𝐵𝐾𝑆) Local Failure Constraints (𝐴𝐿)

W YES (𝜔1 = 100) NO (𝜔2 = 0) NO (𝜔3 = 0)

WF YES (𝜔1 = 100) NO (𝜔2 = 0) YES (𝜔3 = 1)

WB YES (𝜔1 = 100) YES (𝜔2 = 20) NO (𝜔3 = 0)

WBF YES (𝜔1 = 100) YES (𝜔2 = 20) YES (𝜔3 = 1)

In addition to these items, it is important to explicitly mention that, as with most topology

optimization problems, the designs are load dependent. This of course makes sense for a nonlinear

problem, but also is valid for linear elastic topology optimization with stress constraints. Briefly, we

have selected a strategy for determining both the displacement load in the elastoplastic analyses and

the traction load applied at the same location for the linear analyses regarding buckling. In the case

of the displacement loading used during the elastoplastic analyses, we apply a total displacement

load such that the failure measure, 𝐷 𝑓 , is approximately a value of 1 at some location in the domain

(i.e. indicating failure) for the W design. This provides a direct method for selecting a displacement-

based loading. Additionally, it allows us to limit our scope to observe the effect of the ductile

failure constraints with a single upper bound for all examples presented. In other words, when

activating the local ductile failure constraints, we only consider a single upper bound 𝐷𝑚𝑎𝑥 = 0.3 in

all cases. Due to this, it is important to have a standard method of selecting the applied displacement

loading. Also, note that while we allow adaptive time-stepping to take place, typically 50 evenly

spaced time-increments are sufficient for the elastoplastic analyses. This minimum number of steps

is enforced in order to ensure the total work and failure measures are integrated with sufficient

accuracy. Additionally, the design variables of elements with nodes that are subject to the external

loading are fixed at 1 and are not optimized.

The traction loading applied in the linear elastic analyses is evenly distributed over the same
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boundary as the aforementioned displacement-based loading in the elastoplastic analyses. We select

a traction magnitude such that the first eigenvalue 𝜇1, is roughly on the order of 0.1-1.0 at the

beginning of the optimization procedure. This selection keeps the magnitude of the 𝐵𝐾𝑆 function

comparable across examples. Lastly, we set the aggregation parameter 𝜉𝑘𝑠 = 50 since more weight

is placed on the lower buckling load factors as is usually desired. Finally we define a few quantities

in Table 4.4 that are subsequently used as comparative metrics.

Table 4.4: Notation and explanations of metrics provided in the results tables for each numerical
example. LSPFM stands for the large strain phase field fracture model detailed in Section 4.5, while
SSM refers to the small strain model described in Section 4.2 and used during the optimization
procedure. Note that “optimization load" refers to the displacement applied during the elastoplastic
analyses of the optimization problem.

Notation Explanation

𝑊𝑆
ū Work predicted up to optimization load (ū) using SSM

𝑊 𝐿
ū Work predicted up to optimization load (ū) using LSPFM

𝐹𝐿𝑚𝑎𝑥 Peak load predicted using LSPFM

𝑊 𝐿
𝐹𝑚𝑎𝑥

Work predicted up to peak load 𝐹𝐿𝑚𝑎𝑥 using LSPFM

Failure Mode Structural failure mode predicted using LSPFM (either Fracture or Buckling)

Remark. There are likely many strategies for choosing the weighting parameters {𝜔𝑖}, however here

we briefly mention our own rationale. The part of the Augmented Lagrangian function associated

with the failure constraints eventually has a magnitude less than 1 when the constraints are nearly

satisfied. Fixing this weight (𝜔3) to be 1, we examine the other two. Since the work is the physical

objective, we place a relatively high weight (e.g. 𝜔1 = 100) on this function in order to increase its

importance to the optimizer. Selecting a weight that is too large, however, would diminish the drive

to satisfy the failure constraints. We have empirically found a value of 100 to strike an effective

balance for the examples we have studied. With regard to buckling, only enough resistance is
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needed to prevent structural buckling from preceding ductile failure. Selecting 𝜔2 too low may not

provide any substantial structural modification for compressive members, whereas selecting a value

too high could make buckling resistance “more important” than the work objective. We achieve an

effective balance by setting 𝜔2 equal to 20% of 𝜔1.

4.6.1 Portal frame

The first example is the portal frame geometry with dimensions and boundary conditions

illustrated in Figure 4.6. Note that symmetry is employed to decrease the mesh size. In general

this should be done with care since some buckling modes might not be captured, although we

have not encountered this issue in this particular example. The finite element mesh consists of

41,839 quadrilateral elements, 42,272 nodes, and a filter radius of 1mm is used (𝑟𝑚𝑖𝑛 = 1𝑚𝑚,

approximately 6 times the average element size). The elastoplastic analysis includes a prescribed

downward displacement of 1mm (i.e. 𝐿𝑦 → 𝑢̄𝑦 = −1.0𝑚𝑚), while the linear elastic buckling

analysis is carried out with a downward traction load of 1000 𝑁
𝑚𝑚

with assumed unit thickness (i.e.

𝐿𝑦 → t = [0,−1000] 𝑁
𝑚𝑚

). The four optimization problems summarized in Table 4.3 are then

1
2.

5 
m

m

2.75 mm

30
 m

m

30 mm

2 mm

Ly

(a) (b)

Figure 4.6: Portal frame geometry, boundary conditions, and finite element mesh. The applied load
is distributed over 15 elements.
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performed with an upper bound on the volume fraction of Λ𝑚𝑎𝑥 = 0.4. As mentioned previously,

although during the optimization the local ductile failure constraints were imposed for the WF

and WBF designs in order to provide the ductile failure resistance, the large deformation ductile

phase field fracture formulation outlined in Section 4.5 is used to simulate failure for all of the

optimized topologies. These simulations are conducted via extraction of the resulting topology via

the 𝜌 = 0.5 level set using a part of the PLATO code, maintained and developed by Sandia National

Laboratories [212]. This can also be achieved using the open source software described in [2]. The

resulting STL file is remeshed with a mesh density such that the average element size (ℎ) is smaller

than the phase field length scale parameter (𝑙0) divided by 3. Care is also taken to ensure a sufficient

number of elements through the thickness of thin members in order to accurately capture buckling

behavior.

The resulting topologies and failure simulation results are provided in Figure 4.8. The data

described in Table 4.4 is provided for this example in Table 4.5 with the associated force versus

displacement curves shown in Figure 4.7. While there are many interesting features of the designs

and their performance, here we highlight a few key results. First we notice that the W and WF

designs both buckle at roughly the same loading point with subsequent load capacity decrease.

Additionally, they follow roughly the same subsequent load path. However, while the WB design

does not buckle, it does experience a clear ductile fracture at the re-entrant corner of the design

at a relatively low level of applied displacement. This is accompanied by a modest increase in

load carrying capacity but a noticeable decrease in the work required to achieve the peak load. In

stark contrast, the WBF design does not only withstand the largest peak load, but also requires

a much higher level of work to reach the peak load than the other three designs. This clearly

demonstrates that for some boundary value problems, it is important to consider both buckling

and ductile failure constraints in the design procedure. With regard to load carrying capacity, it is

interesting to note that for this structure, using the calibrated elastoplastic model for Aluminum

2024-T351, the peak load capacity does not increase by a large percentage in any case (i.e. we

predict a peak load increase of approximately 5.2%). Larger gains might be expected for a material
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with more significant hardening characteristics as the plastic strain increases. For the aluminum

material employed, the hardening modulus decreases by a factor of 20 with increased plastic strain

which results in a loss of stiffness in heavily loaded regions. The same trend is obviously not

observed for the work required achieve the peak load which is greatly affected by the formulation

for this example with a maximum increase of approximately 270%. It is also notable that both the

peak load and external work required are largest for the design resulting from the WBF formulation

which included both the buckling function and failure constraints during optimization.

Additionally, the total work at the load used during the optimization is also provided in Table

4.5 using both the small and large deformation formulations to demonstrate the appropriateness of

using the small deformation formulation during the optimization procedure. The work is generally

over-estimated by the small strain formulation due to the under-prediction of plastic strains but

appears to be within reasonable limits.

Table 4.5: Portal frame results. Force units (𝑁). Work units (𝑁 · 𝑚𝑚). The metrics presented are
defined in Table 4.4.

Design 𝑊𝑆
ū 𝑊 𝐿

ū 𝐹𝐿𝑚𝑎𝑥 % Increase 𝑊 𝐿
𝐹𝑚𝑎𝑥

% Increase Failure Mode

W 1076 1030 1447 0.98 772 8.73 Buckling

WF 1071 1022 1433 - 710 - Buckling

WB 1033 1009 1462 2.02 1393 96.20 Fracture

WBF 1020 998 1508 5.23 2631 270.56 Fracture

Finally, we provide the optimization function histories in Figure 4.9 to highlight the associated

changes in magnitude of particular functions due in part to the continuation schemes employed. It

is clear from the plots that the volume fraction constraint is active (Λ = 0.4 for every design) and

that the AL function value at the end of the optimization is very small in magnitude, indicating

that the local ductile failure constraints are satisfied when included in the optimization formulation

(max𝐷 𝑓𝑞 = 0.307 for WF and max𝐷 𝑓𝑞 = 0.303 for WBF). The aggregate objective function

history is also shown with constant scale factors,𝑊 𝑠𝑐𝑎𝑙𝑒 and 𝐵𝑠𝑐𝑎𝑙𝑒
𝐾𝑆

, set equal to their final values for

each design. Lastly, we note that the computational cost for this example ranged from 13.2 hours
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Figure 4.7: Portal frame force vs. displacement curves. Note that a diamond marker signifies the
peak load point for each design.

(500 iterations for the W design) to 22.5 hours (700 iterations for the WBF design) running on 8

processor cores of a 2019 MacBook Pro laptop with an Intel Core i9 processor and 32 GB of RAM.
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(a) W (b) W (c) W

(d) WF (e) WF (f) WF

(g) WB (h) WB (i) WB

(j) WBF (k) WBF (l) WBF

Figure 4.8: Portal frame results. Left column illustrates the topology, middle column illustrates the
phase field contours on the final deformed configuration with the undeformed configuration placed
in light gray behind it for reference. A similar set of plots is provided in the last column with the
contours of the equivalent plastic strain.
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Figure 4.9: Portal frame optimizer convergence history. Note that the W design is stopped at 500
iterations due to rapid convergence.
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4.6.2 Cantilever beam

Next we study the cantilever geometry with dimensions and boundary conditions illustrated

in Figure 4.10. The finite element mesh consists of 35,511 quadrilateral elements, 35,912 nodes,

and a filter radius of 0.5mm is used (𝑟𝑚𝑖𝑛 = 0.5𝑚𝑚, approximately 6 times the element size). The

elastoplastic analysis consists of a prescribed downward displacement of 1mm (i.e. 𝐿𝑦 → 𝑢̄𝑦 =

−1.0𝑚𝑚), while the linear elastic buckling analysis is carried out with a downward traction load

of 3000 𝑁
𝑚𝑚

with assumed unit thickness (i.e. 𝐿𝑦 → t = [0,−3000] 𝑁
𝑚𝑚

). Similar to the previous

Ly

1
0 

m
m

20 mm

1
m

m

(a) (b)

Figure 4.10: Cantilever beam geometry, boundary conditions, and finite element mesh. The applied
load is distributed over 13 elements.

example, after all four designs are obtained, they are extracted via the 0.5 density level-set, re-

meshed, and analyzed using the large deformation ductile phase field fracture model. The optimized

topologies, failure configurations, and plastic strain fields are illustrated in Figure 4.11, while the

previously computed metrics are provided in Table 4.6. The associated force versus displacement

curves are illustrated in Figure 4.12. Again, the total work computed up to the displacement load

imposed during the optimization iterations is comparable between small and large deformation

formulations as evidenced by the data in Table 4.6. With regard to load carrying capacity, we note

the peak load capacity increase of approximately 15.4% for the WBF design. The increase in the

external work to reach the peak load results in an incredible maximum percent increase of 899%

with the largest being that of the WBF design and the smallest being that of the WF design. It is

very interesting that simply including only the ductile failure constraints (i.e. the WF design) can

result in such a drop in performance with respect to the W design, which only maximizes the work.
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Table 4.6: Cantilever beam results. Force units (𝑁). Work units (𝑁 · 𝑚𝑚). The metrics presented
are defined in Table 4.4.

Design 𝑊𝑆
ū 𝑊 𝐿

ū 𝐹𝐿𝑚𝑎𝑥 % Increase 𝑊 𝐿
𝐹𝑚𝑎𝑥

% Increase Failure Mode

W 326 322 425 8.97 575 266.24 Buckling

WF 322 309 390 - 157 - Buckling

WB 316 312 429 10.00 990 530.57 Fracture

WBF 303 301 450 15.38 1568 898.73 Fracture

This is quite a critical observation for practicing designers.

Finally, we provide the optimization function histories in Figure 4.13. Again, the volume

fraction constraint is active (Λ = 0.4 for every design) and the AL function value at the end of

the optimization is very small in magnitude, indicating sufficient satisfaction of the local ductile

failure constraints (max𝐷 𝑓𝑞 = 0.309 for WF and max𝐷 𝑓𝑞 = 0.284 for WBF). Consistent with the

previous example, the aggregate objective function history is also illustrated with constant scale

factors,𝑊 𝑠𝑐𝑎𝑙𝑒 and 𝐵𝑠𝑐𝑎𝑙𝑒
𝐾𝑆

, set equal to their final values for each design. The computational cost for

this example ranged from 10.7 hours (500 iterations for the W design) to 18.8 hours (700 iterations

for the WBF design) running on 8 processor cores of a 2019 MacBook Pro laptop with an Intel

Core i9 processor and 32 GB of RAM.
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Figure 4.11: Cantilever beam results. Left column illustrates the topology, middle column illustrates
the phase field contours on the final deformed configuration with the undeformed configuration
placed in light gray behind it for reference. A similar set of plots is provided in the last column with
the contours of the equivalent plastic strain.
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Figure 4.12: Cantilever force vs. displacement curves. Note that a diamond marker signifies the
peak load point for each design.
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Figure 4.13: Cantilever optimizer convergence history. Note that the W design is stopped at 500
iterations due to rapid convergence, and we allow 20 additional iterations for the WB design to
ensure convergence.
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4.6.3 L-bracket

Finally, the L-bracket geometry with dimensions and boundary conditions illustrated in Figure

4.14 is studied. The finite element mesh consists of 27,680 quadrilateral elements, 28,107 nodes,

and a filter radius of 0.75mm is used (𝑟𝑚𝑖𝑛 = 0.75𝑚𝑚, approximately 4 times the element size).

The elastoplastic analysis consists of a prescribed downward displacement of 4mm (i.e. 𝐿𝑦 →

𝑢̄𝑦 = −4.0𝑚𝑚), while the linear elastic buckling analysis is carried out with a downward traction

load of 2000 𝑁
𝑚𝑚

with assumed unit thickness (i.e. 𝐿𝑦 → t = [0,−2000] 𝑁
𝑚𝑚

). An identical
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Figure 4.14: L-bracket geometry, boundary conditions, and finite element mesh. The applied load is
distributed over 8 elements.

verification procedure was followed similar to the two previously outlined examples with optimized

topologies, deformed shapes, and plastic strain distributions provided in Figure 4.16. The work

done by the displacement load applied during the optimization problem between the small and large

displacement formulations is usually similar but differs slightly more than typical for two cases

studied herein. This is due primarily to buckling which occurs for designs W and WF earlier in the

loading history. With regard to load carrying capacity, we note the peak load capacity increase of

approximately 6.5% including buckling only (i.e. the WB design). Additionally, a very considerable

491% increase was also observed in the work to failure of the WB design with respect to the WF
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Table 4.7: L-bracket results. Force units (𝑁). Work units (𝑁 · 𝑚𝑚). The metrics presented are
defined in Table 4.4.

Design 𝑊𝑆
ū 𝑊 𝐿

ū 𝐹𝐿𝑚𝑎𝑥 % Increase 𝑊 𝐿
𝐹𝑚𝑎𝑥

% Increase Failure Mode

W 1266 1014 336 0.48 250 0.08 Buckling

WF 1261 990 334 - 250 - Buckling

WB 1191 1157 356 6.52 1480 490.58 Fracture

WBF 1196 1163 353 5.56 1205 380.85 Fracture
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Figure 4.15: L-bracket force vs. displacement curves. Note that a diamond marker signifies the
peak load point for each design.

We note also that the small deformation formulation is incapable of capturing the necking

behavior which precedes failure for both the WB and WBF designs. While the WBF design has

used additional material to support the re-entrant corner, this decision has resulted in a slightly

thinner member which ultimately fails, leading to the load capacity performance increase of the

WB design with respect to that of WBF. This occurs when members are subject to significant

straining which may result in localization of plastic strains and/or necking. In this situation it may

be possible to further improve our results by incorporating the large deformation kinematics during

the optimization procedure. However, the large 491% gain in external work up to the peak load

along with the 6.5% gain in the peak load observed with the WB design, highlights the potential
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of this formulation in practical applications, even with the small strain kinematics used during the

optimization process. Therefore, even in this example, our formulation has once again demonstrated

the importance of including buckling resistance in the design procedure. Large strain kinematics

may have allowed an improvement of the capacity of design WBF with respect to the WB design,

but we will delay further exploration of these possibilities to future work.

Finally, we provide the optimization histories in Figure 4.17 for this example. It is clear from

the plots that the volume fraction constraint is active (Λ = 0.4 for every design) and that the AL

function value at the end of the optimization is very small in magnitude, indicating that the local

ductile failure constraints are satisfied (max𝐷 𝑓𝑞 = 0.273 for WF and max𝐷 𝑓𝑞 = 0.294 for WBF).

The aggregate objective function history is also shown with constant scale factors,𝑊 𝑠𝑐𝑎𝑙𝑒 and 𝐵𝑠𝑐𝑎𝑙𝑒
𝐾𝑆

,

set equal to their final values for each design. The computational cost for this example ranged

from 7.7 hours (500 iterations for the W design) to 14.2 hours (700 iterations for the WBF design)

running on 8 processor cores of a 2019 MacBook Pro laptop with an Intel Core i9 processor and 32

GB of RAM.

4.7 Conclusion

An efficient framework for both ductile failure and buckling resistance in the context of structures

subject to extreme loads inducing elastoplastic response was proposed and examples demonstrating

its effectiveness were provided. This includes a new aggregate objective function, where local ductile

failure constraints are enforced via an adaptation of the aggregation-free Augmented Lagrangian

method. Additionally, buckling resistance was obtained via inclusion of an aggregation function

of load factors resulting from a linear elastic buckling analysis in the aggregate objective function.

All relevant function sensitivities were derived explicitly and verified numerically. The sensitivities

of the aggregation function of load factors were used to provide the desired structural buckling

resistance while only incurring the computational expense of an additional linear elastic problem

with an associated eigenanalysis. Additionally, a new filter was proposed to remove highly localized

pseudo-buckling modes in high density regions. Finally, the results obtained were evaluated using
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a large deformation phase field fracture model in lieu of desired experimental testing of the final

topologies. This served as a verification step which provided a more accurate estimate of the

structural failure response, including both geometric and material nonlinearity with the important

triaxiality effects accounted for in the failure analysis of metals. The model parameters were

calibrated in a good-faith effort using the test data provided by other researchers for Aluminum

2024-T351, including the observed nonlinear hardening.

Three numerical examples were presented which demonstrate that the proposed formulation may

not only result in increased structural strength (predicted percent increases between 5.2 and 15.4%),

but also greatly increased structural toughness, as demonstrated by the large percent increases in the

external work required to reach the peak load carrying capacity of the structure (predicted percent

increases between 270 and 899%). As mentioned in Section 4.6.1, the authors also believe that

larger gains in performance may be expected when constitutive properties for other metals with

more significant hardening characteristics are employed.

Finally, we note our procedure highlights the importance of the verification step used herein with

more complex failure and constitutive models. This is especially true when significantly simplified

physics such as small strain kinematics and linear elasticity are used during the optimization process

as is often the case in the literature.
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Figure 4.16: L-bracket results. Left column illustrates the topology, middle column illustrates the
phase field contours on the final deformed configuration with the undeformed configuration placed
in light gray behind it for reference. A similar set of plots is provided in the last column with the
contours of the equivalent plastic strain.
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Figure 4.17: L-bracket optimizer convergence history. Note that the W design is stopped at 500
iterations due to rapid convergence.
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Chapter 5

Fracture of 3D-printed hyperelastic composites

This chapter is published as a journal article in: J. Russ, V. Slesarenko, S. Rudykh, and H.

Waisman, “Rupture of 3D-printed hyperelastic composites: Experiments and phase field fracture

modeling,” Journal of the Mechanics and Physics of Solids, vol. 140, p. 103941, Jul. 2020, doi:

10.1016/j.jmps.2020.103941.

5.1 Introduction

In this chapter we study the failure behavior of 3D-printed polymer composites undergoing

large deformation through experiments and numerical modeling. A simple parameterized geometry

with three rigid circular inclusions embedded into a soft hyperelastic matrix is proposed for a test

study. By adjusting the distances between inclusions and introducing notches of various lengths we

alter the failure pattern in the specimens. A non-standard phase field fracture method with energetic

threshold is employed for the numerical study assuming plane stress conditions. Remarkably, the

derived and implemented reduced plane stress formulation coupled with phase field fracture agrees

well with the experimental data, capturing both crack arrest and secondary crack initiation in the

bulk material.

We remark that the material fabrication technique employed in this study does not result in weak

interphase regions between the matrix and inclusion phases, and, for various composite systems

[213, 214, 215, 216, 217, 218, 219], failure in this region has not been observed. We note, however,

that the composite fabrication method produces the interphase mixing zone (see, for example,

Arora et al. [220] that studied the influence of the inhomogeneous interphase region on mechanical

stability). Our experimental observations indicate that the matrix is weaker than the interphase
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material. Nevertheless, the numerical formulation could potentially be extended to the class of

composites with weak interphase regions by adopting a framework appropriately capturing the

relevant physics (see, for example, Nguyen et al. [86]).

This chapter is organized as follows: In Section 5.2 we provide the details of the phase field

fracture model employed herein and the corresponding finite element implementation. In Section

5.3 the composite structures are detailed and the experimental/numerical methods used to study

their failure behavior are outlined. Finally the numerical and experimental results are provided

in Section 5.4 in which both qualitative and quantitative features are compared. Furthermore, the

numerical model is also used in place of additional experimental data to remark on the physical

implications of the results obtained, followed by a concluding summary.

5.2 Large deformation phase field fracture model with energetic threshold

In this section we provide the derivation of the non-standard phase field formulation with an

energetic threshold as presented in Miehe et al. [24] in order to prevent energy degradation at low

stress levels. We note that the same phenomenon could also be partially mitigated by judicious

selection of the degradation function as presented by Borden [160]. Experimentally applied loading

rates are low enough to permit the use of quasi-static numerical analyses and for reasons of

computational efficiency we perform the numerical simulations in two space dimensions under

an assumed state of plane stress. In C.1 the plane stress assumption is justified for the geometry

used herein via numerical comparison with a plane strain assumption and a full three-dimensional

formulation. Additionally, since the plane stress assumption results in a constraint that is not trivially

satisfied, we also derive the reduced in-plane relations, including the nonlinear equation to be solved

for the out-of-plane stretch and the analytical reduced consistent tangent tensor.

5.2.1 Phase field fracture formulation

The phase field fracture formulation used in this chapter is obtained from an energy minimization

problem for a continuum body, Ω0 (where the (·)0 subscript signifies the reference configuration) in
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a manner similar to that described in Section 3.2. Here we let F represent the deformation gradient

and Γ0 represents the crack surface. Neglecting the potential associated with external forces, the

total potential energy of the solid may be expressed as

Π(F , Γ0) = 𝑊𝑒𝑙𝑎𝑠 (F ) +𝑊 𝑓 𝑟𝑎𝑐 (Γ0) (5.2.1)

in which the stored elastic energy, 𝑊𝑒𝑙𝑎𝑠, is a function of the deformation gradient (F ), and the

fracture surface energy,𝑊 𝑓 𝑟𝑎𝑐, depends on the crack surface. In a manner similar to the presentation

in Section 3.2, we use the phase field approximation of the fracture surface energy outlined in Miehe

et al. [24], in order to prevent degradation of the elastic energy at low stress levels. This updated

model is used in this chapter where the fracture surface energy approximation may be expressed as

𝑊̂ 𝑓 𝑟𝑎𝑐 (𝑑) =
∫
Ω0

2Ψ𝑐

(
𝑑 +

𝑙20
2
∇0𝑑 · ∇0𝑑

)
𝑑𝑉 (5.2.2)

in which Ψ𝑐 represents a critical fracture energy per unit reference volume. In this chapter we use

Ψ𝑐 as a material parameter for calibration of the model with the experimental data.

Stored elastic energy approximation

The undamaged elastic energy density employed in this chapter consists of a standard decomposition

into volumetric and isochoric components as shown below. The isochoric function is a simple

neo-Hookean model with shear modulus, 𝜇, while the volumetric function is another common form

with bulk modulus, 𝜅. Here we define the elastic energy density function per unit undeformed

volume,

Ψ𝑒 (F ) = Ψ𝑒 (𝐼1, 𝐽) =
𝜅

2
(log 𝐽)2︸      ︷︷      ︸
Ψ𝑣𝑜𝑙𝑒

+ 𝜇
2

(
𝐼1 − 3

)
︸       ︷︷       ︸

Ψ𝑖𝑠𝑜𝑒

(5.2.3)
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where 𝐽 = detF and 𝐼1 = 𝐽−2/3𝐼1 which is the first invariant of the isochoric right Cauchy-Green

deformation tensor and 𝐼1 = 𝐹𝑖 𝑗𝐹𝑖 𝑗 is the unmodified first invariant. This elastic energy density

adequately describes the elastic response of the material and may be naturally decomposed into

compressive and tensile components via a volumetric/isochoric energy split similar to that of Amor

et al. [161]. Here we define this tensile/compressive (Ψ+𝑒 /Ψ−𝑒 ) energy decomposition in the following

way based upon the determinant of the deformation gradient similar to Wu et al. [100].

Ψ+𝑒 (𝐼1, 𝐽) =


𝜅
2 (log 𝐽)2 + 𝜇

2

(
𝐼1 − 3

)
, if 𝐽 ≥ 1

𝜇

2

(
𝐼1 − 3

)
, otherwise

(5.2.4)

Ψ−𝑒 (𝐼1, 𝐽) = Ψ𝑒 (𝐼1, 𝐽) −Ψ+𝑒 (𝐼1, 𝐽) (5.2.5)

Note that other splits of the elastic energy are possible, including one based on a multiplicative

split of the deformation gradient [221], one based on principal invariants of the Cauchy-Green

deformation tensor [222], and a more recent split based on principal stretches [223].

This yields a damaged elastic energy density in which only the tensile energy is degraded

according to [23],

Ψ𝑒 (𝐼1, 𝐽, 𝑑) = Ψ−𝑒 (𝐼1, 𝐽) + (𝑔(𝑑) + 𝑘)Ψ+𝑒 (𝐼1, 𝐽) (5.2.6)

where the total stored elastic energy approximation is obtained via integration over the reference

volume.

𝑊̂𝑒𝑙𝑎𝑠 (𝐼1, 𝐽, 𝑑) =
∫
Ω0

Ψ𝑒 (𝐼1, 𝐽, 𝑑)𝑑𝑉 (5.2.7)

The phase field parameter, 𝑑, affects the stored elastic energy via the action of the so-called

degradation function, 𝑔(𝑑). Although a cubic degradation function has previously been proposed

[160], we employ the more common quadratic degradation function in this chapter, defined as

𝑔(𝑑) = (1 − 𝑑)2. Additionally, we include the small constant parameter, 𝑘 , in order to ensure the
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problem remains well-posed [22]. In all subsequent examples in this chapter 𝑘 is set to 10−6.

The damaged first Piola-Kirchoff stress may then be obtained directly from the damaged elastic

energy density via the following relation,

P =
𝜕Ψ−𝑒
𝜕F︸︷︷︸
P −

+(𝑔(𝑑) + 𝑘)
𝜕Ψ+𝑒
𝜕F︸︷︷︸
P +

(5.2.8)

where P is now the damaged first Piola-Kirchoff stress tensor and P −/P + are the undamaged,

compressive and tensile first Piola-Kirchoff stress tensors, respectively.

Approximate total potential energy

Substituting the above approximations into the total potential energy in Equation 5.2.1 we obtain

the approximate form (Π̃) as

Π̃(u, 𝑑) = 𝑊̂𝑒𝑙𝑎𝑠 (F , 𝑑) + 𝑊̂ 𝑓 𝑟𝑎𝑐 (𝑑)

=

∫
Ω0

(
Ψ−𝑒 (F ) + (𝑔(𝑑) + 𝑘)Ψ+𝑒 (F )

)
𝑑𝑉

+
∫
Ω0

2Ψ𝑐

(
𝑑 +

𝑙20
2
∇0𝑑 · ∇0𝑑

)
𝑑𝑉

(5.2.9)

Note that the hat notation, ˆ(·), in Equation 5.2.9 signifies the previously introduced approximation of

the quantity. At a minimum, the first variation of the total potential with respect to the displacement

and phase field must vanish, i.e. 𝛿Π̃ = 0. Application of this principle, the divergence theorem, and

the standard variational argument yields the Euler-Lagrange equations,

∇0 · P = 0 in Ω0 (5.2.10)

Ψ𝑐

(
𝑑 − 𝑙20∇0 · ∇0𝑑

)
− (1 − 𝑑) (Ψ+𝑒 −Ψ𝑐) = 0 in Ω0 (5.2.11)

u = û on 𝜕Ω𝑢
0 (5.2.12)

n · ∇0𝑑 = 0 on 𝜕Ω0 (5.2.13)
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where the additional Dirichlet and Neumann boundary conditions have been added (i.e. Equation

5.2.12 and 5.2.13). Note that the Equation 5.2.13 implies that there is no damage flux out of the

domain. Equation 5.2.10 represents quasi-static equilibrium in the absence of body forces while

Equation 5.2.11 governs the evolution of the phase field. Note that using the tensile energy density

as a crack driving force for rubber is quite consistent with existing experimental evidence. Using

the strain energy density as a failure criterion was demonstrated by Hocine et al. [224] in which

failure of natural rubber was investigated and the strain energy density along the crack trajectory

was found to be independent of the crack length and specimen geometry (see also Volokh [225] ).

Finally, Equation 5.2.11 is modified in order to enforce irreversibility of crack growth. The local

history field, H , proposed in Miehe et al. [23], is used in order to ensure the local crack driving

force is nondecreasing. Note that in the equation below, 𝑡, is a pseudo-time variable related to the

incremental external loading. Additionally, we employ the purely numerical viscous regularization

with viscosity parameter, 𝜂, phase field at the previous time increment, 𝑑𝑛, and time increment,

Δ𝑡, presented by Miehe et al. [23, 24]. The reader is referred to these works for additional details

regarding this numerical regularization. This viscous term is included in the quasi-static setting

in order to prevent large jumps in the crack length over a given time increment. In the context

large deformations, this is particularly important since large jumps in crack length are also typically

accompanied by large changes in the displacement field which may result in inverted elements

during the displacement update and potential failure of the simulation. The final equation governing

the evolution of the phase field is provided below.

𝜂
𝑑 − 𝑑𝑛
Δ𝑡

+Ψ𝑐

(
𝑑 − 𝑙20∇0 · ∇0𝑑

)
− (1 − 𝑑)H = 0 (5.2.14)

whereH(X , 𝑡) = max
𝜏∈[0,𝑡]

〈
Ψ+𝑒 (X , 𝜏) −Ψ𝑐

〉
+ (5.2.15)

Note that the Macaulay brackets are defined such that 〈·〉+ = max(·, 0).
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Plane stress enforcement

The experiments presented herein are generally well-represented by a state of plane stress. Due

to the large computational burden of the three-dimensional formulation, we reduce the equations to

a two-dimensional plane stress state. The derivation of the reduced first Piola-Kirchoff stress and

the associated analytical consistent tangent are provided in this section.

We begin with the specific three-dimensional first Piola-Kirchoff stress as obtained from the

undamaged stored elastic energy density provided in Equation 5.2.3.

P =
𝜕Ψ𝑒 (𝐼1, 𝐽)

𝜕F
= 𝜅 log (𝐽)F −𝑇 + 𝜇𝐽−2/3

(
F − 𝐼1

3
F −𝑇

)
(5.2.16)

The Kirchoff stress may then be obtained via right multiplication of the deformation gradient

transpose, resulting in

τ = P · F 𝑇 = 𝜅 log (𝐽)I + 𝜇𝐽−2/3
(
B − 𝐼1

3
I

)
(5.2.17)

in which I represents the second order identity tensor andB = FF 𝑇 signifies the left Cauchy-Green

deformation tensor. For a state of plane stress we have the following constraints on the Kirchoff

stress (equivalently, these represent constraints on the Cauchy stress since the two stress measures

only differ by the positive scalar multiple, 𝐽),

𝜏13 = 𝜏31 = 0 =⇒ 𝐵13 = 𝐵31 = 0 (5.2.18)

𝜏23 = 𝜏32 = 0 =⇒ 𝐵23 = 𝐵32 = 0 (5.2.19)

𝜏33 = 𝜅 log (𝐽) + 𝜇𝐽−2/3
(
𝐵33 −

𝐼1
3

)
= 0 (5.2.20)
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Assuming that the deformation gradient takes the following structure,

F =


𝐹11 𝐹12 0

𝐹21 𝐹22 0

0 0 𝜆


(5.2.21)

where 𝜆 is the out-of-plane stretch, one sees that Equations 5.2.18 and 5.2.19 are automatically

satisfied. Equation 5.2.20, however, cannot be trivially satisfied and reduces to the following

nonlinear equation.

𝑓 ≡ 𝜆2 + 𝜅
𝜇
𝐽2/3 log (𝐽) + 𝐼1

3
= 0 (5.2.22)

Subsequently, the constitutive equations are reduced by using indicial notation combined with

Einstein’s summation convention where Greek indices may vary from 1 to 2 only and represent the

tensorial in-plane components. Defining the following reduced invariants,

𝑖1 = 𝐹𝛼𝛽𝐹𝛼𝛽 (5.2.23)

𝑗 = 𝐹11𝐹22 − 𝐹12𝐹21 (5.2.24)

we have 𝐼1 = 𝑖1 + 𝜆2 and 𝐽 = 𝑗𝜆, reducing Equation 5.2.22 to

𝑓 ≡ 𝜆2 + 3𝜅
2𝜇
( 𝑗𝜆)2/3 log ( 𝑗𝜆) − 𝑖1

2
= 0 (5.2.25)

Due to our choice of elastic energy density, the above scalar equation is nonlinear in the out-of-plane

stretch, 𝜆, and is solved numerically with a local newton iteration.

Once 𝜆 is determined, the reduced first Piola-Kirchoff stress may be computed via substitution

of the above expressions and differentiation of each component with respect to 𝐹𝛼𝛽 to obtain
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𝑃𝛼𝛽 = 𝑃
𝑣𝑜𝑙
𝛼𝛽
+ 𝑃𝑖𝑠𝑜

𝛼𝛽
.

𝑃𝑣𝑜𝑙𝛼𝛽 =
𝜕Ψ𝑣𝑜𝑙

𝑒

𝜕𝐹𝛼𝛽
= 𝜅 log ( 𝑗𝜆)𝑇𝛼𝛽 (5.2.26)

𝑃𝑖𝑠𝑜𝛼𝛽 =
𝜕Ψ𝑖𝑠𝑜𝑒

𝜕𝐹𝛼𝛽
= 𝜇 ( 𝑗𝜆)−2/3

(
𝐸𝛼𝛽 −

𝑖1 + 𝜆2

3
𝑇𝛼𝛽

)
(5.2.27)

where we have defined,

𝑇𝛼𝛽 ≡ 𝐹−𝑇𝛼𝛽 +
1
𝜆

𝜕𝜆

𝜕𝐹𝛼𝛽
(5.2.28)

𝐸𝛼𝛽 ≡ 𝐹𝛼𝛽 + 𝜆
𝜕𝜆

𝜕𝐹𝛼𝛽
(5.2.29)

The derivative 𝜕𝜆
𝜕𝐹𝛼𝛽

may be obtained by differentiating Equation 5.2.25 with respect to 𝐹𝛼𝛽. After

some algebra, the following expression results,

𝜕𝜆

𝜕𝐹𝛼𝛽
=

𝐹𝛼𝛽 − 3𝜅
2𝜇 ( 𝑗𝜆)

2/3
(

2
3 log ( 𝑗𝜆) + 1

)
𝐹−𝑇
𝛼𝛽

2𝜆 + 3𝜅
2𝜇 𝑗

2/3𝜆−1/3
(

2
3 log ( 𝑗𝜆) + 1

) (5.2.30)

In order to solve the global Newton system efficiently the analytical consistent tangent tensor is

derived and used in computation of the global tangent stiffness matrices. Although this derivation

is rather long and tedious, we believe that this is an essential component of the method in order

to ensure some degree of robustness when coupled with phase field fracture since very large

deformations often result.

We begin by defining each component of the consistent tangent separately as is done in Equations

5.2.26 and 5.2.27 above where the total consistent tangent may be written C = C𝑣𝑜𝑙 + C𝑖𝑠𝑜.

C𝑣𝑜𝑙𝛼𝛽𝛾𝛿 =
𝜕𝑃𝑣𝑜𝑙

𝛼𝛽

𝜕𝐹𝛾𝛿
= 𝜅 log ( 𝑗𝜆)

𝜕𝑇𝛼𝛽

𝜕𝐹𝛾𝛿
+ 𝜅𝑇𝛼𝛽𝑇𝛾𝛿 (5.2.31)
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C𝑖𝑠𝑜𝛼𝛽𝛾𝛿 =
𝜕𝑃𝑖𝑠𝑜

𝛼𝛽

𝜕𝐹𝛾𝛿
= 𝜇

(
𝐸𝛼𝛽 −

𝑖1 + 𝜆2

3
𝑇𝛼𝛽

)
𝜕 ( 𝑗𝜆)−2/3

𝜕𝐹𝛾𝛿

+ 𝜇

( 𝑗𝜆)2/3

(
𝜕𝐸𝛼𝛽

𝜕𝐹𝛾𝛿
− 1

3

(
𝜕 (𝑖1 + 𝜆2)
𝜕𝐹𝛾𝛿

𝑇𝛼𝛽 + (𝑖1 + 𝜆2)
𝜕𝑇𝛼𝛽

𝜕𝐹𝛾𝛿

)) (5.2.32)

The unspecified derivatives in the above expressions may then be expressed via the following

relations.

𝜕 ( 𝑗𝜆)−2/3

𝜕𝐹𝛾𝛿
= −2

3
( 𝑗𝜆)−2/3𝑇𝛾𝛿 (5.2.33)

𝜕 (𝑖1 + 𝜆2)
𝜕𝐹𝛾𝛿

= 2𝐹𝛾𝛿 + 2𝜆
𝜕𝜆

𝜕𝐹𝛾𝛿
(5.2.34)

𝜕𝑇𝛼𝛽

𝜕𝐹𝛾𝛿
= −𝐹−1

𝛿𝛼 𝐹
−1
𝛽𝛾 +

1
𝜆

𝜕2𝜆

𝜕𝐹𝛼𝛽𝜕𝐹𝛾𝛿
− 1
𝜆2

𝜕𝜆

𝜕𝐹𝛼𝛽

𝜕𝜆

𝜕𝐹𝛾𝛿
(5.2.35)

𝜕𝐸𝛼𝛽

𝜕𝐹𝛾𝛿
= 𝛿𝛼𝛾𝛿𝛽𝛿 + 𝜆

𝜕2𝜆

𝜕𝐹𝛼𝛽𝜕𝐹𝛾𝛿
+ 𝜕𝜆

𝜕𝐹𝛼𝛽

𝜕𝜆

𝜕𝐹𝛾𝛿
(5.2.36)

The final unspecified derivative is the second derivative of the out-of-plane stretch with respect to

the in-plane components of the deformation gradient. Labeling the numerator of Equation 5.2.30

𝑁𝛼𝛽 and the denominator 𝐷 we differentiate each expression and use the quotient rule to obtain the

final expression.

Let 𝑐1 ≡ ( 𝑗𝜆)2/3
(
log ( 𝑗𝜆) + 3

2

)
(5.2.37)

𝑁𝛼𝛽 ≡ 𝐹𝛼𝛽 − 𝑐1
𝜅

𝜇
𝐹−𝑇𝛼𝛽 (5.2.38)

𝐷 ≡ 2𝜆 + 𝜅𝑐1
𝜇𝜆

(5.2.39)
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Differentiating the numerator and the denominator of Equation 5.2.30 we obtain,

𝜕𝑁𝛼𝛽

𝜕𝐹𝛾𝛿
= − 𝜅

𝜇

(
𝐹−𝑇𝛼𝛽

𝜕𝑐1
𝜕𝐹𝛾𝛿

− 𝑐1𝐹
−1
𝛿𝛼 𝐹

−1
𝛽𝛾

)
+ 𝛿𝛼𝛾𝛿𝛽𝛿 (5.2.40)

𝜕𝐷

𝜕𝐹𝛾𝛿
= 2

𝜕𝜆

𝜕𝐹𝛾𝛿
+ 𝜅
𝜇

(
− 𝑐1

𝜆2
𝜕𝜆

𝜕𝐹𝛾𝛿
+ 1
𝜆

𝜕𝑐1
𝜕𝐹𝛾𝛿

)
(5.2.41)

𝜕𝑐1
𝜕𝐹𝛾𝛿

= ( 𝑗𝜆)2/3
(
2
3

log ( 𝑗𝜆) + 2
)
𝑇𝛾𝛿 (5.2.42)

Combining these expressions we obtain the final required derivative.

𝜕2𝜆

𝜕𝐹𝛼𝛽𝜕𝐹𝛾𝛿
=
𝐷
𝜕𝑁𝛼𝛽
𝜕𝐹𝛾𝛿
− 𝑁𝛼𝛽 𝜕𝐷

𝜕𝐹𝛾𝛿

𝐷2 (5.2.43)

5.2.2 Finite element discretization

The weak form of the governing equations is obtained in the usual manner by multiplication

of the strong form equations with admissible test functions, integration over the domain, and

application of the divergence theorem. The test functions are denoted w𝑢 and 𝑤𝑑 for the linear

momentum and phase field equations, respectively. The residual form of the equations for the

displacement field, 𝑅𝑢, and phase field, 𝑅𝑑 , can then be written as follows where we have omitted

any traction boundary conditions.

𝑅𝑢 =

∫
Ω0

P : ∇0w
𝑢𝑑𝑉 = 0 (5.2.44)

𝑅𝑑 =

∫
Ω0

( 𝜂
Δ𝑡
(𝑑 − 𝑑𝑛) 𝑤𝑑 +Ψ𝑐𝑑 𝑤

𝑑 +Ψ𝑐𝑙
2
0∇0𝑑 · ∇0𝑤

𝑑 − (1 − 𝑑)H 𝑤𝑑
)
𝑑𝑉 = 0 (5.2.45)
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We search for 𝑢𝑖 ∈ S𝑢𝑖 and 𝑑 ∈ S𝑑 such that Equations 5.2.44 and 5.2.45 are satisfied ∀𝑤𝑢
𝑖
∈ V𝑤𝑢

𝑖

and ∀𝑤𝑑 ∈ V𝑤𝑑 where these function spaces are defined below.

S𝑢𝑖 = {𝑢𝑖 | 𝑢𝑖 ∈ 𝐻1 & 𝑢𝑖 = 𝑢̂𝑖 on 𝜕Ω𝑢
0} (5.2.46)

S𝑑 = {𝑑 | 𝑑 ∈ 𝐻1} (5.2.47)

V𝑤𝑢
𝑖
= {𝑤𝑢𝑖 | 𝑤𝑢𝑖 ∈ 𝐻1 & 𝑤𝑢𝑖 = 0 on 𝜕Ω𝑢

0} (5.2.48)

V𝑤𝑑 = {𝑤𝑑 | 𝑤𝑑 ∈ 𝐻1} (5.2.49)

Laying the groundwork for the staggered update of the displacement and phase field introduced

later, we linearize Equation 5.2.44 with respect to u and Equation 5.2.45 with respect to 𝑑 (note that

although Equation 5.2.45 is already a linear equation in 𝑑 we update the phase field incrementally

in a Newton-like manner).

𝑅𝑢 (u(𝑘+1) , 𝑑 (𝑘)) ≈ 𝑅𝑢 (u(𝑘) , 𝑑 (𝑘)) + 𝐷𝑅𝑢 (u(𝑘) , 𝑑 (𝑘)) [𝛿u] = 0 (5.2.50)

𝑅𝑑 (u(𝑘+1) , 𝑑 (𝑘+1)) ≈ 𝑅𝑑 (u(𝑘) , 𝑑 (𝑘)) + 𝐷𝑅𝑑 (u(𝑘) , 𝑑 (𝑘)) [𝛿𝑑] = 0 (5.2.51)

The directional derivatives above may be expressed as

𝐷𝑅𝑢 (u(𝑘) , 𝑑 (𝑘)) [𝛿u] =
∫
Ω0

∇0w
𝑢 : C : ∇0𝛿u 𝑑𝑉 (5.2.52)

𝐷𝑅𝑑 (u(𝑘) , 𝑑 (𝑘)) [𝛿𝑑] =
∫
Ω0

((
Ψ𝑐 + H +

𝜂

Δ𝑡

)
𝛿𝑑 𝑤𝑑 +Ψ𝑐𝑙

2
0∇0𝛿𝑑 · ∇0𝑤

𝑑
)
𝑑𝑉 (5.2.53)

where C is the previously provided fourth order constitutive tensor.

The linearized equations above are then discretized and solved incrementally using the finite

element method with appropriately chosen finite dimensional subspaces (Sℎ𝑢𝑖 ⊂ S𝑢𝑖 , S
ℎ
𝑑
⊂

S𝑑 , Vℎ
𝑤𝑢
𝑖

⊂ V𝑤𝑢
𝑖
, Vℎ

𝑤𝑑
⊂ V𝑤𝑑 ). The 2D domain is partitioned using 4-node quadrilateral elements

and the typical bilinear Lagrange basis functions are used for the test and trial spaces, consistent with

the standard Galerkin formulation. We represent these field approximations with the shape function

166



matrices, Nu and N 𝑑 , for the displacement and phase field, respectively. The corresponding

matrices of shape function gradients are represented analogously byBu andB𝑑 .

u ≈ uℎ =Nuū 𝑑 ≈ 𝑑ℎ =N 𝑑d̄

𝛿u ≈ 𝛿uℎ =Nu ¯𝛿u 𝛿𝑑 ≈ 𝛿𝑑ℎ =N 𝑑𝛿d

w𝑢 ≈ w𝑢ℎ =Nuw̄𝑢 𝑤𝑑 ≈ 𝑤𝑑ℎ =N 𝑑w̄𝑑

Substituting these approximations along with their gradients into Equations 5.2.50 and 5.2.51, and

invoking the arbitrariness of the vectors w̄𝑢 and w̄𝑑 , we can identify the discrete elemental residual

vectors and jacobian matrices,

R𝑒 (𝑘)
ū =

∫
Ω0

P (𝑘) : Bu 𝑑𝑉 = 0 (5.2.54)

J 𝑒
(𝑘)

ū =

∫
Ω0

Bu : C(𝑘) : Bu 𝑑𝑉 (5.2.55)

R𝑒 (𝑘)

d̄
=

∫
Ω0

(
Ψ𝑐

(
N 𝑑𝑇N 𝑑 + 𝑙20B

𝑑𝑇B𝑑
)
d̄(𝑘)

)
𝑑𝑉

+
∫
Ω0

𝜂

Δ𝑡
N 𝑑𝑇N 𝑑

(
d̄(𝑘) − d̄𝑛

)
𝑑𝑉

−
∫
Ω0

(1 −N 𝑑d̄(𝑘))N 𝑑𝑇H 𝑑𝑉 = 0

(5.2.56)

J 𝑒
(𝑘)

d̄
=

∫
Ω0

((
Ψ𝑐 + H +

𝜂

Δ𝑡

)
N 𝑑𝑇N 𝑑 +Ψ𝑐𝑙

2
0B

𝑑𝑇B𝑑
)
𝑑𝑉 (5.2.57)

where the 𝑒 superscript signifies elemental quantities and the operation A : B represents the

double contraction of tensorsA andB. Additionally, the (·) (𝑘) notation implies that the quantity

(·) is evaluated using the relevant field variables at iteration 𝑘 . The elemental quantities are then

assembled into the global residual vectors and jacobian matrices via the standard finite element

assembly operators.

R(𝑘)ū = A𝑁𝑒𝑙𝑒𝑚
𝑒=1 R𝑒 (𝑘)

ū J (𝑘)ū = A𝑁𝑒𝑙𝑒𝑚
𝑒=1 J 𝑒

(𝑘)
ū (5.2.58)

R(𝑘)
d̄

= A𝑁𝑒𝑙𝑒𝑚
𝑒=1 R𝑒 (𝑘)

d̄
J (𝑘)
d̄

= A𝑁𝑒𝑙𝑒𝑚
𝑒=1 J 𝑒

(𝑘)

d̄
(5.2.59)

These global quantities are then used separately to compute the Newton-type correction of the
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displacement and phase field nodal variables.

ū(𝑘+1) = ū(𝑘) − J (𝑘)
−1

ū R(𝑘)ū (5.2.60)

d̄(𝑘+1) = d̄(𝑘) − J (𝑘)
−1

d̄
R(𝑘)

d̄
(5.2.61)

Algorithm 4 provides the details of the iterative staggered solution used herein. Note that this

scheme is essentially identical to that of Miehe et al. [23]. Sufficiently small applied displacement

increments are chosen such that the results are indistinguishable under further reduced load

incrementation. During crack propagation the displacement increment is significantly reduced

from an initial value of approximately 10−4 [𝑚𝑚] to a value of 10−6 [𝑚𝑚]. We also note the use of

a backtracking line search that is employed occasionally during the displacement update in order to

ensure the determinant of the deformation gradient (𝐽) is strictly positive at all quadrature points

in the discretized domain. If this requirement is violated following an update of the displacement

field, the newton increment, 𝛿u, is reduced by a constant multiplier, 0 < 𝛾 < 1, until the condition

is satisfied. Subsequently, the displacement newton iteration is allowed to continue to convergence.

Although this procedure is rarely required, it has proven to be an effective strategy for delaying

failure of the numerical simulations in certain instances. The jacobian and residual equations

are integrated using a standard 4-point Gauss quadrature rule for a quadrilateral element and the

irreversibility requirement is enforced via a history variable stored at each quadrature point.

5.3 Numerical and experimental methods

5.3.1 Design of the composite samples

In this section we outline the process used to study the failure mechanism of 3D-printed

polymer composites undergoing large deformation both experimentally and numerically. A specific

parameterized geometry is proposed in order to study this behavior which consists of a soft matrix,

within which three stiff circular inclusions are embedded as shown in Figure 5.1. Additionally, two
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Algorithm 4 Staggered update of nodal degrees of freedom, (ū, d̄)
1. 𝑡 ← 0
2. ū, d̄← 0
3. while 𝑡 < 𝑡 𝑓 𝑖𝑛𝑎𝑙 do
4. 𝑡 ← 𝑡 + Δ𝑡
5. û← 𝑡 · û 𝑓 𝑖𝑛𝑎𝑙 {Update prescribed displacements}

6. 𝑘 ← 0
7. while | |R(𝑘)ū | |2 / | |R

(0)
ū | |2 > 10−8 do

8. 𝑘 ← 𝑘 + 1
9. Update ū via Equation 5.2.60

10. end while

11. UpdateH with updated ū

12. 𝑘 ← 0
13. while | |R(𝑘)

d̄
| |2 / | |R(0)d̄

| |2 > 10−8 do
14. 𝑘 ← 𝑘 + 1
15. Update d̄ via Equation 5.2.61
16. end while
17. end while

notches of various lengths are introduced in the middle of the specimen. By varying the distance

between stiff inclusions and the notch lengths, we are able to alter the failure sequence.

In total, 9 different geometries (3 initial notch lengths and 3 distances between inclusions) are

subjected to uniaxial tension until complete failure of the specimen. We adopt the short notation

N__D__ to describe the geometry of the specimens that reflects the notch length as well as spacing

between rigid inclusions. For instance, the notation N05D18 corresponds to a specimen with an 18

[𝑚𝑚] distance between inclusion centers and an initial notch length corresponding to 5% of the

total specimen width. This is illustrated graphically in Figure 5.1, below. Note that the out-of-plane

thickness of all samples is 2.5 [𝑚𝑚].

5.3.2 Experimental testing

The composite specimens with the selected geometries (see Figure 5.1) were produced by

multimaterial PolyJet 3D-printing using a Stratasys Object Connex 3 printer that supports fabrication

of specimens containing up to 3 materials simultaneously. The matrix of the composite was printed
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Figure 5.1: Geometric parameterization, NxxDyy, in which xx and yy are illustrated graphically.

using soft elastomeric TangoBlackPlus material (TP), while stiff VeroWhite (VW) material was

selected for the inclusions. The printed specimens were subjected to uniaxial tension using the

universal testing machine Shimadzu EZ-LX with a low strain rate of 10 mm/min to avoid dynamic

effects and decrease the influence of rate-dependent TP material behavior. For consistency all

samples were printed with the same orientation in the building tray, even though supplementary tests

verified that the printing orientation has only minor effect on the failure behavior. The deformation

process was captured using a CMOS camera, enabling the use of digital image correlation (DIC) to

estimate the strain field within the soft matrix prior to crack initiation.

5.3.3 Numerical investigation

The numerical formulation was implemented using the open-source, C++ finite element library,

deal.II [207], and PETSc [209] for parallel, sparse linear algebra. First, the elastic parameters for

the soft TP material were estimated from select homogeneous uniaxial tension experiments. Near

incompressibility was assumed and the bulk modulus was taken to be 100 times the calibrated

shear modulus of 0.24 [𝑀𝑃𝑎], resulting in an initial Poisson’s ratio of approximately 0.495. These
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are consistent with previously reported material parameters [81]. The stiff VW inclusions may

effectively be regarded as rigid due to their high stiffness relative to TP. The elastic modulus as

reported on the manufacturer’s data sheet [226] is in the range 2, 000-3, 000 [𝑀𝑃𝑎]. For the

purpose of the numerical studies presented herein, we assume the material has an approximate

Poisson’s ratio of 0.4. Using the lower bound on the elastic modulus from the manufacturer we

estimate the shear modulus of the rigid material to be 714 [𝑀𝑃𝑎] and bulk modulus to be 3.33

[𝐺𝑃𝑎], based on the standard theory of isotropic, linear elasticity (i.e. 𝜇 = 𝐸/(2(1 + 𝜈)) and

𝜅 = 𝐸/(3(1 − 2𝜈))). The finite element size is approximately 𝑙0/6 in all regions in which cracks

may nucleate or propagate and the boundary conditions are illustrated in Figure 5.2 below. Note that

in order to obtain numerical predictions more consistent with experiments, we break the symmetry

about the vertical axis by applying a small shift of the center inclusion (0.1% of the specimen width).

This 0.024 [𝑚𝑚] shift is less than the 0.1 [𝑚𝑚] “accuracy” asserted by the manufacturer [227] and

the 0.03 [𝑚𝑚] layer thickness.

Figure 5.2: Boundary conditions imposed in numerical simulations. The left edge is fixed while a
displacement is applied to the right edge.

The material parameters used in subsequent numerical analyses are provided in Table 5.1. In this

chapter, rather than employing a complex calibration procedure for the phase field model parameters,

we set the length scale parameter as small as possible based on computational limitations (𝑙0 = 0.5
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𝑚𝑚 similar to the 0.5504 𝑚𝑚 obtained for a rubber material by Loew et al. [109]) and adjust

the critical energy density (Ψ𝑐 = 0.34 𝑁

𝑚𝑚2 ) in order to approximately match the failure stretch of

only one (i.e. the N10D24) experiment. The resulting parameter set gave reasonably predictive

results for the other experiments with different geometries. The same length scale parameter is

used for the stiff inclusions and the critical energy density is estimated using the approximation

Ψ𝑐 = 𝜎
2
𝑐 /(2𝐸) with a critical stress of 65 𝑀𝑃𝑎 (corresponding to the tensile strength estimated

by the manufacturer). Note that since the stiff inclusions are not directly loaded, the strain energy

density of the inclusion material never exceeds the critical threshold and consequently has little to

no effect on the numerical predictions. In the future, a more complex calibration procedure such as

the one outlined in Loew et al. [109] may be employed. Furthermore, future studies introducing

stochasticity may be conducted in order to identify the material parameters (see Rappel et al. [228]

for example) and better understand the effect of uncertainty in their value (see Hauseux et al. [229]

for an example regarding hyperelasticity).

Multiple simulations were performed corresponding to the experimentally tested geometric

configurations. For particular combinations of the initial notch length and distance between

inclusions, cracks initiate either between inclusions or at the notch tip as illustrated in Figure 5.3.

Here we note that when cracks initiate near the rigid inclusion pole rather than at the notch tip, this is

likely related to cavitation resulting from the stress triaxiality as is discussed in Volokh and Aboudi

[230]. The relationship between this phenomenon and fracture has also been recently investigated

by Raayai-Ardakani et al. [231]. Additionally, it should be mentioned that due to the large stretch

ratios that soft materials generally exhibit prior to failure, stress concentrators such as notches are

typically significantly blunted. This generally results in lower sensitivity to notches when compared

with materials that are significantly stiffer. Nonetheless, our numerical/experimental results do

indicate that a sufficiently large notch will indeed lead to crack initiation at the notch tip.
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Table 5.1: Material parameters

𝜅 [𝑀𝑃𝑎] 𝜇 [𝑀𝑃𝑎] 𝑙0 [𝑚𝑚] Ψ𝑐 [ 𝑁 ·𝑚𝑚𝑚𝑚3 ]
TangoBlackPlus 24 0.24 0.5 0.34

VeroWhite 3, 330 714 0.5 1.05

(a) (b)

Figure 5.3: Predicted crack initiation comparison for (a) N05D18 and (b) N20D30. Note that the
plots are clipped at a phase field value of 0.95.

5.3.4 Pre-fracture strain field comparison

In order to validate the employed elastic strain energy density, we compare the calculated strain

field in the specimen before fracture with the strain field observed experimentally using DIC. As

illustrated in Figure 5.4 for specimen N20D30, the strain localization is observed between inclusions

as well as near the initial notch tip, both numerically and experimentally. However, in specimen

N05D18 the strain primarily localizes between inclusions rather than near the notch tip (Figure 5.5).

A minor difference between the numerically-estimated and experimentally-observed strain fields

occurs near the boundary of the rigid inclusions (compare Figure 5.5a and 5.5b). This phenomenon

may be attributed to the actual non-uniform out-of-plane deformation near the rigid inclusions,

which may not be accurately captured by the employed plane stress numerical approximation (see

C.1). Note that we do not use the data obtained by DIC for model calibration. See Loew et al. [109]

for an example where DIC data is used in conjunction with force-displacement results in order to

calibrate the fracture parameters of the model.
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(a) Numerical prediction (b) Experimental result

Figure 5.4: Stretch comparison for N20D30 at a prescribed end-displacement of 6.6mm compared
with DIC image.

(a) Numerical prediction (b) Experimental result

Figure 5.5: Stretch comparison for N05D18 at a prescribed end-displacement of 11.8mm compared
with DIC image.
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5.4 Numerical and experimental studies

In this section we investigate the effects of the initial notch length and distance between

inclusions on the failure pattern of the polymer composites, both numerically and experimentally.

First, we compare the qualitative failure pattern via a side-by-side comparison of failure sequences

for a few representative geometries in Section 5.4.1. Second, we provide the force versus displacement

curves for comparison in Section 5.4.2, and an illustration of the numerically and experimentally

computed external work to failure is provided in Section 5.4.3.

5.4.1 Failure sequence comparisons

First, we provide a qualitative comparison of the experimental and numerical failure patterns

for a few representative geometries. For the samples with the largest distance between inclusions

(𝐷 = 30 [𝑚𝑚]) and both the smallest (N05D30 in Figure 5.6) and the largest (N20D30 in Figure

5.7) initial notch lengths, it is clear that the fracture nucleates at the notch tip. This indicates that the

inclusions are a sufficient distance apart to prevent substantial elastic energy accumulation between

inclusions with respect to the elastic energy accumulated near the notch tip. In both cases it is

observed that once the initial crack is arrested by the center inclusion, a secondary fracture surface

nucleates between inclusions. In the case of N05D30, it is observed that although the initial crack

has begun propagating around the center inclusion, Figure 5.6f shows the nucleation of new fracture

surface on both the left and right side of the inclusion. It is interesting that the initiation of new

fracture surface on both sides of the center inclusion is also predicted numerically (see Figure 5.6e).

In the case of the larger initial notch length corresponding to the N20D30 geometry, Figure

5.7f shows a secondary crack initiation more clearly since we experimentally observe the initial

cracks do not begin propagating around the center inclusion before the secondary crack initiates

and propagates. In contrast with N05D30, Figure 5.7e shows secondary crack initiation on only

one side of the center inclusion in somewhat remarkable correspondence with the experimental

observation in Figure 5.7f. A very similar pattern is observed for the N20D24 geometry with the
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same initial notch length and smaller distance between inclusions. Figure 5.8 illustrates the initial

fracture surface nucleation and propagation from the notch tip, with subsequent nucleation and

propagation of a secondary crack on only one side of the center inclusion.

Once the inclusions are sufficiently close together cracks typically initiate between the inclusions

rather than at the initial notch tip. Figure 5.9 illustrates the failure sequence for the N10D18 geometry.

It is interesting to note that the phase field formulation is capable of capturing not only the location

of initiation of the first crack, but also the subsequent mild crack evolution at the notch tip as shown

in Figures 5.9g and 5.9h. Note that this mild secondary initiation does not occur for the N05D18

geometry with smaller initial notch length as illustrated in Figure 5.10. Additionally, we note that

while the sequences shown in Figures 5.6 and 5.9 generally exhibit failure at similar global stretch

values (Λ =
current length
initial length ), for other samples we do not have ideal agreement between experiments

and simulations with respect to the global stretch values (although we do have a nearly perfect

qualitative match). In general, this discrepancy is expected due to the complexity of the TP material

properties and/or inconsistency in the 3D-printing process (factors that may not be sufficient to

describe using the single failure parameter of the employed numerical model). Nevertheless, very

good agreement between the experimentally observed failure sequences and numerical predictions

once again illustrates the promising capability of the proposed formulation to assess the overall

fracture behavior of the 3D-printed composites undergoing large deformations.
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(a) Λ = 1.2869 (b) Λ = 1.2882

(c) Λ = 1.3911 (d) Λ = 1.3854

(e) Λ = 1.4911 (f) Λ = 1.4931 (initiation circled in red)

(g) Λ = 1.4913 (h) Λ = 1.4965

(i) Λ = 1.4914 (j) Λ = 1.5000

Figure 5.6: N05D30 crack initiation sequence at different values of global stretch, Λ. Numerical
results (left column) and experimental results (right column).
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(a) Λ = 1.1568 (b) Λ = 1.1563

(c) Λ = 1.4282 (d) Λ = 1.3889

(e) Λ = 1.4285 (f) Λ = 1.4652

(g) Λ = 1.4286 (h) Λ = 1.4688

(i) Λ = 1.4287 (j) Λ = 1.4722

Figure 5.7: N20D30 crack initiation sequence at different values of global stretch, Λ. Numerical
results (left column) and experimental results (right column).
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(a) Λ = 1.1880 (b) Λ = 1.1875

(c) Λ = 1.3859 (d) Λ = 1.4236

(e) Λ = 1.3872 (f) Λ = 1.4549

(g) Λ = 1.3875 (h) Λ = 1.4583

(i) Λ = 1.3876 (j) Λ = 1.4618

Figure 5.8: N20D24 crack initiation sequence at different values of global stretch, Λ. Numerical
results (left column) and experimental results (right column).
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(a) Λ = 1.2853 (b) Λ = 1.2847

(c) Λ = 1.3113 (d) Λ = 1.3194

(e) Λ = 1.3131 (f) Λ = 1.3264

(g) Λ = 1.3151 (h) Λ = 1.3299

(i) Λ = 1.3156 (j) Λ = 1.3438

Figure 5.9: N10D18 crack initiation sequence at different values of global stretch, Λ. Numerical
results (left column) and experimental results (right column).
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(a) Λ = 1.2854 (b) Λ = 1.2882

(c) Λ = 1.3162 (d) Λ = 1.3541

(e) Λ = 1.3188 (f) Λ = 1.3611

(g) Λ = 1.3207 (h) Λ = 1.3680

(i) Λ = 1.3210 (j) Λ = 1.3784

Figure 5.10: N05D18 crack initiation sequence at different values of global stretch, Λ. Numerical
results (left column) and experimental results (right column).

181



5.4.2 Force versus displacement response

While in the previous section we focus on the qualitative failure behavior of the 3D-printed

composites, here we examine the quantitative prediction via force-displacement curves. Figure 5.11

illustrates the experimental curves and corresponding numerical predictions (note that only one

experiment for each geometry is shown for clarity). It is clear that an increase in the notch length

leads to the slight decrease in the effective structural stiffness and a decrease in the critical strain

at which crack initiation and subsequent catastrophic failure occur. This trend is also confirmed

by the numerical simulations for all geometries irrespective of the distance between inclusions.

Comparison between corresponding experimental and numerical data reveals very good agreement

while the structures are loaded elastically, although minor under-prediction of the structural stiffness

is observed when the inclusions are closest together (corresponding to 𝐷 = 18 [𝑚𝑚]). This can

be explained by the absence of the out-of-plane stiffening effect near the rigid inclusions in the

proposed plane stress formulation (see C.1).

Discrepancies are observed between experimental and numerical force-displacement curves

only after crack initiation. As mentioned in the previous section, this is expected due to the very

complex behavior of the soft 3D-printed material during failure. While the numerical prediction

is not perfect, it is still fascinating that the numerical model with its simplifying assumptions

(e.g. quasi-static, isotropic, rate-independent hyperelastic model in plane stress with a single

numerical failure parameter, Ψ𝑐) is capable of qualitatively describing the failure behavior of the

considered composite structures. For instance, we observe the force decrease due to crack initiation

and subsequent force increase after crack arrest both numerically and experimentally when the

inclusions are sufficiently far apart (e.g. 𝐷 = 30 [𝑚𝑚]). Furthermore, the specimens in which the

inclusions are closest together (𝐷 = 18 [𝑚𝑚]) fail catastrophically without crack arrest. Recall

that in the former case cracks initially nucleate at the notch tip, while in the latter case cracks

nucleate between the inclusions and exhibit fast subsequent crack propagation. These phenomena

are illustrated briefly in C.2, while the numerically predicted crack initiation behavior at the notch

tip is also briefly investigated in C.3 through comparison with contour integral calculations.
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(c) 𝐷 = 18 [𝑚𝑚]

Figure 5.11: Experimental and numerical force versus displacement curves grouped by the geometric
distance between inclusions (𝐷).

In Figure 5.12 below, we present the numerically predicted force versus displacement curves

grouped by notch length where we have included the numerical prediction for the homogeneous

material without inclusions for comparison. For completeness, additional numerical simulations

were performed using an initial notch length corresponding to 15% of the total width (i.e. N15D__),

a distance between inclusions of 21 [𝑚𝑚] (i.e. N__D21), and 27 [𝑚𝑚] (i.e. N__D27) for a total of

20 numerically obtained values. In addition, the peak forces for each notch length are illustrated

in Figure 5.13a along with the predicted results for the homogeneous case. It is clearly observed

that for N10, N15, and N20 the inclusions provide a significant increase in strength (peak force)

irrespective of the distances between the inclusions studied herein. However, the situation is quite
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different for the shortest notch length N05 in which the inclusions must be sufficiently far apart in

order to obtain an increase in strength when compared to the pure polymer case. We also note the

presence of the local maximum for the N05 case which suggests that there is an optimal distance

between inclusions that will maximize the strength. Spacing the inclusions closely together (e.g.

𝐷 = 18) in this case clearly results in worse performance when compared to the homogeneous

result. Finally, we highlight the fact that the addition of the rigid inclusions, when appropriately

spaced, seem to also increase the structural failure stretch in all cases except for N05 where the is a

marginal improvement when compared with N05D27. This is quite an interesting result since it

is not unusual for the failure stretch to decrease with the addition of rigid particles (see [100] for

instance).

5.4.3 External work comparison

While comparison between the failure sequences and force-displacement curves provides

important insight into the behavior of proposed composite structures, we also provide the external

work to failure as an additional quantitative measure for comparison. The external work to failure

is computed via numerical integration of the force versus displacement curves presented in the

previous section. Figure 5.14 below provides a simple visual comparison of the numerically and

experimentally obtained external work.

Here we highlight the non-trivial appearance of a local maximum between N05D24 and N05D30.

This likely occurs due to the approximate equality between the inclusion spacing and the space

between outer inclusions and the rigid boundary for sample N05D27, which may contribute to

the external work increase as a result of the more “uniform" load distribution in the soft matrix.

We note this in addition to the peculiar shape of the surface near N10D21 where numerically we

observe a deviation from the general trend. This deviation occurs during the transition between

cracks nucleating at the initial notch tip and cracks initiating between inclusions. The N10D21

geometry results in predicted cracks initiating at both the initial notch tip and between inclusions,

seemingly simultaneously. This simultaneous initiation of multiple cracks leads to the increase in
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Figure 5.12: Numerical force versus displacement curves grouped by notch length along with the
numerical prediction for the homogeneous case without inclusions for comparison.

the displacement required to finally separate the structure, which results in additional area under the

force-displacement curve. Consistent with previously presented results, we see that the numerical

model is capable of capturing the general trend of the experimental results.

The numerically predicted external work versus distance between inclusions is presented in

Figure 5.13b along with the prediction for the homogeneous case without inclusions. In this figure

we see the toughening effect explicitly associated with the addition of the rigid inclusions (i.e.

the potential increase in external work required for complete structural failure resulting from the

inclusion addition). However, for both the N05 and N10 cases the situation is not very straight-

forward since there appears to be a minimum distance between inclusions in order to improve this
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Figure 5.13: Numerically predicted (a) peak forces and (b) external work versus distance between
inclusions for each notch length. Additionally, a horizontal dotted line (with marker style of
the corresponding notch length) signifies the predicted value for the homogeneous case without
inclusions. Figure (b) is discussed in the following subsection but placed alongside (a) for ease of
comparison.

measure of structural toughness. This is likely also true for the N15 and N20 cases but not for the

range of distances between inclusions that we have studied herein (if one extrapolates the curves

from 𝐷 = 18 to 𝐷 = 16 they would likely intersect the pure polymer case as well). Also, the

appearance of the local maxima for the N05 and N10 cases clearly demonstrates that the optimal

inclusion spacing for structural toughness is not a trivial matter. However, the curves do clearly

show that spacing the inclusions too close together can certainly have a negative impact on the

structure’s mechanical performance.

5.5 Conclusion

In this chapter we investigate the failure of 3D-printed polymer composites comprised of a

soft matrix with stiff inclusions. The composites are fabricated through multimaterial 3D-printing

and uniaxial tests are performed to investigate their mechanical behavior and failure mechanisms.

In order to obtain a more detailed picture of the underlying physics, we numerically simulate the

failure of the composite structures using the phase field fracture method with an energetic threshold
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(a) (b)

(c) (d)

Figure 5.14: The numerically computed external work surface viewed from various angles along
with the relevant experimentally computed data points.

using an efficient plane-stress formulation. The two-dimensional numerical formulation is provided

and the reduced consistent tangent tensor is analytically derived.

It is demonstrated, both experimentally and numerically, that changes in particular geometric

parameters (e.g. inclusion spacing and initial notch length) have a strong impact on the resulting

failure sequence and overall structural resistance to failure. Although the numerical model is derived

with several simplifying assumptions, the results demonstrate that it is capable of capturing the

complex large deformation failure sequences of the 3D-printed composite structure presented herein.

This includes a non-trivial secondary crack initiation and propagation in the bulk material consistent

with the corresponding experimental observations.
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Additionally we highlight an interesting behavior of the structures studied herein that is of

practical interest. We have observed that the addition of stiff inclusions results in an expected

improvement in the structure’s mechanical properties (namely, the strength, toughness, and stiffness).

However, the situation is not as obvious as one might expect. Spacing the inclusions too closely can

clearly result in a degradation of structural strength and toughness. This has been demonstrated both

experimentally and numerically. Not only does there appear to be a minimum inclusion spacing to

be effective with respect to the homogeneous matrix case, but we have also numerically observed

an optimal inclusion spacing which maximizes the structural strength and toughness (this is most

clearly observed for the case with the shortest initial notch length).
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Chapter 6

Cardiovascular stent design for an expandable valved conduit

6.1 Introduction

A cardiovascular stent design optimization method is proposed with application to a pediatric

balloon-expandable prosthetic heart valve. Here we refer to a prosthetic replacement valved conduit

which can be expanded to a larger permanent diameter in vivo via subsequent transcatheter balloon

dilation procedures. While multiple expandable prosthetic heart valves are currently at different

stages of development, in this chapter we focus on one particular design in which a stent is situated

inside of an expandable polymeric valved conduit. Since the valve and conduit must be joined with

a robust manufacturing technique, a polymeric glue layer is inserted between the two, which results

in radial retraction of the conduit after expansion. We propose counteracting this phenomenon by

designing an appropriate stent to maintain the desired permanent diameter throughout the device

after a single non-compliant balloon dilation procedure.

The finite element method is used to compute performance metrics related to the permanent

expansion diameter and required radial force. Additionally, failure due not only to high cycle

fatigue but also due to ductile fracture is incorporated into the design study through the use of an

existing ductile fracture criterion for metals. Surrogate models are constructed with the results of

the high fidelity simulations and are subsequently used to numerically obtain a set of Pareto-optimal

stent designs. Finally, a single design is identified by optimizing a normalized aggregate objective

function with equal weighting of all design objectives. The ultimate goal is to design a device

that may be permanently expanded from 12mm inner diameter (i.e. that of a neonate) to 24mm

(approximately that of an adult). In this chapter we focus first on expansion from 12mm to 16mm
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permanent inner diameter, which would effectively replace one open heart surgical procedure with

a noninvasive transcatheter balloon dilation.

The remainder of this chapter is outlined as follows. The numerical approximation of the device

geometry and stent parameterization are provided in Section 6.2, followed by the details of the

numerical simulations in Section 6.3. Subsequently, the performance metrics that we consider in

this study are provided in Section 6.4 and the surrogate-based multiobjective optimization procedure

is summarized in Section 6.5. Finally, the numerical results are discussed in detail in Section 6.6

and concluding remarks are then provided.

6.2 Geometric parameterization

As mentioned briefly in the introduction, we examine the impact of 3 stent geometric parameters

(i.e. the strut width, 𝑊 , strut thickness, 𝑇 , and number of circumferential patterns, 𝑁𝐶𝑃) on

particular performance metrics, later presented in Section 6.4, along with two different stent

materials (316L stainless steel and L605 cobalt chromium). The outer conduit is assumed to be

constructed of e-PTFE (samples obtained from International Polymer Engineering [232]), while

Carbothane𝑇𝑀 [233] is used as a polymeric glue. The geometry of a conceptual prototype is shown

in Figure 6.1, along with a depiction of the fabrication procedure. The numerical approximation

and parameterization of the stent geometry are illustrated in Figures 6.2 and 6.3, while in Figure

6.4 the numerical approximation of the assembly including the stent, conduit, and polymeric glue

layers is shown. Note that the inner e-PTFE valve geometry has been omitted from the numerical

analyses in an effort to decrease the computational complexity. This approximation is justified

due to the low thickness and stiffness of the inner e-PTFE layer compared to the remainder of the

structure, however it could also be considered in future studies. Creation of the stent CAD geometry

is performed via the Python scripting interface of the CAD software, FreeCAD [234], while the

conduit and glue layers are constructed via the Python scripting interface of Abaqus [235]. As

shown in the next section, a non-compliant balloon (used for device expansion) is approximated in

this chapter as a rigid, radially expanding cylindrical surface with an initial diameter of 12mm.
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Figure 6.1: Valved conduit prototype fabrication illustration including depictions of the inner valve,
polymeric glue layers, stent, and outer conduit.

Figure 6.2: Stent geometry and parameterization where 𝑊 and 𝑇 represent the strut width and
thickness, respectively. A single circumferential pattern is identified and the variable 𝑁𝐶𝑃 is used
to represent the total number of circumferential patterns.
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(a) (b)

Figure 6.3: Illustrations of stent realizations with (a) 6 𝑁𝐶𝑃 and (b) 9 𝑁𝐶𝑃

 

 

e-PTFE Conduit Outer Glue Layer Stent Inner Glue Layer

0.15 mm 

0.15 mm 

Figure 6.4: Cross-section drawing of the geometry used in the numerical simulations, including the
outer conduit, stent, and inner/outer layers of polymeric glue.

6.3 Numerical simulation setup

The numerical models are created and executed using the Python interface to the commercial

finite element software, Abaqus [235]. Symmetry boundary conditions are employed in a cylindrical

coordinate system in order to significantly reduce the computational expense. This is illustrated

along with the rigid balloon radial displacement boundary conditions and tie constraints between

the stent and glue layers in Figure 6.5. Each geometry is partitioned in order to facilitate the creation
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of a high quality hexahedral mesh, an example of which is shown in Figure 6.6. The volumetric

components of the model (i.e. the conduit, polymeric glue, and stent) are all meshed with C3D20H

hybrid finite elements, which interpolate the displacement field with nearly second order accuracy

and also consist of a linear pressure field interpolation. Each element is fully integrated with a

27-point gauss quadrature rule. Although these elements require relatively high computational cost,

they provide higher accuracy and alleviate any concern of volumetric or shear locking. In addition,

the fully-integrated elements in the stent region ensure 9 to 12 integration points through the stent

cross-section which provides the desired high accuracy for the ductile failure and fatigue metrics

presented in the next section. A non-compliant balloon is approximated using a rigid cylindrical

surface mesh consisting of reduced integration membrane elements (M3D4R) with fully specified

nodal displacement/rotation boundary conditions. Hard contact is used between the outer balloon

surface and the inner diameter of the device. The constitutive models and calibrated constants for

each material (i.e. 316L stainless steel, L605 cobalt chromium, e-PTFE, and Carbothane𝑇𝑀 [233]

polymeric glue) are presented in D.1.
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(a) (b)

(c) (d)

Figure 6.5: Boundary conditions in cylindrical coordinates (a-c) and tie constraints (d). The
dashed-line marks the center axis of the device.

(a) (b)

Figure 6.6: An example finite element mesh corresponding to one stent geometry realization. (a)
Reduced model employing symmetry boundary conditions. (b) A full model illustrating the entire
assembly and the location of the submodel shown in (a).

The rigid balloon is radially expanded from an initial diameter of 12mm to 22mm temporarily,
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followed by radial retraction until the balloon is no longer in contact with the device. It is numerically

predicted that the temporary 22mm expansion diameter would achieve the desired permanent

expanded diameter of 16mm in a homogeneous e-PTFE conduit with 12mm initial inner diameter

and 0.5mm thickness. Therefore, this is the basis for our design study. In other words, without

the polymeric glue, the desired expanded diameter would be realized if the device is expanded

temporarily to 22mm. The retractive behavior of the polymeric glue is illustrated in Figure 6.7 for

the same geometry without a stent. It is shown that in the homogeneous e-PTFE conduit the 16mm

diameter is realized while the polymeric glue limits the permanent diameter in the valved region

to 14mm. On this basis we may then design the stent so as to counteract the retractive forces of

the polymeric glue as previously mentioned. Once the balloon is removed, a typical pulmonary

diastolic pressure loading of 10 mmHg is quasi-statically applied to the inner surfaces of the device,

followed by an increase to a systolic pressure of 30 mmHg [236]. These two load states are used in

a similar manner to much of the literature (e.g. [237, 238]) in order to estimate particular metrics

associated with fatigue life, as further explained in the next section. Each model typically consists

of 235-362k degrees of freedom and requires 3-5 hours of running time on a workstation with an

Intel Xeon E3-1281 CPU and 16GB of RAM. For convenience, a typical numerical simulation

sequence is illustrated in Figure 6.8.
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Figure 6.7: Cross-section of initial and predicted permanent configurations without a stent,
illustrating the anticipated radial retraction in the central region due to the polymeric glue.
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Figure 6.8: Simulation sequence from the initial state, to a temporary configuration during rigid
balloon expansion, and finally to the desired permanent diameter at which the systolic and diastolic
pressures are subsequently applied. Note that the geometry includes a stent.

6.4 Performance metrics

In this section we outline multiple response quantities of interest that can be numerically

approximated. The relevant metrics used in this study include the mean and standard deviation of

the predicted permanent inner diameter in the stented region, which we represent by the function

notation 𝐷mean(χ)/𝐷stddev(χ), respectively. In other words, these functions represent the mean

and standard deviation of the diameter computed over all of the inner-most glue layer’s inner

surface nodes in the permanently deformed configuration. Note that we use the shorthand symbol

χ to represent a realization of 3 geometric parameters and a selected stent material (i.e. χ =

{𝑊, 𝑇, 𝑁𝐶𝑃, Stent Material}). The goal is to design the stent so that it counteracts the retraction

of the polymeric glue and helps achieve a permanent inner diameter in the valved region similar to

that of the remainder of the conduit. We constrain the mean permanent diameter and minimize its
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standard deviation in an effort to also provide some permanent diameter uniformity. Additionally,

the peak radial force required to expand the stented region is of interest since the non-compliant

balloon will be required to achieve this force during the expansion procedure. We represent this

quantity with the notation 𝑅𝐹 (χ). Note that the peak radial force is computed via summation of

the radial contact force over all inner surface nodes in this region.

Two additional metrics are used which are related to the durability of the stent itself. Design for

fatigue resistance is one particularly important aspect of stent design that has been incorporated quite

extensively in the literature. Due to the very large number of typical cardiac cycles, fatigue failure is

a necessary component of any stent engineering analysis. The FDA [239] recommends a Goodman

fatigue life analysis for stent design which has been incorporated into other works in the literature

for stents constructed of both 316L stainless steel (e.g. [240, 141, 241]) and L605 cobalt chromium

materials (e.g. [238, 237]), both of which are also explored herein. The Goodman criterion states

that a fatigue failure may be expected when the stress amplitude (𝜎𝑎 ≡ |𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 |/2) and mean

stress (𝜎𝑚 ≡ |𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛 |/2) experienced during the pulsatile loading result in 𝜎𝑎
𝜎𝑁
+ 𝜎𝑚
𝜎𝑈𝑇 𝑆

> 1

at some location in the structure, where the maximum and minimum of a Cauchy stress invariant

(here we use the von Mises stress, defined later) over a typical pulsatile load cycle is used for 𝜎𝑚𝑎𝑥

and 𝜎𝑚𝑖𝑛, respectively. Note that 𝜎𝑁 and 𝜎𝑈𝑇𝑆 represent the fatigue limit and the ultimate tensile

strength for the material, respectively. The relevant properties provided in [141] and [238] are used

in this chapter for fatigue analysis (i.e. 𝜎𝑁 = 115 MPa, 𝜎𝑈𝑇𝑆 = 580 MPa for 316L, and 𝜎𝑁 = 207

MPa, 𝜎𝑈𝑇𝑆 = 1449 MPa for L605), however other values reported in the literature could also be

employed. Although fatigue safety factors such as those in [238, 150] may be used, we have chosen

the metric shown in Equation (6.4.1) since it is both dimensionless and directly provides a measure

of constraint satisfaction for a particular stent design realization (i.e. 𝐺𝐹 (χ) ≤ 1). Values greater

than or equal to 1 indicate potential fatigue failure. Therefore we minimize this function, although

it could also be formulated in a constraint with an upper bound equal to some fraction of 1.

𝐺𝐹 (χ) = max
𝑖∈[1,...,𝑁stent

𝐺𝑃
]

𝜎𝑖𝑎

𝜎𝑁
+
𝜎𝑖𝑚

𝜎𝑈𝑇𝑆
(6.4.1)
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Note that 𝑁stent
𝐺𝑃

represents the total number of Gauss quadrature points in the stent finite element

mesh.

While fatigue failure might be the governing failure mechanism, a stent intended to endure the

very large temporary changes in diameter intended in this device may experience ductile failure

during a balloon expansion procedure. Therefore, we incorporate a criterion for ductile failure

into our design process, although ductile failure measures are generally not directly accounted for

in the stent design literature. Many authors use the equivalent plastic strain or a particular stress

invariant as a failure measure. However, since the work of Rice and Tracey [242], Gurson [243],

and Bao and Wierzbicki [196] among many others, it has been known that ductile failure of metals

likely depends quite strongly on the stress triaxiality, and potentially also on the Lode angle [197].

The work of Bao and Wierzbicki [186] demonstrated that the hydrostatic stress criterion worked

quite well for predicting ductile failure in the range of high stress triaxiality. Although only the

specific metal, aluminum 2024-T351, was investigated in their work, we also use this criterion as a

predictive measure for ductile failure of the metals, 316L and L605, used herein. The calibration of

the critical value of this criterion, 𝐷𝐹𝑐𝑟𝑖𝑡 , for each of these materials is discussed in D.1 and the

normalized ductile failure criterion used during the optimization process is expressed in Equation

(6.4.2). The argument of max operator in the equation below represents the integral of the stress

triaxiality over the equivalent plastic strain history at a material point.

𝐷𝐹 (χ) = 1
𝐷𝐹𝑐𝑟𝑖𝑡

max
𝑖∈[1,...,𝑁stent

𝐺𝑃
]

∫ 𝜀𝑖𝑝

0

𝑝𝑖

𝜎𝑖𝑣𝑚
𝑑𝜀𝑝 (6.4.2)

Representing the Cauchy stress tensor with σ, we note that 𝜀𝑝 =
∫ 𝑡

0

√︃
2
3 ¤𝜀

𝑝

𝑖 𝑗
¤𝜀𝑝
𝑖 𝑗
𝑑𝑡 represents the

equivalent plastic strain (with plastic strain rate tensor ¤ε𝑝), 𝑝 =
𝜎𝑘𝑘
3 is the pressure stress, and

𝜎𝑣𝑚 =

√︃
3
2 𝑠𝑖 𝑗 𝑠𝑖 𝑗 is the von Mises stress, where 𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 − 𝑝𝛿𝑖 𝑗 is the stress deviator. Note that

Einstein summation convention is used and 𝛿𝑖 𝑗 is the Kronecker delta. Similar to the Goodman

fatigue metric, ductile failure is predicted at some spatial point in the stent when 𝐷𝐹 ≥ 1. Each of

the parameters and performance metrics are summarized briefly in Table 6.1, below.
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Table 6.1: Summary of design parameters and performance metrics

Design Parameter Summary

𝑊 Stent strut width [𝑚𝑚]

𝑇 Stent strut thickness [𝑚𝑚]

𝑁𝐶𝑃 Number of stent patterns around the circumference

Stent Material Construction material of the stent (either 316L or L605)

Performance Metric Summary

𝐷mean(χ) Mean permanent inner diameter in the stented region [𝑚𝑚]

𝐷stddev(χ) Standard deviation of permanent inner diameter in the stented region [𝑚𝑚]

𝑅𝐹 (χ) Peak radial force exerted in the stented region during expansion [𝑁]

𝐺𝐹 (χ) Goodman metric for high cycle fatigue failure prediction of the stent

𝐷𝐹 (χ) Hydrostatic criterion for ductile failure prediction of the stent

6.5 Surrogate-based multiobjective optimization procedure

Due to the relatively large computational expense associated with the high fidelity finite element

simulations discussed in Section 6.3, surrogate models are constructed for each performance metric.

The multiobjective optimization problem we wish to solve may be stated as follows.

minimize
χ

𝐺𝐹 (χ), 𝐷𝐹 (χ), 𝑅𝐹 (χ), 𝐷stddev(χ)

subject to 0.4𝑚𝑚 ≤ 𝑊, 𝑇 ≤ 0.8𝑚𝑚

16.0𝑚𝑚 ≤ 𝐷mean(χ)

(6.5.1)
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Note that while we notationally optimize over all parameters, χ, numerically we optimize over𝑊

and 𝑇 , solving one multiobjective optimization problem for each fixed combination of 𝑁𝐶𝑃 and

stent material. Minimizing the Goodman fatigue and ductile failure metrics provide the desired

failure resistance, while minimization of the peak radial force in the stented region is also desirable

in order to improve the ease of device expansion with existing non-compliant balloons. In addition

to these failure-type metrics we also minimize the standard deviation of the permanent diameter in

the stented region in an effort to achieve some degree of permanent diameter uniformity. Bound

constraints are placed on the stent strut width and thickness, while we also place a lower bound on

the mean permanent diameter in the stented region equal to the target 16mm permanent expansion

diameter. While one could also place an upper bound on the mean permanent diameter, we have

found this to be unnecessary since the objective functions favor a decrease in 𝐷𝑚𝑒𝑎𝑛 (i.e. only the

lower bound constraint is active).

Stent geometries with all combinations of five different strut widths (𝑊 ∈ [0.4, 0.5, 0.6, 0.7, 0.8]mm),

five strut thicknesses (𝑇 ∈ [0.4, 0.5, 0.6, 0.7, 0.8]mm), and four different numbers of circumferential

patterns (𝑁𝐶𝑃 ∈ [6, 7, 8, 9]) are created using the Python interface to FreeCAD as previously

mentioned. The 100 resulting geometries are then imported into Abaqus and numerical models

are created and executed as previously described in Section 6.3. A total of 200 high fidelity finite

element simulations are completed (100 for each of two stent materials considered in this study). The

performance metrics outlined in Section 6.4 are computed via an Abaqus Python post-processing

script and the resulting data is tabulated into CSV files for subsequent analysis.

Since only the stent strut width, 𝑊 , and thickness, 𝑇 , are continuous parameters, C1 cubic

gridded interpolants are constructed in Matlab [244] for each performance metric shown with fixed

combination of stent material and number of circumferential patterns, 𝑁𝐶𝑃. These surrogate models

are then used to obtain 100 Pareto optimal points by replacing the high fidelity function evaluations

in Equation 6.5.1 with their respective surrogates and using the Matlab built-in “paretosearch"

function based on a direct multisearch algorithm for multiobjective optimization [245]. This

surrogate-based multiobjective optimization problem is solved a total of eight times, once for each
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unique combination of candidate stent material and number of circumferential patterns, 𝑁𝐶𝑃.

Subsequently, an equally weighted, normalized aggregate objective function is constructed in

order to obtain a single optimal design candidate for each stent material. The performance metrics

are normalized in the following manner. Minimum and maximum values of each performance

metric (say a physical quantity 𝑌 and corresponding 𝑌𝑚𝑖𝑛/𝑌𝑚𝑎𝑥) are computed over all results from

the 200 high fidelity simulations. A single objective optimization problem may then be stated using

an equally weighted, normalized aggregate objective function.

minimize
χ

𝐺𝐹 (χ) − 𝐺𝐹𝑚𝑖𝑛
𝐺𝐹𝑚𝑎𝑥 − 𝐺𝐹𝑚𝑖𝑛

+ 𝐷𝐹 (χ) − 𝐷𝐹𝑚𝑖𝑛
𝐷𝐹𝑚𝑎𝑥 − 𝐷𝐹𝑚𝑖𝑛

+ 𝑅𝐹 (χ) − 𝑅𝐹𝑚𝑖𝑛
𝑅𝐹𝑚𝑎𝑥 − 𝑅𝐹𝑚𝑖𝑛

+
𝐷stddev(χ) − 𝐷𝑚𝑖𝑛

stddev

𝐷𝑚𝑎𝑥
stddev − 𝐷

𝑚𝑖𝑛
stddev

subject to 0.4𝑚𝑚 ≤ 𝑊, 𝑇 ≤ 0.8𝑚𝑚

16.0𝑚𝑚 ≤ 𝐷mean(χ)
(6.5.2)

The solution of this single objective optimization problem is then obtained for each fixed combination

of stent material and number of circumferential patterns as previously explained, using the constructed

surrogate models. Aggregate objective values corresponding to optimized results are then used to

further quantitatively compare the designs and provide a single result for a design candidate with

good overall performance. An overview of this process is provided in Algorithm 5. This procedure

results in not only the sets of Pareto-optimal designs from the solution of Equation (6.5.1), but also

the identification of an optimized design with good performance via solution of Equation (6.5.2).

6.6 Numerical results

The cubic surrogate models for each function are illustrated in Figures 6.9 to 6.12 below. There

are a few interesting things to note regarding the presented data. First, the nonlinearity of the

Goodman fatigue metric is clear from Figure 6.9. The other performance metrics are also quite

nonlinear in the design parameters. Additionally, it is interesting to see that while the normalized

ductile failure criterion is generally lower for 316L with respect to L605, the Goodman fatigue

metric indicates much better fatigue performance for L605. This is at least partially explained
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Algorithm 5 Overview of the design optimization procedure
1. for Stent Material in [316L, L605] do
2. for 𝑁𝐶𝑃 in [6, 7, 8, 9] do
3. for 𝑊 in [0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm] do
4. for 𝑇 in [0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm] do
5. Perform high fidelity simulation and compute (𝐷𝑚𝑒𝑎𝑛, 𝐷𝑠𝑡𝑑𝑑𝑒𝑣, 𝑅𝐹, 𝐺𝐹, 𝐷𝐹)
6. end for
7. end for
8. Construct cubic surrogate model for each performance metric
9. Solve Equation (6.5.1) for a set of 100 Pareto-optimal (𝑊 , 𝑇) pairs and store

10. Solve Equation (6.5.2) for a single optimal (𝑊 , 𝑇) pair and store
11. end for
12. end for
13. Identify parameters producing lowest aggregate objective value in Equation (6.5.2)

by the seemingly high ultimate tensile strength stated in much of the literature for L605 [238,

237]. Additional test data should be obtained to validate the Goodman parameters for the material

thickness range of interest. Also, note that most of the design region places the Goodman metric

above 1 for the 316L stent, indicating a potential fatigue failure. Figure 6.11 illustrates that the peak

radial force required to expand the stented region of the device generally increases with the number

of circumferential patterns, 𝑁𝐶𝑃, although this observation is reversed for large enough strut width

(𝑊) and thickness (𝑇). The other metrics (𝐺𝐹,𝐷𝐹,𝐷𝑠𝑡𝑑𝑑𝑒𝑣) all increase with a decrease in 𝑁𝐶𝑃 for

fixed𝑊 and 𝑇 , showing a clear benefit to including a larger number of circumferential patterns.

As mentioned in the previous section, these surrogate models were then used to obtain a set of

100 Pareto-optimal points for the multiobjective optimization problem stated in Equation (6.5.1).

Two dimensional trade-off plots for every unique combination of the 4 objective functions (6 in total)

are provided in Figures 6.13 to 6.18. The results shown in Figure 6.13 are particularly interesting

since they illustrate the conflicting trade-off between ductile failure resistance during expansion and

the subsequent resistance to high cycle fatigue failure. Although larger values of the normalized

ductile failure criterion are predicted for the L605 stent, the values are still quite low (a value greater

than 1 would represent a ductile failure prediction). However, subsequent future expansions (not

currently considered in this chapter) may result in ductile failure for the L605 material, while 316L
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might generally be safer. This highlights the difficulty of the design problem since 316L may be

better for large diameter expansions, but it also might be subject to higher risk of fatigue failure.

Additionally we note that in each case, with the exception of the peak radial force (𝑅𝐹), increasing

the number of circumferential patterns (𝑁𝐶𝑃) is beneficial. The peak radial force clearly increases

more rapidly with increasing strut width (𝑊) as opposed to strut thickness (𝑇) as expected, but the

values for fixed𝑊 and 𝑇 do not seem to vary greatly with the number of circumferential patterns

(𝑁𝐶𝑃). The opposite effect is observed for the standard deviation of the permanent diameter

(𝐷𝑠𝑡𝑑𝑑𝑒𝑣), which appears to be overwhelmingly most sensitive to 𝑁𝐶𝑃.

Plots of the normalized aggregate objective function in Equation (6.5.2) are provided in Figure

6.19, along with the Pareto-optimal points and the result of solving the single objective optimization

problem. Equation (6.5.2) is solved using the gradient-based “fmincon" optimizer with an initial

guess equal to the Pareto-optimal point which produced the lowest normalized aggregate objective

function value. The CAD geometry corresponding to the optimized designs for both 316L and L605

were created and high fidelity numerical analyses were completed for each. Table 6.2 provides the

values of the objective functions at the corresponding optimized parameter set for each material

and 𝑁𝐶𝑃. The surrogate function values are provided alongside the results from additional high

fidelity simulations with the optimized parameters in order to partially demonstrate the very high

accuracy of the surrogate models. As expected, the L605 material allows generally thinner stent

struts to be used. The optimized geometric design parameters obtained for 316L are (0.46mm𝑊 ,

0.8mm 𝑇 , 9 𝑁𝐶𝑃) and (0.5mm 𝑊 , 0.4mm 𝑇 , 9 𝑁𝐶𝑃) for L605. The spatial distribution of the

permanent diameter in the stented region, the normalized ductile failure criterion, and the Goodman

fatigue metric are also illustrated in Figures 6.20, 6.21, and 6.22, respectively. As anticipated, the

largest ductile failure and fatigue measures are concentrated on the inner radii of the stent members.

The Goodman diagrams for each optimized design are also provided in Figure 6.23, illustrating

the proximity of each integration point’s fatigue measure in the stent to the Goodman limit. This

again demonstrates the relative superiority of L605 over 316L. Pending verification of the material

parameters and constitutive models employed, one can conclude that the optimized L605 stent with
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aforementioned parameters is best suited to achieve our goal as stated mathematically in Equation

(6.5.2). It is also clear from Figure 6.19h that the L605 material may allow for a better performing

design with a stent strut thickness below the 0.4mm lower bound assigned in this study. Based on

Figure 6.19g, a similar observation is noted for 316L if strut thicknesses greater than 0.8mm were

allowed. Finally, although we do not optimize these quantities directly, the spatial distributions of

the peak von Mises stress and the equivalent plastic strain are also provided in Figures 6.24 and

6.25, respectively.
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Figure 6.9: Illustrations of the 𝐺𝐹 surrogate models created for each stent material and number of
circumferential patterns, 𝑁𝐶𝑃.
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Figure 6.10: Illustrations of the 𝐷𝐹 surrogate models created for each stent material and number of
circumferential patterns, 𝑁𝐶𝑃.
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Figure 6.11: Illustrations of the 𝑅𝐹 surrogate models created for each stent material and number of
circumferential patterns, 𝑁𝐶𝑃.
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Figure 6.12: Illustrations of the 𝐷𝑠𝑡𝑑𝑑𝑒𝑣 surrogate models created for each stent material and number
of circumferential patterns, 𝑁𝐶𝑃.
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Figure 6.13: Pareto-optimal points illustrating the trade-off between 𝐺𝐹 and 𝐷𝐹 for (a) 316L and
(b) L605 stent materials
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Figure 6.14: Pareto-optimal points illustrating the trade-off between 𝐺𝐹 and 𝑅𝐹 for (a) 316L and
(b) L605 stent materials
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Figure 6.15: Pareto-optimal points illustrating the trade-off between 𝐷𝐹 and 𝑅𝐹 for (a) 316L and
(b) L605 stent materials
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Figure 6.16: Pareto-optimal points illustrating the trade-off between 𝐷𝐹 and 𝐷𝑠𝑡𝑑𝑑𝑒𝑣 for (a) 316L
and (b) L605 stent materials
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Figure 6.17: Pareto-optimal points illustrating the trade-off between 𝐺𝐹 and 𝐷𝑠𝑡𝑑𝑑𝑒𝑣 for (a) 316L
and (b) L605 stent materials
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Figure 6.18: Pareto-optimal points illustrating the trade-off between 𝑅𝐹 and 𝐷𝑠𝑡𝑑𝑑𝑒𝑣 for (a) 316L
and (b) L605 stent materials
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Figure 6.19: Aggregate objective function surfaces for each combination of 𝑁𝐶𝑃 and stent material.
Pareto-optimal points are illustrated with black x markers. The optimal point of Equation (6.5.2) is
marked by a red diamond.
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Table 6.2: Performance metric values corresponding to the optimized designs obtained by solving
the single objective optimization problem in Equation (6.5.2). Note that 𝑊∗ and 𝑇∗ refer to the
optimized values of 𝑊 and 𝑇 , respectively, “Mat." represents the stent material, and “A.Obj."
signifies the value of the aggregate objective function in Equation (6.5.2) evaluated with the
corresponding optimized parameters. Note that 𝐷𝑚𝑒𝑎𝑛 is not reported since the constraint is active
and the value is equal to 16mm in all cases. For each objective function high fidelity verification
simulations were completed with the optimized parameters in order to validate the results, partially
demonstrating very high accuracy of the surrogate models. The high fidelity responses are provided
in parentheses.

Mat. 𝑁𝐶𝑃 𝑊∗ 𝑇∗ 𝐺𝐹 𝐷𝐹 𝑅𝐹 [𝑁] 𝐷𝑠𝑡𝑑𝑑𝑒𝑣 [𝑚𝑚] A.Obj.

316L 6 0.48 0.55 1.080 (1.088) 0.191 (0.189) 152 (153) 0.244 (0.245) 1.65

316L 7 0.47 0.63 1.030 (1.021) 0.176 (0.175) 163 (162) 0.169 (0.169) 1.26

316L 8 0.44 0.80 0.965 (0.966) 0.176 (0.178) 169 (171) 0.125 (0.125) 1.01

316L 9 0.46 0.80 0.934 (0.934) 0.169 (0.171) 179 (179) 0.092 (0.091) 0.83

L605 6 0.42 0.40 0.785 (0.780) 0.343 (0.346) 152 (152) 0.239 (0.238) 1.43

L605 7 0.45 0.40 0.753 (0.744) 0.307 (0.315) 165 (164) 0.169 (0.169) 1.06

L605 8 0.48 0.40 0.731 (0.735) 0.287 (0.288) 177 (178) 0.121 (0.122) 0.83

L605 9 0.50 0.40 0.711 (0.713) 0.273 (0.274) 187 (188) 0.089 (0.089) 0.67

(a) (b)

Figure 6.20: Spatial variation of the permanent diameter in the stented region for (a) 316L and (b)
L605 stent materials with optimized stent parameters.
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(a) (b)

Figure 6.21: Spatial variation of the normalized ductile failure criterion (𝐷𝐹) for (a) 316L and (b)
L605 stent materials with optimized stent parameters.

(a) (b)

Figure 6.22: Spatial variation of the Goodman fatigue metric (𝐺𝐹) for (a) 316L and (b) L605 stent
materials with optimized stent parameters.
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Figure 6.23: Goodman fatigue diagrams for (a) 316L and (b) L605 stent materials with optimized
stent parameters.
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(a) (b)

Figure 6.24: Spatial variation of the von Mises stress (𝜎𝑣𝑚 [MPa]) for (a) 316L and (b) L605 stent
materials with optimized stent parameters.

(a) (b)

Figure 6.25: Spatial variation of the equivalent plastic strain (PEEQ) for (a) 316L and (b) L605
stent materials with optimized stent parameters.

6.7 Conclusion

A multiobjective stent optimization procedure is proposed for the design of an expandable

prosthetic valved conduit with particular relevance to the pediatric population born with CHD. In

addition to metrics associated with fatigue failure, a measure of ductile failure during expansion is

also incorporated into the optimization procedure. It is demonstrated that the proposed procedure

is capable of producing a stent design with relatively low required radial force, that meets design

durability criteria, and maintains sufficient radial stiffness to counteract the retractive forces of the

polymeric glue layer used during construction. Pareto-optimal designs are obtained and illustrated

using smooth cubic surrogate models and the relevant trade-offs between design objectives are
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provided. Additionally, a single aggregate objective function is defined in which each of the original

objective functions are normalized and equally weighted in order to provide a direct comparison of

all designs and arrive at a single optimized result with good performance. It is shown that permanent

expansion from 12mm to 16mm permanent inner diameter is achievable while maintaining the

mechanical integrity of the structure. Thus, is it possible to eliminate the need for at least one

open heart surgical procedure. Additionally, as we look forward to our ultimate goal of expansion

to 24mm inner diameter, this study provides some confidence that this will indeed be possible

since we observe desirable metrics of stent durability when the L605 stent material is employed.

Expanding the design space to other stent materials and more geometric design flexibility seems

quite promising in this regard.
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Chapter 7

Conclusion

7.1 Scope and contribution

In this thesis multiple numerical design optimization techniques for improving structural

resistance to failure are proposed. This includes two density based topology optimization formulations

for achieving low weight designs with enhanced brittle fracture resistance, as presented in Chapter

2 and 3. In both formulations the brittle fracture physics are explicitly simulated during the

optimization process using the phase field fracture method. In the first, we demonstrate the effect

of constraining the phase field approximation of the fracture energy which ultimately results in

structures with increased strength when compared to the results of typical stiffness based topology

optimization formulations. Additionally, the analytical path-dependent sensitivities of the relevant

functions are derived and a numerical efficiency gain is proposed for use during the sensitivity

analysis, based on a Schur-complement type condensation performed at the element level. This

efficiency gain is applicable to all path-dependent topology optimization problems in which local

degrees of freedom at each quadrature point are spatially independent (i.e. the local degrees of

freedom at one quadrature point do not explicitly depend on the local degrees of freedom at any

other quadrature point). This procedure greatly improves the speed of the analytical sensitivity

computation since significantly smaller linear systems must be solved.

In the second formulation for brittle fracture resistance, introduced in Chapter 3, several

additional enhancements are proposed which greatly improve the topological results and numerical

performance of the method. Importantly, it is shown that a judicious selection of the functions

used in the topology optimization procedure is required in the case of brittle fracture physics

215



due primarily to the strongly nonlinear forward problem and use of gradient-based optimization

methods. A new aggregate objective function is proposed in which the function sensitivities contain

significantly more information, importantly including knowledge of the system state before fracture.

This ultimately provides the optimizer with enough information to reduce the size of existing

cracks and ultimately arrive at a design that does not fracture under the applied load. A phase field

formulation with an energetic threshold is also used which helps provide increased local control of

the topology. Additionally, the driving force for phase field fracture is smoothed in order to mitigate

additional nonlinearity without significantly affecting the physics of the forward analysis. This

procedure helped to ensure some degree of differentiability in regions near the tensile energy density

threshold and significantly improved the convergence characteristics of the optimization process.

It was shown that the method results in designs which remove re-entrant corners as expected and

outperform those associated with a current stress-constrained topology optimization formulation.

Designs were compared based on an increase in strength-to-weight ratio, ultimately showing the

large improvement obtained with the proposed method with respect to the current state of the art.

In Chapter 4 design for both ductile failure and buckling resistance is addressed. The emphasis

was placed on a numerically efficient formulation for increasing peak load carrying capacity and

structural toughness when a ductile material is considered for the structural design. Since hundreds

of forward analyses must be conducted over the course of a typical topology optimization procedure,

the efficiency of the formulation is extraordinarily important in practice. Local ductile failure

constraints were imposed with an aggregation-free Augmented Lagrangian method, enabling the

solution of practical problems with millions of local constraints. Buckling resistance was obtained

via an additional linear elastic buckling analysis that served as an efficient pseudo-problem for

producing a function with sensitivities that drive support for structural members in compression.

This greatly simplifies and improves the efficiency of the design optimization procedure. All of

the relevant sensitivities are analytically derived for the path dependent forward problem and are

numerically verified with finite differences. An additional pseudo buckling mode filter is also

proposed which assisted in the removal of spurious numerical buckling modes that sometimes
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occur in regions of high density. These modes are not removed from consideration using existing

strain energy type filters proposed in the literature. The optimized topologies for each of three

numerical examples were extracted, remeshed, and subject to a large deformation ductile phase

field fracture analysis in lieu of desired experimental testing. This verification step was shown to be

very important when simplified physics such as small deformation and/or linear elasticity are used

during the optimization procedure as is often the case in the literature. Large gains in both peak

load carrying capacity and the external work required to achieve the peak load were demonstrated

for each of the numerical examples. Additionally we note that the results were obtained using

calibrated constitutive properties for Aluminum 2024-T351 with experimental data provided by

Bao [185] in an attempt to show realistic expected performance gains. This included calibration

of the nonlinear hardening law and the triaxiality-dependent, large deformation ductile phase field

fracture model used for optimized design comparison.

Chapter 5 is devoted to the numerical and experimental analysis of an additively manufactured

polymeric composite in which hard inclusions are embedded in a soft matrix material. A parameterized

geometry with two geometric parameters is proposed in order to methodically study the resulting

failure behavior. Multiple uniaxial tension experiments with different parameter realizations

were conducted to complete separation of the specimens. A large strain hyperelastic phase field

fracture model is used for the numerical predictions, including an analytically derived plane stress

formulation for numerically efficiency, and the analytical reduced consistent tangent tensor. It

is shown that changes in the distance between 3 circular inclusions and the length of two initial

notches result in different complex failure sequences, observed both experimentally and numerically.

Structural resistance to failure is shown to be heavily dependent on these parameters, which is

particularly useful for practicing designers. While it is expected that increasing the initial notch

length decreases the structural strength, the behavior observed from changing the distance between

inclusions is shown to be non-trivial. In particular, we demonstrate that decreasing this distance

provides the stiffening effect of the material and an increase in strength that are typically desired,

however too short of a distance results in premature failure with crack nucleation occuring in the
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matrix between inclusions. Subsequent additional numerical analyses suggest that there is in fact

an optimal inclusion spacing for a fixed initial notch length, which maximizes the external work

required to cause catastrophic failure. Significant increases in the strength are also demonstrated

with respect to the same geometry constructed without inclusions. Finally, we highlight that the

numerical and experimental results are shown to be in good qualitative and quantitative agreement

for the complex failure sequences observed, further demonstrating the potential of the phase field

method for predicting the failure of increasingly complex materials.

In Chapter 6 a multiobjective stent optimization procedure is proposed for the design of an

expandable prosthetic valved conduit with particular relevance to the pediatric population born

with Congenital Heart Disease (CHD). In addition to optimizing a metric associated with high

cycle fatigue failure, a measure of ductile failure during expansion is also incorporated into the

optimization procedure. It is demonstrated that the proposed methodology is capable of producing

a stent design with relatively low required radial force, that meets design durability criteria, and

maintains sufficient radial stiffness to counteract the retractive forces of the polymeric glue layer

used during construction. A set of Pareto-optimal designs is obtained using smooth cubic surrogate

models and the relevant trade-offs between performance metrics are illustrated. Additionally, a

single aggregate objective function is defined in which each of the original objective functions are

normalized and equally weighted in order to provide a direct comparison of all designs and arrive at

a single optimized result with good performance. It is shown that expansion from 12mm to 16mm

permanent inner diameter is achievable while maintaining the mechanical integrity of the structure,

effectively eliminating the need for at least one additional open heart surgical procedure in a child

born with CHD.

7.2 Future perspectives

The contributions presented in this thesis could be further improved and expanded in a number

of ways. A few of these are suggested in this section along with additional discussion and plans for

future exploration.
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7.2.1 Topology optimization for brittle fracture resistance

Our initial investigations using density-based topology optimization methods for brittle fracture

resistance presented in Chapters 2 and 3 not only highlight the potential of including the failure

physics during the optimization procedure, but also the difficulties associated with doing so. The

highly nonlinear physics produce large degrees of nonlinearity in the objective and constraint

functions employed, which motivated the improvements and analysis provided in Chapter 3.

However, more exploration should be done in this regard, not only with respect to judicious

selection or construction of functions for use during the optimization procedure, but also with

respect to other numerical methods for general design optimization and/or optimizers themselves.

For example, it would be interesting to test level-set (rather than density-based) methods or

novel techniques in shape optimization on this particular problem. This strategy could potentially

alleviate some of the large changes in the crack path (and the resulting discontinuity in most of the

typical objective/constraint functions) since only the boundary of the design is changed rather than

also allowing variations of the internal structure.

As mentioned previously, most design optimization methods rely on gradient-based optimizers

due to the very large number of design variables in typical problems. The highly nonlinear physics

of brittle fracture, however, might be best suited for other optimization techniques with lower-

dimensional design parameterizations. This might include interpolation of the density field using

relatively few, intelligently constructed basis functions over the design domain. Techniques like this

would also facilitate the analytical computation of function sensitivities with respect to the design

variables but may also allow more robust/efficient optimization techniques to be employed. These

include surrogate-based methods which might also use sensitivity data (such as Kriging) or evolving

techniques in machine learning, among many other methods.

Finally we again highlight the fact that the proposed formulation ultimately removes all cracks

in the final design. It would be particularly interesting if methods were developed for producing

structures with a tolerance for fracture formation under extreme loading conditions. Materials such

as concrete always contain some degree of cracking, but the cracks generally remain stable under

219



the applied loads or do not coalesce to cause catastrophic failures of the macroscopic structure. The

ability to bound or optimize some measure of macroscopic structural stability under loads inducing

the formation of small cracks may result in more efficient material usage. Consequently, one might

expect lighter, better performing structures for situations in which large degrees of engineering

conservatism may not be required.

7.2.2 Topology optimization for ductile failure and buckling resistance

The design formulation presented in Chapter 4 for resistance to ductile failure and buckling

also promotes many interesting potential future studies and method enhancements. While relatively

large gains in structural strength are demonstrated, the strength increase is not as pronounced as one

might expect. This is partially due to the nonlinear saturation-type hardening of the material rather

than the simple linear hardening models that are typically used in the literature. While including the

nonlinear hardening demonstrates realistic gains in performance, it also highlights a particularly

important rule of thumb for designers. If the construction material exhibits quick saturation of the

hardening curve, very large gains in peak load carrying capacity should not generally be expected.

However, large gains in structural toughness might still be achieved. This observation provokes one

to ask whether a different material with more significant hardening characteristics would promote

larger strength gains when used within the presented framework. Future analysis and numerical

experimentation in this regard should clearly be examined.

While all three presented examples clearly demonstrate significant improvements in structural

performance, the final example highlights a potential limitation of small strain kinematics in

situations where the plastic strains are so large that localized necking of structural members may

occur. Although less numerically robust in general, incorporating large strain kinematics in these

situations may prove to be highly beneficial. Additionally, we have only incorporated ductile

fracture constraints in the formulation. A simple extension to also account for shear failure in a

manner similar to [45] should also be pursued.

The selected constraint bounds in the optimization problem statement could also be further
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examined. Future studies including the effect of changing the upper bound on the volume fraction

should be performed. Larger volume fractions typically lead to thicker structural members which

are inherently less prone to buckling, while more stringent mass requirements may demonstrate

the proposed formulation performs significantly better for particular boundary value problems.

Additionally, studies changing the ductile failure constraint upper bound should also be explored in

addition to those utilizing different indicators of ductile failure and whether there is a significant

difference between the resulting optimized topologies and/or their performance.

It would also be interesting to systematically compare the optimized results to those obtained

using linear elastic stiffness-based topology optimization with stress constraints and similar buckling

analyses. This would provide a useful study for practicing designers which may illuminate whether

there are significant benefits to including the nonlinear material physics.

Finally we note that while numerical models for ductile failure prediction proved to be useful

for design validation, experimental verification of the optimized designs would be ideal since

highly accurate numerical ductile failure prediction is still largely an open problem in the literature.

Alternatively, improved calibration of an adequate numerical model for use during the verification

step should be performed with additional test data in order to properly validate the model and

increase confidence in the predicted performance of the optimized structures.

7.2.3 Failure behavior of hyperelastic composites

The work presented in Chapter 5 could be improved in several significant ways. Although we

did not experimentally encounter large degrees of variation in macroscopic failure responses

with 3D-printing direction, in general, anisotropy due to the additive manufacturing process

should be anticipated and accounted for in the numerical model. This represents one area in

which homogenization methods might be particularly suitable not only in determining effective

macroscopic constitutive properties, but also for better understanding the mechanics between layers.

Future studies should likely include some type of multiscale modeling or analysis of the material

which might illuminate better phenomenological macroscopic constitutive models when used in
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conjunction with relevant experimental observations and data.

Perhaps more importantly, although the load was experimentally applied at a quasistatic rate,

specimen failure generally happened very rapidly. Since most polymers exhibit rate-dependent

behavior it may prove extremely beneficial to include rate-dependence in the numerical constitutive

model. Many nonlinear viscoelastic models could be evaluated for this purpose, while other

physics, such as temperature dependence, may also prove to be important for particular engineering

applications.

In order to further increase the accuracy of the numerical model, the fully three-dimensional

physics should be simulated. Since we were not able to do so due to computational limitations,

any one of the many mesh-adaptivity schemes in the literature would clearly be very useful in this

regard. Although the computational burden may still be quite large, other techniques to accelerate

the forward analyses could also be explored such as those recently proposed in [246].

Finally, the use of topology optimization methods for optimizing the shape of the inclusion

phase in an effort to maximize the strength and toughness of the composite could be explored in a

manner similar to [17, 18]. However, this extension would require large deformation mechanics

and the associated numerically expensive explicit simulation of the failure physics during the

optimization process. This is true since it was demonstrated in Chapter 5 that initial crack nucleation

is not generally followed by catastrophic failure since the inclusion phase may cause crack arrest.

Therefore the work required to cause complete failure of a general specimen is quite dependent

on post crack nucleation behavior. However, if optimization of only the strength prior to crack

nucleation is desired, then failure indicators such as the tensile energy density could be locally

constrained, while omitting the explicit simulation of the failure physics for numerical efficiency in

a manner similar to that outlined in Chapter 4.

7.2.4 Cardiovascular stent design for an expandable valved conduit

While a great deal of work is presented in Chapter 6, future studies of this type could be

improved in multiple ways. These include calibration and use of a more accurate viscoplastic
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constitutive model for the e-PTFE material, once sufficient test data for calibration of such a model

is acquired. Alternative polymeric glues should also be explored in addition to Carbothane𝑇𝑀 which

was selected for this study, due primarily to it’s relatively low stiffness. Perhaps other candidate

polymeric glues have more desirable mechanical properties. It may also be worthwhile to explore

other manufacturing methods entirely in order to eliminate the polymeric glue from the design.

Furthermore, additional tests for both 316L stainless steel and L605 cobalt chromium should be

conducted with specimen dimensions in the range of those considered in this dissertation. Since the

strut widths and thicknesses are relatively small (on the order of 0.5mm) it is possible that larger

scale continuum properties may differ significantly from those of actual stents after construction.

Verification of the nonlinear hardening curves, ductile failure criteria, and metrics associated with

Goodman fatigue analysis would also significantly improve confidence in the numerical results.

Additional refinements or expansions of the design space in regions where the Pareto frontier

is predicted could also be further explored with high-fidelity simulations in order to improve the

surrogate models and potentially increase the performance of the final design. The simulation setup

itself could also be improved via inclusion of a deformable transcatheter non-compliant balloon

approximation, rather than the rigid cylinder used for computational efficiency herein. Further

improvements to the numerical approximation of the geometry could also be explored in order to

more accurately capture that of the actual prototype.

Finally, and most importantly, a similar or improved design strategy incorporating multiple

balloon dilation procedures to larger diameters should be examined with the goal of ultimately

reaching the permanent inner diameter of an adult. This would alleviate the need for multiple

additional open heart surgical procedures and significantly improve the quality of life of children

born with CHD.
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Appendix A

A.1 Fourth order constitutive tensor for spectral split of elastic energy density

For completeness we provide the detailed form of the constitutive tensor in the case of the

spectral split of the stored elastic energy density used in Chapters 2 and 3. Generally, linearization

of the constitutive law requires a fourth-order tensor, C = 𝜕σ
𝜕ε . The fourth-order constitutive tensor

required in the case of the spectral split of the elastic energy density may be written using the

eigenpairs of the strain tensor as

C =

3∑︁
𝑖=1

3∑︁
𝑗=1

𝜕𝑠𝑖

𝜕𝜀 𝑗
n𝑖 ⊗ n𝑖 ⊗ n 𝑗 ⊗ n 𝑗

+ 1
2

3∑︁
𝑖=1

3∑︁
𝑗=1
𝑖≠ 𝑗

𝑠𝑖 − 𝑠 𝑗
𝜀𝑖 − 𝜀 𝑗

n𝑖 ⊗ n 𝑗 ⊗
(
n𝑖 ⊗ n 𝑗 + n 𝑗 ⊗ n𝑖

) (A.1.1)

where,

𝜕𝑠𝑖

𝜕𝜀 𝑗
=

(
(1 − 𝑑)2 + 𝑘

) (
𝜆

〈∑3
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〉
+∑3
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)
+
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) (A.1.2)
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(A.1.3)
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Note that we replace 𝑠𝑖−𝑠 𝑗
𝜀𝑖−𝜀 𝑗 by 𝜕𝑠𝑖

𝜕𝜀𝑖
− 𝜕𝑠 𝑗

𝜕𝜀𝑖
whenever 𝜀𝑖 is equal to 𝜀 𝑗 , and 𝑠𝑖 represents to the 𝑖𝑡ℎ

principal stress. We refer the interested reader to Miehe [247] and Klinsmann et al. [180] for further

details.

A.2 Smooth threshold physics comparison

Here we demonstrate the negligible effect of the smooth threshold function introduced in

Equation (3.2.15) on the physics of the forward analyses in Chapter 3. The portal frame geometry

in Figure 3.6 with numerical parameters provided in Table 3.2 are used with the exception of the

smoothing parameter, 𝜂𝑘𝑠. The geometry is discretized with 11,454 quadrilateral elements and

the pseudo-densities are set to 1. The frame is loaded until fracture using the unsmooth threshold

provided in Equation (3.2.14). This analysis is repeated using the smooth threshold and two different

values of the smoothing parameter, 𝜂𝑘𝑠. The plots of the corresponding force vs. displacement and

fracture energy vs. displacement curves are provided in Figure A.1. It is clear from the figures that

there is negligible difference in the physics for the chosen values of 𝜂𝑘𝑠.
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Figure A.1: Smooth threshold comparison to the nonsmooth threshold function (a) force vs.
displacement and (b) fracture energy vs. displacement
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A.3 Stress minimization formulation used for comparison

In addition to comparing the results of our formulation in Chapter 3 against those of work-

constrained volume minimization with linear elasticity, we also compare our results against a volume-

constrained stress-minimization formulation. In particular we have implemented the formulation

proposed by Le et al. [6],

minimize
θ

[
𝑁𝑒𝑙𝑒𝑚∑︁
𝑒=1

𝑉𝑒𝜎
𝑝
𝑒

] 1
𝑝

subject to 0 ≤ 𝜃𝑒 ≤ 1, 𝑒 = 1, . . . , 𝑁𝑒𝑙𝑒𝑚

Λ(ρ) ≤ Λ𝑚𝑎𝑥

Ku = f𝒆𝒙𝒕

where 𝜎𝑒 is the Mises equivalent stress evaluated at the center of element, 𝑒. Note thatK refers to

the standard global stiffness matrix from linear elasticity. This formulation is selected to provide a

straightforward basis for comparison with the designs obtained using the phase field physics. In

particular we constrain the volume to be identical to our result with the highest peak load prior to

failure. Additionally, we need not select an arbitrary upper bound for the stress or place an additional

work constraint on the optimizer. As mentioned in Le et al. [6], taking larger values of the parameter

𝑝 will likely make the formulation more susceptible to local minima. We have empirically found

that a value of 10 provides the best performing design for the portal frame example, however we

apply a different strategy for the L-bracket example as briefly mentioned in Section 3.4.2.
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Appendix B

B.1 Return mapping algorithm

The standard radial return mapping algorithm outlined in [188] is utilized in Chapter 4. The

only exception is the calculation of the pressure which has been previously provided in Equation

(4.2.15). The algorithm begins with the local state variables (ε𝑝𝑛 , 𝛼𝑛) known at pseudo-time, 𝑡𝑛, and

the total strain tensor (ε𝑛+1). The elastic trial state is computed via

ε
𝑝𝑡𝑟𝑖𝑎𝑙

𝑛+1 = ε
𝑝
𝑛 (B.1.1)

𝛼𝑡𝑟𝑖𝑎𝑙𝑛+1 = 𝛼𝑛 (B.1.2)

s𝑡𝑟𝑖𝑎𝑙𝑛+1 = 2𝜇P𝑑𝑒𝑣 :
(
ε𝑛+1 − ε𝑝

𝑡𝑟𝑖𝑎𝑙

𝑛+1

)
(B.1.3)

σ𝑡𝑟𝑖𝑎𝑙𝑛+1 = 𝑝𝑛+1I + s𝑡𝑟𝑖𝑎𝑙𝑛+1 (B.1.4)

We define 𝑞𝑡𝑟𝑖𝑎𝑙
𝑛+1 =

√︃
3
2s

𝑡𝑟𝑖𝑎𝑙
𝑛+1 : s𝑡𝑟𝑖𝑎𝑙

𝑛+1 for convenience. If Φ(σ𝑡𝑟𝑖𝑎𝑙
𝑛+1 , 𝛼

𝑡𝑟𝑖𝑎𝑙
𝑛+1 ) ≤ 0 then the step is elastic

and the trial state is accepted, which results in

ε
𝑝

𝑛+1 = ε
𝑝𝑡𝑟𝑖𝑎𝑙

𝑛+1 (B.1.5)

𝛼𝑛+1 = 𝛼𝑡𝑟𝑖𝑎𝑙𝑛+1 (B.1.6)

σ𝑛+1 = 𝑝𝑛+1I + s𝑡𝑟𝑖𝑎𝑙𝑛+1 (B.1.7)

C𝑑𝑒𝑣𝑛+1 = 2𝜇P𝑑𝑒𝑣 (B.1.8)
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Otherwise, we solve the reduced system of local state equations for the increment in the plastic

multiplier, Δ𝛾, via the Newton solution of the nonlinear equation,

𝑓 (Δ𝛾) = 𝑞𝑡𝑟𝑖𝑎𝑙𝑛+1 − 3𝜇Δ𝛾 − 𝜎𝑦 (𝛼𝑛 + Δ𝛾) = 0 (B.1.9)

and with the newly obtained value of Δ𝛾 we update the local state variables via the following

expressions.

σ𝑛+1 = 𝑝𝑛+1I +
(
1 − Δ𝛾 3𝜇

𝑞𝑡𝑟𝑖𝑎𝑙
𝑛+1

)
s𝑡𝑟𝑖𝑎𝑙𝑛+1 (B.1.10)

ε
𝑝

𝑛+1 = ε
𝑝
𝑛 + Δ𝛾N (B.1.11)

𝛼𝑛+1 = 𝛼𝑛 + Δ𝛾 (B.1.12)

C𝑑𝑒𝑣𝑛+1 = 2𝜇

(
1 − Δ𝛾 3𝜇

𝑞𝑡𝑟𝑖𝑎𝑙
𝑛+1

)
P𝑑𝑒𝑣 + 6𝜇2 ©­­«

Δ𝛾

𝑞𝑡𝑟𝑖𝑎𝑙
𝑛+1
− 1

3𝜇 + 𝑑𝜎𝑦
𝑑𝛼

���
𝛼𝑛+1

ª®®¬N ⊗N (B.1.13)

B.2 Parameter selection

B.2.1 Ductile failure criterion

Here we briefly outline the calibration procedure used for the ductile failure criterion, Equation

(4.2.20) substituting Equation (4.2.21) with three material parameters (𝑑1, 𝑑2, and 𝑑3) in this study.

The parameters were obtained by repeating the 3 axisymmetric uniaxial tension simulations shown

in Bao and Wierzbicki [186] for Aluminum 2024-T351 plate, each with a different notch size which

imparts a different stress triaxiality state at the specimen center. The commercial finite element code

ABAQUS [235] was used in order to reproduce their results and obtain the required information

for calibration of the integral criterion in Equation (4.2.20). This includes the stress triaxiality and

equivalent plastic strain predictions at the location of failure of the round bars recorded up until

the point of experimental failure. The hardening curve provided in [186] was obtained via a plot

digitizer and each of the three round bar tensile experiments were re-simulated. These results are
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compared to those reported in [186] in Figure B.1 and a good match is observed in all cases. The
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Figure B.1: Reproduced data from Bao and Wierzbicki [196] for 3 round bar tensile tests.

numerical data was used to calibrate the integral criterion in Equation (4.2.20) using the Johnson-

Cook form of the plastic strain to failure in Equation (4.2.21) such that it equals a value of 1 for each
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of the three experiments at the crack initiation point. A nonlinear least squares method was used to

calibrate each of the three parameters in Equation (4.2.21) such that the value of 𝐷 𝑓 at failure was

equal to 1. This resulted in the parameter values (𝑑1 = 0.0728, 𝑑2 = 1.1355, 𝑑3 = −2.8013) that

were previously provided in the text. The evolution of the ductile failure measure (𝐷 𝑓 of Equation

(4.2.20)) at the center of each specimen is shown against the equivalent plastic strain in Figure B.2.
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Figure B.2: Evolution of the calibrated ductile failure criterion for each of the 3 round bar specimens.

B.2.2 Elastoplastic hardening and fracture

Next, we briefly provide the calibration procedure employed for the elastoplastic material

properties and the properties associated with the phase field fracture model used in Chapter 4. The

calibration of the hardening curve parameters was performed via a nonlinear least squares fit of the

data provided by Bao and Wierzbicki [186], while the elastic modulus and Poisson’s ratio were

taken as reported in Bao [185]. These parameters are provided in Table 4.1 of Section 4.5 and are

used in all numerical examples in Chapter 4.

The parameters associated with the fracture model are provided in Table 4.2 of Section 4.5.

The value of 𝐺𝑐 was estimated using data from Ambati et al. [89] with a reported value of
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𝐺𝑐 = 360[𝑘𝐽/𝑚𝑚2] for smooth round bars of Al-5052. Using the conversion provided in Borden

et al. [90] for an equivalent 𝐺𝑐 with the cubic degradation function, we estimated 𝐺𝑐 to be

108[𝑘𝐽/𝑚𝑚2]. In the absence of an abundance of test data, 𝑙0 was selected as small as possible

given our own computational limitations. The three round tensile specimens of Bao and Wierzbicki

[186] were used to calibrate the remaining parameters via 3D numerical simulations with symmetry

boundary conditions for computational tractability. Finally we note the large-deformation kinematics

of the phase field model were necessary in order to calibrate the parameters due to the onset of

necking prior to failure observed experimentally for all 3 specimens. The calibrated force vs.

displacement curves are provided in Figure B.3 with the associated phase field fracture illustrations

in Figure B.4.
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Figure B.3: Force vs. displacement curve comparison between Bao and Wierzbicki [196]
experimental data and numerical model outlined in Section 4.5
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(a) 4mm Notch Radius (Initial) (b) 4mm Notch Radius (Final)

(c) 12mm Notch Radius (Initial) (d) 12mm Notch Radius (Final)

(e) Smooth Round Bar (Initial) (f) Smooth Round Bar (Final)

Figure B.4: Round bar ductile failure simulation results after calibration. Both, initial and final
numerical configurations are shown along with the contours of the phase field parameter.
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Appendix C

C.1 Validation of plane stress approximation

In an effort to validate the choice of a plane stress assumption employed in Chapter 5 versus the

alternative plane strain assumption in two space dimensions, we provide numerical evidence with

a single representative geometry. Numerical simulations without the phase field fracture physics

were performed utilizing the plane stress assumption, a plane strain formulation, and the full three-

dimensional representation. The plane strain and three-dimensional simulations were performed

using exactly the same form of strain energy density used in Chapter 5 (namely, Equation 5.2.3)

and volumetric-locking is alleviated using a standard mean-dilatation formulation consistent with

Bonet and Wood [248]. For the three-dimensional analyses, we use a standard 8-node hexahedral

element with first order Lagrange shape functions. An identical in-plane mesh is created for all

three cases and the three-dimensional mesh is created by extruding this two-dimensional mesh in

the out-of-plane direction with 6 elements through the specimen thickness. We choose an initial

notch length corresponding to 10% of the specimen width and a distance between inclusion centers

of 24 [𝑚𝑚]. Symmetry is employed and one-quarter of the geometry is modeled with relevant

symmetric boundary conditions as illustrated in Figure C.1 (note that we may employ symmetric

boundary conditions in this instance since the center inclusion is not shifted).

Identical elastic material parameters are used for all three models, corresponding to those

provided in Section 5.3.3. Each model is subjected to a representative prescribed displacement of

7.5 [𝑚𝑚] which corresponds to 15 [𝑚𝑚] of stretch when symmetry is not employed. The plane
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Figure C.1: Boundary conditions for plane stress validation problem

stress assumption is then justified using the plots of the strain energy density in Figure C.3, along

the lines shown in Figure C.2 (note that these two regions correspond to those in which cracks

typically initiate). Additionally we provide the relevant force-displacement curves for the global

problem in Figure C.4.

The strain energy density near the notch tip is clearly best approximated in two-dimensions

via a plane stress assumption as evidenced by the line plot in Figure C.3a. The strain energy

density between inclusions illustrated in Figure C.3b follows the same general trend as shown

for the three-dimensional case, however, plane stress slightly under-predicts this quantity due

to the out-of-plane stiffening effect of the rigid inclusions. This stiffening effect also manifests

itself in terms of the overall force versus displacement curves provided in Section 5.4.2. For a

distance between inclusions of 18 [𝑚𝑚] the under-predicted stiffness is clearly visible. However,

for the geometry investigated in this section, Figure C.4 shows very minor stiffness deviation with

respect to the three-dimensional formulation. It is also clear from this figure that a plane strain

approximation significantly over-predicts the external load, further justifying the use of the plane
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Figure C.2: Lines along which the strain energy density is compared. In three-dimensions the lines
lie in the plane at the center of the out-of-plane thickness.

stress approximation used in Chapter 5.
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Figure C.3: Line plots of strain energy density along (a) Line A and (b) Line B as illustrated in
Figure C.2

C.2 Force-displacement correlation with failure sequences

Here we briefly illustrate a few key points on the force-displacement curves previously presented

in Chapter 5, correlated with the system state for two representative examples: one in which the

initial crack forms between inclusions and one in which it initiates from the notch tip. These two
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Figure C.4: Force vs. displacement curves illustrating the consistency of the plane stress
approximation with that of the three-dimensional formulation.

types of behavior are exhibited in the set of force-displacement curves provided in Section 5.4.2.

Generally, initiation between inclusions is accompanied by a force-displacement response with a

single peak and subsequent steep decline to zero force. This is demonstrated for N10D18 in Figure

C.5 with states A1-A2. In the other case, the crack initiates at the notch tip, propagates until it is

arrested by the center inclusion, and stiffening occurs until either the crack continues around the

inclusion or a secondary crack initiates between inclusions. This is demonstrated for the N10D30

case below with sequence snapshots labeled B1-B4.
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Figure C.5: (A1 - A2) N10D18 and (B1 - B4) N10D30 numerical snapshots
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C.3 J-Integral calculations

In an effort to further analyze the crack initiation behavior of the phase field method employed

in Chapter 5, contour integrals are computed for certain geometries at the numerically predicted

crack initiation point. The commercial finite element code, ABAQUS [235], is used to perform the

J-Integral (Rice [249]) computation where the implementation follows the formulation of Shih et al.

[250].

Three different notch lengths (N05, N10, N20) are considered, with and without inclusions.

These particular geometries were selected since cracks clearly initiate at the notch tip rather than

between rigid inclusions or in the bulk material. This allows computation and comparison of the

J-Integral values computed at the predicted initiation point (i.e. the notch tip). Generally, crack

initiation in the phase field formulation is not clearly defined. Here we define initiation to occur

when the peak value of the phase field at the notch-tip has reached 0.25, corresponding to the

critical value analytically obtained by Borden et al. [83] in the context of the standard phase field

formulation (although it was derived for the small deformation case).

The same material properties presented previously are used in ABAQUS and a force-versus-

displacement curve comparison is shown in Figure C.6. A representative result is also provided

in Figure C.7 where the notch tip mesh is illustrated. It is expected that the value of the J-Integral

is independent of the geometry at the crack initiation point when the material parameters are the

same. Seven values are obtained for each geometry corresponding to seven different contour paths

around the crack tip. The path-independence of the J-integral is clearly demonstrated in Table C.1.

Although there is some variation in the converged value with respect to geometry, the variation

is not very large. In light of this we conclude that the phase field formulation employed herein

predicts crack growth to occur when approximately the same strain energy release rate is achieved.

Nevertheless, more investigations of this type for different geometries are likely needed in order to

draw a stronger conclusion.
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Figure C.6: Force vs. displacement comparison with ABAQUS. The final ABAQUS marker (which
is enlarged) represents the load at which we define crack initiation in each case. Note that “Hom."
refers to predictions with homogeneous TP material (i.e. geometry without stiff inclusions).

Table C.1: J-Integral values computed for 6 geometries.

Contour Path
1 2 3 4 5 6 7

N05 0.478 0.478 0.478 0.477 0.477 0.477 0.477
N10 0.503 0.502 0.502 0.501 0.501 0.501 0.501
N20 0.518 0.517 0.517 0.517 0.516 0.516 0.516
N05D30 0.481 0.481 0.481 0.480 0.480 0.480 0.480
N10D30 0.507 0.506 0.506 0.506 0.506 0.505 0.505
N20D30 0.524 0.523 0.523 0.523 0.523 0.522 0.522
Mean 0.502 0.501 0.501 0.501 0.501 0.500 0.500
Std. Dev. 0.019 0.019 0.019 0.019 0.019 0.019 0.019
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Figure C.7: ABAQUS result illustration for the N10D30 geometry and notch-tip mesh used for
the J-Integral calculation. Note that symmetry along the horizontal plane is employed. Both the
undeformed and deformed configurations are presented where the contours illustrate the maximum
in-plane principal stress distribution.
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Appendix D

D.1 Expandable valved conduit constitutive model calibration

D.1.1 Stainless Steel 316L

The uniaxial tension test data provided in [251] is used for calibration of a 𝐽2-plasticity model

for 316L stainless steel. An elastic modulus of 193 GPa and Poisson’s ratio of 0.27 is assumed and

the nonlinear hardening curve is extracted from the test data and used to finely tune the macroscopic

response up to the point of experimentally observed failure. The numerical geometry is exactly as

reported in [251] for the smooth bar without notches. Results from the calibration procedure are

shown in Figure D.1 and a very good match between the nominal stress and strain data is observed.
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Figure D.1: Numerical uniaxial test sequence used in the calibration to 316L stainless steel
experimental data presented in [251]. Contours in (a) illustrate the equivalent plastic strain field
(PEEQ) over the initial undeformed configuration and the deformed configuration immediately
preceding the experimentally determined failure point.
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The critical value of the hydrostatic ductile failure criterion stated in Equation (D.1.1), where

𝜀
𝑓
𝑝 represents the equivalent plastic strain at failure, is then computed at the center of the specimen

in a manner consistent with [186], using numerical integration of the computed stress triaxiality

over the equivalent plastic strain history. A critical value, 𝐷𝐹𝑐𝑟𝑖𝑡 = 0.269, was obtained and is used

herein for 316L stainless steel.

𝐷𝐹𝑐𝑟𝑖𝑡 =

∫ 𝜀
𝑓
𝑝

0

𝑝

𝜎𝑣𝑚
𝑑𝜀𝑝 (D.1.1)

D.1.2 L605 Cobalt Chromium

Similar to the constitutive model for 316L, 𝐽2-plasticity is also employed for L605. The model

is calibrated using uniaxial tension test data obtained from [252]. An elastic modulus of 196

GPa and Poisson’s ratio of 0.29 are used while the nonlinear hardening curve is extracted from

the experimental data and calibrated up until the point of experimentally observed failure. The

numerical model employs a 5mm diameter geometry with dimensions in accordance with the ASTM

E8M standard [253]. The results of the model calibration up to the point immediately preceding

failure of the specimen are shown in Figure D.2.
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Figure D.2: Numerical uniaxial test sequence used in the calibration to L605 experimental data
presented in [252]. Contours in (a) illustrate the equivalent plastic strain field (PEEQ) over the
initial undeformed configuration and the deformed configuration immediately preceding failure.

In a similar manner to the discussion in the previous subsection, the critical value of the
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hydrostatic ductile failure criterion is computed at the center of the specimen using numerical

integration of the predicted stress triaxiality over the equivalent plastic strain history. A critical

value, 𝐷𝐹𝑐𝑟𝑖𝑡 = 0.131, was obtained and is used in this work for the L605 material.

D.1.3 e-PTFE conduit material

While the actual mechanical constitutive behavior of e-PTFE is extraordinarily complex [254],

we approximate its mechanical response using a built-in material model in Abaqus [235] intended

for modeling the permanent set that is observed in some elastomers and thermoplastics. The

constitutive model we select consists of an Ogden-type hyperelastic strain energy density with two

series terms (shown in Equation (D.1.2)), and a multiplicative split of the deformation gradient into

elastic and plastic parts (i.e. F = F 𝑒F 𝑝).

𝑈 (F 𝑒) =
2∑︁
𝑖=1

2𝜇𝑖
𝛼2
𝑖

(
𝜆̄
𝛼𝑖
1 + 𝜆̄

𝛼𝑖
2 + 𝜆̄

𝛼𝑖
3 − 3

)
+

2∑︁
𝑖=1

1
𝐷𝑖
(𝐽 − 1)2 (D.1.2)

The plastic deformation is integrated employing the pioneering work of Simo [190]. In the above

expression, {𝜆𝑖}, represent the elastic principal stretches and 𝐽 = detF = detF 𝑒 represents the

dilatation since the plastic deformation is assumed to be isochoric. The remainder of the variables

are material parameters which are provided in Table D.1 below. Eventually, a more complex

viscoplastic material model should be employed in order to better approximate the mechanical

response of e-PTFE, such as one of those outlined in [255]. Samples of e-PTFE were obtained from

International Polymer Engineering [232]. Subsequent mechanical tests were performed in air at

ambient temperature (approximately 25◦C) using an Instron MicroTester 5848 (Instron, Norwood,

Massachusetts), and all measurements were taken from distinct samples. Sample nominal strain

was measured using the machine crosshead displacement. Rectangular strips (1x4cm and 0.605mm

thick) with a 15mm gauge length between the machine grips were uniaxially stretched to a single

predetermined strain at a strain rate of 0.00671
𝑠
. The samples were then immediately unloaded, and

the grips were returned to the 15mm gauge length at the same rate. The amount of immediately
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recoverable deformation was denoted by the point of return to zero stress. The sample was then

removed from the machine grips and allowed to recover viscoelastically. Prior to the start of the test,

the gauge length between the grip edges was also marked with a marker. After removal from the

testing machine, the amount of strain in the sample was tracked by measuring the distance between

these marks. The permanent set (i.e. final nominal strain) was measured 24 hours after the end

of the unloading step. The calibration results for two cycles of uniaxial tension to different levels

of peak strain and subsequent unloading to the permanent plastically deformed state, including

an approximate Mullin’s damage model, are shown in Figure D.3. Additionally, the elastoplastic

hardening curve is given in Table D.2 and the parameters associated with the Ogden-Roxburgh

Mullins damage model [256] are shown in Table D.3.
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Figure D.3: Numerical uniaxial test sequence used for material model calibration to e-PTFE
experimental data. Contours in (a) illustrate the equivalent plastic strain field over each configuration
in the deformation sequence.

Table D.1: e-PTFE hyperelasticity material parameters

𝜇1 [𝑀𝑃𝑎] 𝛼1 𝜇2 [𝑀𝑃𝑎] 𝛼2 𝐷1 [1/𝑀𝑃𝑎] 𝐷2 [1/𝑀𝑃𝑎]

1.008(10−4) 25.0 1.26312 3.18637 0.06419 0
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Table D.2: e-PTFE multilinear elastoplastic hardening curve (yield stress, 𝜎𝑦, vs. equivalent plastic
strain)

𝜀𝑝 𝜎𝑦 [𝑀𝑃𝑎]

0 0.0507

0.3365 2.1

0.6419 4.0554

6.4185 41.048

Table D.3: e-PTFE Mullin’s damage model parameters (see the Abaqus User’s Manual [235])

𝑟 𝑚 [𝑁 · 𝑚𝑚] 𝛽

1.223 0 0.785

D.1.4 Carbothane polymeric glue

Since the polymeric glue, Carbothane𝑇𝑀 , exhibits very little plastic deformation in the strain

range of interest, we omit the elastoplastic physics and approximate the glue region mechanical

response with an Ogden type hyperelastic model including two series terms (i.e. Equation D.1.2). A

uniaxial tension experiment similar to that described in the previous subsection was conducted in

order to calibrate this material model. To prepare the material samples, pellets of Carbothane𝑇𝑀

AC-4075A [233] were dissolved in N,N-Dimethylacetamide (DMAc, 99.5%, ACROS Organics,

Fair Lawn, New Jersey) to create a viscous solution. After the dissipation of bubbles (approximately

24 hours), the polymer solution was cast onto a flat plate and then dried in an oven for 1 hour at 80◦C

and ambient pressure. The resulting polymer film was cut into individual specimens for testing,

and the thicknesses of the specimens (0.282mm) were measured using a digital thickness gauge

(Mitutoyo 547-526S, Mitutoyo Corporation, Tokyo, Japan). Material model calibration results are
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illustrated in Figure D.4 with corresponding parameters provided in Table D.4 below. Note that the

material is assumed to be incompressible.

0 0.5 1 1.5 2 2.5 3

Nominal Strain

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
om

in
al

 S
tr

es
s 

(M
P

a)

Experiment
Abaqus

Figure D.4: Hyperelastic model calibration result for Carbothane𝑇𝑀

Table D.4: Carbothane𝑇𝑀 hyperelastic material parameters

𝜇1 [𝑀𝑃𝑎] 𝛼1 𝜇2 [𝑀𝑃𝑎] 𝛼2 𝐷1 [1/𝑀𝑃𝑎] 𝐷2 [1/𝑀𝑃𝑎]

6.2(10−4) 8.062 1.656 −1.55 0 0
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