Academic Commons

Articles

Role of the Convection Scheme in Modeling Initiation and Intensification of Tropical Depressions over the North Atlantic

Duvel, Jean-Philippe; Camargo, Suzana J.; Sobel, Adam H.

The authors analyze how modifications of the convective scheme modify the initiation of tropical depression vortices (TDVs) and their intensification into stronger warm-cored tropical cyclone–like vortices (TCs) in global climate model (GCM) simulations. The model’s original convection scheme has entrainment and cloud-base mass flux closures based on moisture convergence. Two modifications are considered: one in which entrainment is dependent on relative humidity and another in which the closure is based on the convective available potential energy (CAPE).

Compared to reanalysis, TDVs are more numerous and intense in all three simulations, probably as a result of excessive parameterized deep convection at the expense of convection detraining at midlevel. The relative humidity–dependent entrainment rate increases both TDV initiation and intensification relative to the control. This is because this entrainment rate is reduced in the moist center of the TDVs, giving more intense convective precipitation, and also because it generates a moister environment that may favor the development of early stage TDVs. The CAPE closure inhibits the parameterized convection in strong TDVs, thus limiting their development despite a slight increase in the resolved convection. However, the maximum intensity reached by TC-like TDVs is similar in the three simulations, showing the statistical character of these tendencies.

The simulated TCs develop from TDVs with different dynamical origins than those observed. For instance, too many TDVs and TCs initiate near or over southern West Africa in the GCM, collocated with the maximum in easterly wave activity, whose characteristics are also dependent on the convection scheme considered.

Geographic Areas

Files

Also Published In

Title
Monthly Weather Review
DOI
https://doi.org/10.1175/MWR-D-16-0201.1

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Published Here
March 26, 2019

Notes

Keywords: Cyclogenesis/cyclolysis; Deep convection; Hurricanes; Convective parameterization; General circulation models; Model evaluation/performance

Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.