2021 Theses Doctoral
Therapeutic strategies targeting FUS toxicity in amyotrophic lateral sclerosis: from a novel mouse model of disease to a first-in-human study
Fused in sarcoma (FUS) is an RNA binding protein involved in DNA repair and RNA metabolism, including mRNA transcription, splicing, transport and translation. FUS is genetically and pathologically associated with rare and aggressive forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To explore the mechanisms by which pathogenic mutations in FUS cause neurodegeneration in ALS-FUS, we generated a series of FUS knock-in mouse lines that express the equivalent of the ALS-associated mutant proteins FUSP525L and FUSΔEX14 at physiological levels from the FUS locus. We demonstrate that heterozygous mutant FUS mice show progressive, age-dependent loss of vulnerable subpopulations of spinal motor neurons. While ALS-associated mutations in FUS lead to partial loss of function, we provide genetic evidence that the motor neuron phenotype observed is a consequence of a dose-dependent gain of function, associated with the insolubility of FUS and related RNA binding proteins (RBPs).
Furthermore, we show that motor neuron degeneration is driven by cell autonomous mechanisms, associated with mutant FUS-independent inflammatory changes. In this faithful mouse model of ALS-FUS, we demonstrate that an antisense oligonucleotide (ASO) targeting the FUS transcript (ION363) results in the efficient silencing of both wild type and mutant FUS alleles, and that postnatal reduction of FUS protein levels in the brain and spinal cord delays disease onset in this mouse model of ALS-FUS. In a first-in-human trial of ION363, we demonstrate that repeated, intrathecal injections of this candidate therapeutic in an ALS patient with a FUSP525L mutation leads to the efficient silencing of both wild type and mutant FUS in the central nervous system, and a reduction in the burden of FUS aggregates that are a pathological hallmark of ALS-FUS. In mouse genetic and human clinical studies, we provide evidence in support of a therapeutic strategy by which silencing of the FUS gene may be used to prevent or delay disease onset in pre-symptomatic carriers of pathogenic FUS mutations, or to slow disease progression in symptomatic ALS- and FTD-FUS patients. In addition, we use this newly generated model to investigate the role of potential modifiers of FUS toxicity, including hnRNP U and UPF1, and study the role of chronic neuroinflammation in the disease progression that could lead to the development of novel therapeutics to provide immediate clinical benefit to patients with ALS-FUS.
Subjects
Files
- Korobeynikov_columbia_0054D_16707.pdf application/pdf 3.49 MB Download File
More About This Work
- Academic Units
- Pathobiology and Molecular Medicine
- Thesis Advisors
- Shneider, Neil
- Degree
- Ph.D., Columbia University
- Published Here
- July 28, 2021