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Abstract

Representation and Realism in the Age of Effective Theories

Sébastien Rivat

Philosophers traditionally engage with metaphysical questions at the frontiers of physics by

treating theories as putatively fundamental and complete. While this interpretative strategy sits

uneasily with the limited success of past theories, it breaks down with the failure of our best

current theories, Quantum Field Theories (QFTs), to consistently describe the world on the smallest

scales. My dissertation examines how physicists’ reconceptualization of successful theories as

effective theories affects the epistemological and semantic foundations of the interpretative practice

in physics. Chapter 1 offers a detailed analysis of renormalization theory, the set of methods that

underwrite physicists’ construction of empirically successful QFTs. Chapter 2 demonstrates that

effective theories are not merely the only candidates left for scientific realists in QFT but also

worth interpreting in realist terms. Chapter 3 shows that effective theories stand as a challenge for

traditional approaches to scientific representation and realism in physics. I suggest that indexing

truth to physical scales is the most promising way to account for the success of effective theories

in realist terms. Chapter 4 develops the referential component of this proposal by taking a detour

through the problem of referential failure across theory-change. I argue that to reliably assess

referential success before theory-change, we need to index reference-fixing to the limited physical

contexts where a given theory is empirically reliable.
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Introduction

There is a long-standing belief among physicists according to which the ultimate goal of

physics is to discover the final and complete theory of the physical world. This belief is perhaps

sometimes too naively voiced or too easily derided. The fact remains that it resurfaces regularly in

physicists’ dreams, inspires much of their speculative work, and has worked as a powerful regula-

tive ideal over the past centuries.

Philosophers of physics usually make a living by going a step further. Wilfrid Sellars once said

that “the aim of philosophy [...] is to understand how things in the broadest possible sense of the

term hang together in the broadest possible sense of the term." (1963, p. 1) Tradition has it that

one of the central aims of philosophy of physics is to understand how the fundamental constituents

of the world and their governing principles make everything else stick together.

Unfortunately, physicists have not yet fulfilled the promise of a final theory to any reasonable

extent, if there ever was such a promise, and philosophers have no choice but to fall back on the

best extant theories. Still, it has become common practice to engage with interpretative questions

by treating these theories as little theories of everything. The game is then to describe the possible

worlds in which these theories are exactly true, modulo some sophisticated fiddling with their

structure, and find good reasons to believe that the actual world is similar enough to some of those

worlds. The hope: that some of the lessons drawn from these theories, including lessons about

determinism and locality for instance, will carry over to the final theory, if only approximately.

It is a central contention of this work that the new paradigm of effective theories in physics
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requires a radical revision of the foundations of this interpretative practice. The modern apparatus

of effective theories was first developed in the context of particle and condensed matter physics in

the 1970s-80, and has since become increasingly popular across physics thanks to its remarkable

computational, heuristic, and predictive power. Yet, effective theories are not just powerful sci-

entific devices, as their name suggests. They also have the remarkable feature (among others) of

having the limits of their domain of applicability directly written in their mathematical structure.

Since the consensus in physics nowadays is to think that all empirically successful theories are

best understood and formulated as effective theories, philosophers’ business is at risk. The best

extant theories, insofar as we formulate them as effective theories, cannot, as a matter of design,

be treated as little theories of everything.

This dissertation is structured around two central claims. The first concerns the epistemologi-

cal foundations of the interpretative practice in philosophy of physics. I hold that effective theories

furnish us with a more reliable standpoint from which to draw conclusions about the world com-

pared to their putatively fundamental counterparts. The idea of treating physical theories as little

theories of everything and learning from them in regimes where they are known with good confi-

dence to be unreliable is already odd. The current situation with our most empirically successful

and fundamental theories, Quantum Field Theories (QFTs), makes this idea untenable. In their

standard formulation, the best extant QFTs become inconsistent at short distances and thus do not

even provide us with meaningful physical information at these scales. A natural response would

be to maintain that physics has not yet in its most fundamental quarters a sufficiently good theory

to hand to philosophers. I show that this response is mistaken. Effective theories do offer a reliable

avenue for understanding how physical things hang together within limited parts of the world.

The second claim concerns the semantic foundations of this interpretative practice. I show that

effective theories force us to re-conceptualize the way successful theories latch onto the world if

we wish to account for their success in realist terms. Scientific realists usually take the success

of our best theories to provide good enough reasons to believe that some of their privileged parts

are approximately true or false simpliciter. This traditional approach, however, does not enable
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interpreters to identify definite entities or structures within the limited domain of our best effective

theories. I hold that the best way to avoid this issue is to take their privileged parts to be approx-

imately true or false relative to particular physical scales. I also show that indexing reference to

physical scales enables scientific realists to reliably assess whether the central terms of our best

theories pick out anything real at a time they are still a live concern.

I develop these claims as follows. Chapter 1 offers a comprehensive account of renormaliza-

tion theory, i.e., the set of methods developed since the 1930s to construct empirically successful

QFTs. The success of these methods has puzzled philosophers for some time now. I show that this

success can be explained more clearly by systematically distinguishing between the methods used

to construct effective QFTs and those used to construct putatively fundamental continuum QFTs. I

find that the effective approach to renormalization is more physically perspicuous and conceptually

coherent, and that the issues underlying the continuum approach give additional reasons to doubt

that putatively fundamental continuum QFTs are ready for metaphysical analysis.

Chapter 2 shows that effective theories are worth interpreting in realist terms in the context of

QFT. As some philosophers have suggested, effective QFTs appear to be too ad hoc and complex

to be even approximately true and thus relevant for interpretative purposes. Using the particular

example of the Standard Model of particle physics, I argue that these two vices are merely apparent.

Insofar as these two vices are the only reason we might have to raise doubts about the epistemic

significance of effective QFTs, I take the argument to clear the path for their epistemic appraisal.

Chapter 3 has two closely related goals. The first is to show that the interpretative relevance

of effective theories extends beyond the specific context of QFT. I do this by extracting common

structural features shared by effective theories across physics and showing that their structure give

us precise constraints for the types of entities and structures we can reliably admit in the realist

inventory. The second is to show that despite their interpretative relevance in different subfields of

physics, effective theories still raise a challenge for popular approaches to scientific realism and

representation in specific contexts, including classical and quantum field theory. I focus on our

best current QFTs, and show that the most appealing candidates for making ontological commit-
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ments in the appropriate regimes—namely, correlations, particles, and lattice fields—fail in other

important respects. Continuum fields, by contrast, do not suffer from the same issues. But since

their core properties extend well beyond the regime where our best effective QFTs are likely to

remain trustworthy, we cannot reliably commit to these entities. I suggest that the most natural

and straightforward way to escape this issue is to index truth to scales and take the descriptions of

continuum fields to be approximately true or false relative to particular ranges of scales.

Chapter 4 develops the referential component of this proposal by engaging with the problem

of referential failure across theory-change. The challenge here is to explain why the central terms

of empirically successful theories successfully pick out entities despite apparent counter-examples

in the history of science, and explain this from the standpoint of each theory, i.e., without using

the terms of our best current theories as a yardstick to assess referential success. I argue that this

challenge is best addressed by first indexing reference-fixing to the limited context where a theory

is empirically reliable. I propose a new context-dependent theory of reference based on this idea,

and show that effective theories provide a blueprint for assessing referential success along these

lines.

I should emphasize that this work opens up a number of new puzzles that deserve further

scrutiny. For instance, I assume that the distinction between the effective and the continuum ap-

proach to renormalization tracks two dominant traditions in the history of the renormalization pro-

gram. I suspect that these two traditions find their clearest expressions in the different approaches

to the renormalization group developed by Murray Gell-Mann and Francis Low in the 1950s, on

the one hand, and Kenneth Wilson in the 1970s, on the other hand. Defending this point, however,

would require a much more involved analysis than I can provide here. Likewise, I have not said

anything about the metaphysics underlying the proposal developed in Chapters 3 and 4. I assume

that interpreters make ontological commitments by taking the descriptions of our best effective

theories relative to particular scales at face value. This, however, does not determine by itself what

the structure of the world looks like. The most natural and straightforward picture is probably one

in which the world is constituted by distinct layers overlapping in complex ways, most of which
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are largely insensitive to one another. Effective theories do not determine by themselves whether

there is ultimately a fundamental layer or, for that matter, an overarching one. But they do give

us a reliable means of understanding how unobservable things in distinct layers hang together and

how these layers are sensitive to each other. We might need to give up on composition relations if

we want to understand how the furniture of these different layers fit together. But there is no cause

of despair here. I suspect that we should be able to give a sufficiently unified yet partial picture of

the world by appealing to other types of inter-level relations.

5



Chapter 1: Renormalization Scrutinized

In this chapter, I propose a general framework for understanding renormalization by drawing

on the distinction between effective and continuum Quantum Field Theories (QFTs), and offer

a comprehensive account of perturbative renormalization on this basis. My central claim is that

the effective approach to renormalization provides a more physically perspicuous, conceptually

coherent, and widely applicable framework to construct perturbative QFTs than the continuum

approach. I also show how a careful comparison between the two approaches: (i) helps to dispel

the mystery surrounding the success of the renormalization procedure; (ii) clarifies the various

notions of renormalizability; and (iii) gives reasons to temper Butterfield and Bouatta’s claim that

some continuum QFTs are ripe for metaphysical inquiry (Butterfield and Bouatta, 2014).

1.1 Introduction

Renormalization is one of those great success stories in physics that fly in the face of philoso-

phers’ ideals of scientific methodology. QFTs have been known to be plagued by mathematical

infinities since the 1930s and it was only in the late 1940s that physicists had their first significant

victory by developing appropriate renormalization techniques. It could have been hoped that they

would eventually construct a realistic QFT from first principles without using these techniques; but

even after seventy years, this has not been the case. Our best QFTs are still constructed by means

of conceptually odd and ad hoc renormalization techniques. One notable example is to isolate and

cancel infinite quantities by shifting the dimension of space-time by some infinitesimal amount.

Another one is to simply impose some arbitrary restriction on the range of distance scales of the

theory.

Among the philosophers who take the formulation of QFT most widely adopted by physicists
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seriously, it has become standard to appeal to the Renormalization Group (RG) theory in order

to explain the unlikely success of renormalization. For instance, Huggett and Weingard (1995,

sec. 2) emphasize that the RG provides the appropriate tools for identifying the class of well-

defined continuum QFTs and dispels the interpretative worries related to cancellations of infinities

in perturbation theory. To give another example, although with a different understanding of QFT

this time, Wallace (2006, pp. 48-50; 2011, sec. 4) relies on RG-based considerations to dispel the

interpretative worries related to the crude and arbitrary implementation of a physically meaningful

cut-off.

Those philosophers are right to emphasize the role and the importance of the RG in contem-

porary physics. But there are reasons to be dissatisfied. Of central importance is the failure to

appreciate the existence of conceptually distinct modern formulations of renormalization, RG in-

cluded. Consider for instance Huggett and Weingard’s attempt at clarifying renormalization in the

case of continuum QFTs. If by ‘RG’ they mean the Gell-Mann & Low RG, then their account

does not really dissolve the methodological worries that physicists had in the 1940s. The delicate

fine-tuning of theories in the infinite cut-off limit is nothing but the old-fashioned cancellation of

infinities in a different guise. On the other hand, if by ‘RG’ they mean the Wilsonian RG, then

their account does not properly deal with continuum QFTs. At least as we traditionally under-

stand it, the Wilsonian RG is built on the idea of integrating out high-energy degrees of freedom

and restricting the applicability of the resulting theories to sufficiently large-distance scales (e.g.,

Weinberg, 1995, sec. 12.4; Schwartz, 2013, chap. 23).

To give another example, Cao and Schweber (1993) somewhat overstate the triumph of the

modern Wilsonian renormalization programme. Many renormalization techniques conceptually

akin to the approach of the late 1940s are still the “industry standard" in high energy physics,

as Hollowood (2013, p. 3) felicitously puts it. These techniques include modern regularization

methods such as dimensional regularization in standard QFTs and regularization by dimensional

reduction in supersymmetric QFTs. More importantly perhaps, the Wilsonian RG does not fully

dispel the traditional mathematical, conceptual and methodological worries associated with renor-
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malization. With regard to methodology, for instance, one might be concerned about the infinite

number of independent parameters typically required to compensate for the uncertainty associated

with the exact value of a physically meaningful cut-off.

The main goal of this chapter is to offer a more accurate and systematic way of understanding

the overall conceptual structure of renormalization. For this purpose, I will distinguish between

the “effective" and the “continuum" approach to renormalization and show that all the impor-

tant features of perturbative renormalization can be understood along this distinction. The idea

is simple: current working QFTs in high energy physics are understood and formulated either as

continuum QFTs or as effective QFTs, and each of these two types of QFTs is associated with

a specific methodology of theory-construction—or at least, given the diversity of renormalization

techniques, each of them is most conceptually consistent with a specific methodology. In the ef-

fective approach, the domain of applicability of the theory is restricted by a physically meaningful

short-distance scale and the structure of the theory adjusted by including the appropriate sensitivity

to the physics beyond this scale. Here, the goal is to focus on the appropriate low-energy degrees of

freedom. In the continuum approach, the theory is defined across all distance scales and its struc-

ture adjusted according to the physical scale of interest. Here, the goal is to define a putatively

fundamental QFT and resist the suggestion that realistic QFTs are ultimately to be understood and

formulated as phenomenological theories restricted to some limited range of distance scales.

The central claim of this chapter is that the effective approach provides a more physically per-

spicuous, conceptually coherent, and widely applicable framework to construct perturbative QFTs

than the continuum approach. I will defend this claim by showing, in detail, how the steps underly-

ing the perturbative construction of an effective QFT are physically justified and how the resulting

parts of the theory are physically meaningful, unambiguously characterized, and coherently related

to one another—and this independently of the particular local QFT considered. And I will show

how a careful comparison between the two approaches: (i) helps to dispel the mystery surrounding

the success of the renormalization procedure discussed early on (e.g., Teller, 1988, 1989; Huggett

and Weingard, 1995, 1996) but never fully dispelled in my sense, not even in the most recent lit-
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erature (e.g., Butterfield and Bouatta, 2015; Crowther and Linnemann, 2017; J. D. Fraser, 2020a;

2020b); (ii) helps to clarify the various notions of renormalizability; and (iii) gives reasons to tem-

per Butterfield and Bouatta’s claim that some continuum QFTs are ripe for metaphysical inquiry

(Butterfield, 2014; Butterfield and Bouatta, 2014).

The chapter is organized as follows. Section 1.2 introduces the QFT framework and the prob-

lem of ultraviolet divergences. Section 1.3 compares the effective and the continuum approach to

the renormalization procedure. Section 1.4 disentangles the effective and continuum notions of

perturbative renormalizability. Sections 1.5 and 1.6 briefly compare the effective and the contin-

uum approach to the RG and clarify the scope of the continuum approach.1 Section 1.7 examines

the implications of the discussion in sections 1.3-1.6 for Butterfield and Bouatta’s defense of con-

tinuum QFTs.

Three important clarifications before I begin. First, I do not think that the methodological

superiority of the effective approach to renormalization offers a sufficient reason to take effective

QFTs to be the correct way of understanding QFTs. It is a good step forward. But it needs

to be supplemented with a careful analysis of the theoretical virtues of effective QFTs, and this

goes beyond the scope of the present chapter. Second, I do not mean to claim that the distinction

between the effective and the continuum approach is absolutely perfect and exhaustive. All I aim

to capture is a set of salient conceptual differences that do not reduce to mere practical differences

(e.g., computational simplicity and efficiency). Third, unless otherwise indicated, I will follow

Butterfield (2014, pp. 30-31) and understand ‘theory’ in its specific sense throughout the chapter,

that is to say as given by a particular action, a Lagrangian, or a Hamiltonian.

1.2 Relativistic QFT and the Problem of Ultraviolet Divergences

Relativistic QFT is the mathematical framework developed by physicists since the late 1920s

to extend the tools of quantum mechanics to classical electromagnetism (and more) and to over-

come the failure of quantum mechanics to account (among other phenomena) for the creation and

1For two recent and insightful reviews of the Wilsonian RG, see Williams (2019a) and J. D. Fraser (2020b).
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annihilation of particles observed in decay experiments.

As its name suggests, a QFT describes the quantum analogue of classical fields, and the sim-

plest way to think about a quantum field is to treat it as a continuous physical system composed of

one individual quantum system at each point of space. Each individual quantum system is asso-

ciated with at least one independent variable quantity (a “degree of freedom") determining the set

of its possible states, and the possible states of the quantum field over space-time are obtained by

combining the state spaces of these individual quantum systems together. From there, things work

exactly as in quantum mechanics. A sum of states of the field (a “state superposition") also defines

a possible state of the field. Each state of the field is associated with a possible configuration or

“history" of the field specifying a set of values that the field can take over space-time: for instance,

one real number φ(x) at each space-time point for a simple scalar field. The probability for the

quantum field to be found in the configuration state |φ(x)〉 is given by the absolute square value of

the wave functional ψ[φ(x)] (assuming that we could measure the whole state of the field). And the

possible energy excitation states of the field are obtained by representing the possible configuration

states of the field in momentum space. One odd thing, however, is that in this picture, a “particle"

corresponds to a localized pattern of energy excitations.

Quantum fields are also dynamical physical systems. They vary smoothly over space-time and

interact locally at space-time points with other fields and often with themselves too. Physicists

typically describe the dynamics of fields by a Lagrangian functional density L and the strength

of interactions by coupling parameters gi. I will take the φ4-theory as my main example in what

follows:

L[φ(x)] = −1

2
∂µφ(x)∂µφ(x)− m2

2
φ2(x)− λ

4!
φ4(x) (1.1)

with φ(x) an arbitrary field configuration of a scalar field, m a mass parameter, and λ a quartic

self-interaction coupling (using the Euclidean metric for simplicity). Of crucial importance are the

action S[φ] =
∫
d4xL and the path integral Z =

∫
d[φ(x)]eS[φ] which give us the different weights

eS[φ] associated with each possible field configuration φ(x).2

2Of course, the difficulty is that we do not yet have a mathematically rigorous definition of the path integral for
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Finally, the correlations between the states of the field at n different space-time points are given

by n-point correlation functions 〈φ(x1)...φ(xn)〉. Roughly speaking, these correlation functions

tell us the degree to which the different “parts" of the field are sensitive to one another, i.e., here,

the probability (once these functions are squared) that the field is found in a certain state at some

space-time points x1, ..., xk given its state at other space-time points xk+1, ..., xn (1 ≤ k ≤ n− 1).

We compute empirical predictions—say, about the probability that two incoming particles decay

into two outgoing particles—by calculating the absolute square value of the scattering amplitude

Γ between the appropriate asymptotic particle states of the field, with Γ obtained by taking into

account all the possible correlations between these states.

These are the basic tools to define and test any QFT. Unfortunately, we face two immediate

problems with this “naive" schematic construction if we want to make predictions. The least severe

is that realistic QFTs are highly non-linear interacting theories and therefore not exactly solvable by

current mathematical means. We can still work out approximate solutions and predictions thanks

to perturbation theory: provided the (dimensionless) couplings are small (e.g., λ � 1), scattering

amplitudes can be expanded perturbatively as follows:

Γ = λ+ λ2Γ2 + λ3Γ3 + ... (1.2)

where each sub-amplitude λnΓn represents field correlations between the incoming and outgoing

particles given n possible interaction points.3

The most severe, the so-called problem of “ultraviolet" (UV) divergences, is that a large major-

ity of the sub-amplitudes Γn actually diverge when we attempt to compute them.4 This is clearly

realistic continuum QFTs in four dimensions, but I will ignore this problem for now.
3Here one might worry about two things. First, one should be wary not to interpret too quickly these perturbative

terms as representing distinct real sub-processes (the so-called “virtual processes") since they might be interpreted as
mere mathematical artifacts of the decomposition of Γ. Let me briefly offer one reason to resist this worry: as we
will see shortly, the renormalized coupling λ is a function of an arbitrary mass scale Λ which can be interpreted as the
experimental energy E at which we probe the system. Since each λn(E)Γn(E) does not vary with the same rate with
respect to E, we can evaluate them separately by making successive measurements at different experimental energy
scales E. If this succeeds, each term receives independent empirical confirmation. Second, the perturbative series
diverges in realistic cases for arbitrarily small but non-zero λ (see Helling, 2012, pp. 1-13, and Duncan, 2012, chap.
11, for more details, and Miller, 2016, for a philosophical discussion). I will ignore this problem too.

4I will leave aside the problem of low-energy or “infrared" (IR) divergences.
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a disaster (at least at this stage) since it means that most empirical predictions in QFT are infinite.

If we keep all the other assumptions of the theory in place (e.g., four space-time dimensions and

standard types of fields, symmetries, and interactions), the problem naturally originates from what

is known as the continuum assumption:

Continuum assumption: For any extended region of space-time no matter how small,

quantum fields have infinitely many interacting degrees of freedom.

In practice, the continuum assumption forces us to take into account correlations over arbitrarily

short distances (or, equivalently, over arbitrarily high energies) when calculating a correlation func-

tion between any two states of the field. Consider for instance the scattering amplitude Γ(p1, .., p4)

in φ4-theory describing the scattering event of two incoming particles decaying into two outgoing

particles. Then, for example, the second-order perturbative term λ2Γ2 describes a specific set of

correlations which diverge logarithmically in the high-energy domain of integration:

Γ2 ≈
∫ ∞

d4k/k4 (1.3)

with k a momentum variable. So the problem is that we have to take into account the correlations

of the field over arbitrarily short distances and that the values of these correlations are small but

sufficiently important once summed up to make Γn diverge.5 What does it mean physically? To

give a rough analogy, it is as if two distinct macroscopic parts of a table were sensitive enough to

the individual particles constituting the table for the slightest movement of a particle to significantly

affect on average the distance between these two parts. The sensitivity is even more dramatic in

the present case. The theory is not just empirically inadequate but also inconsistent as it predicts

measurement outcomes with infinite probability (i.e., here, |Γ(p1, .., p4)|2 diverges).

The claim that the problem of UV divergences originates from the continuum assumption is in

fact controversial, and physicists have come up with three main types of responses which I will

5Note that the problem does not arise in the case of non-interacting theories since there is no non-trivial correlation
between distinct states in this case (i.e., Γn = 0 for n ≥ 1). Note as well that in typical interacting QFTs, some
contributions to the perturbative expansion are finite (e.g., box diagram integrals).

12



respectively call the “continuum", the “effective" and the “axiomatic" approach to the problem

of UV divergences. According to the continuum approach, the problem arises because we are

not working with the correct type of QFT or because we have not appropriately parametrized the

QFT at hand in the first place. The hope is that the continuum assumption holds for a specific

class of QFTs and that all that needs to be done is to sensibly fine-tune their parameters with the

tools of renormalization theory. According to the effective approach, the problem arises because

the continuum assumption is false. The solution is to impose explicit restrictions on the domain

of energy scales of QFTs and adjust the sensitivity to high-energy phenomena with the tools of

renormalization theory.6 According to the axiomatic approach, the problem arises because the

mathematical structure of the QFT framework is ill-defined in the first place. The solution is to

develop a rigorous mathematical formulation of QFTs with explicitly stated axioms—so that, if

anything goes wrong, we can at least clearly identify the origin of the problem.7

The crucial point is that physicists have only been able to formulate empirically successful and

realistic QFTs by making extensive—if not indispensable—use of renormalization theory. It is

beyond the scope of this chapter to examine the axiomatic approach, but it is worth noting here

that, even after seven decades, there has not yet been any finite, exact and mathematically rigorous

formulation of a realistic continuum QFT in four-dimensional space-time. If we want to understand

the structure of our best current theories, a natural starting point is to look carefully at the details

of renormalization.

Before delving into the details, it is instructive to start with the general idea of renormalization.

Originally, renormalization was introduced as a set of techniques in high energy physics to isolate

the divergent parts of scattering amplitudes and make them disappear from the final predictions

6Here I will ignore the specific technicalities of Effective Field Theories (EFTs) and lattice QFTs and regroup them
under the category of effective QFTs together with cut-off QFTs (see, e.g., Bain, 2013; Williams, 2015; Franklin, 2018
for recent philosophical discussions about effective theories). Note, however, that lattice QFT is often understood as a
specific non-perturbative regularization framework and, in this context, the goal is usually to take the continuum limit.

7In this context, the problem of UV divergences is usually associated with the fact that the product of distributions
at a point is ill-defined (see, e.g., Steinmann, 2000, p. 73). The axiomatic criterion of rigor typically demands
that the theory satisfies Wightman’s axioms (equivalently, Osterwalder-Schrader axioms) or Haag-Kastler axioms.
For instance, the former includes assumptions of relativistic quantum theory, locally smeared fields, micro-causality,
cyclicity, and the existence of a unique vacuum state (see Streater and Wightman, 2000). And these axioms are usually
considered to be significant to the extent that they are satisfied by toy-model theories.
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by absorbing them into the formal expression of the couplings of the theory. In practice, the

mathematical trick works because we never directly measure the value of couplings and we can

already see a similar trick at work in the simpler and more vivid case of classical electromagnetism.

Consider, for instance, the standard example of an electrostatic field produced by an infinitely

long and straight wire with uniform charge density λ (per unit length), lying along the z axis of a

three-dimensional Euclidean space. The measurable value of the field at some distance r > 0 from

the wire in the xy plane orthogonal to the z direction is finite (E ∝ λ/r). In contrast, the potential

V (r) obtained by summing up the contributions from each infinitesimal part of the wire diverges

logarithmically (V (r) ∝ λ
∫ +∞
−∞ dz/

√
z2 + r2). But since we only measure differences in the val-

ues of the potential (e.g., the field ~E(x) = −~∇V (x)), it makes no physical difference to subtract or

add some infinite quantity in the formal expression of the potential and work with the resulting fi-

nite “renormalized" expression. One way to make this precise and well-defined is to limit ourselves

to a finite portion of the wire of arbitrary length L0 (VL0(r) ∝ λ
∫ +L0/2

−L0/2
dz/
√
z2 + r2). Subtract-

ing the value of VL0(L) for some fixed constant L to VL0(r) leaves us with the finite function

−λ ln(r/L)/2π and a finite residue depending on L0 which vanishes if we take L0 to infinity. The

resulting renormalized expression of the potential is given by VR(r) = limL0→∞ VL0(r)− VL0(L).

More generally, the term ‘renormalization’ designates a set of techniques used to transform

the kinetic and the interacting structure of theories. On the more practical side, one finds (among

others) the renormalization procedure where the main goal is to generate finite and accurate pre-

dictions. On the more theoretical side, one finds the Renormalization Group (RG) theory where

the main goal is to analyze the scale-dependent structure of QFTs. As we will see in section 1.5,

it is also useful to distinguish between perturbative and non-perturbative renormalization meth-

ods, even if renormalization theory is, in large part, a set of techniques specified and used in the

context of perturbation theory.8 And, finally, other areas in physics have specific renormalization

techniques that I will not discuss here, such as: (i) the discretized versions of the RG in condensed

8For (various versions of) the Non-Perturbative Renormalization Group (NPRG) theory, see Bagnuls and Bervil-
lier (2001), Polonyi (2003), and Delamotte (2012) for introductory reviews. Note also the existence of axiomatic
renormalization methods (e.g., Scharf, 1995).
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matter physics and (ii) the holographic RG in the context of gauge/gravity dualities.

1.3 Understanding the Renormalization Procedure

I argue in this section that the effective approach to renormalization offers a more physically

perspicuous and conceptually coherent framework for constructing perturbative QFTs. By ‘physi-

cally perspicuous’ and ‘conceptually coherent’, I mean that the steps involved in the perturbative

construction of the theory are physically justified, that the parts of the theory have a clear physical

meaning, and that they are coherently related to one another. I will focus on the renormaliza-

tion procedure since the main differences between the two approaches are most clearly visible at

this level. The upshot is, I believe, considerable: the contrast helps dissolve the much-discussed

mystery of renormalization, i.e., the issue of explaining the unlikely success of the renormaliza-

tion procedure (e.g., Teller, 1988; 1989; Huggett and Weingard, 1995; 1996; J. D. Fraser, 2020a).

Here, again, I should emphasize that there are many different ways to implement the renormaliza-

tion procedure. I will present the steps that are most conceptually consistent with the appropriate

type of perturbative QFT in each case.

1.3.1 The Effective Approach

The effective approach to the renormalization procedure is a two-step maneuver.

(i) One first regularizes the divergent sub-amplitudes Γn by introducing a limiting high-energy

scale Λ0, called the “cut-off" or “regulator". If we look at Eq. 1.3 and disregard potential trouble in

the IR (i.e., k → 0), Γ2(Λ0) ≈
∫ Λ0 d4k/k4 is now a mathematically well-defined and manipulable

finite quantity. But one might worry about the arbitrary choice of cut-off. A sharp cut-off separates

low-energy and high-energy scales in a crude way, and we do not have enough information at this

stage to decide whether an exponentially decreasing cut-off (e.g.,
∫ +∞

d4k e−k/Λ0/k4), a Gaussian

cut-off (e.g.,
∫ +∞

d4k e−k
2/Λ2

0/k4) or what have you is the appropriate regulator.

(ii) The renormalization step compensates for this lack of constraint: one renormalizes the sub-

amplitudes Γn(Λ0) by analyzing the relevant sensitivity to high energies and absorbing it into the
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couplings. The best way of implementing this idea is to include contributions to Γn from a specific

layer of energy scales [Λ,Λ0] into a low-energy theory defined only up to Λ. Call the initial

regularized theory the “bare" theory L0(Λ0) and its parameters the “bare" parameters λ0 and m0.

The cut-off scale Λ0 is the physical scale at which the theory is believed to become inapplicable and

the “renormalization scale" Λ is the energy scale specifying the physics of interest, with Λ � Λ0.

In the example above, the contribution from [Λ,Λ0] is equal to

λ2
0Γ2(Λ,Λ0) =

3

2
λ2

0

∫ Λ0

Λ

d4k

(2π)4

1

(k2 +m2
0)2

≈ 3

16π2
λ2

0 ln(
Λ0

Λ
) (1.4)

assuming that the bare parameters are small (λ0,m0/Λ� 1).9

The essential point now is that we can simulate the effect of this high-energy contribution in

the expression of the bare theory L0(Λ) restricted to the energy scale Λ (see Fig. 1.1).10 For that,

we just need to include a new interaction term δL0(Λ,Λ0, λ0) := −λct
4!
φ4, called a “counter-term",

with λct = − 3
16π2λ

2
0 ln(Λ0

Λ
). Given Eq. 1.1, this amounts to shifting the value of λ0 to λ0 + λct,

i.e., to absorbing the contributions from [Λ,Λ0] into the parameter of the theory L0(Λ). If we keep

the details explicit and restrict ourselves to the second order, the new “renormalized" scattering

amplitude derived from L0(Λ) + δL0(Λ,Λ0, λ0) takes the form (cf. Eq. 1.2):

ΓR(Λ) = −(λ0 + λct) +
3

16π2
(λ0 + λct)

2
(

ln(
Λ

m0

)− 1

2

)
+ ...

= −λ0 +
3

16π2
λ2

0

(
ln(

Λ0

m0

)− 1

2

)
+O(λ3

0) . (1.5)

The renormalized effective theory LR(Λ) := L0(Λ) + δL0(Λ,Λ0, λ0) defined up to Λ is obtained

9For simplicity, I will ignore terms in O(1/Λ) and O(1/Λ0) and any field renormalization of the bare field φ0

(“wavefunction renormalization factors").
10At this stage, one way of understanding the dependence of the Lagrangian functional density on the parameter Λ

(or Λ0) is to take it to refer to a restriction imposed on the Feynman rules used to compute scattering amplitudes in
momentum space.
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by defining “renormalized" parameters up to the relevant order in perturbation theory:

λR(Λ) := λ0 + λct = λ0 −
3

16π2
λ2

0 ln(
Λ0

Λ
) . (1.6)

Figure 1.1: Schematic representation of the effective approach to the renormalization procedure.

This calls for two comments. First, the regularization step violates the continuum assumption

only if we take the cut-off to eliminate high-energy states in the state space of the original the-

ory. Note, however, that there is a difference between restricting the possible states of a quantum

field and assuming that the quantum field is a discrete physical system composed of one individual

quantum system at each point of a space-time lattice. One way to see this is to look at the fol-

lowing toy-model. Consider the infinite set of oscillating field configurations φa(x) = exp(iax)

parametrized by a > 0 over a one-dimensional continuous space and the corresponding infinite set

of energy excitations φ̃a(k) = δ(k− a
2π

) obtained by Fourier transform. Suppose that the state space

of the theory is reduced by multiplying the energy excitations by a step-function parametrized by

a cut-off Λ0:

φ̃a,Λ0(k) = δ(k − a

2π
)θ(Λ0 − k) (1.7)

with θ(Λ0 − k) = 1 if k ≤ Λ0 and 0 otherwise. For a/2π ≤ Λ0 (i.e., for sufficiently long

wavelength oscillations), the function θ(Λ0 − k) does not affect the value of φ̃a,Λ0(k) and we

obtain the original oscillating function φa,Λ0(x) = exp(iax). Otherwise, φa,Λ0(x) vanishes for

a > 2πΛ0. So this toy-model shows that restricting the state space of the theory by a sharp high-
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energy cut-off implies that the possible field configurations have a minimal periodicity pattern (of

wavelength 1/Λ0 here)—but it does not necessarily imply that the quantum field is discrete. To

give a classical analogy, it is as if we had ignored all the possible little ripples of characteristic size

smaller than 1/Λ0 in the ocean and restricted ourselves to large enough waves in order to evaluate

the correlations between the oscillations of two corks floating at some macroscopic distance 1/Λ

from each other.

Second, the specific counter-term δL0 leaves the theory empirically invariant, in the sense that

L0(Λ0) and LR(Λ) := L0(Λ) + δL0(Λ,Λ0, λ0) generate the same scattering amplitudes. The high-

energy contributions to Γ(Λ0) are just parceled out among the lower-order terms of ΓR(Λ) (see Eq.

1.5). Had we chosen a different counter-term, say, δL0(Λ,Λ0, λ0)+C with C some finite quantity,

the original and modified renormalized theories would still be empirically equivalent since we

only measure variations of the same renormalized scattering amplitude at different energies (e.g.,

ΓR(E ′) − ΓR(E) ∝ ln(E ′/E)).11 So the renormalization step is really a matter of reformulating

the regularized theory L0(Λ0) in an epistemically safer way, i.e., around the scales Λ� Λ0 where

we can trust its physical content. Inversely, if we fix the value of the renormalized parameters at

some specific scale, Eqs. 1.5 and 1.6 show that variations in the value of the cut-off Λ0 can be

absorbed by adjusting the value of the bare parameters, at least for a finite range of energy scales.

1.3.2 The Continuum Approach

Let us now turn to the continuum approach. It is standard in this case too to impose a regulator

and split the initial regulator-dependent bare Lagrangian into a renormalized and a counter-term

Lagrangian.12 I will proceed somewhat differently by subtracting counter-terms to the physical

Lagrangian. The two methods are equivalent and, most importantly, the conclusion that the contin-

uum approach is physically ambiguous and conceptually incoherent remains the same whether we

use one method or the other. The main reason for choosing the second method is that it makes the

11This is a particular case of “renormalization scheme dependence". I will not discuss this issue here.
12The method is often called “renormalized perturbation theory" because the perturbative analysis is done in terms

of the physical renormalized parameters (e.g., Peskin and Schroeder, 1995, p. 326). See, e.g., Collins (1986, sec. 2.3;
2009, sec. 2) and Schwartz (2013, part III) for different ways of implementing the renormalization procedure.
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conceptual differences between the effective and the continuum approach more explicit and allows

us to follow more closely the original motivation of the continuum approach.

The natural starting point, then, is to think that the original theory L in Eq. 1.1 corresponds to

the physical theory and that its parameters are fixed by experiments. Upon finding that L yields

divergent amplitudes, we introduce a cut-off Λ0 (regularization) and the goal of the renormaliza-

tion procedure under the continuum approach is to eliminate the problematic Λ0-dependent terms

and take Λ0 → ∞ at the end. So, contrary to the effective approach, the physical theory of inter-

est is the regularized theory L(Λ0) with fixed physical parameters λ and m and not a low-energy

effective theory defined only up to Λ. Likewise, the problematic Λ0-dependent terms derived from

L(Λ0) are cancelled by adding counter-terms to that theory and not by adding them to some low-

energy theory L0(Λ) as defined above. This means that the counter-terms depend on λ instead

of λ0 and that the bare theory L0(Λ0) := L(Λ0) − δL(Λ,Λ0, λ), defined up to Λ0 as well, is

an intermediary construct under the continuum approach (see Fig. 1.2).13 Finally, the parame-

ter Λ is an arbitrary mass scale introduced to ensure that the physical expressions in the theory

have a correct physical dimension, and it parametrizes the particular choice of counter-term: e.g.,

δL(Λ,Λ0, λ) = δL(Λ′,Λ0, λ) + C for C some finite quantity and Λ′ a new definition of the arbi-

trary mass scale. I will label the renormalization scale µ instead of Λ in the continuum approach

in order to keep track of the difference of interpretation.

Once all the divergent terms have been removed up to some order n in the original expression of

Γ, we can stop the renormalization procedure and safely take the limit Λ0 →∞ in the renormalized

expression of Γ. By assumption, the value of the physical parameters λ and m is fixed (e.g., to

their experimental value measured at some energy scale E). So, by taking the limit Λ0 → ∞, we

are required to take the limit of the bare parameters too. In our example, λ0 diverges:

lim
Λ0→∞

λ0 = lim
Λ0→∞

(
λ+

3

16π2
λ2 ln(

Λ0

µ
)
)

= +∞ (1.8)

13In renormalized perturbation theory, the bare Lagrangian corresponds to the initial Lagrangian with the “wrong"
parameters, i.e., with the parameters that we split into a finite and an infinite part in order to cancel divergences.
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In principle, the original scattering amplitude Γ can be made finite at any order by repeating the

procedure. And if we know the experimental values of λ and m at the scale E, we can directly

compute the quantum corrections obtained at some higher energy scale E ′.

Complications arise once we realize that the formal expression of the finite renormalized scat-

tering amplitude ΓR still depends on the arbitrary value of the mass scale µ. Since this amplitude is

supposed to be a physical amplitude, we have to assume that its formal expression does not depend

on some arbitrary choice of µ. This has interesting consequences.14 First, the value of the bare

parameters does not depend on µ while the value of the original parameters depends on µ, as it can

be easily seen from the expression of ΓR:

ΓR = −λ+
3

16π2
λ2
(

ln(
µ

m
)− 1

2

)
+ ...

= −λ0 +
3

16π2
λ2

0

(
ln(

Λ0

m
)− 1

2

)
+O(λ3

0) (1.9)

This means that the original theory is a particular case of a more general renormalized theory

LR(µ), defined in terms of renormalized parameters λ(µ) and m(µ). Second, in the absence of

experimental measurement, we can give an explicit perturbative definition of the renormalized

parameters by redefining them order by order in terms of the “fixed" (i.e., µ-independent) bare

parameters (i.e., λ0 = λ(µ) + O(λ2(µ)) −→ λ(µ) = λ0 − O(λ2(µ))). As a result, the general

renormalized theory is defined perturbatively by fine-tuning the expression of the Λ0-dependent

bare theory with the help of counter-terms:

LR(µ) := lim
Λ0→∞

L0(Λ0) + δL(µ,Λ0, λ0) (1.10)

Note that the correction δL takes the form of the original counter-term as defined in the effective

approach in this simple case.

Let me make one crucial comment. The finite renormalized amplitude ΓR := limΛ0→∞(Γ−Γct)

14Note that if we choose to fix the value of µ at some energy scale E, the resulting amplitude still depends on the
arbitrary choice of counter-term, which we can parametrize by introducing some µ′.
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Figure 1.2: Schematic representation of the continuum approach to the renormalization procedure.

obtained by subtracting the appropriate Λ0-dependent terms Γct in the original expansion Γ is

derived from the expression of the bare Lagrangian L0(Λ0).15 Both the original and the general

renormalized theory yield divergent amplitudes Γ(Λ0, λ) and Γ(Λ0, λ(µ)) in the limit Λ0 → ∞ if

we do not restrict the state space of the theory. Similarly, in the method where the bare Lagrangian

is split into a renormalized and a counter-term Lagrangian, the finite renormalized amplitude is

derived from the initial bare Lagrangian with the wrong parameters, and the physical renormalized

theory yields divergent amplitudes in the limit Λ0 →∞.

1.3.3 Comparing the Effective and the Continuum Approach

Let me now explain why the effective approach offers a more physically perspicuous and con-

ceptually coherent formulation of renormalization. To begin with, in the somewhat naive approach

taken so far, the bare theory of most QFTs makes no physical sense under the continuum ap-

proach. The reason is that most QFTs, including Quantum Chromodynamics (QCD) and Quantum

Electrodynamics (QED), are plagued with UV divergences and these divergences are cancelled

by choosing the bare couplings to diverge exactly in the same way. Even in QCD, the naive per-

turbative expression of the bare coupling parameter between quarks and gluons takes the form

of a series in the physical coupling parameter with increasingly divergent Λ0-dependent terms at

each order (see, e.g., Collins, 2011, sec. 3.3). So if we take the limit Λ0 → ∞ at this level, the

15To see this, note that the expression Γ − Γct at second order in λ is obtained from Γ0 by expressing λ0 in terms
of λ at each order.

21



bare coupling diverges and the resulting bare Lagrangian is ill-defined (e.g., as in our example,

limΛ0→∞ λ0 = ±∞).16 This means that the bare theory used in the renormalization procedure

under the continuum approach is nothing more than a physically meaningless intermediary math-

ematical tool to generate finite renormalized scattering amplitudes. Therefore, we cannot explain

the empirical success of the renormalized amplitudes by pointing at their successful derivation by

means of some more general law and additional conditions since the bare Lagrangian, i.e., what

plays the role of the general law here, has no physical meaning. Appealing to the renormalized

Lagrangian does not help either since it generates divergent amplitudes.

A somewhat less naive approach is to realize that the perturbative expression of the bare pa-

rameters does not depend on the renormalization scale µ. If we take µ = Λ0 before taking the

infinite cut-off limit, the bare parameters are equal to the renormalized parameters defined at the

cut-off scale Λ0. As we will see in sections 1.5 and 1.6, the appropriate perturbative expression of

the renormalized parameters is obtained by means of RG methods. And we will see that even from

the perspective of the RG, it turns out that there are still many QFTs for which the bare parameters

diverge. There are even QFTs for which it is impossible to take the infinite cut-off limit without

affecting the expression of the renormalized parameters (because of the existence of a so-called

“Landau pole", see section 1.6). At any rate, all of these cases leave us in exactly the same situation

as above. But perhaps the continuum approach offers a physically perspicuous and conceptually

coherent formulation of renormalization only in well-behaved cases (i.e., 0 ≤ limΛ0→∞ λ0 � 1).

For instance, when we take µ = Λ0, the expression of the bare coupling in QCD converges to zero

in the infinite cut-off limit and so the bare theory does not seem to be plagued with the same issues

as the bare theory in the φ4-theory example.

Still, it turns out that the continuum approach faces important interpretative difficulties and

suffers from severe conceptual ambiguities even in well-behaved cases. First, the renormalized

theory yields divergent perturbative amplitudes if we do not restrict the state space of the theory.

This should at the very least refrain us from taking this theory at face value too quickly (see

16More generally, all the cases where the perturbative assumption λ0 � 1 breaks down are pathological.
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section 1.7). Second, the conceptual status of counter-terms is ambiguous under the continuum

approach, and this is independent of the value of the bare parameters. Recall that whether we add

the counter-terms to the original theory or obtain them by splitting the initial bare parameters into

two pieces, the main role of the counter-terms is to make the original amplitude finite. We might

attempt to clarify their conceptual status in two different ways. (i) Counter-terms correspond to

surplus component parts of the bare theory which cancel out with other divergent parts of the bare

theory when we calculate amplitudes. That is, by adding counter-terms to the physical theory, we

simply re-arrange the structure of the bare theory in such a way that its superfluous divergent parts

cancel each other. (ii) Counter-terms correspond to scaling factors relating the parameters of the

bare and physical theories. That is, by adding counter-terms to the physical theory, we simply

reparametrize the original parameters in such a way that the resulting theory, i.e., the bare theory,

yields finite predictions. In both cases, however, the counter-terms cancel out precisely because we

choose the component parts of the bare theory or the scaling factors of the physical theory in such a

way that they cancel the divergent parts of the original amplitudes. That is, in both cases, it seems

difficult to escape the conclusion that counter-terms are introduced just for the purpose of canceling

divergences, which makes the whole renormalization procedure look ad-hoc. Moreover, it is hard

to see how one could interpret the counter-terms in physical terms, including those relating the

original field variable and the bare field variable (which I ignored for simplicity), and therefore to

make sense of the relationship between the bare and the renormalized theory. The counter-terms

are, as it were, intrinsically meaningless formal tools to derive finite predictions.

The contrast with the effective approach is striking. First, recall that on this approach, we

start with the assumption that the bare theory breaks down at some physically meaningful scale

Λ0. The structure of the theory may give us very good internal reasons to believe that it becomes

inconsistent at some point beyond this scale, or we may have very good external reasons to believe

that the theory starts to make empirically inaccurate predictions around this scale. Either way, we

take the domain of applicability of the theory to be restricted by some limited range of energy

scales. On this assumption, L0(Λ0) is naturally interpreted as the most fundamental formulation
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of the theory, i.e., the theory defined up to the scale Λ0 where it is supposed to break down. The

renormalized theory LR is naturally interpreted as a more physically reliable low-energy effective

version of the bare theory. If we take Λ = Λ0, the physical renormalized theory LR(Λ) simply

corresponds to the bare theory L0(Λ0) for some appropriate choice of counter-terms. And insofar

as Λ0 is kept fixed, both theories yield finite predictions, are mathematically well-defined (at least

according to physicists’ standards), and even yield exactly the same scattering amplitudes if we

choose the counter-terms appropriately. Second, the effective approach offers a physically salient

interpretation of counter-terms: whether we fix the parameters of the bare theory or those of the

renormalized theory, the counter-terms are naturally interpreted as standing for high-energy effects

described by the bare theory. Moreover, the introduction of counter-terms is physically justified on

the grounds that the low-energy scales are not completely insensitive to the high-energy ones.

All of this should help to clarify the mystery surrounding the renormalization procedure dis-

cussed in the literature (e.g., Teller, 1988; 1989; Huggett and Weingard, 1995; 1996; J. D. Fraser,

2020a). The mystery, if anything, is a mystery about the continuum approach: it arises because

the meaning and the status of the bare theory, the renormalized theory, and the counter-terms are

ambiguous, and because the method used for deriving the renormalized theory and the finite renor-

malized scattering amplitudes is physically unjustified. By contrast, the effective approach relies

on well-specified physical concepts and offers a clear physical picture of inter-scale sensitivity.

The effective approach also offers a better rationale for each step of the renormalization proce-

dure: while there are good reasons to expect a physical theory to break down at short distances

(regularization step), it does not mean that it automatically fails to provide physically relevant and

empirically accurate descriptions at larger distances if the relevant sensitivity to short distances is

taken into account (renormalization step).

Now, the mystery surrounding the continuum approach is not as mysterious as it might seem,

at least in this simple case.17 It is a standard principle in physics that physical expressions must

have the same physical dimension upon mathematical transformation for them to remain physi-

17More generally, the following explanation works for QFTs displaying logarithmic divergences (e.g., QED, QCD).
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cally meaningful. This principle requires us to introduce the new arbitrary parameter µ with the

introduction of the regulator Λ0 (e.g., to use λ2 ln(Λ0/µ) instead of λ2 ln(Λ0) as a counter-term).

In this specific example, this principle also ensures that the arbitrary parameter µ captures exactly

the sensitivity to high energies as parametrized by the regulator Λ0, as it can be seen from the

expression of the counter-term. The continuum approach therefore successfully offers a measure

of the sensitivity of the low-energy physics to the high-energy physics, and this is in fact all that is

needed to explain the empirical success of the theory. Had we chosen a different counter-term, say,

λ2 ln(Λ0/µ) +C, with C some finite quantity, the same sensitivity would be captured by some ap-

propriate redefinition of µ. Hence, even if the continuum approach offers a highly formalistic and

instrumental framework, it remains at least possible to identify the reasons for its empirical suc-

cess. Needless to say, the effective approach offers a more physically perspicuous and conceptually

clear explanation.

Let me conclude this section by responding to two potential concerns. First, taking the limit

Λ0 →∞ under the effective approach does not turn the situation around. Agreed, there is nothing

problematic if the goal is to probe the mathematical structure of the theory, or if we add by hand

a high-energy cut-off afterwards. But, strictly speaking, taking the limit Λ0 → ∞ is conceptu-

ally incoherent since the introduction of the cut-off Λ0 is justified on the grounds that it marks the

physical scale at which the theory is supposed to break down. Another option is that, by taking

Λ0 →∞, we are actually making the approximation that the low-energy physics is largely insensi-

tive to the high-energy physics beyond Λ0. But in this case, it is implicitly assumed that the theory

is restricted to low energies and that it should not be used to make predictions at arbitrarily high

energies.

Second, the distinction between the effective and the continuum approach does not crucially

depend on the specific regularization method we choose and on the specific way we subtract diver-

gences or absorb the appropriate sensitivity to high energies (although I will emphasize in section

1.5 that each approach is most conceptually consistent with its own specific type of regularization

and renormalization method). In particular, the distinction between the effective and the contin-
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uum approach does not reduce to the distinction that Georgi (1992, 1993) and Bain (2013) draw

between Wilsonian and continuum EFTs. This distinction is mainly based on whether the split

between the low-energy and high-energy physics depends on the mass parameter of the theory

(see Georgi, 1993, sec. 1.2; Bain, 2013, sec. 4). And continuum EFTs are called “continuum"

because the most famous mass-independent regularization method, namely, dimensional regular-

ization, does not eliminate high-energy states in the state space of the theory. This, however, does

not mean that continuum EFTs are meant to be used to make predictions across all energy scales.

In particular, they are restricted by the energy scale characterizing the matching conditions.

1.4 (Perturbative) Renormalizability Yes... But Which One?

We have seen that the continuum approach to the renormalization procedure offers a highly

formalistic and instrumental perturbative framework to derive consistent and empirically relevant

predictions. It turns out that the situation is even worse for the continuum approach since the pro-

cedure only works at every order in perturbation theory for the restricted class of “perturbatively

renormalizable" QFTs. After distinguishing between two distinct notions, one for the continuum

approach and the other for the effective approach, I argue in this section that the continuum ap-

proach is all the less attractive as it fails to apply to a large number of successful and physically

significant theories. We will see in sections 1.5 and 1.6 that the RG does not substantially affect

this claim.

First consider the continuum approach. Here the notion of perturbative renormalizability is

best introduced by noting that the φ4-theory example used so far is extremely fortunate. All the

divergent terms depending on positive powers of Λ0 or log(Λ0) that appear in the perturbative

expansion of Γ(p1, .., p4) can be absorbed by introducing counter-terms that depend only on the

coupling λ. All the finite terms depending on positive powers of 1/Λ0 vanish as we take Λ0 →∞.

More generally, all the divergences that appear in any sub-amplitude can be cancelled by using

only λ and m in the φ4-theory. There are many theories, however, for which infinitely many new

couplings need to be introduced—the 4-Fermi theory is one such example (see, e.g., Schwartz,
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2013, chap. 22)—and the difference between this example and the φ4-theory can be captured as

follows:

A theory is perturbatively renormalizable iff we only need to introduce a finite number of

independent couplings in order to eliminate divergences and define LR(µ) at any order in

perturbation theory in the limit Λ0 →∞.

A theory is perturbatively non-renormalizable iff we need to introduce an infinite number of

independent couplings.

This characterization is of course somewhat superficial. According to Dyson’s criterion, what

makes a theory perturbatively non-renormalizable is that it contains at least one “non-renormalizable"

individual interaction term, i.e., an interaction term parametrized by a coupling gi with strictly

negative mass dimension ∆i.18 These types of interactions generate an infinite number of sub-

amplitudes with an increasing degree of divergence, and each of the resulting types of divergent

quantities usually requires the introduction of a new counter-term. In contrast, the so-called “renor-

malizable" (∆i = 0) and “super-renormalizable" (∆i > 0) interaction terms generate only a finite

number of different types of divergences.19 Having said that, perturbative non-renormalizability

is not a dead end. In general, both perturbatively renormalizable and non-renormalizable theo-

ries are “renormalizable" in the sense that the structure of the theory is such that it is possible to

construct a counter-term to cancel any type of divergence at any order in perturbation theory. I

will call this notion renormalizabilityRT to avoid confusion as it is sometimes referred to as the
18The mass dimension ∆ of a physical quantity is the power of that quantity expressed in terms of some energy

variable (i.e., energy∆) with natural units c = ~ = 1.
19The longer explanation is based on the so-called “power-counting" argument (e.g., Weinberg, 1995, sec. 12.1). A

divergent integral I =
∫∞

dkkD−1 is characterized by the value of its superficial degree of divergence D (the integral
diverges in the UV if D ≥ 0) and D can be expressed in terms of the mass dimensions ∆i of the interactions involved
in the scattering process described by I: schematically, D = positive number−∑i ni∆i, with ni the number of times
we need to use the interaction i to define the integral. Then, if there is at least one non-renormalizable interaction in
the theory (∆i < 0), it is possible to find infinitely many different types of divergent integrals (D ≥ 0) by considering
more and more complex sub-amplitudes at higher orders in the perturbative expansion. By contrast, D has a positive
upper bound for (super-) renormalizable theories, i.e., there is only a finite number of different types of divergent
integrals. Note, however, that the superficial degree of divergence is not always reliable: there are cases where D < 0
and the integral diverges (notably because of the so-called “sub-divergence" problem), and cases where D ≥ 0 and
the integral is finite (usually the divergence cancels because of symmetry constraints). Perturbatively renormalizable
theories are sometimes called “renormalizable in the power-counting sense" or “renormalizable in Dyson’s sense".
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“Renormalization Theorem" (e.g., Osborn, 2016, sec. 4.3).20 We can even take the limit Λ0 →∞

in a number of expressions obtained from perturbatively non-renormalizable theories at each finite

order in perturbation theory if the theory is not too exotic (i.e., if limΛ0→∞ g0 formally exists for

each bare coupling g0 given some fixed finite order in perturbation theory).

At first sight, it seems that the distinction between perturbatively renormalizable and non-

renormalizable theories captures the amount of work needed in order to renormalize a theory—and

the amount is of course infinite if we want to define the parameters of a non-renormalizable theory

at every order in perturbation theory. In fact, the notion of perturbative renormalizability provides

a much stronger criterion of theory-selection under the continuum approach. If the perturbative

expression of a non-renormalizable theory is defined by introducing an infinite number of new

parameters, it means that quantum corrections to scattering amplitudes depend on the specification

of an infinite number of constants and that we therefore need an infinite number of experiments

in order to fix their value. Since this is impossible in practice, the perturbative formulation of

non-renormalizable theories obtained by applying the renormalization procedure at every order in

perturbation theory turns out to be empirically useless. We should therefore restrict the class of em-

pirically relevant theories to perturbatively renormalizable theories under the continuum approach.

So far, the analysis only applies to the continuum approach and one might wonder whether there

is any equivalent notion of perturbative renormalizability under the effective approach and, if so,

whether it plays the same role. Let me suggest the following notion of perturbative renormalizabilityE ,

to be distinguished from the traditional notion and the notion of renormalizabilityRT :

A theory is perturbatively renormalizableE iff for any p ∈ Z, all the possible contributions

to predictions up to order O((Λ/Λ0)p) obtained from L0(Λ0) can be absorbed in LR(Λ) by

introducing only a finite number of new parameters. (mutatis mutandis for perturbatively

non-renormalizableE .)
20In contrast, the term ‘non-renormalization theorem’ usually refers to a specific result to the effect that a parameter

or an interaction term does not need to be renormalized at all at any order in perturbation theory, as it is common in
supersymmetric QFTs (see, e.g., Weinberg, 2000, sec. 27.6). Of course, in practice, the interesting question is whether
a theory is renormalizableRT given a set of constraints imposed on the construction of counter-terms (e.g., that they
leave the resulting Lagrangian invariant under the action of a given symmetry group).
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The basic idea is the following: a theory is perturbatively renormalizableE if we can always sim-

ulate high-energy effects up to a specific accuracy ε with only a finite number of couplings, and

perturbatively non-renormalizableE if we cannot. It is not entirely clear what perturbatively non-

renormalizableE theories would look like. Presumably, these types of theories would have to

include exotic interaction terms such that the contributions of these terms vary too rapidly between

Λ0 and Λ to be approximated by the contributions of a finite number of independent polynomial

interaction terms in the field variables and their derivatives given some accuracy ε. For instance,

we can imagine a theory with an exotic non-local interaction term including some non-analytic

function F (φ(x), φ(y)) of field variables specified at distinct space-time points x and y such that

the contributions of F vary too abruptly between Λ0 and Λ to be approximated by the contributions

of a finite number of independent polynomial interaction terms.

Be that as it may, the notion of perturbative renormalizabilityE is much less constraining than

the traditional notion of perturbative renormalizability. Perturbative renormalizabilityE is satisfied

if the interaction terms of the theory are local polynomials in the field variables and their derivatives

and if the theory has a finite number of independent interaction terms with the same dimension ∆i.

Most crucially, the notion of perturbative renormalizabilityE does not prevent the theory from

including non-renormalizable interaction terms. Quite the contrary: under the effective approach,

we often need to introduce non-renormalizable terms into the effective theory if we want to absorb

contributions in O((Λ/Λ0)p) (p > 0) obtained, say, from the renormalizable interaction terms of

the bare theory.21 There is no specific reason to worry about these contributions in the continuum

approach since they cancel out in the limit Λ0 → ∞. But to the extent that we keep the cut-off

fixed, we usually need to include non-renormalizable terms in the effective theory if we want to

maximize the match between the effective and the bare theory.

As a corollary, if we keep the cut-off fixed, perturbatively non-renormalizable theories remain

perfectly predictive and empirically relevant. Typically, it is sufficient to consider interaction terms

21Lepage (1989, sec. 2.3) provides a concise explanation of this pattern. If we consider again the superficial degree
of divergence of integrals (see footnote 19), it is possible for any renormalizable interaction to generate infinitely dif-
ferent types of finite integrals with negative superficial degrees of divergences, i.e., with contributions in O((Λ/Λ0)p)
(p > 0). For some examples, see Schwartz (2013, chap. 21).
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with dimension larger or equal to ∆ε = − ln(ε)/ ln(Λ/Λ0) in order to make predictions at the

energy scale Λ with accuracy ε (e.g., Georgi, 1993, p. 214). The total number of interaction terms

with ∆ ≥ ∆ε is finite in standard QFTs and we can increase the empirical accuracy of the theory

by adding non-renormalizable interaction terms with ∆ < ∆ε (keeping in mind that the mass

dimension of non-renormalizable interaction terms is negative). In general, the most empirically

successful and physically informative version of an effective theory (the so-called “Wilsonian"

effective Lagrangian) includes all the possible interaction terms compatible with the assumptions

of the theory—in particular, its symmetries.22 To give an example, the effective Lagrangian LW
generalizing the φ4-theory takes the following form:

LW = −1

2
(∂φ)2 − m2

2
φ2(x)− λ

4!
φ4(x)−

∑

n≥3

g2nφ
2n

−
∑

n≥2

g′2n(∂φ)2n −
∑

n,m≥1

g′′2n,2m(∂φ)2nφ2m

(1.11)

Non-renormalizable interaction terms are those associated with the couplings g2n with n ≥ 3, g′2n

with n ≥ 2, and g′′2n,2m with n,m ≥ 1 in this example.

Perturbatively non-renormalizable theories have been much appraised in the recent physics and

philosophical literature (e.g., Lepage, 1989; Cao and Schweber, 1993; Butterfield and Bouatta,

2015; Williams, 2019a). I do not have much to add here, except the following four important

points. First, for any approach, the restriction to a finite number of independent couplings is

necessary in practice if we want to make empirical predictions. Second, the effective approach

provides a clear physical justification for the introduction of an infinite number of additional non-

renormalizable interaction terms: they capture the full sensitivity of low-energy physics to high

energies, even the most insignificant parts of it. Third, perturbative renormalizability remains a de-

cisive criterion of theory-selection for the perturbative formulation of continuum theories insofar as

it is possible to define (at least formally) perturbatively non-renormalizable theories at every order

22A complication comes from anomalies: i.e., the renormalization procedure might require new terms which ex-
plicitly break the symmetries of the theory. This is called “anomalous" or “quantum" symmetry breaking, but I will
ignore this problem here.
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in perturbation theory in the Λ0 → ∞ limit. Fourth, the notion of perturbative renormalizabilityE

under the effective approach offers a highly inclusive criterion of theory-selection and, as far as I

can tell, all the traditional perturbatively renormalizable and non-renormalizable QFTs are pertur-

batively renormalizableE . In a way, perturbative renormalizabilityE is as non-constraining as the

notion of renormalizabilityRT discussed above (but less general, though).

Now, it is a matter of fact that perturbatively non-renormalizable theories have proven to be

extremely useful in deriving successful empirical predictions and describing physically relevant

patterns at different energy scales, from low-energy effective phenomenological models to exten-

sions of QFTs beyond the Standard Model. This success, however, requires us to explicitly restrict

the domain of applicability of these theories by means of some finite cut-off. For if we attempt to

define the perturbative formulation of these theories across all scales and derive exact predictions

without making any approximation, we will find that these theories lose their predictive power and

empirical relevance. Of course, if we have empirical inputs and restrict ourselves to some finite

order in perturbation theory, we may take the limit Λ0 → ∞ at this order and use the perturba-

tively non-renormalizable theory to make predictions. For instance, if we know the value of the

Fermi constant GF ∼ 10−5 GeV−2, we can use the 4-Fermi theory to make tree-level predictions.

However, if we endorse the continuum approach and intend to renormalize theories at every order

in perturbation theory, we will be forced to rule out a large class of empirically and physically

relevant theories. And so insofar as we want to praise a framework for constructing perturbative

QFTs that proves to be (sufficiently) universal, the effective approach looks more attractive than

the continuum approach.

1.5 The Renormalization Group Theory

What has been at the center stage of the renormalization procedure so far is the attempt to

address the problem of UV divergences:

(1) How can finite and accurate predictions be obtained if the original theory is inconsistent?

We have seen that in both the effective and the continuum approach, the introduction of an arbitrary
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mass scale Λ (or µ) is forced upon us if we want to derive the expression of renormalized quantities.

The genius of the physicists who developed the Renormalization Group (RG) theory was to use

this seemingly idle and arbitrary parameter as a lever to address the (new) questions:

(2) What is the scaling behavior of the theory?

(3) Does the theory make consistent predictions in the continuum limit?

The goal of this section is to show how the RG theory clarifies the notion of renormalizability

and therefore complicates the argument of section 1.4. Of crucial importance is the possibility

that a theory both includes non-renormalizable interaction terms and makes consistent predictions

in the continuum limit. At the same time, some perturbatively renormalizable theories such as

the Standard Model of particle physics are likely to make inconsistent predictions at very high

energies. This suggests that the scope of the continuum approach might not be as restricted as

initially thought—and yet still be restricted in important ways.

1.5.1 The Effective and the Continuum RG

What, exactly, is the RG? Strictly speaking, the RG refers to the structure of invariance of the-

ories under rescaling by the renormalization scale Λ (or µ). It is helpful, though, to distinguish

between three types of RG equations. First, at the level of theories, the RG describes how the

path integral, the action, and the Lagrangian transform under rescaling. In a way, the renormaliza-

tion procedure already gives us a rudimentary RG transformation: e.g., in the effective approach,

L0(Λ0)→ LR(Λ) = L0(Λ)+δL0(Λ,Λ0) for Λ0 → Λ. Second, at the level of scattering amplitudes

and correlation functions, the RG describes the specific trade-off between the kinetic and interact-

ing parts of the theory required for the scattering amplitudes to remain invariant under rescaling.

The so-called “Callan-Symanzik" equation for a N-particle amplitude with one renormalized cou-

pling g is given by:
(
Λ
∂

∂Λ
+ β

∂

∂g
+Nγφ

)
ΓR(p1, ..., pN ; g(Λ)) = 0 (1.12)
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where β(g) = Λ ∂g
∂Λ

is the “beta-function" of the coupling g and γφ is the “anomalous dimension" of

the field. Eq. 1.12 describes how much we need to shift the value of the coupling (β ∂
∂g

) and the size

of the field configurations (Nγφ) in order to absorb an infinitesimal rescaling (Λ ∂
∂Λ

) and leave the

amplitude ΓR invariant. Third, at the level of couplings and local operators, the RG describes how

the strength of an interaction varies across scales in accordance with the sign of its beta-function.

For instance, the quartic interaction in the φ4-theory becomes increasingly strong at high energies:

Λ
∂λR
∂Λ

= β(λR) =
3

16π2
λ2
R + O(λ3

R) (1.13)

Note, however, that this perturbative RG equation remains only valid for λR � 1.

The effective (or Wilsonian) RG and the continuum (or Gell-Mann & Low) RG have a relatively

similar formal structure overall. But again, there are significant conceptual differences between the

two.23 Most crucially, the effective renormalized theory is obtained by integrating out high-energy

field configurations in the path integral, while the continuum renormalized theory is obtained by

fine-tuning the expression of the bare theory. Schematically,

Effective theory:
∫
d[φ<Λ]eSeff(Λ,Λ0) =

∫
d[φ<Λ0 ]e

S0(Λ0)

Continuum theory:
∫
d[φ]eS(µ) = lim

Λ0→∞

∫
d[φ]eS0(Λ0)+δS(µ,Λ0) (1.14)

with the same conventions as before (φ<Λ refers to field configurations with energy lower than

Λ). The effective RG transformation obtained by decreasing Λ is irreversible since it eliminates

high-energy degrees of freedom, while the continuum RG transformation obtained by varying µ is

reversible since it merely amounts to subtracting or adding some finite quantity in the action (i.e.,

to imposing a different renormalization condition).24

23For more technical details, see, e.g., Weinberg (1995, sec. 12.4; 1996, chap. 18), Zinn-Justin (2007), and Schwartz
(2013, chap. 23). Here I rely on the standard understanding of the Wilsonian RG. For a formal interpretation, see
Rosaler and Harlander (2019).

24Note the difference between active and passive transformation in both cases. An active RG transformation corre-
sponds to a genuine change of scales (and hence to integrating out degrees of freedom in the effective case). A passive
RG transformation corresponds to a conventional redefinition of energy units (in which case no degree of freedom is
integrated out in the effective case).
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Next, the most conceptually consistent interpretation of the cut-off and of the renormalization

scale is not the same in the two cases. In the effective approach, the idea of integrating out all

the high-energy degrees of freedom makes sense only if we use a sharp cut-off (e.g., a lattice or

a momentum cut-off). If we use a smooth cut-off, the path integral measure is still defined by

summing over arbitrarily high-energy states. Similarly, if we have good reasons to think that the

high-energy states close to the sharp cut-off Λ0 misrepresent, in some way or another, the correct

state of matter, we should make sure that we exclude them. One conceptually simple and clear

way of ignoring these high-energy states is to integrate out all the high-energy degrees of freedom

between Λ and Λ0. In contrast, the continuum approach is based on the idea that all the degrees

of freedom in the original theory L are relevant in some respect. One way of making sure that

the continuum assumption holds is to use a regularization method that gives weight to the physical

states of interest without eliminating the others. In the method of dimensional regularization, for

instance, the divergences are analyzed by shifting the dimension of space-time by±ε, and the state

space of the theory is smoothly distorted in the UV in a way that keeps all the possible energy

states but significantly lowers the weight of the states above the scale µ.25

Agreed, one important lesson of the modern understanding of renormalization is that the spe-

cific value of the cut-off and the specific details of the regularization method do not really matter.

They can always be absorbed in the formal expression of the renormalized parameters and, over-

all, the predictions obtained with different regularization methods are empirically equivalent. Yet,

this does not mean that all regularization methods are on the same footing. If the goal is to de-

fine a theory across all energy scales, for instance, it appears somewhat conceptually inconsistent

to construct the theory by first eliminating all the high-energy degrees of freedom beyond some

fixed scale. Similarly, if the goal is to offer a restricted description of low-energy degrees of free-

dom, it appears somewhat conceptually inconsistent to include the contributions from arbitrarily

25In more detail, if we take d = 4± ε, we have to rescale each coupling by some power of the renormalization scale
µ for dimensional consistency (e.g., replace λ by λµε) and modify the dimension of the divergent integrals. Integrating
out the extra ε dimension in those integrals leaves an additional damping factor in the integrand that depends on both
ε and µ. If we ignore potential trouble in the IR, this damping factor smoothly vanishes for momenta much larger than
µ with ε small and µ fixed (Georgi, 1992, p. 4; 1993, sec. 2.4, provides a very helpful and concise explanation).
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high-energy degrees of freedom when calculating low-energy predictions. At the very least, some

regularization methods make these specific goals more explicit and provide a conceptually simpler

and clearer way of achieving those goals. In the case of the effective approach, for instance, a de-

formation that eliminates all the high-energy degrees of freedom appears to be more natural than a

deformation that merely lowers the weight of UV contributions. For if we believe that the theory

literally breaks down at high energies, we should rather avoid using those high-energy degrees of

freedom altogether instead misrepresenting their properties and using them to compute low energy

predictions. Likewise, a sharp cut-off introduces a conceptually simple and clear classification

of low-energy and high-energy field configurations, while a smooth cut-off makes the boundary

between them somewhat fuzzier. Agreed again, both a sharp and a smooth cut-off offer a highly

idealized representation of the boundary between the low-energy and high-energy regimes of the

theory. But we do not need to take the exact form of the cut-off to be physically meaningful in

order to grant that those differences between a sharp and a smooth cut-off regularization method

are significant. And of course, if our primary goal is simply to compute low-energy predictions,

we should probably select the regularization method which allows us to achieve this goal in the

simplest, most efficient and appropriate way.

1.5.2 RG and Renormalizability

Now, let us look at the implications of the RG for the notion of renormalizability and for the

scope of the continuum approach. Before we do that, it is necessary to spend some time clarifying:

(i) the notion of RG space or theory-space; (ii) the notion of fixed point; and (iii) the different types

of local behaviors in the vicinity of fixed points.26

(i) Consider first the infinite set of renormalized couplings gn(Λ), including both couplings

from renormalizable and non-renormalizable interactions, which can be used to define any sort

of renormalized (local) QFT in four dimensions for a specific set of fields and symmetries. The

infinite set of RG equations span an infinite-dimensional space, the so-called “RG space", where

26The analysis does not depend on the type of RG used since the effective and the continuum RG are formally
equivalent at the level of couplings.
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each coupling stands for an independent coordinate and where each point in the space represents

a theory defined at some energy scale Λ (see Fig. 1.3). The RG transformations of the couplings

induce trajectories in this space, the so-called “RG flows", either towards the IR or the UV as we

respectively decrease or increase the value of Λ.27

(ii) Fixed points g∗ are defined by the points in theory-space where the RG flow terminates. The

fixed point is either IR or UV depending on whether the RG flow converges to the fixed point in the

low-energy or high-energy limit. In each case, the β-function β(g∗n) of each coupling vanishes at

the fixed point, which means that each coupling gn(Λ) = g∗n remains constant whether the value of

Λ is increased or decreased and that the theory specified by the couplings g∗n is scale-invariant. It

turns out that we can distinguish between two kinds of fixed points. A Gaussian fixed point g∗ = 0

defines a non-interacting theory, and theories converging towards a Gaussian fixed point are called

“asymptotically free". A Wilson-Fisher (or non-Gaussian) fixed point g∗ 6= 0 defines a non-trivial

scale-invariant dynamics, and theories converging towards a Wilson-Fisher fixed point are called

“asymptotically safe". As we can already anticipate, the existence of a UV fixed point indicates

that the corresponding continuum theory behaves well at high energies, i.e., that the value of its

couplings remains finite at high energies.28

(iii) The infinite set of RG equations determine local topological properties of the RG flow on

theory-space. To see that, we need to examine first the behavior of couplings in the vicinity of

a fixed point. In the simple case of a Gaussian fixed point, the perturbative RG equation for a

coupling g looks like:

Λ
∂g

∂Λ
= β(g) ≈ (−∆ + γ)g + bg2 + cg3 + O(g4) (1.15)

where γ, b and c are constants. Assuming that γ is negligible, the solution at lowest order is given

27Typically, an effective theory is defined by a finite segment of the RG flow with an upper bound while a (well-
defined) continuum theory is defined by a complete segment specified by the values of gn(µ) for any µ.

28More precisely, there are three conditions for asymptotic safety/freedom in both the IR and the UV case: (a) the
vanishing of the β-function; (b) the existence of a finite-dimensional surface in the vicinity of the fixed point if we
want the theory to be predictive; and (c) the existence of a well-behaved RG flow on the way to and at the fixed point.
In the IR case, for instance, condition (c) obtains if supΛ≤Λ′ g(Λ) <∞ for some Λ′ and limΛ→0 g(Λ) = g∗ <∞.
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by:

g(Λ) = (
Λ

Λ0

)−∆g(Λ0) (1.16)

Three types of behaviors can be distinguished from this elementary perturbative equation, and

each of them clarifies the scale-dependence of the non-renormalizable, renormalizable and super-

renormalizable individual interaction terms defined in section 1.4 (here with the flow directed

towards the IR):

(a) Super-renormalizable interaction: If ∆ > 0, the coupling g(Λ) becomes large at small scales

Λ � Λ0 and negligible near the cut-off Λ . Λ0. The coupling and the corresponding

operator are said to be “relevant" at low energies.

(b) Non-renormalizable interaction: If ∆ < 0, the coupling g(Λ) becomes negligible at small

scales Λ � Λ0 and large near the cut-off Λ . Λ0. The coupling and the corresponding

operator are said to be “irrelevant" at low energies.

(c) Renormalizable interaction: If ∆ = 0, dimensional analysis is ineffective. The sign of the

next dominant term in Eq. 1.15 determines whether the coupling is “marginally" relevant or

irrelevant. For instance, the (dimensionless) λR coupling in φ4-theory is marginally irrele-

vant (see Eq. 1.13).

With these three properties in hand, we can specify the distinct local topological features of

the RG flow in theory-space (see Fig. 1.3). The “critical surface" is defined by the set of cou-

plings whose trajectory ends on the fixed point and the “unstable manifold" is defined by the set of

couplings whose trajectory departs from the fixed point. In general, trajectories can be extremely

varied: the flow might seemingly converge toward a fixed point and quickly diverge away as it

comes too close to it, or the flow might seemingly diverge away from a fixed point and suddenly

converge extremely fast towards it. Some RG flows even display periodic behaviors (see Wilson,

1971, and Bulycheva and Gorsky, 2014, for a discussion and examples of cyclic flows). In typical

cases, the critical surface corresponds to the subspace spanned by the set of irrelevant couplings
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while the unstable surface corresponds to the subspace spanned by the set of relevant couplings,

and most trajectories converge towards the fixed point and suddenly diverge away as the relevant

couplings become too important (as depicted in Fig. 1.3). The analysis applies both to IR and UV

fixed points, and we may speak similarly of IR/UV relevant, irrelevant and marginal operators.

Figure 1.3: Theory-space in three dimensions, with a two-dimensional critical surface and a one-
dimensional unstable manifold. The possible trajectories towards the IR are denoted by the lines with
arrows.

This analysis has three important implications.29 First, it shows that the pathological high-

energy behavior of non-renormalizable interactions (i.e., IR-irrelevant/UV-relevant interactions) is

closely linked to the fact that they generate increasingly divergent integrals in perturbation theory.

Consider for instance a scalar theory in four dimensions with one non-renormalizable interaction

term g6φ
6. The 6-particle physical amplitude Γ(p1, ..., p6) is just equal to g6 at first order. On

dimensional grounds, the total amplitude Γ and any of the higher-order sub-amplitudes gn6 Γn (n >

1) have mass dimension −2. As I briefly indicated above, the amplitudes at some order n have in

general the schematic form gn6
∫
dkkDn−1. On dimensional grounds, we can therefore infer from

the mass dimension of gn6 (namely, −2n) that the number Dn increases with n (Dn = 2n − 2),

29Note that this analysis also explains why typical realistic QFTs are likely to be only approximately perturbatively
renormalizable since they might contain IR irrelevant interactions that we have not detected yet (e.g., Butterfield and
Bouatta, 2015; Williams, 2019a).
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which shows that the sensitivity of non-renormalizable interactions to high energies is closely

linked to the pathological perturbative behavior of the theory.

Second, the RG theory suggests a general non-perturbative characterization of renormaliz-

ability. In the continuum approach, the notion can be defined as follows (I drop the label “non-

perturbative" for simplicity):

A theory is renormalizableRG iff there is some µ′ such that the RG flow remains on the same

finite-dimensional surface as the theory is rescaled toward the UV (i.e., for any µ > µ′).

(mutatis mutandis for non-renormalizableRG.)

In other words, the theory is renormalizableRG if it can be expressed in terms of a finite number of

independent couplings as the theory flows towards high energies and non-renormalizableRG if it is

impossible to constrain the RG flow to stay on a finite subspace. If we add the requirement that

the theory converges toward a UV fixed point g∗ as µ is increased, we obtain Weinberg’s charac-

terization of renormalizability as asymptotic safety (Weinberg, 1979b, p. 802). The couplings of a

theory satisfying this more sophisticated criterion of renormalizability, call it renormalizabilityAS ,

remain finite at arbitrarily high energies. As we will see in section 1.6, this is a good sign that the

predictions of the theory remain under good mathematical control at high energies.30

Third, the RG theory implies that the scope of the continuum approach is not as restricted

as initially considered. The definition of relevant, irrelevant and marginal operators by means of

dimensional analysis in Eq. 1.16 is only valid near a fixed point. In general, this is a good rule

of thumb. But it is perfectly possible that some non-perturbative effects come into play either

at low or high energies. In particular, it is perfectly possible that a coupling which looks UV-

relevant at low energies actually happens to be well-behaved at high energies because of fortuitous

non-perturbative quantum corrections. That is, a theory can both converge towards a UV Wilson-

Fisher fixed point and include non-renormalizable interactions, as some physicists expect for the

30We can also speak of degrees of renormalizabilityAS or “approximate" renormalizabilityAS in the case of a
renormalizableAS theory with additional UV-relevant interaction terms diverging at high energies if the contributions
of these UV-relevant interactions are negligible compared to the contributions of the other interactions at low energies.
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quantum-field-theoretic approach to quantum gravity.31 Likewise, we might attempt to tame the

pathological UV behavior of a given theory by embedding it into a larger theory displaying a

UV fixed point. Overall, this suggests that the continuum approach is suitable for a larger class

of physically relevant theories than initially expected. Yet, there still remains a large number of

theories ill-handled under this approach, namely those which fail to converge towards a UV fixed

point. As we will see in the next section, if we take the current perturbatively renormalizable

formulation of the Standard Model by itself for instance, there are very good reasons to believe

that it exhibits a Landau pole singularity and therefore makes inconsistent predictions at very high

energies.

1.6 The Infinite Cut-Off Limit and the Continuum Limit

The goal of this section is to distinguish between different types of QFTs on the basis of their

behavior in the continuum limit. For the sake of the argument, I will assume that the theory at hand

has been renormalized under the continuum approach, except that we have kept the parameter Λ0

fixed and not yet attempted to take the limit Λ0 → ∞. I will also assume that the analysis applies

both to the perturbative and the non-perturbative case (with specific provisos when needed and

with the speculative assumption that the non-perturbative notion of continuum QFT makes sense

in realistic cases).

The first thing to note is that the notion of “continuum limit" is ambiguous. It may refer either

to the infinite cut-off limit (Λ0 → ∞) or to the continuum limit (µ → ∞), properly speaking.32

Note, moreover, that the distinction is robust under different regularization methods. For instance,

the infinite cut-off and continuum limits correspond respectively to ε → 0 and µ → +∞ for

dimensional regularization. Likewise, using this terminology, taking the lattice spacing to zero in

a lattice QFT amounts to taking the infinite cut-off limit, except in cases where the lattice spacing

also plays the role of the renormalization scale (in which case there is only one type of limit).

31See Niedermaier and Reuter (2006) for a review of the asymptotic safety scenario.
32For a slightly different understanding of this distinction emphasizing the difference between the removal of a

perturbative regulator and the removal of a non-perturbative regulator, see Delamotte (2012, sec. 2.6, esp. 2.6.3).
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Accordingly, the notion of “good behavior" in the limit should be understood in two distinct

ways:

(1) The low-energy predictions of the theory at µ are unaffected by taking the infinite cut-off

limit Λ0 →∞.

(2) The theory makes consistent predictions at arbitrarily high energies (µ→∞).

(1) corresponds to cases where the low-energy physics described by the theory is sufficiently in-

sensitive to the high-energy physics described by the theory, while (2) corresponds to cases where

the high-energy predictions of the theory do not violate typical assumptions such as unitarity.33 So

(2) is not about empirical adequacy, properly speaking. After all, the theory might turn out to be

empirically inaccurate at very high energies. But we should at least require that it makes consis-

tent predictions, say, by making sure that the values of the couplings remain sufficiently small for

unitarity to hold.

How should we discriminate between well-behaved and ill-behaved theories in the two cases

then? Consider first the case of the infinite cut-off limit. Let us bracket any issue about the violation

of the perturbative assumption in the case of the bare theory, and simplify the discussion by looking

at the following toy-model theory LR(µ) with two renormalized couplings (g0 and g′0 correspond

to the bare couplings):





g(µ) = ( µ
Λ0

)−∆g0(Λ0)

g′(µ) = ( µ
Λ0

)∆g′0(Λ0)

∆ > 0

(1.17)

The condition ∆ > 0 implies that g is super-renormalizable and g′ non-renormalizable or, equiv-

alently, that g and g′ are respectively relevant and irrelevant near the IR Gaussian fixed point, and

irrelevant and relevant near the UV Gaussian fixed point. In general, RG equations define families

33Unitarity is the assumption that the total sum of probabilities for the possible measurement outcomes of some
specific physical process add up to unity.

41



Figure 1.4: Theory-space in two dimensions with one IR-relevant/UV-irrelevant coupling g and one IR-
irrelevant/UV-relevant coupling g′.

of solutions parametrized by different boundary conditions and, in the present case, each solution

(g(µ), g′(µ)) of the two-dimensional RG equation is uniquely determined by specifying a single

point (g0(Λ0), g′0(Λ0)) for some Λ0 (see Fig. 1.4). Inversely, if the value of the renormalized cou-

plings at µ is fixed by means of experiments, we can analyze the behavior of the bare theory in the

infinite cut-off limit.

This toy-model is interesting because it displays two common types of behaviors. (i) g′(µ) = 0

and g(µ) 6= 0: that is, we do not detect non-renormalizable effects at low energies and take the

liberty to fine-tune g′0(Λ0) to zero, which implies g′(µ) = 0. In this case, the RG flow lies on what

is called the “renormalized trajectory" (see Fig. 1.3 and the g(µ) axis in Fig. 1.4) and we can

take the infinite cut-off limit by assuming that the relevant bare coupling appropriately vanishes

at infinity (i.e., such that limΛ0→∞ Λ∆
0 g0(Λ0) is finite). It is therefore possible to take the infinite

cut-off limit without affecting the low-energy predictions of the theory.

(ii) The most likely case is that both g(µ) and g′(µ) are non-zero, i.e., that the theory contains

UV-relevant couplings. The toy-model indicates that the constraints we need to impose on these

couplings are relatively minimal: the infinite cut-off limit leaves the low-energy predictions intact

with the appropriate limits g0(∞) = 0 and g′0(∞) = +∞. Of course, in general, taking the limit

LR(µ) = limΛ0→∞(L0 + δL) might require some delicate fine-tuning with the bare theory; and,

as already emphasized, the perturbative assumption is explicitly violated in the case of the bare

42



theory. But, overall, the RG theory is highly permissive since it is possible to take the infinite

cut-off limit (at least formally) even if the theory contains pathological UV-relevant couplings. As

we will see shortly, this fails to be the case if the renormalized coupling diverges at some finite

energy scale ΛM on the way to the limit.

Consider now the case of the continuum limit. RG flows towards the UV fall under four main

types (e.g., Weinberg, 1996, sec. 18.3).34 (i) Asymptotic freedom (g∗ = 0) and (ii) asymptotic

safety (g∗ 6= 0) are the best case scenarios. In both cases, the values of the renormalized cou-

plings remain finite in the continuum limit, which is a good sign that the theory makes consistent

predictions at high energies since the main source of violations of (perturbative) unitarity comes

from arbitrarily large values of the renormalized couplings in the expression of the scattering am-

plitudes. Of course, in those two cases as much as in the two cases below, our confidence in the

behavior of couplings across energy scales depends on the reliability of the methods used to de-

rive their expression. Asymptotic freedom is a special case in that respect. It is firmly based on

perturbation theory like many of the results usually obtained from renormalization theory. But the

fact that the values of the couplings become arbitrarily small at very high energies justifies the use

of perturbation theory in the first place and suggests that non-perturbative results do not spoil the

asymptotic behavior of the theory (e.g., a non-perturbative contribution to a scattering amplitude

depending on some factor e−1/g(µ) becomes arbitrarily negligible for µ→∞ if limµ→∞ g(µ) = 0).

(iii) Let me call “asymptotic UV instability" the type of limiting behavior characteristic of

theories containing divergent UV-relevant interactions as µ tends to ∞ (e.g., g′ in the toy-model

above). This case is problematic because, in general, these divergent UV-relevant interactions lead

to violations of (perturbative) unitarity at high energies. These interactions even contain explicit

information about the energy scale where those violations of unitarity arise. That being said, it is

still possible to define the perturbative expression of the renormalized theory in the infinite cut-

off limit Λ0 → ∞ if we restrict the range of the parameter µ to low energies. Moreover, if we

use a smooth regularization method, the renormalized theory still includes negligible contributions

34Other cases include scale-invariance (β(g) = 0), in which case the RG does not flow, strictly speaking, and the
cyclic behaviors mentioned above.
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from arbitrarily high-energy excitation states (compared to contributions from low-energy states).

Hence, even though the theory behaves badly in the continuum limit, the continuum assumption

holds in this case for processes probed at sufficiently low energies.

(iv) Let me call “finite UV instability" the type of limiting behavior characteristic of theories

containing a Landau pole, i.e., a finite energy scale ΛM at which at least one of the couplings

g(ΛM) diverges. As the φ4-theory shows, finite UV instability is the worst case scenario. The

solution to the perturbative RG equation of the quartic coupling λR(µ) is given by (cf. Eq. 1.13):

λR(µ) =
λR(µ′)

1− 3λR(µ′)
16π2 ln( µ

µ′
)

(1.18)

Given a fixed experimental value λR(E) at the energy scale E, the coupling λR diverges at ΛM =

E exp(16π2/3λR(E)). Similarly, if we evaluate the expression of the bare coupling at the scale

µ = Λ0, the bare coupling diverges at the same finite scale ΛM . And if we do not make any

low-energy measurement and decide to take λR(µ) = 0, we have to give up the initial assumption

that the theory is an interacting theory. So, overall, the theory cannot be consistently defined in

the infinite cut-off and continuum limits.35 Now, the framework of the continuum approach is such

that it is possible to take the infinite cut-off limit at the level of perturbative scattering amplitudes if

we restrict ourselves to the first few orders in perturbation theory (see Eq. 1.8). However, the RG

reveals that the partial perturbative relationship between the bare and the renormalized coupling

obtained from the renormalization procedure is only superficially well-defined in the infinite cut-off

limit: if we include the leading logarithms at higher orders in perturbation theory (as the derivation

of the RG automatically does), we find a Landau pole.

In sum, continuum QFTs are likely to make consistent predictions at high energies when they

are known with confidence to have a fixed point. The most reliable property of QFTs that we can

typically find by means of perturbative methods is asymptotic freedom. And, for the large majority

35Of course, it might be the case that the Landau pole turns out to be an artifact of the perturbative analysis. For a
discussion about the existence of a Landau pole and triviality in the case of QED, see, e.g., Gockeler et al. (1998a,b)
and Gies and Jaeckel (2004).
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of continuum QFTs, there are good reasons to believe that they are not only conceptually incoher-

ent and physically dubious but also that they make inconsistent predictions at high energies—or, at

the very least, that standard perturbative techniques cannot be used in those cases. Table 1.1 below

summarizes the main interpretative differences between the effective and the continuum approach,

including the results from section 1.6.

Effective approach Continuum approach

The continuum assumption False True

Goal
Select the appropriate low-energy

degrees of freedom

Define the theory across all length

scales

Bare theory Physical theory
Intermediary/initial mathematical

tool

Renormalized theory Effective theory Physical theory

Regulator Λ0

The scale at which the theory breaks

down
Intermediary mathematical tool

Regularization and renor-

malization method (most

conceptually consistent)

Sharp cut-off (Λ) Smooth cut-off (µ)

Infinite cut-off limit Physically irrelevant Mandatory

Continuum limit Physically irrelevant
Consistent for a restricted class of

well-behaved theories

Perturbative renormaliz-

ability

Perturbative predictions within ε

with a finite number of parameters

Exact perturbative predictions with a

finite number of parameters

Non-perturbative renormal-

izability

Finite-dimensional RG surface

within ε + IR fixed point

Finite-dimensional RG surface +

UV fixed point

Table 1.1: Main interpretative differences between the effective and the continuum approach.
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1.7 Butterfield and Bouatta on Continuum QFTs

An advocate of the axiomatic approach might raise the following objection at this point: why

should we take the differences between the effective and the continuum approach seriously if both

fail to meet satisfying standards of mathematical rigor in the first place? And why should we attach

any importance to the good behavior of asymptotically safe QFTs as opposed to finitely unstable

QFTs if there is a chance that they are both mathematically inconsistent and a fortiori physically

incoherent?36 Wallace (2006, sec. 3-4; 2011, sec. 6-9) has rightly argued, I believe, that effective

Lagrangian QFTs are as well-defined as any of the past theories that we usually take to be math-

ematically well-defined, and therefore should be considered fit for foundational and philosophical

scrutiny. Butterfield and Bouatta (2014) recently extended this claim to continuum QFTs (see also

Butterfield, 2014, pp. 8-9, sec. II.2-3, p. 31). They argue that even if the path integral formulation

of realistic continuum QFTs has not yet received a precise mathematical definition according to the

standards exhibited in the axiomatic, algebraic and constructive programs, some of these theories

appear to be sufficiently mathematically well-defined according to physicists’ common standards

to be fit for philosophical scrutiny. Hence, by endorsing less stringent criteria of mathematical

rigor, they claim, we should feel confident to draw world pictures for the heuristic formulation of

some continuum QFTs. I will argue that the methodological and conceptual differences between

the effective and the continuum approach discussed in sections 1.3-1.6 suggest reasons to temper

Butterfield and Bouatta’s claim.

Let me begin by making two friendly amendments to their discussion of continuum QFTs.

(i) They contend that the contrast between theories likely to be (A) mathematically well-defined

and (B) mathematically ill-defined depend, broadly speaking, “on the type of fields in the theory

concerned" (Butterfield and Bouatta, 2014, p. 65). Agreed: as Butterfield and Bouatta rightly

emphasize, in four dimensions, QFTs including only non-abelian gauge fields fall under case (A)

while QFTs including only scalar or fermionic fields typically fall under case (B). In general,

36One might see these objections as particular cases of the general objection that the conventional mathematical
apparatus of QFTs is ill-defined (e.g., Halvorson, 2007, p. 731; D. Fraser, 2008, p. 550; Kuhlmann, 2010; Baker,
2016, p. 5; Summers, 2016).
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however, the field content of a QFT does not provide a reliable guide to assess whether the QFT is

mathematically well-defined or not. Examples of asymptotically free scalar and fermionic QFTs

in two and three dimensions show that the mathematical well-definedness of a QFT is not simply

determined by the type of its quantum field operators.37 In contrast, the scaling behaviors of QFTs

exhibited by means of RG methods offer a more systematic way of distinguishing between (A)

and (B), and Butterfield and Bouatta’s diagnosis somewhat obscures the remarkable fact that this

criterion does not depend on the content of the theory. Agreed, the definition of a particular RG

space depends on the specification of a set of couplings and therefore on the specification of a set

of (local) interactions—which, in turn, depends on the specification of a set of fields (e.g., scalar,

fermionic, gauge, etc.), symmetries, and a space-time dimension. However, the possible types

of RG trajectories, i.e., the possible types of behaviors of theories across energy scales, do not

depend on these constraints. And so what it means for a theory to be mathematically well-defined

is independent of the specific QFT model considered.

(ii) Butterfield and Bouatta’s classification of QFTs under (A) and (B) is also incomplete. They

argue that we should group asymptotically free, safe and conformal theories under (A) and theories

presenting a Landau pole under (B). Agreed, this provides a good rule of thumb for the high-energy

limit of continuum theories; and, for the perturbative theories we have so far, there are, in general,

good reasons to expect that Landau poles in the IR (“infrared slavery") are perturbative artifacts,

as it seems for perturbative QCD. However, it is worth being more systematic here since the non-

perturbative definition of a theory might display, say, a Landau pole in the IR and asymptotic

freedom in the UV. I distinguished in section 1.6 between (a) finite instability (i.e., existence of a

Landau pole), (b) asymptotic instability (i.e., asymptotically divergent couplings), (c) asymptotic

freedom (i.e., convergence to a zero fixed point), and (d) asymptotic safety (i.e., convergence to a

non-zero fixed point), to which we might add the two additional cases of (e) non-convergent cyclic

scaling behavior (i.e., non-convergent oscillating couplings) and (f) scale-invariant theories (i.e.,

37See, e.g., Weinberg (1996, sec. 18.3) and Gross (1999a, lecture 3, sec. 3.2, lecture 4). Examples of asymptotically
safe theories in lower dimensions involving scalar or fermionic fields include: the Gross-Neveu model, the nonlinear
σ-model with dimension 2 < d < 4, and the 2d sine-Gordon model.
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theories defined at a fixed point). It is perfectly possible that the non-perturbative definition of a

theory displays two properties out of the five (a)-(e).

We should therefore only include under (A) theories defined by a continuous RG flow between

two distinct fixed points and theories defined at a fixed point (ignoring (e)). The first class of

theories corresponds to the class of IR/UV asymptotically safe/free theories, i.e., theories that

continuously connect two conformal theories in the RG space.38 For instance, the RG equation

µdg/dµ = Ag − Bg2 for some coupling g with A,B > 0 describes the behavior of a theory

asymptotically free in the IR (flowing towards the fixed point g∗ = 0) and asymptotically safe in

the UV (flowing towards the fixed point g∗ = A/B). The second class of theories corresponds

to the class of scale-invariant theories (i.e., dg/dµ = 0). Although this has not been proven for

models in dimension d > 2, these scale-invariant theories can typically be formulated as conformal

field theories (CFTs).39 Moreover, since our confidence in the existence of the properties (c), (d)

and (f) is usually based on perturbative methods (as Butterfield and Bouatta rightly recognize), we

should add the further constraint g∗ � 1 for perturbation theory to be reliable.40

Let us now turn to Butterfield and Bouatta’s claim that some continuum QFTs are ripe for meta-

physical inquiry. At least as I understand them, Butterfield and Bouatta’s claim relies on two key

ideas. First, physics exhibits various standards of mathematical well-definedness and mathemati-

cal existence, and the heuristic standard commonly used in physics’ practice provides a perfectly

reasonable standard for interpretative purposes. In the context of QFT, the heuristic standard re-

quires the theory to have a finite UV scaling behavior. By contrast, a theory is mathematically

well-defined according to the axiomatic standard if it is axiomatizable and has a consistent model

(Butterfield and Bouatta, 2014, p. 69). Second, the current perturbative formulation of some re-

alistic continuum Lagrangian QFTs displays a UV fixed point and therefore satisfies the heuristic

standard. QCD is one such example. Of course, the finite behavior of the theory at high energies

38For reference to the existence of well-defined and non-trivial RG flows from IR to UV fixed points, see, e.g.,
Caswell (1974), Banks and Zaks (1982), and Bond and Litim (2017).

39For references and discussions, see Polchinski (1988) and Dymarsky et al. (2015).
40Here it is worth mentioning the efforts made to formulate non-perturbative theories in the asymptotic safety

scenario programme briefly mentioned in section 1.5.2.
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does not mean that the functional integral resulting from the path integral quantization of the classi-

cal Lagrangian density is mathematically well-defined according to more stringent criteria of rigor.

But the lack of a mathematically well-defined formulation should not prevent us from interpreting

the heuristic formulation of our best continuum QFTs (Butterfield, 2014, p. 15). I take it that when

Butterfield and Bouatta speak of the “heuristic" formulation of QFTs (Butterfield and Bouatta,

2014, p. 64, p. 68; Butterfield, 2014, p. 15), they refer to the current perturbative formulation that

we have of these theories. And by ‘perturbative formulation’ I mean the formal expression of the

path integral and the perturbative expression of the renormalized action and Lagrangian together

with the set of perturbative techniques used to compute correlation functions.

Now, even if we accept to endorse less stringent criteria of mathematical rigor and philosoph-

ically assess the heuristic formulation of some continuum QFTs, it does not mean that we are

warranted in attempting to draw “ontological claims" or “world-pictures" for these continuum

QFTs (e.g., Butterfield and Bouatta, 2014, p. 68). It was central to the argument of section 1.3

that the structure of a physical theory does not only need to be under good mathematical control

but also needs to make physical sense. Even if a QFT has a finite behavior at all energy scales, it

is no indication that the theory has a physically coherent interpretation. Agreed, we do not need

to demand that all the component parts of the theory make physical sense in order to dive into the

metaphysical interpretation of a theory. But we should at least require that the core component

parts of the theory do. Section 1.3 suggests that the perturbative formulation of our best continuum

QFTs does not even meet this requirement in contrast to effective QFTs.

The argument goes as follows. To simplify the discussion and as already emphasized, I will

follow Butterfield’s usage of the term ‘theory’ in its specific sense and identify the perturbative

formulation of a QFT with the perturbative formulation of its Lagrangian (Butterfield, 2014, p.

31). Then, we may either interpret the renormalized Lagrangian or the bare Lagrangian (or both) in

order to extract dynamical information. Consider first the renormalized Lagrangian. However we

construct it, the renormalized Lagrangian together with the standard rules for deriving amplitudes

yields divergent quantities if we do not restrict the state space of the theory. Hence, if the goal
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is to interpret empirically successful theories, we have no reason to even attempt to draw a world

picture out of the renormalized theory or to take the renormalized Lagrangian to give us reliable

dynamical information about the target system. At the very least, we should show some degree of

caution.

Let us look at the bare Lagrangian. In the least naive perturbative construction of a renormal-

ized continuum QFT, we start with some initial bare Lagrangian with the “wrong" parameters and

we split it into a physical Lagrangian and a counter-term Lagrangian. The split is made in such

a way that the counter-terms cancel the original divergences in the scattering amplitudes derived

from the bare Lagrangian. And, by re-expressing the parameters of the bare Lagrangian, we find

that the original bare amplitude is actually finite. The problem, however, is that the parameters of

the bare Lagrangian diverge in the infinite cut-off limit. We precisely use the freedom that we have

in defining the original bare parameters to absorb the UV divergences that we find in the original

perturbative expansion. So, at least at this level, the original expression of the bare theory makes

little physical sense. How about the “true" bare theory, i.e., the theory defined by the renormalized

parameters evaluated at the cut-off Λ0 (see section 1.3.2)? As already emphasized in section 1.3.3,

there are concrete examples of theories where these bare parameters converge to a finite value in

the infinite cut-off limit. However, if we choose to identify the bare parameters in this way, the

resulting bare Lagrangian yields, once again, divergent predictions. Finite amplitudes are always

derived from the theory which has the “wrong" parameters, as it were, since we always need to re-

express the original couplings of the divergent amplitudes in order to absorb the divergences. And

so whether we look at the renormalized or the bare Lagrangian, it does not appear that we can jus-

tifiably draw a world picture out of the perturbative formulation of a continuum QFT constructed

under the continuum approach.

1.8 Conclusion

The aim of this chapter has been twofold: (i) to propose a general conceptual framework to un-

derstand the various aspects of renormalization theory based on the distinction between effective
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and continuum QFTs; and (ii) to show that the effective approach to renormalization offers a more

physically perspicuous, conceptually coherent, and widely applicable way to construct perturba-

tive QFTs in comparison to the continuum approach. The oddities of the continuum approach are

best illustrated by the absence of physical justification for the introduction of counter-terms, the

instrumental status of the bare theory, and the fact that, strictly speaking, the renormalized theory

yields divergent amplitudes if we do not restrict the state space of the theory. Evaluating the lim-

iting behavior of continuum QFTs also provides important conceptual and classificatory insights

into the scope of the continuum approach: only asymptotically safe and free theories are likely

to make consistent predictions at high energies in contrast to asymptotically and finitely unstable

theories. In comparison, the effective approach is applicable to any local QFT model (as far as

I am aware). The chapter concluded with some lessons for the debate over the interpretation of

QFTs in response to Butterfield and Bouatta’s paper (2014): the distinction between the effective

and the continuum approach gives reasons to doubt that perturbative continuum QFTs are yet ripe

for metaphysical analysis.
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Chapter 2: In Praise of Effective Theories

Our best current theory of matter, the Standard Model (SM) of particle physics, is widely

believed to be best formulated as an effective theory rather than as a putatively fundamental theory.

The probable breakdown of the SM at short distances makes this view intuitively attractive insofar

as an effective theory is designed to work well only within a limited domain. Yet, in light of

the virtues and vices exhibited by past theories, effective theories also appear to be too ad hoc

and complex to be even approximately true. My goal in this chapter is to clear the path for their

epistemic appraisal. Using the example of the SM, I argue that these two vices are merely apparent.

2.1 Introduction

The present educated view of the standard model, and of general relativity, is [...] that

these are the leading terms in effective field theories. (Weinberg, 1999, p. 246)

There is a growing trend in the philosophy of physics to think that our most fundamental and em-

pirically successful theories are best formulated as effective theories and thereby to align oneself

with what has become, in Weinberg’s words, the “educated" view in physics. This is intuitively

attractive. The Standard Model (SM) of particle physics, for instance, is likely to break down at

short distances and an effective theory is designed to work well only within a limited domain. The

effective formulation of our best theories also exhibits many other virtues compared to their pu-

tatively fundamental formulation, including empirical fit and mathematical consistency (e.g., Cao

and Schweber, 1993; Wells, 2012b), explanatory power (e.g., Hartmann, 2001), and robustness

with respect to potentially new types of high-energy physics (e.g., Wallace, 2006, 2011; Williams,

2019b; J. D. Fraser, 2018, 2020b). And if these virtues are reliable indicators of approximate

truth, as the historical record of physics suggests, we seem to be justified in thinking that our best
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effective theories offer a more reliable approximate picture of the world than their putatively funda-

mental counterparts and thus an epistemically privileged standpoint for engaging with foundational

and interpretative matters.

There is a problem which, in my view, has not received enough attention: our best effective

theories appear to be just too ad hoc and complex to be even approximately true. To be sure, some

philosophers have not failed to point out the ad hoc character of the restriction—or “cut-off"—

imposed on the domain of these theories, thereby suggesting that their success is better explained

by some arbitrary tinkering than by their approximate truth (e.g., D. Fraser, 2009, 2011; Butter-

field, 2014). In a similar vein, some philosophers speak of effective theories as “phenomenolog-

ical" theories, thereby suggesting that these theories accommodate data in some regime without

genuinely explaining them (e.g., Huggett and Weingard, 1995, p. 189; Butterfield, 2014, p. 65; see

also Grinbaum, 2008, 2019). Yet, these criticisms are often too sketchy—and when they are not,

little attention is paid to the details of realistic effective theories and to the variety and ambiguity

of their vices. Effective theory supporters have, of course, responded to some of these criticisms

(cf. Wallace, 2006, 2011; Williams, 2019b). But there are several issues which have not been

fully addressed in my sense: for instance, whether the introduction of an arbitrary cut-off is still

sufficiently well justified even if we concede that any appeal to new physics or to some putatively

more fundamental theory is too open-ended to be significant (e.g., our best effective theories might

not even be approximately derivable from the next theory).

The problem is all the more serious as there are good prospects for a distinct formulation of

our best theories that does not exhibit those vices. The traditional continuum version of the SM

is probably too mathematically ill-defined to present itself as a genuine alternative (cf., Wallace,

2006, 2011) and, even if we are comfortable with physicists’ standards of mathematical rigor, there

is still clear evidence that this version cannot be consistently extended across all scales (see, e.g.,

Gies and Jaeckel, 2004). Yet the case does not seem to be entirely settled. Recent developments in

the asymptotic safety program beyond the SM (and in quantum gravity) suggest that the SM might

still be best formulated as a continuum theory applicable across all scales (and without the seem-
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ingly ad hoc restrictions and arbitrarily complex features displayed by its effective counterpart).1

Let me emphasize at the outset that, if this program were to be successfully completed, it

would open up a serious case of transient underdetermination between two types of theories (or

formulations). We can indeed express the various continuum and effective versions of the SM in

the standard QFT language and adjust them without affecting their core theoretical content. So,

strictly speaking, the underdetermination is neither between two different QFT frameworks nor

between two particular QFT models in this scenario. Yet, taken literally, any continuum version

of the SM and its effective counterpart make conflicting claims about the structure and content of

the world. In particular, insofar as the effective version of interest makes inconsistent predictions

at short distances, we cannot take it to approximately describe continuum fields or, for that matter,

any kind of entities with a sufficiently fine-grained structure. We cannot even take it to literally

describe in its own terms large distance patterns of such entities. By contrast, and insofar as

the corresponding continuum theory makes consistent predictions across all scales, we can still

take it to approximately describe continuum fields and large distance field patterns despite being

incomplete (e.g., these continuum fields could still turn out to be “components" or “parts" of a

more fundamental type of entity).

Now, current experimental data do not resolve by themselves whether the SM is ultimately best

formulated as a continuum theory or as an effective theory. The conflict would also probably last

longer than usual given the increasing difficulty of obtaining new data at high energies. And since

we might have good reasons to prefer the effective formulation of the SM even if it can be consis-

tently formulated as a continuum theory and embedded in some fundamental and complete theory,

it does not seem that finding the successor of the SM would necessarily resolve the conflict. We

1See, e.g., Litim and Sannino (2014), Bond, Hiller, et al. (2017), Bond and Litim (2017), Bond, Litim, et al.
(2018), Mann et al. (2017), and Eichhorn (2018, 2019). Of course, if these results are deemed too premature, the point
would still be relevant, say, for the perturbative continuum formulation of Quantum Chromodynamics (QCD) and its
Effective Field Theory (EFT) counterpart with higher-order non-renormalizable terms. Another option would be to
look for candidates in the algebraic Quantum Field Theory (QFT) framework. But as rightly emphasized by Wallace
(2006, 2011) in my view, the inability to formulate realistic algebraic models and derive from them predictions about,
say, the branching ratio of the Higgs boson decay or the partial width of the Z boson decay in the case of the SM makes
this option a non-starter, at least as of now. For a defense of the foundational and interpretative relevance of AQFT,
see, e.g., D. Fraser (2009, 2011) and Kuhlmann (2010).
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would still be left with the general question of whether non-fundamental and incomplete theories

are best formulated as effective theories.2

My goal in this chapter is to defend the epistemic worth of effective theories through the ex-

ample of the SM. I will not attempt to offer an exhaustive catalog of virtues and vices as a means

to systematically compare effective and continuum theories and decide which one best accounts

for current experimental data in the particular case of the SM (assuming that we do have a con-

sistent continuum version of the SM). As I will briefly explain, the large amount of disagreement

in the philosophy of science literature about the exact list of relevant virtues, their meaning, and

their relative weight suggests that such a project is worthless. What is worthwhile, however, is to

focus on specific vices which are taken to undermine the epistemic worth of effective theories. In

what follows, I will argue that the vices of ad hocness and complexity are merely apparent. If we

further assume that effective theories are overall more virtuous than their putatively fundamental

counterparts, the argument clears the path for believing that the framework of effective theories is

currently our most reliable technology for engaging with foundational and interpretative matters

and that we should, in particular, take the SM to be best formulated as an effective theory.3

The chapter is organized as follows. Section 2.2 compares the continuum and effective formu-

lations of the SM. For simplicity, I will use the traditional perturbatively renormalizable continuum

version of the SM and the Standard Model Effective Field Theory (SMEFT), and pretend that the

2Note that the same issue would arise with General Relativity, although it is presumably harder to find a consistent
continuum theory in this case since the Einstein-Hilbert action is already perturbatively non-renormalizable (see, e.g.,
Niedermaier and Reuter, 2006, for a comprehensive introduction to the asymptotic safety scenario in quantum gravity,
and Eichhorn, 2019, for a recent report). Likewise, if we were to detect supersymmetric partners for the SM particles,
the same issue would arise with the continuum and effective supersymmetric extensions of the SM (see, e.g., Bertolini,
Thaler, and Thomas, 2013, for an EFT-friendly introduction to SUSY).

3Although I will not develop this point here, it is important to note that the framework of effective theories provides
a new and relatively simple foundational scheme for understanding the “miracle" of physics, i.e., what makes its
success possible in the first place, and which goes roughly like this: (i) use pragmatic, experimental, and historically
motivated considerations to select an appropriate set of degrees of freedom and principles relevant in some regime;
(ii) parametrize the effect of potentially new types of physics relevant in other unexplored regimes; (iii) evaluate the
sensitivity of the physics within the regime of interest to the physics characterizing these other regimes; (iv) if you
find a lack of sensitivity, use it to explain why the original choice of degrees of freedom and principles is epistemically
and practically justified; (iv’) otherwise, rely on the pattern of sensitivity to justify the claim that there is something
important missing in the original set of degrees of freedom and principles. (iv) is well illustrated by the continued use
of Newtonian gravitation in the solar system and (iv’) by the naturalness problem in the SM as a key motivation for
SUSY (see, e.g., S. Martin, 2016, pp. 3-5).

55



former remains consistent across all scales. Section 2.3 criticizes Wells’s defense of the SMEFT.

Section 2.4 examines the apparent ad hocness and complexity of this model. Section 2.5 concludes

with some remarks about Gell-Mann’s totalitarian principle, one of the key principles exemplified

by effective theories.

2.2 Two Ways of Looking at the Standard Model

Despite enjoying a predictive accuracy defying common standards (up to ten parts in a billion

in the electromagnetic sector) and having resisted several decades of attempts to find significant

discrepancies in collider experiments, the SM is widely believed to be incomplete. On the exper-

imental side, it does not account for the mass of neutrinos (inferred from atmospheric and solar

fluxes), the different amount of protons and neutrons in the universe (inferred from the Cosmic

Microwave Background), and the probable existence of “dark" matter (inferred from galactic ro-

tation curves). On the theoretical side, most of the current contenders for a theory of quantum

gravity imply that the SM (and more generally the QFT framework) becomes explanatorily and

empirically deficient close to the Planck scale lp ∼ 10−35 m (or, equivalently, close to the en-

ergy scale Ep ∼ 1016 TeV), if not much before. The SM also contains many features which, on

the face of it, cry out for an explanation: why, for instance, does the SM contain nineteen inde-

pendent parameters and why is its dynamics constrained by the particular gauge symmetry group

SU(3) × SU(2) × U(1)? Whoever supposes that unification and simplicity are indispensable

virtues of any complete theory of matter is likely to find the SM disappointing, to say the least.

Assuming, then, that there is a more fundamental, complete and empirically successful the-

ory down the line, we might still wonder whether the SM is likely to remain approximately true

and thus whether it is even worth interpreting in realist terms. As it turns out, the experimental

anomalies mentioned above and current data obtained in collider experiments do not resolve by

themselves whether the SM is best formulated as a renormalizable continuum QFT or as a non-

renormalizable effective QFT. The particles of the SM are represented in both cases in terms of

field-theoretic variables, say, a scalar field H(x) defined at each point x of the Minkowski space-
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time for the Higgs boson. The dynamics of the SM is also encoded in both cases in a mathematical

object called a Lagrangian density L, which contains various types of operators describing the

behavior of particles, say, a quartic self-interaction term λH4(x) with coupling λ for the Higgs bo-

son. Yet, the effective and continuum formulations of the SM still display incompatible features,

and I will illustrate them by comparing the original version of the SM with the SMEFT.

2.2.1 The Standard Model

The traditional dynamics of the SM takes the following schematic form (see, e.g., Donoghue,

Golowich, and Holstein, 1994; Burgess and Moore, 2006, for more details):

LSM = Lgauge + Lkinetic + LHiggs + LYukawa (2.1)

where Lgauge and Lkinetic describe the behavior of the gauge bosons (i.e., photons, W and Z bosons,

and gluons) and fermions (i.e., quarks and leptons) as well as their interactions, LHiggs the behavior

of the Higgs bosons and their interactions with the massive gauge bosons (i.e., W and Z bosons),

and LYukawa the interactions between the Higgs bosons and fermions.4 In total, LSM contains twenty

different kinds of Lagrangian operators (if we ignore hermitian conjugates) and nineteen free pa-

rameters (if we ignore neutrino masses and leptonic mixing angles).

Despite its apparent complexity, LSM contains a relatively small number of operators con-

strained by a few core principles compared to its effective counterpart Leff (cf. below). In partic-

ular, LSM is invariant under Lorentz, gauge and CPT symmetry transformations (i.e., respectively:

space-time translations, rotations and boosts; local phase transformations of the fermionic fields

and gauge field transformations; and inversion of the charge sign and spatio-temporal orientations).

LSM also satisfies the key constraint of perturbative renormalizability. At a superficial level, this

constraint simply means that LSM includes operators of mass dimension four or less and there-

fore only a finite number of (linearly) independent operators since all the operators of LSM must

4LSM contains additional ghost and gauge-fixing terms once the theory is quantized via path integral methods.
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have positive mass dimension.5 Once these symmetry principles and constraints are enforced, the

structure of the operators left is such that LSM exhibits additional baryon and lepton number “ac-

cidental" symmetries (i.e., global transformations of the overall phase of the quark fields and the

overall and individual phases of the lepton fields).

The constraint of perturbative renormalizability plays, in fact, a much more significant role than

simply constraining the set of operators allowed in LSM. As is well-known, realistic QFTs in high

energy physics suffer from a host of mathematical issues. For instance, if we attempt to directly

confront LSM to experiments, most of the quantities derived from the model by means of pertur-

bative methods contain integrals that diverge in their high-energy domain of integration and give

rise to inconsistent probabilistic predictions. The only solution found so far is to “renormalize" the

model: for instance, by imposing an upper energy bound Λ on these integrals (i.e., a high-energy

cut-off), absorbing their divergent Λ-dependent terms into the free parameters of the model, and

canceling these terms by adjusting appropriately the value of the free parameters. Perturbatively

renormalizable models have two remarkable features: (i) only a finite number of free parameters is

required to absorb all the divergent terms (order by order in perturbation theory); (ii) once all the

divergences have been absorbed, we can in principle take the cut-off Λ to infinity and consistently

define the model with “renormalized" parameters across all energy scales, at least according to

physicists’ standards of mathematical rigor.

All of this would be appealing if the application of perturbative methods in QFT had not its own

limitations. In particular, there are currently good reasons to believe that some of the renormalized

parameters of LSM still diverge at some finite high-energy scale and therefore that LSM cannot be

consistently defined across all scales (see, e.g., Gockeler et al., 1998a,b; Gies and Jaeckel, 2004).

On the brighter side, recent work in the asymptotic safety scenario beyond the SM suggests that

LSM can be consistently defined across all scales with a minimal number of modifications and by

keeping, in particular, only operators of mass dimension four or less.6 The experimental anomalies

5The mass dimension ∆ of a physical quantity is the power of that quantity expressed in terms of some energy
variable (i.e., energy∆) with natural units c = ~ = 1.

6See, in particular, Litim and Sannino (2014) and Bond and Litim (2017) for generic results about asymptotic safety
in gauge field theories with fermionic and scalar fields, and Bond, Hiller, et al. (2017) for a simple asymptotically safe
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mentioned above can also be accommodated by including only these types of operators (see, e.g.,

Gouvea, 2016, for the issue of neutrino masses). And this suggests that the formulation of the SM

as a (perturbatively) renormalizable continuum QFT is still very much a live option.

2.2.2 The Standard Model Effective Field Theory

We may also think that the probable explanatory and empirical failure of the SM at high ener-

gies makes it somewhat pointless to try to solve what appears to be a mere mathematical problem.

If we keep the cut-off Λ fixed at some finite value, the original issue of divergences does not even

arise, i.e., all the previous integrals are finite (ignoring potential divergences at low energies). Yet,

once we compute these integrals, we find that the predictions of the model contain various types

of Λ-dependent terms, and this might be deemed unsatisfactory since the cut-off is introduced “by

hand" and its value somewhat arbitrary. To ensure that the predictions of the model do not depend

on the cut-off, we need to absorb these terms into the free parameters of the model and cancel

them just as before. However, the original set of operators is typically not sufficient to absorb the

different types of Λ-dependent terms if we keep the cut-off fixed, i.e., we need to introduce new

operators with free parameters. And if we wish to absorb all such terms instead, say, of ignoring

the negligible ones in 1/Λn (n ≥ 1) for sufficiently low energies compared to Λ, we typically

need to introduce all the possible operators consistent with the symmetries of LSM. As it turns out,

we obtain the same result if we integrate out high-energy field configurations in the path integral

formulation of the theory. The high-energy contributions to predictions above some finite cut-off

typically generate all the possible dynamical terms structurally allowed by the original model at

lower energies. And so if we have any good reason to impose a finite cut-off for a given model,

this suggests that we should directly work with the model that includes all the operators allowed

by its symmetries in the first place, i.e., before we even renormalize it (this point will be relevant

in sections 2.4 and 2.5).

The Standard Model Effective Field Theory (SMEFT) is the simplest effective version of the

extension of the SM involving vectorlike fermionic fields.
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SM obtained by taking this suggestion seriously, and its dynamics takes the following schematic

form (see, e.g., Manohar, 2018; Brivio and Trott, 2019, for more details):

Leff = LSM + L(5) + L(6) + ...

= LSM +
1

Λ

∑

k

C
(5)
k Q

(5)
k +

1

Λ2

∑

k

C
(6)
k Q

(6)
k +O(

1

Λ3
) (2.2)

where the coefficients C(i)
k are dimensionless free parameters (the so-called “Wilsonian coeffi-

cients") and the (local) operators Q(i)
k , which are organized here by increasing order of mass di-

mension ∆i = i − 4, involve various products of the fields of the SM and their derivative at the

same space-time point. Leff is no longer invariant under the accidental symmetries exhibited by

LSM. Yet, Leff still has the same particle content as LSM and remains invariant under Lorentz, gauge

and CPT transformations.

There are two crucial differences between these two simple continuum and effective models.

First, Leff contains an infinite sum of (linearly) independent operators suppressed by inverse pow-

ers of the cut-off Λ. At a superficial level, this means that Leff fails to satisfy the constraint of

perturbative renormalizability. At a deeper level, the higher-order operators 1/Λi−4
∑

k C
(i)
k Q

(i)
k

typically generate violations of (perturbative) unitarity for energies of the order of the cut-off scale

and thereby give rise to inconsistent predictions at high energies.7 Hence, as a matter of principle,

Leff cannot provide reliable information about short distance features of the world and therefore

about the structure of continuum fields compared to LSM. Second, Leff contains an infinite number

of independent parameters. Since we cannot in practice fix their value by collecting an infinite

number of empirical inputs, there is no choice but to truncate Leff at some finite order in 1/Λ if we

are to make predictions at low energies E � Λ. The choice of a particular order depends on the

number of available empirical inputs and some desired predictive accuracy. And if we were able to

fix the infinite number of free parameters in experiments (or with the help of a more fundamental

7Unitarity is the assumption that the total sum of probabilities for the possible measurement outcomes of some
specific physical process add up to unity. For a discussion about the intricate link between violations of perturbative
unitarity and the onset of new physics, see, e.g., Aydemir, Anber, and Donoghue (2012) and Calmet and Casadio
(2014).
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theory), the most complete and exact version of the model would remain predictive and empirically

accurate only up to some finite value of the scale Λ (apart from the exceptional case, for instance,

where all the C(i)
k ’s are found to be zero).

Now, in principle, the exact form of the operators in Leff is determined by a systematic algo-

rithm constrained by the symmetries of the model. In practice, however, the task of specifying

these operators is incredibly arduous. The order i = 5 is somewhat special. The symmetries of the

model imply that there is only one operator in O(1/Λ), the so-called “Weinberg operator", which

involves products of the Higgs and lepton fields, breaks the lepton number symmetry, and gen-

erates neutrino masses (cf. Weinberg, 1979a). The situation becomes more complicated at order

i = 6. The specification of a set of independent operators depends on a particular choice of opera-

tor basis. In the “Warsaw basis", which is commonly used in effective theories beyond the SM, the

total number of operators in O(1/Λ2) which respect the original baryon number symmetry rises

to 59 (if we ignore Hermitian conjugates, see Fig. 2.1 below), and up to 2499 if we distinguish

between the quark and lepton fields (Abbott and Wise, 1980; Grzadkowski et al., 2010; Alonso

et al., 2014). The determination of the number of operators (i.e., not their specific form) has only

been achieved up to order i = 8 so far and it is expected that the number at each order grows

exponentially (Lehman, 2014; Lehman and A. Martin, 2016; Henning et al., 2017). The point of

all of this is of course that there is no point in trying to determine the exact form of the model. It is

possible to summarize Leff by means of an abstract analytic form involving an infinite hierarchy of

operators. In practice, however, the increasing complexity of the higher-order operators makes the

task of specifying the explicit form of the model impossible and actually useless if we are satisfied

with the accuracy reached with the lowest-order terms.

2.2.3 And the winner is?

The SMEFT has at first sight little to commend it. The systematic expansion of Leff in inverse

powers of the cut-off scale appears to constitute an ingenious technique for organizing, predicting,

and ultimately “saving” increasingly fine-grained phenomena—but not for getting even a glimpse
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at unobservable entities or structures.8 Worse still, the exponentially growing complexity of Leff

suggests that we are pushing the unifying power of the QFT language to its limits when we attempt

to formulate effective QFTs. In a word: LSM easily wins.

An analogy might be helpful here. The increasingly large lists of independent operators at each

order in the expression of Leff have, as it turns out, something disturbingly akin to the mathematical

tables that have been used by astronomers to register and further compute planetary positions

up until the 20th century (see Figs. 2.1-2.2 below, and Norberg, 2003, for more details about

these tables, often referred to as ephemerides). The mathematical language of the operators listed

in Fig. 2.1 is obviously more advanced. These operators are also derived from more abstract

principles than those used to derive the value of the orbital elements in Fig. 2.2 (namely, celestial

Newtonian mechanics together with perturbative methods and the information contained in other

ephemerides). Yet the two types of mathematical tools still have striking features in common. To

mention only the three most important ones: (i) the table in Fig. 2.2 can be used to systematically

classify the different types of phenomena associated with the orbit of a specific planet according

to their relevance during a specific period of time in the same way the operators of Leff can be

used to systematically classify the different types of phenomena associated with some high-energy

interaction process according to their relevance at some energy scale; (ii) once combined with a

set of instructions or “precepts”, the table can be used to compute the future positions of the planet

up to some desired accuracy in the same way Leff together with the standard perturbative methods

can be used to compute probabilities for measurement outcomes up to some desired accuracy;9 and

(iii) both the size of the table and the number of operators in Leff dramatically increase with the

desired accuracy.

Now, the main role of the mathematical tables used in astronomy is to derive precise predictions

in a systematic manner, not to account even partially for the complex causal structure underlying

8This instrumentalist interpretation actually fits EFT practitioners’ own avowal that one of the main advantages of
effective theories beyond the SM is that they allow us to accommodate and systematically organize the increasingly
large and complex amount of data collected in current high-energy experiments (see, e.g., Brivio and Trott, 2019, pp.
40-41).

9Astronomers even used to call the combination of a set of tables and precepts a “theory” for the specific planet
under investigation (Norberg, 2003, p. 180).
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the orbits of planets. If we treat the SMEFT along the same lines, we might raise doubts as to

whether the various higher-order operators in Leff really stand for fine-grained features of new

physics. These operators might simply be treated as mathematically efficient ways of systemati-

cally accommodating data beyond the SM. And if we follow this route, we might doubt that the

negligible contributions of these operators to low-energy predictions reveal anything special about

the robustness of the low-energy content of effective QFTs with respect to potentially new types of

high-energy physics contrary to what Williams (2019b) and J. D. Fraser (2018, 2020b) claim for

instance. In a word: if we take this analogy seriously, it seems that Leff has no distinctive epistemic

significance compared to LSM and is primarily introduced for computational purposes.

2.3 Defending the Virtues of Effective QFTs En Bloc

As far as I am aware, Wells (2012a,b) is the only one who has attempted to systematically

defend the epistemic worth of the SMEFT and it will be instructive to examine his strategy in

some detail.

Wells first proposes to compare the respective virtues and vices of Leff and LSM along two dif-

ferent classifications. According to Ritcher’s, which is supposed to illustrate a physicist’s position

on the matter, the epistemic worth of an empirically successful theory (or model) is best measured

by its falsifiability and simplicity (Richter, 2006). Wells claims that LSM wins on the count of

falsifiability since Leff contains an infinite number of free parameters which can be adjusted to

accommodate new data. LSM is also simpler since it contains only a finite number of independent

terms and free parameters. As Wells (2012b, p. 65) rightly recognizes, the criterion of falsifiability

is not always a reliable indicator of approximate truth—a radically false theory, for instance, might

take many predictive risks. But he grants nonetheless that LSM is overall more virtuous than Leff

on Ritcher’s classification.

According to Thagard’s (1978) classification, which is supposed to stand for a seminal philo-

sophical view on the matter, the epistemic worth of an empirically successful theory is best mea-

sured by its ability to explain or unify diverse phenomena (consilience), the minimal number of
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H†DμH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
μνG

Aμν

QHG̃ H†H G̃A
μνG

Aμν

QHW H†HW I
μνW

Iμν

QHW̃ H†H W̃ I
μνW

Iμν

QHB H†H BμνB
μν

QHB̃ H†H B̃μνB
μν

QHWB H†τIHW I
μνB

μν

Q
HW̃B

H†τIH W̃ I
μνB

μν

6 : ψ2XH + h.c.

QeW (l̄pσ
μνer)τ

IHW I
μν

QeB (l̄pσ
μνer)HBμν

QuG (q̄pσ
μνTAur)H̃ GA

μν

QuW (q̄pσ
μνur)τ

IH̃ W I
μν

QuB (q̄pσ
μνur)H̃ Bμν

QdG (q̄pσ
μνTAdr)H GA

μν

QdW (q̄pσ
μνdr)τ

IHW I
μν

QdB (q̄pσ
μνdr)H Bμν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D μH)(l̄pγ

μlr)

Q
(3)
Hl (H†i

←→
D I

μH)(l̄pτ
Iγμlr)

QHe (H†i
←→
D μH)(ēpγ

μer)

Q
(1)
Hq (H†i

←→
D μH)(q̄pγ

μqr)

Q
(3)
Hq (H†i

←→
D I

μH)(q̄pτ
Iγμqr)

QHu (H†i
←→
D μH)(ūpγ

μur)

QHd (H†i
←→
D μH)(d̄pγ

μdr)

QHud + h.c. i(H̃†DμH)(ūpγ
μdr)

8 : (L̄L)(L̄L)

Qll (l̄pγμlr)(l̄sγ
μlt)

Q
(1)
qq (q̄pγμqr)(q̄sγ

μqt)

Q
(3)
qq (q̄pγμτ

Iqr)(q̄sγ
μτIqt)

Q
(1)
lq (l̄pγμlr)(q̄sγ

μqt)

Q
(3)
lq (l̄pγμτ

I lr)(q̄sγ
μτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγμer)(ēsγ
μet)

Quu (ūpγμur)(ūsγ
μut)

Qdd (d̄pγμdr)(d̄sγ
μdt)

Qeu (ēpγμer)(ūsγ
μut)

Qed (ēpγμer)(d̄sγ
μdt)

Q
(1)
ud (ūpγμur)(d̄sγ

μdt)

Q
(8)
ud (ūpγμT

Aur)(d̄sγ
μTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγμlr)(ēsγ
μet)

Qlu (l̄pγμlr)(ūsγ
μut)

Qld (l̄pγμlr)(d̄sγ
μdt)

Qqe (q̄pγμqr)(ēsγ
μet)

Q
(1)
qu (q̄pγμqr)(ūsγ

μut)

Q
(8)
qu (q̄pγμT

Aqr)(ūsγ
μTAut)

Q
(1)
qd (q̄pγμqr)(d̄sγ

μdt)

Q
(8)
qd (q̄pγμT

Aqr)(d̄sγ
μTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄jpur)εjk(q̄

k
s dt)

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt)

Q
(1)
lequ (l̄jper)εjk(q̄

k
sut)

Q
(3)
lequ (l̄jpσμνer)εjk(q̄

k
sσ

μνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [9]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices.

– 49 –

Figure 2.1: Complete table of the six-dimensional operatorsQk preserving the baryon number symmetry in
the SMEFT. The various letters X , L, R, ψ, G, W , B, H , l, e, q, u, d stand for various fields and products
of fields, and the remaining letters for various indices, constants, and operators acting on other operators
(from Alonso et al., 2014, p. 49; originally derived in Grzadkowski et al., 2010).

its auxiliary hypotheses, distinct kinds of entities and ad hoc assumptions (simplicity), and the

amount of features it shares with other approximately true theories (analogy). Wells thinks that the

competition between LSM and Leff is tighter in this case. The two models are equally consilient

given current experimental data. LSM wins again with respect to the criterion of simplicity. With

respect to the criterion of analogy, however, Wells contends that Leff wins since it fits better with

the form of low-energy effective Lagrangians (e.g., Chiral Perturbation Theory) and the most com-
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Figure 2.2: The Ephemeris of Venus for September and October 1855 (reproduced in Campbell-Kelly et
al., 2003, p. 176; originally from the American Ephemeris and Nautical Almanac, United States Naval
Observatory. Nautical Almanac Office, 1855, p. 330).
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plete forms of the theories which have been superseded so far (e.g., the Newtonian gravitational

theory with relativistic correction terms derived from classical General Relativity). Thagard’s clas-

sification, Wells concludes, does not favor either model. But if we “average" over Ritcher’s and

Thagard’s classifications, LSM appears to be slightly better than Leff.

The core of Wells’s argument is that this type of epistemic assessment is misleading insofar as

it fails to take into account the relative importance of the various criteria used to evaluate the two

models. Wells grants thatLeff is less simple and falsifiable. But he also claims that these defects are

counterbalanced by other non-negotiable virtues: namely, “observational consistency” and “math-

ematical consistency” (Wells, 2012b, p. 69).10 By ‘observational consistency’ he means that the

observational consequences of a theory are “consistent with all known observational facts” (2012b,

p. 68). Wells does not explain why he thinks that Leff wins on this count. But he presumably takes

Leff to have more extensive and appropriate resources to account for experimental discrepancies.

On the other hand, Wells does not explicitly define the notion of mathematical consistency but

uses instead several examples to illustrate it, including the fact that an explicit mass term in the

Lagrangian density of a pure gauge theory is “mathematically inconsistent” with the invariance of

the Lagrangian under gauge transformations (2012b, p. 68). And here again, Wells takes Leff to

win:

The claim behind the ascendancy of effective theories is that unless there is good and

explicit reason otherwise, consistency requires that a theory have all possible interac-

tions consistent with its symmetries at every order. (2012b, p. 69)

Overall, then, Leff prevails over LSM because it is better equipped to accommodate current and

future data and because it includes all the possible operators allowed by the core principles of the

original model.

Wells’s account still suffers from severe issues. Suppose first that we grant that either Ritcher’s

10For a similar strategy in the philosophy of science literature, see, e.g., Douglas’s (2009; 2013) distinction between
“minimal criteria”, i.e., necessary criteria for taking a theory to be approximately true, and “ideal desiderata”, i.e.,
criteria which reinforce our confidence in the approximate truth of a theory but which might be found wanting without
affecting its epistemic worth.
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or Thagard’s classification picks an exhaustive list of decisive epistemic virtues for theory-assessment

and that the meaning of these virtues is unambiguous. Then, the case for Leff is actually much

worse than Wells thinks. Since there are good reasons to believe that both LSM and Leff are incom-

plete, the crucial question is whether they are falsifiable at sufficiently low energies (compared,

say, to the Planck scale). And the issue with Leff is not merely that it is less falsifiable than LSM at

low energies but also that it becomes predictively powerless if we try to make it as “observationally

consistent" as possible. Strictly speaking, the most complete version of Leff does not even make

any prediction since it is impossible to fix the value of an infinite number of free parameters with

experimental inputs. Concerning the criterion of analogy, Wells begs the question. He assumes that

Leff shares more features with other approximately true models than LSM. But this requires having

justified that incomplete or non-fundamental theories are best formulated as effective theories in

the first place.

Suppose now that we acknowledge the importance of distinguishing between negotiable and

non-negotiable criteria. One might still wonder whether Wells’s non-negotiable criteria are suffi-

ciently clear and distinct to do the job he wants them to do. Take observational consistency for

instance. Wells rightly concedes that we do not need to have tested all the possible observational

consequences of a theory or that a theory does not need to fit all available data in order to show that

it is more observationally consistent than its competitors. But even if we grant this point, the no-

tion of “observational consistency” is still too vague to support Leff against LSM. For instance, we

might distinguish between predictive accuracy (numerical agreement between the predictions of

the theory and available data), predictive competency (the ability of the theory to fit with available

data), predictive quality (its ability to fit with a large variety of relevant data), predictive resilience

(its ability to fit with new data), predictive novelty (its ability to make new predictions compared to

previous theories), and predictive power (the ratio of independent predictions over the number of

free parameters). Some of these virtues are certainly negotiable if the theory displays other kinds

of virtues, such as explanatory power and simplicity. For instance, since the SM is likely to be su-

perseded one day, we should probably take the predictive accuracy of a model in this context to be
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less significant than its ability to explain phenomena within its domain in simple terms. We should

also probably take the decreasing predictive power of Leff to be more significant than its increasing

predictive accuracy as we include increasingly many operators. And, of course, the same sorts of

issues affect Wells’s notion of “mathematical consistency”.11

Suppose at last that we grant that the criteria of observational consistency and mathematical

consistency are sufficiently clear and distinct. Wells’s claim that these virtues counterbalance the

defects of effective QFTs still remains too elusive in the absence of an exhaustive list of virtues

and vices with specific weights. Otherwise, we might wonder whether he has forgotten another

non-negotiable virtue or vice which tips the scale in favor of LSM. Discussions in the philosophy

of science literature about the importance of theoretical virtues (or super-empirical virtues, or com-

plementary virtues) in matters of epistemic assessment (or theory-choice, or theory-appraisal, or

theory-acceptance) have a long and winding history. What is striking is the amount of disagree-

ment about what constitutes an exhaustive list of relevant virtues for assessing the epistemic worth

of theories, even in well-delineated contexts (see, e.g., Kuhn, 1977; Newton-Smith, 1981, chap.

IX, sec. 8; McMullin, 1996; Keas, 2018; Schindler, 2018). In addition to empirical fit, consis-

tency and coherence, philosophers and historians of science often appeal to fertility, fruitfulness,

scope, generality, explanatory power, unifying power, naturalness, durability, robustness, structural

continuity, simplicity, parsimony, and elegance (among other virtues).

I am not going to attempt to define all these virtues. Suffice it to say that the list can probably

be extended ad nauseum by distinguishing between more fine-grained virtues (as in the case of

observational and mathematical consistency) and including particular virtues made vivid in specific

contexts (see Wells, 2018, for an attempt to draw a relatively exhaustive list in the context of high

energy physics). The list can also probably be reshuffled in various ways depending on how we

understand controversial virtues such as “explanatory power” and “simplicity” and on how we

classify redundant ones (e.g., the ability to make novel predictions as an empirical virtue or as a

11In particular, it does not account for the difference between logical consistency, external coherence, mathematical
well-definedness, and lack of ad hoc assumptions (among other virtues), and even the criteria of logical consistency
and mathematical well-definedness appear to be negotiable in actual physics practice (see, e.g., Meheus, 2002; Davey,
2003; Vickers, 2013, for a discussion).
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specific type of fertility). Assigning specific weights to each virtue and deciding whether some

virtue is truly epistemic or merely pragmatic is likely to be controversial too, not to mention that

some virtues appear to be sometimes in conflict with one another (e.g., empirical fit and simplicity).

So not only does it appear to be hard to maintain that observational and mathematical consistency

is non-negotiable, or even intrinsically truth-conducive for that matter (see Wells, 2012b, p. 68,

footnote 1, for his insistence on the epistemic notion of “best"). It is also probably worthless to

try to give an exhaustive list of relevant epistemic virtues and assign specific weights to them.

Wells is right to emphasize that there is no choice but to rely on the properties of competing

theories (or models) if we are to decide between them, whether we take the historical record of

successful theories to make some properties more truth-conducive than others (see, e.g., Newton-

Smith, 1981, pp. 225-226; Schindler, 2018, chap. 1) or use these properties in meta-inductive

arguments to isolate the appropriate theory (see, e.g., Dawid, 2013; Castellani, 2019, p. 176). The

stakes are high too, especially when it comes to allocating resources for constructing experimental

devices which are more likely to provide the relevant test for one specific theory as opposed to

others. For instance, we might think that building increasingly large particle colliders to test small

experimental deviations captured by Leff is wrong-headed and that we should rather look for sig-

natures of quantum gravity in gravitational wave experiments with the hope of restricting the set

of models in which LSM could be exactly embedded. Be that as it may, Wells’s insistence that the

observational and mathematical consistency of effective QFTs counterbalances their vices appears

to be misguided, and his overall strategy unlikely to succeed.12

To be fair, effective QFTs do exhibit relatively unambiguous virtues (see, e.g., Cao and Schwe-

ber, 1993, sec. 3; Hartmann, 2001). For instance, and as already emphasized, the structure of

effective QFTs makes them easily fit with new empirical data and maximize their predictive ac-

curacy in limited regimes. The introduction of a cut-off easily solves some of the most pressing

mathematical issues underlying realistic QFTs. Since Leff has the same particle content and core

12A similar conclusion applies to the various attempts made in the literature to elevate consistency and mathematical
well-definedness as central criteria for selecting theories worthy of foundational scrutiny (see, e.g., D. Fraser, 2009;
Kuhlmann, 2010).
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symmetries asLSM, we might also expect thatLeff has appropriate explanatory resources to account

for low-energy phenomena. The higher-order operators of Leff also make it extremely fruitful for

deriving constraints on potentially new high-energy phenomena. And, to give one last and perhaps

more controversial example, effective QFTs even appear to be beautiful in the eyes of some EFT

practitioners (cf. Shankar, 1999, pp. 54-55).

The real difficulty is whether the apparent ad hocness and complexity of effective QFTs do not

undermine the overall value of these virtues. The vice of ad hocness is often taken to signal that

the arbitrary intervention of some theorist explains better the success of a model (or hypothesis)

than its approximate truth. Likewise, the vice of complexity is often taken to signal that a model

(or hypothesis) is introduced to accommodate a complex data set rather than to genuinely explain

it. The next section assesses whether effective QFTs actually exhibit these two vices (instead of

attempting to make any sort of systematic epistemic balance sheet as explained above).

2.4 Too Ad Hoc and Complex to be True?

Effective QFTs have been mainly criticized for their ad hocness and complexity (e.g., Redhead,

1999; Buchholz, 2000; D. Fraser, 2006, 2008, 2011, 2018; Butterfield, 2014; Butterfield and

Bouatta, 2015). Yet, the criticisms raised are often too sketchy to make it clear whether there is

anything intrinsically wrong with these theories. Consider Redhead as a warm-up example. He

briefly mentions that the EFT program requires us to give up “the search for an ultimate underlying

order characterized by simplicity and symmetry” and “retreat to a position that is [...] somehow

less intellectually exciting” (Redhead, 1999, p. 40). But if the point is merely that a never-ending

succession of increasingly comprehensive effective theories with infinitely many terms at each

stage is aesthetically unpleasing, we might wonder whether we are not treating these theories

unfairly. On the other hand, philosophers and physicists who defend effective QFTs often say too

little about their ad hocness and complexity to make it clear whether there is not some way in

which their epistemic worth is undermined by these two vices (e.g., Hartmann, 2001; Wallace,

2006, 2011; Wells, 2012b; Williams, 2019b). I will now argue that the ad hocness and complexity
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of effective QFTs are merely apparent.

2.4.1 Ad hocness

Effective QFTs display at first sight a variety of ad hoc features. The most discussed in the

literature is the introduction of a finite cut-off in the formulation of our best current effective QFTs

(e.g., D. Fraser, 2006, p. 160; 2008, pp. 552-553; Strocchi, 2013, p. v; Butterfield, 2014, p. 40;

Butterfield and Bouatta, 2015, pp. 23, 38). For instance, D. Fraser writes:

[...] a compelling argument against relying on the cutoff representation is that intro-

ducing cutoffs is an ad hoc solution to the problem of infinite renormalization. We are

not justified in introducing the assumptions that space is discrete and all systems are

finite in spatial extent solely because it is a simpler means of achieving the end goal of

obtaining a mathematically well-defined and consistent representation. (2006, p. 160)

Here D. Fraser assumes that effective QFTs need to be defined on a lattice of finite spacing and

extent and include only a finite number of degrees of freedom in order to fit the standards of

mathematical well-definedness exhibited in the axiomatic, algebraic and constructive programs

(see, e.g., Summers, 2016). In a similar vein, although somewhat more cautiously, Butterfield

writes:

Here I will develop one position, often called the effective field theory program (or:

approach). It is based not on confidence about the two topics above [viz. using QFT

at high energies and accepting results obtained from a heuristic formalism rather than

by rigorous mathematical proofs] but on an opportunistic or instrumentalist attitude to

being unconfident about them” (2014, p. 40; see also Butterfield and Bouatta, 2015, p.

23)

So the worry, made especially clear in D. Fraser’s quote, is that the finite cut-off Λ in Leff is intro-

duced just to solve the embarrassing mathematical issues exhibited by LSM at high energies. We
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may think that the probable breakdown of the entire QFT framework at high energies and the ex-

perimental anomalies mentioned in section 2.2 provide good reasons to impose explicit restrictions

on the domain of the SM. We are simply wrong: these sorts of reasons, or so the argument goes,

are too open-ended to justify the introduction of an arbitrary finite cut-off.13

Of course, if the introduction of a finite cut-off or “cut-off hypothesis" in short happens to

be justified by some other means, we can treat the simplicity and efficiency of this solution as

a side-benefit rather than as its main rationale. Suppose, then, that we grant that the cut-off hy-

pothesis needs to be assessed independently of speculative considerations arising from quantum

gravity and experimental anomalies (cf., e.g., D. Fraser, 2009, p. 561). There are still at least two

comparatively good reasons to keep a finite cut-off instead of taking it to infinity.

The first, which resonates with Butterfield’s quote above, is a matter of epistemic modesty.

Why should we believe that our best models at a given time will remain reliable across all scales in

the first place? There does not seem to be any good reason to be rather confident than unconfident.

The predictive success of a model in a limited regime supports the claim that the model reliably

accounts for phenomena in that regime, not that it will remain reliable across all regimes (or, for

that matter, become unreliable in some unexplored regime). Without further empirical evidence,

we are rather justified in restricting the scope of the model to that regime instead of extending it

to all regimes. And, at least at first sight, appealing to the foundational or interpretative virtues

of putatively fundamental models should not affect this conclusion insofar as we aspire to use our

most reliable models for engaging with foundational and interpretative matters in the first place.

The second is a matter of instrumental conservatism. The repeated predictive failure of our

best past models at some scale provides us with good reasons to believe that the current ones will

endure the same fate (independently of whether they are approximately true and of whether there

is ultimately some maximally empirically adequate model). And since there is nothing intrinsic

to LSM which suggests that it has some special status compared to its ancestors, we seem to have

13D. Fraser (2008, pp. 552-553) also claims that it is “illegitimate" to appeal to external considerations arising from
quantum gravity to justify the introduction of a finite cut-off. But besides their speculative character and the desire to
implement the original heuristics of the QFT program (as discussed below), it is unclear whether there is anything else
to justify the “illegitimacy" of such appeal.
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good reasons to believe that the predictions of LSM will break down at some scale and to make this

feature explicit in its formulation. Of course, as soon as we take into account more “speculative"

considerations (e.g., the fate of the SM given quantum gravity), they obviously tip the scale in favor

of the SMEFT. Yet, the important point is that even if we put these considerations aside, there are

still comparatively good reasons to introduce a finite cut-off, i.e., the cut-off is not just introduced

for the purpose of solving mathematical issues.

I have considered a relatively standard meaning of ‘ad hocness’ so far: namely, the cut-off

hypothesis is introduced for the sake of saving a model from refutation (assuming that a model

should be rejected if it is inconsistent). There is yet another relevant meaning of ‘ad hocness’ at

play here. Philosophers and mathematical physicists eager to formulate an exact and mathemati-

cally rigorous formulation of QFT often take it to be a defect of effective QFTs that they do not

exactly satisfy the “fundamental principles of relativistic quantum physics” (Buchholz, 2000, p. 2;

see also D. Fraser, 2006, 2008, 2011). The worry, in other words, is that the introduction of a finite

cut-off is ill-integrated with the principles of relativistic QFT and therefore somewhat contrived or

unnatural given the original heuristics of the QFT program in high energy physics.14 In general,

a finite cut-off indeed breaks at least some of the core symmetries of a QFT at the level of its

state space (e.g., the separation between high- and low-energy field configurations is not invariant

under momentum translation, even with a smooth cut-off). And if we endorse stringent standards

of mathematical rigor, the lattice formulation of QFTs fully breaks Lorentz invariance.

How should we respond to this new concern? The best answer, I believe, is to point out that

there is no reason to expect the heuristics of a research program to be infallible.15 The princi-

ples of quantum mechanics and special relativity may well fail to be exactly unified in a realistic

14For a discussion about this specific notion of ad hocness in the philosophy of science literature, which is also
often associated with the idea of “coherence”, see, e.g., Leplin (1975) and Schindler (2018).

15Another response is to point out that effective QFTs “approximately" satisfy the original principles of relativistic
QFT—by emphasizing, for instance, that even lattice QFTs (and not merely their predictions) are “approximately"
Lorentz invariant (cf. Williams, 2019b, pp. 17-18). One might be worried (in particular) about the ambiguous notion
of “approximation" at work here, especially when it comes to comparing different theories or symmetry groups (e.g.,
is it “good enough" that a lattice QFT respecting some hypercubic symmetry takes the form of a Lorentz invariant
continuum QFT in the zero lattice spacing limit?). I will leave this issue aside since it would require a far more
extensive discussion than I can provide here.
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continuum field theory and many historical cases support such cautious attitude, including the ulti-

mate empirical irrelevance of the ether hypothesis after three hundred years of attempts to use it to

develop models of gravitational and electromagnetic phenomena. We might also justify the nego-

tiable character of these heuristics by defending a more pragmatic approach towards foundational

matters—assuming, again, that what drives foundational inquiry is to understand what makes our

most reliable models work in the first place. As Gross felicitously puts it,

I am not sure it is necessary to formulate the foundations of QFT, or even to define

precisely what it is. QFT is what quantum field theorists do. For a practicing high

energy physicist, nature is a surer guide as to what quantum field theory is as well to

what might supersede it, than is the consistency of its axioms. (1999b, p. 56)

The point is of course not that a foundationalist attitude towards QFT is necessarily mistaken, but

rather that it is poorly motivated to reject the cut-off hypothesis simply because it does not fit with

what we imagine QFT to be based on former research programs.

In a similar vein, we might also be worried that the finite cut-off does not arise “from within"

compared to other natural scales. In classical electromagnetism, for instance, the speed of light

arises as a direct consequence of combining Maxwell’s equations in a vacuum with one another

(i.e., c is the inverse square root of the product of the permittivity and permeability of free space).

By contrast, the high-energy cut-off in our best current effective QFTs is introduced “by hand" as

a new dimensionful scale, and we might take its extrinsic and arbitrary character to provide one

more reason to believe that its introduction is poorly motivated.

In response, we should first note that the imposition of a cut-off “by hand" is not as problematic

as we might think. Existing cases of low-energy effective theories, such as the Fermi theory of

beta decays, support the view that the cut-off is ultimately determined by the content of a more

fundamental and complete theory. We do not yet have such theory for our best current effective

QFTs. But it is not as if this should lead us to think that the introduction of a cut-off is absolutely

ungrounded or as if there is no matter of fact about its exact value (or at least about some physically

salient value). In QFT, the cut-off typically corresponds to the mass of a heavy field unaccounted
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for by the effective theory of interest and is thus naturally interpreted as a threshold energy for the

production of a new type of heavy particle.

Still, the absence of empirical inputs at the relevant scales in current collider experiments im-

plies that the value of the cut-off in our best effective QFTs is not fixed, and we might take this to

be a good enough reason to reject the cut-off hypothesis. There is indeed something artificial or

cooked-up about imposing an upper bound on the domain of a model if we do not yet have reliable

means to determine its exact value. And to make the matter even worse, the probable breakdown

of our best QFTs at high energies can be modeled with widely different types of cutoffs. As Wal-

lace (2006, 2011) and Williams (2019b) have already emphasized, renormalization methods can

be used to show that the low-energy content of such QFTs is typically largely independent of the

exact value and type of the cut-off (setting aside the naturalness problem). Yet, we might still take

it to be a defect of these QFTs that they contain such an arbitrary and somewhat idle feature (or

“surplus structure").

I think that the final word on this specific issue is twofold. First, if we have good reasons to

believe that some model is incomplete, it does not seem to be a default of the model that it contains

an arbitrary scale parametrizing its probable predictive breakdown, regardless of whether it accu-

rately represents the world or not. The introduction of an arbitrary cut-off in the formulation of our

best models appears to be even the most reliable way to account for our ignorance about potentially

new types of high-energy physics—the most “responsible" way to be ignorant, as it were. Second,

if we have appropriate empirical inputs at low energies and endorse the naturalness assumption,

i.e., the assumption that the dimensionless parameters of an effective theory are of order one, the

value of the cut-off remains a prediction of the theory. The cut-off hypothesis thus fails to be ad

hoc in its most traditional sense, i.e., it is falsifiable or empirically testable (see, e.g., Hesse, 1961;

Popper, 1965). And even if the naturalness assumption fails in some cases, as it is currently the

case with the (normalized) mass parameter of the Higgs field for instance, the determination of the

value of the cut-off remains nonetheless a matter of experimental investigation.16

16See, e.g., Williams (2015) for a philosophical analysis of the naturalness problem.
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But perhaps the “best", say, the most simple and elegant formulation of an incomplete or non-

fundamental theory should not include any explicit restriction on its domain. As Baker puts it:

Wallace rightly points out that QFT cannot be trusted to accurately describe reality

outside its domain of application, in the very high-energy regimes which have not

yet been experimentally investigated and where the laws of quantum gravity can be

expected to apply. He sometimes suggests that this is a reason to prefer theories like

LQFT [Lagrangian QFT] which break down at high energies (Wallace, 2011, p. 120).

But the upshot is rather that whatever version of QFT we interpret, we should not

trust its implications within the high-energy domain. By analogy, we trust Newtonian

mechanics only in the low-speed domain where it approximates relativity, but this is

no reason to prefer a theory that breaks down as objects approach the speed of light.

Still, Wallace is right that when standard axioms for AQFT assign observables to every

arbitrarily small region, this is not necessarily a virtue. (Baker, 2016, pp. 5-6)

Although Baker concedes that the extension of a theory (or model) beyond its regime of validity

is not necessarily a good thing, he still suggests that there is something virtuous about working

with the putatively complete version of a theory, even if we know it to be limited in some way

or another. Baker does not explain why. But we can imagine at least two main reasons for it.

First, the introduction of an explicit cut-off in a theory is interpretatively irrelevant if we can

appropriately interpret the theory with the help of relevant pragmatic considerations concerning

its domain of applicability: for instance, by keeping in mind that the theory is not meant to give

a fundamental or complete picture of the world. Second, the theory without any explicit cut-off

exhibits important theoretical virtues compared to its cut-off counterpart, such as simplicity and

elegance for instance. We might take those virtues to counterbalance the fact that the structure of

the theory is not explicitly adjusted according to its limited scope.

I will discuss the second point below. In response to the first, having a theory which contains

explicit information about its probable empirical limitations does make the interpretative task less

arbitrary. Without such information, we might simply disagree about the best interpretation of a

76



theory depending on how seriously we take its probable future success, or we might take some

parts of a theory more seriously than they deserve to be taken. As Williams (2019b) rightly argues

in the context of QFT in my view, we are less likely to fall into those types of interpretative snares

if we adjust the explanatory scope of a theory with the set of phenomena it accurately predicts

and discard its explanatorily irrelevant parts (which is, more generally, the central message of the

selective strategy advocated by Kitcher, 1993, Psillos, 1999, and Chakravartty, 2007, for instance).

The issue of ad hocness is not entirely settled yet. It seems that we can still modify at will

the structure of an effective theory to make it fit with any sort of data. As we probe higher energy

scales in experiments, we can add higher-order operators and adjust their parameters (i.e., the

Wilsonian coefficients C(i)
k in Eq. 2.2) to compensate for experimental anomalies. In a way, an

effective theory appears to have the ability to escape any kind of empirical refutation just as a

polynomial equation specifying some curve can be adjusted at will to make it fit with a discrete

set of data points (see, e.g., Forster and Sober, 1994; Sober, 2008, chap. 1, for a discussion of the

curve-fitting problem). And so it seems that the predictions of an effective theory break down only

insofar as it fails to be predictive, i.e., when we have been forced to introduce a sufficiently large

number of operators to accommodate data and find ourselves without enough empirical inputs to

fix the free parameters of additional operators (with the infinite expansion as a limiting case).

This last point, however, is not entirely correct. An effective theory is still defined by specifying

a particular set of degrees of freedom and symmetries. These are, in turn, used to specify the types

of phenomena that the theory can account for (e.g., the particles that we detect in experiments).

And we may perfectly detect new short-lived particle tracks in high-energy collisions which are not

predicted by the effective theory at stake. This means that an effective theory remains falsifiable

despite having a highly flexible structure.

Likewise, the possibility of adding increasingly many “correction terms” in an effective theory

does not make it ad hoc or cooked-up either. This is simply the wrong way of looking at the

matter. As explained above, if we keep a finite cut-off and require the exact predictions of the

model to be cut-off independent, we are forced to introduce all the possible terms consistent with
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the degrees of freedom and symmetries of the model. Equivalently, if we eliminate high-energy

degrees of freedom in a given model, the resulting low-energy effective model reproducing exactly

the predictions of the original model at low energies includes all the possible terms consistent with

its symmetries. That is, when we formulate an effective model such as Leff, we are not saving some

original model from refutation by adding correction terms and fine-tuning their parameters. If the

predictions of the original model are likely to break down at some scale, the most complete and

reliable description of the physics associated with the set of degrees of freedom and symmetries

of the model in its limited domain includes all possible terms allowed by its structure. There

is nothing principled about truncating the expansion of the model at a specific order as opposed

to another (including the lowest orders). The appropriate choice of truncation depends on some

desired accuracy and on the number of available empirical inputs. And so it appears to be even

more ad hoc and arbitrary, albeit convenient, to restrict the model to a specific order than to include

all the terms allowed by its structure.

2.4.2 Complexity

The case of complexity is more straightforward and overlaps in important ways with the case

of ad hocness. I will leave aside the aesthetic notion of simplicity implicit in Redhead’s remark

above. The world could turn out to be severely tangled at its most fundamental levels and most

beautifully depicted by laws that reflect its complexity. Concerning the second part of Redhead’s

remark, I also suspect that physicists would find it intellectually unexciting to learn that the project

of physics has reached its completion and that there is nothing new to be discovered. Be that as it

may, we might still believe that the apparent complexity of effective QFTs reflects their ability to

accommodate data rather than to accurately represent unobservable entities or structures.

Philosophers of science traditionally identify and clarify what they take to be epistemically

significant about the ambiguous notion of simplicity (or parsimony) by distinguishing between

syntactic simplicity and ontological simplicity. A theory (or model) is syntactically simple if it

contains a small number of basic principles while a theory is ontologically simple if it posits

78



a small number of different kinds of entities (see, e.g., Schindler, 2018, chap. 1, for a recent

overview of the debate over the criterion of simplicity). The good news is that, according to this

classification, Leff is as simple as LSM. The two models have the same particle content and the

same core principles and symmetries. If we count perturbative renormalizability as one additional

basic principle, Leff even appears to be syntactically simpler. Agreed, LSM has a higher degree

of symmetry thanks to the existence of accidental symmetries. But overall, this does not seem to

make Leff more syntactically complex than LSM. And we could of course further restrict the form

of Leff by enforcing these accidental symmetries (cf. Fig. 2.1 above).

Still, the formal expression of Leff is much more complex than that of LSM insofar as Leff

involves an infinite sum of distinct operators. Does this affect in any way the ability of Leff to

be approximately true? It does not seem to be the case. We might re-express Leff at will in a

more concise form without affecting its content. For instance, we might express Leff by means of a

simple abstract sum over operators and hide, as it were, the formal complexity inherent in the exact

expression of operators at each order. The real issue with Leff rather lies in the fact that it contains

an infinite number of independent parameters (including the cut-off). Continuing with the analogy

of section 2.3, Leff is similar to a mathematical table with an infinite number of independent entries

or “inputs". To be sure, the structure of the table is governed by a small number of principles. But

its size still suggests that it is meant to systematically organize data and save phenomena, and not

to reveal anything special about unobservable entities or structures.

The appropriate response here is not to deny that Leff displays a high degree of formal com-

plexity but rather to examine whether it is justified. After all, we may have good reasons to prefer

a theory with more free parameters than less in some contexts. And, as it turns out, the formal

complexity of Leff is a direct consequence of the cut-off hypothesis. Once we introduce a finite

cut-off, the model automatically generates predictions containing an infinite number of cut-off de-

pendent terms. As already emphasized, the only way to make exact predictions with the model

which do not depend on the cut-off is to introduce all the operators allowed by its original sym-

metries. But this means that if we have any good reason to introduce a finite cut-off and derive
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exact predictions (or predictions as accurate as possible), we automatically have a good reason to

introduce an infinite number of operators with arbitrary parameters (or as many as needed). Hence,

the previous justifications for introducing a finite cut-off apply here too. Second, we need to spec-

ify some desired accuracy in order to restrict the set of operators in Leff. This sort of restriction

is, of course, what makes Leff predictive and computationally powerful in the first place. But it

has nothing to do with what the world is like; the restriction only depends on our experimental

and computational limitations. If we wish to reduce the formal complexity of an effective model

in a principled manner, we need to elevate at least one additional pragmatic constraint as a basic

principle of the model and thus increase its syntactic complexity. Perturbative renormalizability is,

in this sense, just one such constraint among many others.

What should we make of the irreducible formal complexity of Leff close to the cut-off scale?

In this case, higher-order operators in Leff cannot be ignored anymore, and it becomes quickly

impracticable to compute predictions with the model. Here we need to keep in mind that effective

theories are not meant to give a description of the world that works across all scales. Once a

particular effective model becomes deficient close to some scale, we need to replace it by another

model, perhaps by an extension of the effective model, or perhaps by something completely new.

Either way, the important point is that the limitation of the effective model close to its cut-off

scale is not a vice; it is even a virtue since the effective model signals from within, as it were, that

we need to replace it by a more comprehensive one. Otherwise, well below the cut-off scale, the

effective model provides a complete description of the system specified by a given set of degrees

of freedom and symmetries, in the sense that the model can in principle take into account any kind

of new physics that might affect the system within this limited domain in its own terms.

2.5 Conclusion: A Few Remarks About Gell-Mann’s Totalitarian Principle

The Standard Model (SM) of particle physics is widely believed to be best formulated as an

effective theory rather than as a putatively fundamental theory, and the probable limitations of the

SM at short distances make this intuitively attractive. A major cause of concern, however, comes
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from the apparent ad hocness and complexity of the formulation of the SM as an effective theory.

I have argued that these two vices are merely apparent. The introduction of a finite cut-off scale is

both natural and justified insofar as we have good reasons to believe that the SM does not reliably

apply across all scales, and we do have such reasons independently of its fate in light of future

developments in physics. Moreover, once we introduce such a cut-off scale, the most complete and

syntactically simple formulation of the theory includes all the terms allowed by its core principles.

Any definitive restriction of the theory to a specific order, including the simplest one, requires us

to elevate some pragmatic constraint as a basic principle of the theory and therefore makes its

formulation all the more ad hoc and syntactically complex.

I would like to conclude with a few remarks about Gell-Mann’s totalitarian principle, which

states that everything that is not forbidden is compulsory.17 As it turns out, effective theories per-

fectly embody this principle. By construction, an effective theory includes all the terms which are

allowed by its core principles—anything less is not really the “full" effective theory and arguably

not even an effective theory, strictly speaking. But there is some ambiguity about how to best in-

terpret the totalitarian principle in this case. Interpreting this principle as a principle of consistency

does not work since there is nothing inconsistent about dropping or adding higher-order terms in

an effective Lagrangian (cf. Wells, 2012b, p. 70). Interpreting the totalitarian principle as a prin-

ciple of sufficient reason does not work either (cf. Weinberg, 1999, p. 246). There is a reason for

restricting an effective theory, say, to the second order as opposed to the third one. We might take

this reason to be ultimately pragmatic, but it is still a reason. By the same token, interpreting the

totalitarian principle as a principle of plenitude does not work (cf. Kane, 1976, p. 30; 1986, p.

130; Kragh, 1990, p. 272; 2019; Bangu, 2008, p. 246, footnote 26; Schulte, 2008, pp. 297, 310).

The relevant version of the principle of plenitude here is that a term is to be included if there is no

17Gell-Mann briefly expressed this principle in the context of nuclear physics as a heuristic to identify the particle
decays which are allowed and forbidden: “Among baryons, antibaryons, and mesons, any process which is not forbid-
den by a conservation law actually does take place with appreciable probability. We have made liberal and tacit use
of this assumption, which is related to the state of affairs that is said to prevail in a perfect totalitarian state. Anything
that is not compulsory is forbidden." (1956, p. 859, footnote (*)) Note that Gell-Mann uses the contrapositive of the
principle in this last sentence and not the “converse" contrary to what Kragh (2019, p. 3) says, and so the content
of what Kragh calls the “principle of compulsory strong interactions" is the same as the content of the totalitarian
principle.
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reason for it not to be included.

The best interpretation, in my view, is to treat the totalitarian principle in the specific case of

effective theories as a principle of parsimony. The principle requires us to minimize the number

of basic principles or constraints underlying the formulation of a theory. Once we endorse this

principle, we do not need to introduce particular prescriptions each time we encounter unexpected

situations within the limited domain of the theory. The simplest rule is to include all the possible

terms in the first place and thus avail ourselves of the means to directly deal with any anomaly,

even the most insignificant one.
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Chapter 3: Effective Theories and Infinite Idealizations: A Challenge for

Scientific Realism

Williams and J. D. Fraser have recently argued that effective field theory methods enable scien-

tific realists to make more reliable ontological commitments in Quantum Field Theory (QFT) than

those commonly made. In this chapter, I show that the interpretative relevance of these methods

extends beyond the specific context of QFT by identifying common structural features shared by

effective theories across physics. In particular, I argue that effective theories are best character-

ized by the fact that they contain intrinsic empirical limitations, and I extract from their structure

one central interpretative constraint for making more reliable ontological commitments in different

subfields of physics. While this is in principle good news, this constraint still raises a challenge for

scientific realists in some contexts, and I bring the point home by focusing on Williams’s and J. D.

Fraser’s defense of selective realism in QFT.

3.1 Introduction

There is a deeply entrenched strategy in philosophy of physics about how to interpret our

best theories in realist terms. Philosophers usually start by pretending that the theory at stake is

complete, true and final, even if it is known not to be true in all respects. Then, they eliminate

its redundant parts by implementing sophisticated constraints on its structure. And eventually,

they draw from the resulting theory some putatively complete picture of the world. The goal,

ultimately, is to identify a definite set of unobservable entities or structures, whether they are

actually fundamental or not, and thereby lay the ground for explaining the success of the theory in

realist terms.1

1For a critical discussion of this traditional interpretative strategy, including references in the literature, see
Ruetsche (2011, chap. 1) and Williams (2019b).
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As it turns out, this strategy somewhat falls apart in the case of our most fundamental and

empirically successful theories. We do not yet know whether realistic Quantum Field Theories

(QFTs) can be consistently defined across all scales and therefore whether we can even consistently

speculate about the possible worlds in which these theories are exactly true. Wallace (2006, esp.

sec. 3.3; 2011), Williams (2019b), and J. D. Fraser (2018; 2020b) have proposed a more modest

and cautious strategy in response, which is also better suited to the limited success of current

and past theories. They enjoin philosophers to identify the ontological commitments necessary to

explain the success of our best QFTs in the limited regimes where they are known to be reliable

and not in the regimes where they are likely to break down.

The crucial part of Wallace, Williams and J. D. Fraser’s proposal resides in the set of tech-

niques they employ to implement this new strategy, namely, Effective Field Theory (EFT) meth-

ods (including the Wilsonian Renormalization Group). Broadly speaking, these methods have been

developed in QFT to treat phenomena at different scales separately, and they became popular in

physics in large part because of their remarkable heuristic, computational and predictive power.

More crucially for interpreters, the QFTs constructed by using these methods, i.e., EFTs, are in-

trinsically restricted to some limited range of distance scales. The physics within this range can

even be shown in typical cases to be largely independent of the specific details of the short-distance

physics. And this has led Williams and J. D. Fraser, in particular, to argue that EFTs provide a more

perspicuous and reliable interpretative standpoint to identify unobservable entities or structures in

the appropriate regimes, even if realistic QFTs are ultimately shown to be consistent across all

scales.

This chapter has two closely related aims. The first is to show that the interpretative relevance of

EFT methods extends beyond the specific context of QFT. Given that most if not all known physical

systems exhibit distinct scales in most circumstances, it should come as no surprise that the EFT

paradigm has been successfully implemented in most areas of contemporary physics during the last

decades.2 Yet, we might still wonder whether the theories constructed by using EFT methods share

2For references to the extension of EFT methods outside condensed matter and particle physics, see, e.g., Endlich
et al. (2011), Dubovsky et al. (2012), and Gripaios and Sutherland (2015) for fluid dynamics; Donoghue (1995)
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distinctive structural features that might help us make more reliable ontological commitments in

different subfields of physics. I will first argue that effective theories are best characterized in

general by the fact that they contain intrinsic empirical limitations, i.e., their structure incorporates

a robust specification of the scales at which they are likely to be empirically inaccurate before

we probe these scales in experiments. This contrasts with the usual situation where the empirical

limitations of a theory are found only by a direct confrontation with experimental data obtained at

the relevant scale. Then, I will briefly present and justify the realist account of effective theories

which follows the most naturally from this characterization. I will call it the “Standard Effective

Account" and show that the structure of an effective theory forces us to restrict our commitments

to entities or structures which can be specified within the limited range where the theory is likely

to remain empirically reliable.

The second aim is to assess whether Wallace, Williams and J. D. Fraser’s strategy enables

scientific realists to fulfill their explanatory duties. Starting with the traditional form of scientific

realism (cf. Psillos, 1999, pp. xvii-xix), I will first give a concrete example of the restrictions we

face if we treat our best current theories as effective theories.3 We may think, for instance, that

we have good reasons to take the descriptions of continuum fields in the effective versions of the

Standard Model of particle physics and General Relativity to be approximately true and therefore

to commit to the existence of those entities, i.e., of continuous systems with an infinite number

of degrees of freedom. I will argue that on the Standard Effective Account, we cannot reliably

make such ontological commitments. And my point here is not so much to claim that infinite

physical systems are beyond our ken—in a way, we have known this for a long time—but rather to

and Burgess (2004) for general relativity; Goldberger and Rothstein (2006) and Porto (2016) for post-Newtonian
gravitation; Baumann and McAllister (2015, chap. 2) and Burgess (2017) for inflationary cosmology; Polchinski and
Strominger (1991) and Hellerman et al. (2014) for low-energy string theories; Baumann and Green (2012) and Kaplan
(2016, esp. sec. 8.4.3) for advanced topics relevant to quantum gravity.

3Of course, this requires assuming that we do not yet have some decisive evidence that we have hit a true, final
and complete theory in physics or some complete theory providing an approximately true description of the world
in all respects. We also need to assume that effective theories display sufficiently many theoretical virtues to be
even considered candidates for making approximately true claims about the world (see Wells, 2012b, chap. 5, for a
discussion related to this point). We do not need, however, to deny the existence of a final theory, which is implicit
in the traditional scenario of an infinite “tower" of EFTs, where each theory of an endless series of EFTs describes
phenomena within a limited range of energy scales.
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illustrate how the structure of effective theories imposes clear-cut restrictions on one’s ontological

commitments.

I will then argue that, in some specific theoretical contexts including classical and quantum

field theory, these restrictions still raise a challenge for more refined forms of scientific realism. To

bring the point home, I will focus on Williams’s (2019b) and J. D. Fraser’s (2018; 2020b) defense

of selective realism in QFT and, expanding on Ruetsche’s (2018; 2020) discussion, show that the

candidates which look at first sight the most appealing for making ontological commitments in

the appropriate regimes—namely, correlations, particles, and lattice fields—fail in other important

respects. The best candidates that do not suffer from the same issues appear to be continuum fields,

with the proviso that they are approximately similar to large distance scale features of the world.

But, again, selective realists cannot take the descriptions of continuum fields to be approximately

true simpliciter, which leaves them with no obvious candidate for offering a genuine defense of

the realist cause. I will conclude briefly with a more radical suggestion to circumvent this issue:

namely, to modify the standard semantic tenet of scientific realism endorsed by selective realists

(e.g., Psillos, 1999; Chakravartty, 2007) and index (approximate) truth to physical scales.

The chapter is organized as follows. Section 2 presents two distinct examples of effective the-

ories. Section 3 argues on the basis of these examples that effective theories are best characterized

by the fact that they contain intrinsic empirical limitations. Section 4 presents the Standard Ef-

fective Account. Section 5 shows that traditional scientific realists cannot commit to the existence

of the infinite systems specified by a literal interpretation of our best effective theories. Section 6

extends the discussion to Williams’s and J. D. Fraser’s defense of selective realism.

3.2 Two Examples of Effective Theories

Philosophers have not paid much attention to the diversity of effective theories across physics

(e.g., Cao and Schweber, 1993; Hartmann, 2001; Bain, 2013); and when they treat the particular

case of EFTs in particle and condensed matter physics as a new paradigm for understanding phys-

ical theories, they often remain too elusive or attribute too much importance to parochial features
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absent in other types of effective theories. For instance, it is common to characterize effective

theories as theories that directly incorporate into their mathematical structure the imprint of their

breakdown at some non-trivial finite physical scale (e.g., Bain, 2013, p. 1; Williams, 2019a, p. 2;

2019b, pp. 6-7, 9–10, 13). But seldom is it specified whether, in the general case, effective the-

ories display some mathematical singularity, become physically meaningless, make inconsistent

predictions, or become merely empirically inaccurate at that scale.4 In order to give a sufficiently

comprehensive and informative characterization, I will thus first present two different kinds of

effective theories and examine, in particular, the way in which they “break down" at some scale.5

Example 1: Consider first the mathematically most simple formulation of the Newtonian grav-

itational theory for a body of mass m1 interacting with another body of mass m2:

m1
d2r

dt2
= −m1

m2G

r2
(3.1)

with r the relative distance between the centers of mass of the two bodies and G the Gravitational

constant.

There are two distinct ways to construct an effective version of this theory. Since we already

know its closest successor, i.e., classical General Relativity, we can simply follow the “top-down"

strategy: namely, we appropriately restrict the range of parameters of the more comprehensive the-

ory and eliminate its theoretical constituents which do not contribute significantly to predictions

within this range. For instance, we can derive Eq. 3.1 with additional correction terms encoding

relativistic effects by implementing weak-gravity and low-velocity restrictions on the simplest so-

lutions to the equations of classical General Relativity (see, e.g., Poisson and Will, 2014, for more

details).

We can also pretend that we do not yet know the more comprehensive theory and follow the

“bottom-up" strategy. We first identify a limited range where we think that the theory provides

4Other overly broad characterizations include “approximate theories" (e.g., Castellani, 2002, p. 263; Ruetsche,
2020, p. 7), “non-fundamental theories" (e.g., Egg, Lam, and Oldofredi, 2017, p. 455), and “phenomenological
theories" (e.g., Huggett and Weingard, 1995, p. 189; Butterfield and Bouatta, 2014, p. 65).

5For simplicity, I will understand ‘theory’ in its specific sense throughout the chapter, that is to say, as given by a
specific action, a Lagrangian or a Hamiltonian—or even more simply by equations of motion.
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reliable information. For instance, we may suspect from the infinite value of m1m2G/r
2 in the

limit r → 0 that Eq. 3.1 becomes mathematically inadequate for describing the gravitational

interaction between arbitrarily small bodies moving arbitrarily close to one another. Or we may

have already found that the theory makes slightly inaccurate predictions when the gravitational

force m1m2G/r
2 becomes too strong. Then, we restrict the range of the theory by introducing

some arbitrary limiting scale, namely, a short-distance scale r0 in this case. And finally, we include

all the possible terms depending on r0/r which are allowed by the symmetries of the theory, with

one arbitrary coefficient for each new term. As we perform these steps, we do not need to know

anything about the value or the underlying meaning of the limiting scale, namely, that r0 turns

out to be the Schwarzschild radius 2m2G/c
2 of the body of mass m2, with c the speed of light.

The value of the additional coefficients and r0 is ultimately determined by means of experimental

inputs, at least for a finite number of them.6

Now, whether we follow the top-down or the bottom-up strategy, the resulting effective theory

takes the following form:

m1
d2r

dt2
= −m1

m2G

r2

(
1 + a1

r0

r
+ a2

(r0

r

)2

+ a3

(r0

r

)3

+ ...

)
(3.2)

with a1, a2, a3, etc. some arbitrary coefficients. The most complete version of Eq. 3.2 in-

cludes an infinite number of terms which depend on r0/r and leave the equation invariant under

Galilean symmetry transformations (i.e., translations in space and time, spatial rotations, and ve-

locity boosts). We can also define an effective theory by means of a finite number of terms and fix

the value of their coefficients by means of experiments.7

How should we interpret the scale r0 if we take the structure of these effective theories at

face value? Suppose for the sake of the argument that we are interested in predicting the value

of the acceleration d2r/dt2 in Eq. 3.2. The first thing to note is that the contributions of higher-

6In general, we also need to assume that the dimensionless constants of the theory are of order 1 to estimate the
value of the limiting scale, i.e., we need to endorse the “naturalness" principle ai = O(1) in Eq. 3.2 below.

7For more details about the first-order relativistic and quantum corrections to the non-relativistic gravitational po-
tential, see, e.g., Donoghue (1995), Burgess (2004), and Blanchet (2014). Note that, in some cases, existing empirical
measurements (or some other reason) may require us to break some of the symmetries of the original equation.
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order terms (r0/r)
n to predictions are negligible for r � r0 and very large for r � r0. If we

include increasingly many higher-order terms in Eq. 3.2, the predictions remain overall the same

for r � r0 and become increasingly large around and below r0. And if we include an infinite

number of terms, the resulting expansion
∑

i ai(r0/r)
i takes an infinite value for r0/r ≥ 1. Hence,

if we simply look at the mathematical structure of the family of effective theories associated with

Eq. 3.2, we find that their predictions display a sharp pattern of variation around the characteristic

scale r0, which remains robust as we add or remove higher-order terms.

At first sight, this predictive pattern does not appear to tell us much about r0 since the expan-

sions
∑N

i ai(r0/r)
i for finite N are mathematically well-defined across all distance scales (except

for the trivial scale r = 0). Yet, if we consider these finite expansions in relation to one another,

we learn that we can always add small correction terms of increasing order in r0/r in any given

expansion if we want to improve its predictive accuracy for r � r0. And if we consider these

finite expansions in relation to the limiting case of the infinite expansion, we also learn that they

ultimately become mathematically ill-defined at r0 when we add increasingly many such terms.

In short, if we try to make any of these finite expansions as predictively accurate as possible for

r � r0, we end up with theories making infinite predictions at r0 and below, i.e., with theories

which, as a matter of principle, cannot be empirically accurate for 0 < r ≤ r0. And this, in turn,

provides at least preliminary reasons to believe that the pattern of variation around r0 does not sim-

ply reflect some notable qualitative physical change but rather signals that these finite expansions

are likely to become unreliable around r0.

Now, this interpretation is grounded in the experimental profile of existing theories displaying

the same predictive pattern. If, for simplicity, we use Eq. 3.2 as an example, the experimental

pattern takes the following form. We start with some effective theory defined by means of a finite

expansion and fix its parameters by means of experiments at large distance scales r. At shorter

distance scales, however, we find small experimental discrepancies and decide to add new terms

to compensate for them. Yet, as we probe even shorter distance scales, the effective theory with

the additional terms becomes all the more quickly empirically inaccurate and we need, at least in
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principle, to introduce new terms if we want to maintain its predictive power and accuracy. In

practice, physicists directly look for a new theory in situations like this. If we were to keep up

with the original theory and probe phenomena closer and closer to r0, however, we would need

to introduce an infinite number of terms. Since all these terms are equally important at r0, we

would not be able to select a finite number of them in order to make approximate predictions. And

since we cannot in practice make an infinite number of measurements to fix the value of an infinite

number of arbitrary coefficients, the theory would lose its predictive power. Hence, according

to this pattern, r0 corresponds to the maximal predictive limit of the family of effective theories

associated with Eq. 3.2. For the infinite expansion, r0 corresponds both to a characteristic scale

where the theory becomes mathematically ill-defined and predictively powerless. For the finite

expansions, the demarcation is not as vivid and sharp; but, overall, the corresponding effective

theories make empirically accurate predictions for r � r0 and empirically inaccurate ones for

r � r0.

Note that the same argument does not apply to the original Newtonian theory in Eq. 3.1 despite

its divergent behavior at r = 0. If we leave aside the apparent physical impossibility of the situa-

tion characterized by r = 0, we still face the issue that the limiting scale r = 0 is experimentally

trivial from the perspective of classical Newtonian gravitation. Even if we can, in principle, probe

the system down to arbitrarily short distances in this context, we can only gain experimental in-

formation about finite size effects resulting from the gravitational interaction between two bodies

at some finite distance from one another. In the case of effective theories, the situation is different

because there is no physical principle or experimental constraint which indicates that the regime

specified by r ≤ r0 is either experimentally inaccessible or trivial. The infinite expansion becomes

deficient at r0. But nothing in the theory suggests that we cannot use bodies to probe distance

scales within 0 < r ≤ r0 compared, say, to string theory where we cannot use strings in scattering

processes to probe distances shorter than the string scale (see, e.g., Hossenfelder, 2013, sec. 3.2,

for a discussion).8

8Note, moreover, that we cannot define some non-trivial limiting distance scale r0 by using only m1, m2, and G in
Eq. 3.1. By dimensional analysis, we would need to introduce a new arbitrary velocity scale c and therefore modify
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Example 2: Consider now a standard example of QFT, the φ4-theory. The theory describes

a simple quantum field, i.e., a continuum of smoothly coupled individual quantum systems over

space-time with each system characterized by only one degree of freedom. In a somewhat analo-

gous way as in Eq. 3.1, the original dynamical equation is given by:

∂µ∂
µφ(x) +m2φ(x) = −λφ3(x) (3.3)

where φ(x) is a real-valued variable describing a possible configuration of the field over space-

time, ∂µ the analog of d/dt in the four-dimensional Minkowski space-time, m a mass parameter,

and λ a self-coupling parameter. This equation contains no explicit intrinsic limitation, which sug-

gests that there is a priori no reason to believe that the theory fails to apply at arbitrarily large and

short distances (or, equivalently, at arbitrarily low and high energies). The trouble comes when we

try to compute predictions. Typically, in QFT, this is done by evaluating the correlations between

some initial and final field configuration states characterizing some scattering process, where these

states describe, roughly speaking, the particles that we prepare and detect in experiments. Calculat-

ing these correlations requires, in turn, including the contributions from all the possible transitions

between these states and therefore summing over all the possible intermediary field configuration

states. If we do that, however, the high-energy configurations of the field, i.e., the configurations

which vary rapidly over short-distance scales, give rise to infinite probabilistic predictions, which

is inconsistent.

As of today, the only way to solve this problem in realistic QFTs is to modify the structure of

the theory by means of “renormalization" methods.9 In the case of the φ4-theory, for instance, we

can smoothly lower the contributions of the high-energy field configurations φ̃(k) over some high-

energy cut-off Λ by using a new field variable φΛ(x) with exponentially decreasing contributions

above Λ:

φΛ(x) ∝
∫
d4keikx(e−k/Λφ̃(k)) (3.4)

the structure of the original theory.
9See, e.g., Butterfield and Bouatta (2015), Williams (2019a), and Rivat (2019) for introductory discussions.
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Similarly to Example 1, the value of the limiting scale Λ is not fixed at this stage. Yet, the QFT

case is special. If we keep a finite cut-off, we can make the predictions of the theory Λ-independent

by absorbing Λ-dependent terms into its parameters, at least for a finite range of values of Λ. But

this requires including all the possible interaction terms allowed by the symmetries of the theory:

∂µ∂
µφΛ(x) +m2(Λ)φΛ(x) = −λ(Λ)φ3

Λ(x)− g5(Λ)φ5
Λ(x)− g7(Λ)φ7

Λ(x)− ... (3.5)

where the gi’s are new arbitrary coupling parameters depending on Λ. If we have appropriate

experimental inputs, we can define an effective theory by means of a finite number of interaction

terms, fix their parameters, and estimate the value of Λ (as in Example 1).

The predictive pattern in this example is overall similar to the one displayed in the previous

example. Once we fix the parameters of the theory, we can show that the higher-order interaction

terms gi(Λ)φiΛ in Eq. 3.5 contribute to predictions by increasing powers of (E/Λ), with E the

characteristic energy scale of the scattering process considered. Yet, there is one crucial difference:

the predictions of the theory typically become inconsistent for energies E close to and above Λ

whether we include a finite or an infinite number of interaction terms in Eq. 3.5. Hence, if we take

the structure of effective QFTs at face value, Λ is naturally interpreted as the scale at which the

theory is likely to make inconsistent and a fortiori empirically inaccurate predictions.10

3.3 What is an Effective Theory?

Now that we are equipped with two different examples, let us look at several options for charac-

terizing what is so distinctive about effective theories. I will argue that the structure of an effective

theory is best characterized by the fact that it incorporates a robust specification of the scales at

which it is likely to be empirically inaccurate (assuming, in particular, that we have appropriate

experimental inputs to fix its free parameters).

Characterization 1: A first option is to characterize an effective theory as a low-energy limit

10As it turns out, the φ4-theory is even more special: the perturbatively renormalized coupling λ(Λ) diverges at
some finite high-energy scale, i.e., it displays a “Landau pole" singularity.
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of a more complete theory—even if this more complete theory is not fully known, which means

that an effective theory is a particular realization of a given theory over a restricted range of energy

scales. This relational characterization fits well with high-energy physicists’ general description of

EFTs (e.g., Burgess and Moore, 2006, p. xi, p. 456) and with the top-down Wilsonian procedure

for deriving an EFT by eliminating high-energy field configurations.

To give a concrete example, suppose that the φ4-theory is a low-energy realization of a more

complete theory including a light scalar field φ(x) of mass m and a heavy scalar field ψ(x) of

mass M , with m � M . We can derive effective theories as follows. First, we eliminate, or

“integrate out", the heavy field variable ψ(x) in the high-energy theory (or, more precisely, in its

functional path integral Z). This gives rise to exotic terms depending on the variable φ(x) such as

φ(x)(−∂µ∂µ +M2)−1φ(x). Assuming that the characteristic energy E of the scattering processes

of interest is much smaller than the mass of the heavy field, i.e., E � M , we can expand these

exotic terms into an infinite series of polynomial terms depending only on the variable φ(x), its

derivatives, and some inverse power of M . Schematically,

Z =

∫
D[φ]D[ψ]ei

∫
d4x
[

1
2

(∂µφ)2−m
2

2
φ2− λ

4!
φ4+ 1

2
(∂µψ)2−M

2

2
ψ2− g

4
φ2ψ2

]

=⇒ Z =

∫
D[φ]ei

∫
d4x
[

1
2

(∂µφ)2−m
2

2
φ2− λ

4!
φ4− g6

M2 φ
6− g8

M4 φ
8−...
] (3.6)

with the appropriate coupling parameters g and gi.11 The structure of the effective theory is fully

specified by the restrictions imposed on the high-energy theory with the appropriate low-energy

assumption. In particular, since the contributions of the interaction terms (gi/M
i−4)φi give rise to

inconsistent predictions close to M , the high-energy theory provides a natural high-energy cut-off

for renormalizing the effective theory, namely, the mass of the heavy field. We can also define

effective theories by restricting the series to some finite order in 1/M and obtain the original φ4-

theory by taking the limit M →∞.

The main problem with Characterization 1 is that it is either too broad or too narrow depending

on how we understand it. If we take it to apply to any theory which is, in principle, derivable

11See, e.g., Baumann and McAllister (2015, sec. 2.1.1) and Petrov and Blechman (2016, sec. 4.1) for more details.
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from a more complete theory in its low-energy limit, even indirectly, we may have reasons to

suspect that it applies to all empirically successful theories built up so far. However, if we do not

specify the structure of the high-energy theory or provide the specific details of the derivation,

we will be left with a characterization which is overly vague and which, in particular, does not

help us to circumscribe specific structural features common to effective theories. And to make the

matter even worse, some standard cases of EFTs do not seem to have any high-energy completion

and therefore to be even derivable, as a matter of principle, from a high-energy theory (see, e.g.,

Adams et al., 2006, for a discussion).

Inversely, if we take this characterization to apply only to theories which are explicitly related

to a more comprehensive theory by means of some energy parameter or mass scale, as in Eq. 3.6,

we will leave out many standard cases of effective theories, including Example 1. In general, the

types of limiting scales and power counting schemes underlying the structure of effective theories,

i.e., the rules for evaluating how the contributions to predictions of the different parts of an effective

theory vary with some parameter, can be extremely diverse. Examples 1-2 illustrate this variety of

scales. Example 1 provides a simple velocity power counting scheme when applied to a system of

two bodies with the same mass m1 and orbital radius r. In the non-relativistic regime, the virial

theorem holds (v2 ∼ Gm1/r ∼ r0/r), which means that the interaction terms in Eq. 3.2 contribute

to predictions by increasing powers of the characteristic velocity v of the system. And it is more

appropriate in this case to speak of a low-velocity realization of a more complete theory.

Characterization 2: A more promising strategy might be to look for some abstract feature

internal to the mathematical structure of an effective theory.12 Suppose for instance that we take an

effective theory to be a theory which, while remaining mathematically well-defined over some lim-

ited range of parameters, becomes ill-defined at some non-trivial finite scale. This characterization

fits well with the most complete versions of the effective theories presented in Examples 1-2 (e.g.,

12Appealing to a particular mathematical structure does not seem to give an adequate trade-off between generality
and informativeness. The closest we can probably get to Examples 1-2 and standard cases of effective theories is to
characterize the structure of effective theories in terms of Taylor (or Laurent) series in some parameter (or truncations
thereof). But even then, this solution excludes exotic cases of effective theories with non-polynomial interaction terms
in the field variables (see, e.g., Gripaios, 2015, sec. 5, for some models including such terms).
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i). It also fits well with the attitude sometimes expressed in the philosophical literature

according to which the framework of EFTs provides a general, efficient, and “opportunistic" way

of solving the mathematical issues of QFTs (see, e.g., Butterfield, 2014, sec. V.2.2; Butterfield

and Bouatta, 2015, sec. 3.1.3). Indeed, the very idea of introducing and keeping a finite cut-off

is vindicated by the pathological behavior of QFTs at high energies (cf. Example 2). And even

if we attempt to cure QFTs of their mathematical difficulties with renormalization methods, some

paradigmatic cases like the φ4-theory and Quantum Electrodynamics (QED), the quantum theory

of the electromagnetic force, are likely to remain mathematically ill-defined at some large yet finite

energy, i.e., to display a Landau pole singularity. If we want to define these pathological cases of

QFTs consistently, they leave us with no choice but to restrict their range of parameters, and this

suggests that EFT methods were meant to be applied to these sorts of theories.

Once again, however, this characterization excludes simple cases of effective theories and

therefore appears to be too restrictive. For instance, the effective theories defined by means of a

finite number of terms in Example 1 remain mathematically well-defined across all distance scales

(except at the trivial scale r = 0) and therefore do not fall under Characterization 2. Agreed, being

mathematically ill-defined at some non-trivial finite scale is presumably a sufficient condition for

a theory to be characterized as effective (provided we introduce some cut-off); but these simple

examples of classical point-particle effective theories show that this condition is not necessary.

Characterization 3: A third option, the one I favor, is to characterize effective theories by

the fact that they contain intrinsic empirical limitations. Namely: an effective theory incorporates

into its structure a robust specification of the ranges of scales where it is likely to be empirically

inaccurate. There are four essential ingredients here:

1. The mathematical structure of the theory contains some non-trivial finite scale (“intrinsic

limiting scale" or “cut-off");

2. It is possible to include increasingly many terms depending on this limiting scale which are

consistent with the core principles governing the structure of the theory, with one arbitrary

coefficient for each new term introduced;
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3. These terms are systematically organized according to the importance of their contributions

to predictions below and above the limiting scale (“power counting scheme");

4. As we include increasingly many such terms, the predictions derived from the theory remain

approximately the same, say, below the limiting scale and become increasingly large around

and above this scale (“robustness").

The predictive pattern is well illustrated by Examples 1-2, although it does not essentially depend

on the particular details of their mathematical formulation, and, in general, the interpretation in

terms of intrinsic empirical limitations is grounded in the experimental profile of existing theories

displaying the same predictive pattern. Note as well that Characterization 3 does not imply that the

mathematical structure of an effective theory delineates by itself the scales at which its predictions

are likely to break down. We usually need to have experimental inputs in some accessible regime

and assume that the dimensionless constants of the theory are of order one if we want to estimate

the value of the limiting scale. Similarly, adding a list of provisos of the form ‘For velocities

much smaller than the speed of light’ or ‘r � r0’ in the preamble of the theory is not sufficient:

Characterization 3 requires the theory to have the imprint of its probable predictive failure directly

written into its mathematical structure in the sense specified above.

Now, the advantage of this option is twofold. First, Characterization 3 is neither too restrictive

nor too permissive. In particular, it applies to Examples 1-2 and standard cases of classical and

quantum effective theories. It also excludes standard cases of theories putatively applicable across

all scales such as the Newtonian theory defined in Eq. 3.1 and the perturbatively renormalizable

version of Quantum Chromodynamics (QCD), the quantum theory of the strong force.13 As ex-

plained in section 3.2, if we take such theories at face value, their structure does not explicitly

delineate non-trivial experimental regimes where their predictions are likely to break down. Of

course, we may impose a finite cut-off on the perturbatively renormalizable version of QCD be-

cause we suspect that QCD is likely to be empirically inaccurate at very high energies, and include

13This supposes that we set aside potential trouble at low energies and assume that the theory is sufficiently mathe-
matically well-defined at arbitrarily high energies.
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higher-order interaction terms into the theory. We may also exploit the hierarchy of scales ex-

hibited by the different masses of the quarks in QCD and define a low-energy theory of the light

quarks u, d and s with some cut-off because we suspect that it is easier to compute low-energy

predictions if we eliminate irrelevant high-energy degrees of freedom. In both cases, however, we

will be dealing with a different kind of theory, strictly speaking: namely, an effective theory which

falls under Characterization 3.

Second, the characterization is also informative. Most remarkably, it offers a sharp distinction

between two kinds of theories (or models): (i) theories with intrinsic empirical limitations, i.e.,

which already contain in their structure information about where they are likely to make inaccu-

rate predictions before we probe the relevant scales in experiments; and (ii) theories with extrinsic

empirical limitations, i.e., which are found to make inaccurate predictions only by a direct con-

frontation with experimental data obtained at the relevant scale. As we will see in the next section,

the structure of an effective theory also gives good reasons to believe that it provides reliable on-

tological guidance only within a limited part of the world.

3.4 The Standard Effective Account

So far, I have argued that effective theories are best characterized by the fact that they contain

intrinsic empirical limitations, but I have not said anything yet about their representational achieve-

ments. Suppose then that some effective theory is found to make accurate predictions within some

regime and that its predictions are likely to break down at some scale beyond this regime. The most

straightforward realist explanation in this case is to take the theory to accurately represent a limited

part of the world and misrepresent, or fail to represent, other parts. Since this explanation fits well

with the set of commitments shared by philosophers who explicitly defend a realist interpretation

of EFTs, I will be relatively brief in this section. I will clarify the idea that the domain of appli-

cability of effective theories is intrinsically limited by means of four common claims made about

EFTs, briefly justify them by relying on general features of effective theories, call the resulting

account the “Standard Effective Account", and extract one central interpretative constraint from it.
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This is, of course, not to say that these philosophers agree on everything. There are indeed sub-

stantive interpretative disagreements in the literature on EFTs. But I will ignore those differences

and restrict myself to extending the four common claims beyond the context of QFT.

The first difficulty here is that the term ‘domain of applicability’ is ambiguous. We could

arguably take it to refer to the universe of discourse or interpretation of the theory, to the set of

phenomena accounted for by the theory, to the range of variables specifying the possible physical

states of the system described by the theory, or perhaps even to the range over which the theory is

mathematically well-defined. If we keep in mind that the target of the theory is the actual world, the

following notions should be sufficiently neutral and adequate for clarifying the Standard Effective

Account. (i) The “domain of applicability" of a theory is the set of concrete physical objects—

entities, structures, properties, quantities, states, phenomena, dispositions, and so on—that the

theory accurately represents. The domain of applicability of a theory is not necessarily identical

to its putative domain of applicability, i.e., to the set of putative physical objects specified by a

literal interpretation of the theory.14 (ii) The “domain of empirical validity" of a theory is the

range of physical parameters over which its predictions are likely to remain accurate. If we have

good reasons to believe that we have found a final theory, this domain ranges over all physically

possible scales. Otherwise, if we do not have any means to estimate the empirical limitations of

the theory in advance as in the case of effective theories or any evidence that the theory will remain

empirically accurate in new regimes, this domain reduces to the range over which the theory has

been found to be empirically accurate.

Then, the Standard Effective Account can be spelled out in terms of the four following claims:

1. The domain restriction claim: The domain of applicability of an effective theory is restricted

by the limits of its domain of empirical validity (cf., e.g., Cao and Schweber, 1993, p. 76;

Castellani, 2002, p. 260; Wallace, 2006, sec. 3.2-.3.3; Schweber, 2015, p. 60; J. D. Fraser

2018, p. 1173; Williams, 2019b, p. 13).

14By ‘literal’ I mean that the physically meaningful descriptions of the theory are understood in their standard sense
and taken to be either true or false.
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To take the simplest case of physical object, the domain restriction claim states that an effective

theory accurately represents some concrete entity only if its core properties can be specified within

the limited range where the theory is likely to remain empirically accurate. By ‘core property’

I mean that the property is constitutive of the identity of the entity (e.g., an infinite number of

degrees of freedom for a continuum field). Now recall that if we have appropriate experimental

inputs, say, at large distances, we can estimate the value of the limiting scale of an effective theory,

say, a short-distance cut-off scale. And even if we have not yet probed phenomena close to this

scale in experiments, the structure of the theory already gives us good reasons to believe that

its predictions are inaccurate beyond this scale. As a realist, it is standard to assume that if a

theory accurately represents the entities characterizing a specific domain, it also makes accurate

predictions in this domain. Hence, the standard realist explanation of the probable predictive failure

of an effective theory beyond its limiting scale is that the theory is likely to misrepresent, or fail to

represent, the entities characterizing the corresponding domain (assuming here that there are such

entities). And this means that the structure of an effective theory prevents us from simply remaining

agnostic about its putative representational success beyond its limiting scale. We also have good

reasons to think that the theory provides unreliable information about physical properties beyond

this scale and therefore fails to give an accurate picture of the entities which are individuated by

such properties.

In Example 2, for instance, the imposition of the smooth cut-off in Eq. 3.4 does not eliminate

any degree of freedom in the original theory. On the face of it, then, the effective theory represents

a putative continuum field with one degree of freedom at every point of space-time and therefore

attributes core properties to its target system within any arbitrarily small region of space-time.

At the same time, the pathological predictions of the theory around and beyond Λ also give very

good reasons to believe that the theory misrepresents the structure of matter at arbitrarily short

distances and therefore that it does not accurately represent a putative continuum field, strictly

speaking. According to the domain restriction claim, however, it is perfectly possible for the

theory to accurately represent, say, a real physical pattern of characteristic size larger than 1/Λ
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(see sections 3.5-3.6 for a discussion).

2. The new physics claim: The structure of an effective theory strongly suggests that the theory

misrepresents or fails to represent some putative physical objects (cf., e.g., Robinson, 1992,

p. 394; Cao and Schweber, 1993, p. 76; Wallace, 2006, sec. 3.2-.3.3; J. D. Fraser 2018, p.

1173; Williams, 2019b).

This claim is best supported by examining the relation between successive effective theories, or

even the relation between an effective theory and some putatively fundamental theory. If we take

effective theories in isolation, however, we can still give some support to this claim by relying on

their structure. Consider Example 2 again. The effective version of the φ4-theory with a smooth

cut-off is mathematically well-defined at any point of space-time (at least according to physicists’

standards) and does not contain any physical principle or constraint implying that the range beyond

Λ is physically forbidden. To take again the simplest case of physical object, the theory thus

appears to allow for the existence of concrete entities at arbitrarily short distances. Yet, as already

emphasized, the theory also makes inconsistent predictions beyond Λ. Taken together, these two

features strongly suggest that the theory is deficient in some way or another rather than that the

world contains some physical limit at the scale Λ. And the best realist explanation, in this case,

is that the theory does not include the appropriate theoretical constituents which would give rise

to consistent predictions at short-distance scales and therefore that the theory either misrepresents

or fails to represent putative entities at these scales instead of specifying, say, the fundamental

graininess of space-time.15

3. The approximate truth claim: Effective theories offer approximately accurate representations

in their domain of empirical validity (cf., e.g., Castellani, 2002, p. 260; J. D. Fraser 2018, p.

1173; Williams, 2019b, sec. 3).
15Note that the scale at which the predictions of an effective theory break down does not need to be exactly the

same as the scale at which the new physics kicks in. For a discussion about the intricate link between violations of
perturbative unitarity and the onset of new physics in the context of QFT, see, e.g., Aydemir, Anber, and Donoghue
(2012) and Calmet and Casadio (2014).
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The approximate truth claim states that an effective theory provides some accurate representations

of unobservable physical objects specifiable within the limited range where the theory is likely to

remain empirically accurate—or, at least, that we can construct such representations by modifying

the original structure of the theory.16 Again, the argument is relatively standard for the realist: (i)

the best explanation for the predictive success of the theory within some regime is that the theory is

approximately true; (ii) the probable predictive failure of the theory beyond its limiting scale gives

good reasons to take only the descriptions below this scale to be approximately true. In Example

2, for instance, we should expect the descriptions of the dynamical properties of the field to be

approximately true if they are restricted to scales lower than Λ. We can also impose limits at large

distances by introducing a low-energy cut-off. And one way to construct a model satisfying this

restricted set of descriptions is to replace the standard Minkowski space-time with a space-time

lattice of finite extent (a sharp low-energy cut-off) and non-zero spacing (a sharp high-energy cut-

off) and represent the quantum field in terms of a lattice field defined by assigning a variable φ(x)

to each point of the space-time lattice. As we will see in section 3.5, the approximate truth claim

does not mean that, in its standard formulation, an effective theory always accurately represents

the putative objects specified by a literal interpretation of its core descriptions. And in section 3.6,

we will see that the approximate truth claim sits in tension with other realist requirements in the

context of QFT.

4. The stability claim: The representations of an effective theory specified within its domain of

empirical validity are likely to remain approximately accurate under theory-change (cf., e.g.,

Cao and Schweber, 1993, sec. 4.1, sec. 4.3; Wallace, 2006, sec. 3.2-.3.3; J. D. Fraser 2018,

sec. 3-4; Williams, 2019b, sec. 3).

Here the challenge is that a future higher-level or same-level theory might undermine the putative

representational achievements of our best effective theories. As we will briefly see in section

16I will set aside issues related to the nature of scientific representation and use interchangeably “approximately ac-
curate representation" and “approximately true description", assuming that a description is approximately true relative
to the actual world if it is satisfied by some model that provides an approximately accurate representation of some
actual target system.
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3.6, Williams (2019b) and J. D. Fraser (2018; 2020b) rely on the machinery of EFTs, including

Wilsonian Renormalization Group (RG) methods, to defend the stability claim in the context of

QFT. If we move outside of this context, we can still gain some support for this claim by focusing

on the role of higher-order terms in effective theories.

Consider Example 1 and suppose that the predictions of the effective Newtonian theory with a

few lowest-order terms are accurate at large distances r � r0. If we discover a radically new the-

ory revealing that the predictions of the effective theory are slightly inaccurate at large distances,

we can always add higher-order terms to compensate for these empirical discrepancies. This move

is, of course, largely ad hoc. But it shows that the higher-order terms can be used to encode the

contributions of new physics at large distances according to their relevance and thus suggests that

these terms do not simply correspond to arbitrary modifications of the theory, with no physical

significance whatsoever. The ability of higher-order terms to stand for fine-grained features of new

physics is also supported by explicit derivations of effective theories from more comprehensive

ones (see, e.g., Eq. 3.6 above). And, in general, the structure of an effective theory is such that

we can parametrize the contributions of any type of new physics at large distances up to an arbi-

trarily high degree of precision by adding increasingly many terms depending only on the degrees

of freedom of the original theory. In the Newtonian case, we can even include such terms by pre-

serving all the core principles of the original theory (e.g., the structure of the classical Newtonian

background space-time and Galilean invariance).

Now, the crucial point is that the contributions of the higher-order terms become increasingly

negligible at large distances r � r0, no matter what the new physics looks like. And insofar

as these higher-order terms are assumed to stand for fine-grained features of new physics, this

shows that the descriptions of the effective theory which are relevant at large distances are largely

insensitive to the particular details of the new physics. This new physics affects at most the value

of the parameters of the lowest-order terms. At the scale r0, by contrast, the core principles of the

effective theory do not even allow us to give an approximately true description of the dynamical

behavior of the system and we have no choice but to look for a new theory.
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Of course, the previous argument is far from fully ensuring that the theoretical content of some

effective theory will not be found to be radically incompatible with the theoretical content of some

future theory, even within its domain of empirical validity (see Ruetsche, 2018; J. D. Fraser 2020b,

pp. 13-14, for a similar worry). One might also raise legitimate doubts about the ability of the

higher-order terms to adequately encode the entirety of the new physics relevant at large distances.

Giving a full response to these worries goes beyond the scope of this chapter. If we leave them

aside, the previous argument still goes some way toward giving us confidence in the robustness of

the theoretical content of the effective theory within its domain of empirical validity.

To summarize, the Standard Effective Account takes effective theories to make approximately

true and stable claims about a limited part of the world beyond which it is reasonable to expect to

discover (or beyond which we have already discovered) new entities or structures. Although more

work needs to be done in order to give a full defense of these features, they suggest nonetheless

that effective theories provide us with a reliable epistemic standpoint to identify unobservable

entities or structures in the regimes where our best theories are known to be successful. This

extends Williams and J. D. Fraser’s recent claim beyond the context of QFT and provides a further

response to philosophers who deem EFTs unfit for interpretative purposes (e.g., D. Fraser, 2009;

2011; Kuhlmann, 2010). And if we are to interpret effective theories in realist terms, their structure

provides us with one central constraint for making more reliable ontological commitments than

those commonly made across physics: namely, we should only commit to the existence of concrete

physical objects—entities, structures, properties, quantities, states, phenomena, dispositions, and

so on—specifiable within the domain of empirical validity of the theory. Beyond this domain,

the structure of effective theories gives us good reasons to believe that they fail to represent, or

misrepresent, physical objects.

3.5 A Challenge for the Traditional Realist

I will now illustrate how effective theories force the traditional scientific realist to be more

selective about her ontological commitments than she might think she has good reasons to be.
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Suppose for the sake of the argument that our realist feels unmoved by the traditional construc-

tive empiricist concerns about unobservables and underdetermination (van Fraassen, 1980), the

traditional pessimistic meta-induction argument (Laudan, 1981), and the more recent problem of

unconceived alternatives (Stanford, 2006). Yet, impressed by the new dogma of effective theories,

our realist concedes that our best current theories are best understood and formulated as effective

theories and agrees to endorse the account developed in sections 3.3-3.4. She examines the stan-

dard formulation of our best effective theories (e.g., the Standard Model Effective Field Theory),

either eliminates or disregards their artifactual mathematical structures (e.g., gauge redundancies),

and, after interpreting the remaining core theoretical descriptions in their literal sense as she has

always done, finds out that our best effective theories represent putative infinite entities and struc-

tures, including continuum quantum fields and their infinitary symmetry structure. Of course, our

best effective theories might be superseded one day, perhaps by some advanced type of effective

string theory or maybe even by some final theory, and our realist is ready to grant that these puta-

tive entities and structures are only approximately similar to more fundamental ones. I will restrict

myself to entities for simplicity and argue that, on the Standard Effective Account, our realist is not

even warranted in taking the representations of these putative entities to be approximately accurate

and cannot, therefore, reliably commit to their existence.

Two important clarifications are in order. First, I take an infinite representation to be any type

of infinitary model which stands for a putative infinite physical system, i.e., a system with at least

one core property specified by a constant or a parameter which takes an infinite value (e.g., a

system with an infinite number of degrees of freedom or a wire of infinite extent). Second, I will

assume that standard mathematical means of comparison (e.g., measure, cardinality, isomorphisms,

etc.) provide reliable standards of relative similarity and accuracy as it is usually assumed in the

literature (e.g., da Costa and French, 2003; Weisberg, 2013, chap. 8). I will also first rely on a

general notion of similarity in the argument below and then use the specific case of the model-

theoretic account of similarity to make the argument more concrete.

How should we evaluate infinite representations then? First, note that there is no specific issue

104



if we believe that our best current theories should be interpreted as offering putatively complete

and universal descriptions of the world (e.g., Earman and Roberts, 1999, pp. 445-6).17 For if

these theories are consistent and defeat appropriate competitors, and if the infinite representation

of interest is physically motivated, anchored into the mathematical structure of the theory, and ir-

reducible to a mere mathematical artifact, we might take the success of the theory to be a good

enough reason to commit to the existence of the corresponding infinite physical system. The Stan-

dard Effective Account suggests a radically different conclusion: an infinite representation always

represents core features of a putative system in domains where the corresponding effective theory

provides, as a matter of principle, unreliable information. I briefly justified the claim that infinite

representations are strictly inaccurate—and hence best understood as infinite idealizations—with

the help of Example 2 in section 3.4. Continuing with this example, let me now explain why

infinite representations are not even close to being approximately accurate.

Recall from the approximate truth claim that, for each effective theory, we can at least construct

one realistic finite representation Rf of its target system (i.e., accurate and specified within the

domain of empirical validity of the theory). In the Newtonian case, for instance, we can represent

the target system in terms of a set of sufficiently large massive bodies moving at non-relativistic

velocities with three degrees of freedom to track the center of mass of each body and with a set

of finite constants and variable parameters with limited range to characterize their properties (e.g.,

size, mass). In the φ4-theory case, we can represent the target system in terms of a lattice field

defined by assigning one degree of freedom to each point of a space-time lattice of finite size and

non-zero spacing. Of course, in the same way as we do not need to reduce a massive body to its

point-like center of mass, we do not need to assume that the target system in the φ4-theory takes

the form of a “grid". A representation is approximately accurate if the putative entities specified

by the representation are approximately similar to real ones. A representation which only ignores,

17A similar attitude is expressed, for instance, by D. Fraser when she claims that “there is a crucial difference
between QSM [Quantum Statistical Mechanics] and QFT with an infinite number of degrees of freedom [...]: whereas
the description of a system as containing an infinite number of particles furnished by QSM is taken to be false, the
description of space as continuous and infinite that is furnished by QFT with an infinite number of degrees of freedom
is taken to be true" (2009, p. 565).
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omits, or abstracts away irrelevant features of the target system does not necessarily provide false

information—the only thing we can be certain of is that it provides partial information about the

target system.

Now, suppose that for the effective theory of interest, we are also able to construct an infinite

representation R∞ closely related to Rf . For instance, in Example 2, we can decrease the lattice

spacing, increase the size of the lattice, and attribute a new degree of freedom to every newly added

space-time point in the set specifying the elementary structure of the lattice. However, the more we

replace, add, or distort features of the target system in sufficiently small regions of space-time, i.e.,

the more we take into account descriptions assigning properties to the target system beyond the

limits of empirical validity of the effective theory, the more the theory provides false information

about the target system. In the limit, the lattice field is replaced by a continuum field with an infinite

number of degrees of freedom, and the infinite representation provides us with an infinite amount

of false information about the target system in arbitrarily small regions of space-time compared to

Rf . The Standard Effective Account thus gives us principled reasons to believe that the infinite

representation fails to be even approximately accurate.

We can make the argument more concrete by relying on a specific notion of similarity.18 Ac-

cording to the model-theoretic (or structuralist) account, for instance, two representations, or math-

ematical structures in this case, are similar to one another if they are isomorphic to one another,

i.e., roughly speaking, if the two mathematical structures have the same number of elements and

the same structural relations between their elements. Obviously, an infinite representation is not

isomorphic to a finite representation; but few philosophers actually think that the traditional no-

tion of isomorphism provides an adequate standard of accuracy and the problem is to define an

adequate notion of “approximate isomorphism". da Costa and French (2003) suggest the notion of

18I doubt that the argument actually depends on one’s favored account of similarity if we assess whether an infinite
representation itself (and not some finite representation thereof) is similar to another finite representation. In the
contrast-account, for instance, we need to evaluate the amount of properties shared by two representations and subtract
the properties that differ between them, with specific weights assigned depending on whether the property is deemed
more or less relevant (see, e.g., Weisberg, 2013, chap. 8, for a recent defense of this account). If we want to compare
different fields themselves (and not simply their configurations), the number and type of their degrees of freedom
appear to be essential, which means that, according to the contrast-account, two lattice fields with different spacing
will be again much more similar to one another than either will be to the corresponding continuum field (cf. below).
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“partial isomorphism" (or “partial homomorphism"): briefly put, two mathematical structures M1

and M2 are partially isomorphic to one another if there is some mapping from the elements of M1

to the elements of M2 which preserves the substructures (and absence thereof) holding between

the elements in M1 and which does not say anything specific if we do not know whether some

substructure holds or not between the elements in M1 (see, e.g., da Costa and French, 2003; Bueno

and French, 2011, for more details).

Clearly, it is essential that the two models have important chunks of substructures in common

for them to be approximately similar to one another. In this case, two finite representations will al-

ways be much more partially isomorphic (or homomorphic) to one another than either of them will

be to the corresponding infinite representation. It is non-trivial to give a precise account of degrees

of partial isomorphism (or homomorphism) and I will restrict myself to giving an intuitive picture.

In Fig. 3.1, for instance, the two lattice fields at the top have, respectively, 64 and 49 elements

and share a large part of their spatial structure. We could also specify the substructures which are

not preserved (e.g., the local rotational symmetry transformations of the elements which leave the

lattice invariant) and the substructures for which we do not know whether they are preserved (e.g.,

some relations not depicted in the pictures). In contrast, the continuum field depicted in the top

right-hand corner has infinitely many more elements than the two lattice fields and infinitely many

spatial relations not reflected in the spatial structure of the two lattice fields. Agreed, the patterns

of the continuum field might represent well some patterns of the lattice fields (see Fig. 3.1, bot-

tom). But this does not affect the conclusion that the two lattice fields themselves are much more

similar to one another than either of them is to the continuum field. We should not underestimate

the difference of size and structure between finite and infinite systems.

Let me conclude this section with two comments before examining Williams’s and J. D. Fraser’s

defense of selective realism in QFT. First, the argument above applies to the standard formulation

of our best effective theories, and therefore offers a concrete challenge to the traditional scientific

realist insofar as he is willing to make ontological commitments by interpreting the central parts

of our most successful theories in their literal sense. Second, the argument crucially relies on the
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Figure 3.1: Schematic representations of a lattice field and a continuum field, with Λ a sharp cut-off.
The two figures in the top left-hand corner represent, respectively, a finite set of points separated by a
characteristic distance Λ and a finite set of blocks of characteristic size Λ. The figure in the top right-
hand corner represents a continuum of points. The bottom figures represent, respectively, a lattice field
configuration and its continuum counterpart.

structure of effective theories. If we have external reasons to believe that our best theories at a

given time are likely to be empirically inaccurate at some scale, we might still believe that these

theories give approximately true descriptions of more fundamental entities and structures. For

instance, we might believe that a low-energy continuum field theory provides an approximately

accurate representation of the continuum field described by a more fundamental high-energy the-

ory. The structure of effective theories prevents us from holding such beliefs, no matter what the

new high-energy physics looks like.

3.6 Effective Field Theories and Selective Realism

We have seen that effective theories force us to adopt a differentiated attitude towards the

entities and structures that we can reliably admit in the realist inventory. In particular, we cannot

admit entities if their core properties are specified in regimes where the predictions of the effective
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theory of interest are likely to break down. Yet, these restrictions leave, in principle, ample space

for making reliable and distinctively realist ontological commitments. In the Newtonian case, for

instance, we can commit to the existence of sufficiently large massive bodies of center of mass xi(t)

orbiting at sufficiently large distances from each another and moving at sufficiently low velocities,

including black holes which, I take it, qualify as unobservables according to van Fraassen’s original

distinction (e.g., 1980, pp. 13-9). I will now argue that, in some specific theoretical contexts

including classical and quantum field theory, the restrictions imposed by the structure of effective

theories still raise a challenge for more refined forms of scientific realism. To bring the point home,

I will focus on Williams’s (2019b) and J. D. Fraser’s (2018; 2020b) defense of selective realism in

the context of QFT.19

The strategy of the selective realist is to defend the realist cause by conceding that our best

theories do not get everything right and isolating their parts which both play an essential role in

their explanatory and empirical success and are likely to be preserved under theory-change (see,

e.g., Psillos, 1999; Chakravartty, 2007). Upon entering the realm of QFTs, the selective realist

counts herself doubly fortunate, at least at first sight. First, she can use EFT methods to formulate

and interpret our best current theories in a more epistemically reliable way. She has, in particular,

efficient tools for evaluating the contributions of a theory in different regimes and eliminating, or

“integrating out", its theoretical constituents which are irrelevant in the regimes she is interested in.

Second, she can also use the resources of renormalization theory and, in particular, the Wilsonian

RG in order to analyze the scale-dependent structure of our best EFTs and increase her confidence

in the robustness of their low-energy theoretical descriptions. It is beyond the scope of this chapter

to give a detailed account of Wilsonian RG methods (for a recent review, see Williams, 2019a).

Here, I will restrict myself to discussing the interpretative constraints that Williams and J. D. Fraser

extract from EFT and RG methods and evaluating the success of their selective strategy.20

How, then, should we separate the theoretical descriptions of our best current EFTs if we want

19I will leave aside Wallace’s account insofar as he is primarily concerned with defending the foundational and
interpretative relevance of cut-off Lagrangian QFTs in (2006; 2011) and not scientific realism strictly speaking (or,
more precisely, structural realism).

20See also Ruetsche (2018, 2020), Rosaler and Harlander (2019, sec. 5.6), and Rivat and Grinbaum (2020).
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to implement the selective realist strategy? Since the structure of an EFT gives us good reasons

to believe that its predictions break down at some high-energy scale, we should first restrict our

attention to the parts of the theory which describe its low-energy content:

1. Isolate theoretical descriptions which are specified within the limited range of scales where

the theory is likely to remain reliable (see, e.g., Williams, 2019b, p. 13).

As already discussed in section 3.4, constraint 1 purely follows from the structure of effective

theories.

Some of these low-energy descriptions might still depend significantly on irrelevant parts of the

theory or involve representational artifacts (e.g., the specific type of cut-off in Eq. 3.4). We need,

therefore, to introduce further constraints if we want to isolate the parts of the theory which play an

essential role in its explanatory and predictive success and which accomplish genuine representa-

tional work. Williams and J. D. Fraser remain somewhat ambiguous here. They highlight various

ways in which EFT and Wilsonian RG methods allow us to gain confidence in the “robustness" of

the low-energy content of EFTs. Yet, they also appear to put emphasis on two different robustness

criteria. Williams seems to be more concerned with the relative insensitivity of the low-energy

physics to the high-energy physics:

[...] it is one of the essential virtues of the RG that it provides a tool for determining

how changes in the structure of the theory at the scale of the short-distance breakdown

affect physics at longer distances where the theory is empirically reliable. What the

RG shows is that the ‘fundamental’ short-distance structure with which standard inter-

preters are so concerned is largely irrelevant to the physical content of an EFT in the

domain where we have any reason to consider it empirically reliable. (2019b, p. 16)

J. D. Fraser, by contrast, puts emphasis on a more general type of invariance, which includes the

mathematical invariance of the low-energy descriptions of the theory under different parametriza-

tions and other representational artifacts introduced when renormalizing the theory (e.g., J. D.
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Fraser, 2020b, p. 12; 2018, p. 1172; see also Ruetsche, 2018, pp. 11-2; 2020, p. 16; Rosaler and

Harlander, 2019, sec. 5.6).

Despite important overlaps, as we will see below, I think that it is crucial to distinguish between

two main interpretative constraints to account for Williams’s and J. D. Fraser’s slightly different

outlooks and for the variety of ways in which the low-energy content of an EFT amenable to RG

methods is robust:

2. Isolate theoretical descriptions which are largely insensitive to high-energy physics;

3. Isolate theoretical descriptions which are invariant under RG-transformations and indepen-

dent of specific choices of renormalization methods.

Constraint 2 is mainly derived from the structure of effective theories, although RG methods often

allow us to refine the analysis. As we saw above, part of what makes an effective theory distinc-

tive is that its descriptions which are significant within a specific regime are largely independent

of its descriptions which are significant within a different regime (e.g., lower- vs. higher-order

interaction terms in Examples 1-2; light vs. heavy field dynamics in Eq. 3.6). In particular, it

is usually possible to modify the high-energy content of an EFT without affecting much its low-

energy content, including its low-energy predictions (e.g., by adding higher-order interaction terms

in Examples 1-2). We can also usually show that different high-energy theories reduce to the same

low-energy theory, or at least to similar ones (e.g., we can add a third heavy scalar field in Eq.

3.6 and obtain a similar low-energy theory after integrating out the two heavy fields and making

appropriate approximations). In all these cases, the crucial point is that the low-energy content of

the theory is robust under variations of its high-energy content. And, in general, the bulk of the

low-energy content of the effective theory depends only on a finite number of free parameters (see

Examples 1-2).

Constraint 3, by contrast, arises specifically from a RG analysis. In general, a theory can

be renormalized in many different ways, and the specific renormalization method chosen usually

requires us to introduce some arbitrary scale parameter (e.g., the parameter Λ in Example 2) and use
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some particular scheme to absorb the terms depending on this parameter (e.g., a mass-dependent

renormalization scheme). Thus, constraint 3 requires us to isolate theoretical descriptions which

are invariant under different renormalization methods and choices of scales (cf., Williams, 2019b,

p. 12; J. D. Fraser, 2018, p. 1172; 2020b, p. 12).

We can, in fact, look at this constraint in two distinct ways. (i) If we consider some fixed

high-energy theory, we can derive a series of low-energy theories by successively integrating out

high-energy field configurations in their path integral formulation. In this case, constraint 3 is

best understood as requiring us to isolate invariant theoretical descriptions in the series of low-

energy theories. (ii) If we consider some low-energy theory with parameters fixed by means of

experimental inputs, we can show that this theory and its parameters remain unaffected by changes

in the high-energy theory from which it is originally derived, i.e., the so-called “bare" theory (cf.

Wallace, 2006, p. 49; 2011, p. 6; Williams, 2019b, p. 12; J. D. Fraser, 2018, p. 1172; 2020b, p.

12). In this case, constraint 3 is best understood as requiring us to isolate theoretical descriptions

which are not affected by changes in the value of the high-energy cut-off and in the parametrization

of the high-energy theory.

Now, in addition to adopting constraints 1-3, the selective realist also needs to make sure that

she is offering a genuine defense of the realist cause. First, in order to give a sufficiently informa-

tive and non-ambiguous explanation of the success of the theory, she needs to isolate a definite set

of unobservable entities or structures with clear identity conditions—say, in the case of entities,

with a well-specified set of core properties which distinguish them from other entities, whether

they are fundamental or not. For instance, in the Newtonian case, we might identify a system by

means of its position, its velocity, its mass, and its dynamical behavior. If we simply give a func-

tional characterization of the system by means of its mass, for instance, we are likely to pick out

very different types of entities and leave the target of our commitments indeterminate. Likewise,

in the QFT case, we might identify a system by means of the type and number of its degrees of

freedom, its mass, its self-interacting parameters, and its dynamical behavior. If we simply specify

the system by means of its dynamical behavior and its mass, for instance, there is still some ambi-
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guity as to whether we pick out a lattice or a continuum field. Contrary to what Williams (2019b,

p. 15) suggests, to simply “extract reliable ontological information" does not suffice (see also J. D.

Fraser, 2020b, p. 12). The selective realist needs to give a sufficiently comprehensive account of a

definite set of entities or structures in order to fulfill her explanatory duties.

Second, the selective realist needs to give a literal interpretation of some privileged parts of

the theory, as it is often assumed in the literature (e.g., Psillos, 1999; Chakravartty, 2007). In

the Newtonian case, for instance, the selective realist can take the theory to literally describe a

black hole with a center of mass specified by the position x(t) and which interacts gravitationally

with other bodies. The gravitational force can be interpreted as a concrete structure, i.e., as a

variable relation with a specific strength depending on the relative position and the masses of the

bodies. Although Williams and J. D. Fraser do not give much details about their preferred version

of selective realism, they both seem to endorse this semantic constraint, i.e., that the privileged set

of descriptions that we take be trustworthy should be understood in their standard sense and taken

to be approximately true or false simpliciter.21 In the same vein, the selective realist should avoid

modifying too much the original mathematical structure of the theory or engaging into any other

form of post hoc interpretative practice. Otherwise, she will fail to take the original theory at face

value and explain its explanatory and predictive success in its own terms. This is well illustrated,

for instance, by attempts to draw conclusions about the ontological content of our best current

QFTs based on their putative algebraic reformulation, despite the fact that they have not yet been

successfully formulated in algebraic terms.22

The difficulty now is that it is not clear what the selective realist should commit to if she

endorses these constraints in the case of our best current EFTs, as it has been acknowledged by

J. D. Fraser (2018, p. 1172; 2020b, p. 15). I will expand on Ruetsche’s recent discussion in

21At the very least, this seems to be implicit in the central question underlying Williams’s and J. D. Fraser’s inter-
pretative stance—“given that this theory provides an approximately true description of our world, what is our world
approximately like?" (Williams, 2019b, p. 2). Reference to particular physical scales seems to be included in the
properties of the target system (see, e.g., J. D. Fraser’s reference to the “bulk properties" of a fluid when he illustrates
the idea of large distance features of the world, 2018, p. 1173).

22See, e.g., D. Fraser (2008) for such an attempt and Williams (2019b) for a criticism, emphasizing the importance
of paying attention to how QFTs are successfully implemented in practice.
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(2018; 2020) by looking at the most obvious candidates—correlations, particles, and lattices—and

argue that they do not allow us to meet constraints 1-3 or make distinctively realist ontological

commitments.

Correlations: J. D. Fraser proposes to focus on low-energy correlation functions:

[...] a preliminary strategy is to point to correlation functions over distances much

longer than the cutoff scale as appropriate targets for realist commitment. These quan-

tities are preserved by the renormalization group coarse-graining transformation and

encode the long distance structure of a QFT model. They are also directly connected to

its successful predictions—you cannot vary the long distance correlation functions of

a theory without drastically affecting its low energy scattering cross sections. (2018,

p. 1172)

We face several issues here. First, it is not clear how we should interpret correlation functions. In

the standard QFT framework, they correspond to vacuum expectation values of time-ordered prod-

ucts of field operators at different space-time points. The simplest textbook interpretation in the

simple case of two field operators φ̂(x) and φ̂(y) is to take the expectation value 〈0|T {φ̂(x)φ̂(y)}|0〉

to measure the probability (once squared) that a particle is created at some earlier point x, propa-

gates, and is annihilated at some later point y (assuming x0 < y0). This interpretation is contro-

versial, in large part because of the difficulties associated with the interpretation of quantum fields

and particles in interacting QFTs. The crucial point here is that however we interpret these entities

(I discuss the two cases below), we need to commit to something more than correlations if we

follow this standard textbook interpretation. Likewise, if we interpret correlation functions more

generally as standing for the degrees of co-variation or coordination between two variables at two

distinct points, we need to commit to something more than degrees of co-variation (I discuss the

case of physical degrees of freedom below).

We might opt for a more minimal interpretation of correlation functions as encoding structural

physical information independently of the physical objects or variables they relate. In the case

of EFTs, we can interpret correlation functions as encoding the correlations of the target system
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at sufficiently large distances, where ‘correlation’ refers to a set of numbers characterizing the

degree of correlation between two space-time points or regions. If we take this path, however, the

empiricist might raise doubts about the distinctively realist character of these commitments and,

instead of rejecting them altogether as she usually does, simply re-appropriate them as her own as

Ruetsche (2020, pp. 16-7) rightly notes. It turns out that the framework of QFT even gives her good

reasons to do so. Typically, in high energy physics, we summarize empirical information about the

correlations between the initial and final states of some scattering process in a mathematical object

called the S-matrix, and the S-matrix can be derived by taking the appropriate asymptotic limit of a

sum over all the possible correlations between initial and final states by means of the LSZ reduction

formula (see, e.g., Schwartz, 2013, sec. 6.1). If we take the state of a field to be in principle

observable in any sufficiently large region of space-time, nothing seems to prevent the empiricist

from understanding the numbers specified by correlation functions as simply summarizing the

empirical information that would be gathered about the correlations between two states of the

system if we were to make measurements in this space-time region.

Even if the structural realist finds a way of avoiding this empiricist re-appropriation, she still

faces one important issue. Strictly speaking, correlation functions in QFT are not RG-invariant

contrary to what J. D. Fraser claims. If we implement a coarse-graining procedure by integrat-

ing out high-energy field configurations, for instance, the different correlation functions obtained

at low energies are multiplied by “wave function normalization" factors. In general, these mul-

tiplicative factors depend on other variables, such as the couplings of the theory. And so it does

not appear that there is an invariant and therefore unambiguous characterization of the degree of

correlation between two distinct space-time points since it depends on the way we parametrize the

low-energy theory. By contrast, S-matrix elements are invariant under these different parametriza-

tions. Similarly, the path integral used to generate the set of correlation functions is also invariant

under different coarse-graining procedures. Yet, it seems to be even more difficult to interpret the

S-matrix and the path integral in distinctively realist terms compared to correlation functions. And,

again, the empiricist might simply re-interpret the S-matrix and the path integral as bookkeeping
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devices for all the possible empirical information that we could gather about the correlations be-

tween initial and final states of the system in sufficiently large space-time regions.

Particles: Another option, perhaps more likely to enable us to make distinctively realist onto-

logical commitments, is to focus on particles, such as protons, neutrons, gluons, and photons (see,

e.g., Williams, 2019b, p. 20, p. 22). The concept of particle in interacting QFTs which involve

an infinite number of degrees of freedom is controversial (see, e.g., Teller, 1995; Bain, 2000; D.

Fraser, 2008; Ruetsche, 2011). In the modern understanding of QFT, it is common to understand

particles in terms of patterns of excitations in the fields (as it is rightly noted by Wallace, 2006;

2019, sec. 4, for instance). This understanding is robust whether we deal with the perturbative

or exact, non-interacting or interacting formulation of a QFT with an infinite or finite number of

degrees of freedom (ignoring the mathematical issues inherent in realistic continuum QFTs). And,

to be more precise, we can interpret particles in terms of sufficiently well-behaved and localized

patterns in the field configurations in regimes where the interactions described by the theory are

sufficiently weak.

Again, the main problem here is that neither field configurations nor energy-momentum states

are RG-invariant. In general, RG-transformations mix both field operators and the states of dif-

ferent kinds of particles with one another. The only notion of “particle" that does not suffer from

these issues is the one specified by the asymptotic states in the non-interacting version of the the-

ory. But insofar as we seek a realist interpretation of interacting QFTs, we cannot simply restrict

our commitments to the free particles that we prepare and detect in experiments. And even if we

were to take this extreme route and leave aside potential empiricist re-appropriations, we would

still not be able to commit to the existence of particles such as quarks and gluons insofar as the

quark and gluon fields do not have asymptotic elementary particle states.

Lattice fields: A third option is to focus on low-energy degrees of freedom (e.g., as represented

by the field operators associated with the variables φ̃(k) for k � Λ in Example 2). Agreed, many

of the properties associated with these degrees of freedom do vary under RG-transformations,

including coupling parameters and the specific form of the variables used to specify these degrees
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of freedom (which depends, in particular, on how we separate low- and high-energy degrees of

freedom). Yet, whether we integrate out a large or a small range of high-energy field configurations,

the number of degrees of freedom at sufficiently low energies remains exactly invariant. We could,

therefore, consider them to be an appropriate target for the selective realist, as Williams sometimes

seems to suggest (2019b, p. 13, pp. 14-5). The main problem here is that this might not be

enough for the realist. We can interpret a degree of freedom as a determinable dynamical property

of some system. However, without a specification of the low-energy system, any appeal to low-

energy degrees of freedom will remain too indeterminate for the realist and therefore undermine

her attempt to provide a sufficiently informative and unambiguous explanation of the success of

the theory. After all, these degrees of freedom could perfectly stand for the properties of radically

different low-energy systems. They could be, for instance, the degrees of freedom of low-energy

lattice fields with different types of spatial structures.

In order to avoid the issue of underdetermination at low energies, we can perhaps isolate a

privileged set of low-energy lattice fields for our best current EFTs. If we put a given EFT on

a lattice of finite size and spacing, we can indeed integrate out high-energy degrees of freedom,

obtain low-energy lattices, and eventually derive empirically equivalent low-energy predictions

which do not significantly depend on the details of the short-distance physics and on the way

we eliminate high-energy degrees of freedom (cf. Wallace, 2006, pp. 48-50). In addition, these

low-energy lattices are well-specified within the limited range of energy scales where the EFT of

interest is likely to remain reliable, and they do appear to enable us to make distinctively realist

ontological commitments.

Yet, we still face a severe issue of underdetermination both at low and high energies. If we

formulate an EFT on a lattice and interpret its low-energy descriptions in their literal sense, the RG

coarse-graining transformations appear to force us to commit to the existence of different lattice

fields at different low-energy scales. We might solve this issue by claiming that these lattice fields

are more or less coarse-grained partial instantiations of the same high-energy lattice field. If we fix

any of the low-energy lattice representations, however, RG methods allow us to change the high-
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energy lattice representation without affecting the low-energy lattice one. And this introduces

some pernicious form of underdetermination about what the low-energy lattice representations are

supposed to stand for.

There are two additional points that make the matter even worse. First, if we start with a given

lattice field, we can implement a specific type of coarse-graining procedure that defines a lattice

field with a different number of degrees of freedom but with the same lattice spacing. We simply

need to rescale the original lattice spacing and adjust the parameters of the theory after having

integrated out high-energy degrees of freedom. And the two lattice field representations are, of

course, empirically equivalent (see, e.g., Hollowood, 2013, sec. 1.2, for a simple explanation of

this specific way of implementing RG-transformations). Second, the specific form of the low-

energy lattice representations depends on the type of coarse-graining procedure we implement in

the first place. We might separate low- and high-energy degrees of freedom in very different ways,

or define new low-energy degrees of freedom by averaging over high-energy ones in a particular

way. In each case, the procedure yields a different set of low-energy lattices. And overall, then, it

appears that low-energy lattices do not allow us to satisfy constraint 3.

Now, if we are to make distinctively realist ontological commitments about entities or struc-

tures in the case of our best current EFTs and maintain Williams’s and J. D. Fraser’ robustness

constraints, continuum quantum fields appear to be ideal candidates. Assuming that we do not lat-

ticize the theory, we may either take a smooth cut-off or a sharp cut-off (in which case we eliminate

high-energy states of the field), and keep higher-order interaction terms or eliminate them (depend-

ing on the desired accuracy). Either way, the theory describes a RG-invariant continuous system

with an infinite number of degrees of freedom, at least for a finite range of scales. If we keep all

the degrees of freedom in the theory, we do not face the issues encountered with lattices. And if

we do not focus on the specific values of the properties of the continuum field, such as the value of

its mass, the strength of its interactions, or the value of its field configurations on space-time, we

also avoid the issues encountered with correlation functions and particles.

118



The main issue here comes from the domain restriction claim.23 On the face of it, we are com-

mitting to entities with core properties specified in regimes where the predictions of the EFT of

interest are likely to break down, and this should be a good enough reason not to make such com-

mitments (as Williams and J. D. Fraser would probably agree). In response, we might insist that

we are committing to the existence of continuum quantum fields insofar as they are approximately

similar to large distance scale features of the world. If we wish to endorse the literalness constraint,

however, we cannot make such a claim. As we saw in section 3.5, if we take the descriptions of

a continuum quantum field itself at face value, i.e., as being either (approximately) true or false,

we are forced to attribute degrees of freedom to some putative entity in arbitrarily small regions of

space-time, and the structure of effective theories gives us reasonable grounds not to commit to the

existence of such entities.

We might also try to escape the difficulty by taking the infinite representation of the putative

continuum field to contain a finite part that does the appropriate representational work at large

distances, say, a finite representation of a lattice field. The problem here is that any specification

of such finite representation involves a particular specification of an arbitrary lattice spacing, or at

least of a finite number of degrees of freedom, and therefore brings us back to the issues discussed

above. The best RG-invariant representations of putative entities in our best current EFTs appear to

be the representations of continuous systems with an infinite number of degrees of freedom. And

we cannot simply embed these representations in finite ones without losing their representational

value altogether.

3.7 Conclusion

I will briefly conclude with a more radical suggestion to defend the realist cause in the case

of our best current EFTs. To summarize the main points of the chapter first, we have seen that

the structure of effective theories across physics is best characterized by the fact that they contain

23Another set of issues that I will not discuss here is related to the existence of empirically equivalent field repre-
sentations (for a discussion about Borchers classes, for instance, see Haag, 1996, sec. II.5.5; Wallace, 2006, sec. 2.2,
3.3).
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intrinsic empirical limitations. In a slogan: effective theories “predict" their own predictive failure

at some scale. We have also seen that the most straightforward realist explanation of this predictive

pattern is to take effective theories to accurately represent limited parts of the world, which pro-

vides one central constraint for the sort of entities and structures that a realist might reliably include

in his inventory if he takes effective theories seriously. I gave one concrete example of the sort of

entities that the traditional scientific realist cannot commit to if he interprets the core descriptions

of effective theories in literal terms: namely, he cannot commit to the existence of putative infinite

systems since their individuating properties are specified in regimes where the predictions of the

theory are likely to break down. Yet, the domain of empirical validity of an effective theory leaves,

at least in principle, enough space for the realist to commit to the existence of unobservable entities

or structures (as we have seen in the Newtonian case). As I have argued in the last section, this is

not always straightforward. In particular, the structure of our best current EFTs is such that it is not

clear what we should commit to if we want to make distinctively realist ontological commitments

and avoid making these commitments depend on irrelevant or artifactual features.

I suspect that many of us still entertain the hope of a robust form of scientific realism that does

not totally fail to adhere to its original letter and which is concerned with explaining the success

of our best theories in their own terms. In the case of our best current EFTs, a potential candi-

date for making distinctively realist ontological commitments appears to be continuum quantum

fields. And if we want to commit to the existence of such entities at low energies, one potential

solution is to modify the traditional semantic tenet of scientific realism (but keep its ontological

and epistemological tenets as summarized in, e.g., Psillos, 1999, p. xvii). Instead of taking the de-

scriptions of a continuum field at face value, that is, as being either (approximately) true or false,

we need to take them to be (approximately) true or false relative to a specific range of physical

scales. That is, when we speak about a continuum field with properties assigned at every point of

space-time, we are not literally making the claim that the field has properties at arbitrarily short

distances simpliciter. We are making a claim about the structure of matter at large distances. And

the descriptions of an effective theory are approximately true or false relative to these scales up
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until we discover that the theory breaks down at some limiting scale, in which case we need to

work with a new theory. If the new theory is effective, we will be again making claims relative

to a specific range of physical scales. This strategy requires us to modify one of the central tenets

of scientific realism usually endorsed by selective realists. But it might enable us to explain the

success of our best theories in their own terms.
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Chapter 4: How Theoretical Terms Effectively Refer

This chapter proposes a new theory of reference to address the problem of referential failure

across theory-change. Drawing on Kitcher’s and Psillos’s accounts, I argue that referential success

is best assessed before theory-change by examining whether the central theoretical terms of a the-

ory refer to entities specified within the limited physical context where the theory is empirically

reliable. I show that effective theories provide a paradigmatic set-up for implementing this princi-

ple of selective reference and serve as a blueprint for assessing the referential success of the usual

suspects, such as ‘phlogiston’ and ‘luminiferous ether’.

4.1 Introduction

Many scientific realists share the intuition that our best current scientific theories accurately rep-

resent entities that we cannot directly observe in experiments. In support of this intuition, it is

often argued that the predictive success of these theories would be hard to explain, or “miraculous"

as Putnam (1975) felicitously put it, if they had nothing to do with what the world is like (see

also Maxwell, 1962, and Smart, 1963, for early versions of this argument). Yet, this intuition is

challenged on many counts and most powerfully by the apparent twists and turns of the history of

science. Many of our “best" past theories appear by the light of their successors to be radically

false and to contain central theoretical terms which fail to refer to anything real. And this histor-

ical pattern, as Laudan (1981) famously argued, does not merely undermine the explanatory link

between predictive success, approximate truth and reference dear to scientific realists. It also gives

reasons to believe that our best current theories might prove one day to be as radically false and

referentially unsuccessful as their predecessors.

The most popular response to this challenge is to concede that our best past theories did not get
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everything right but maintain that they still contained central parts that survived and thus remain

worthy of realist commitments (e.g., Worrall, 1989; Kitcher, 1993; Psillos, 1999; Chakravartty,

2007).1 Among the “selective" realists who follow most closely the traditional form of scientific

realism, such as Kitcher and Psillos, it is often granted that the problem of referential failure across

theory-change requires adjusting both one’s semantic and epistemic commitments. In particular,

if we acknowledge that at least some of the central terms of our best past theories fail to refer to

anything real, we cannot simply assume that, in general, the terms of successful theories automat-

ically refer to the right sorts of entities and restrict ourselves to selecting descriptions that we can

trust. We also need to account for: (i) the mechanism by which some, but not all, theoretical terms

come to refer to unobservable entities; and (ii) the putative referential stability of some, but not

all, theoretical terms under theory-change (or their putative referential continuity if the domains of

successive theories overlap).2

The central challenge underlying both (i) and (ii) is to find a reliable and principled way of

distinguishing between referential success and failure, i.e., a principle of selective reference, and

this is far from trivial. For instance, we cannot appeal to the theoretical content of our best current

theories to assess current and past referential success since we do not yet know whether they will

not appear to be deeply mistaken by the light of future theories. Nor can we rely on scientists’

judgments since their descendants might prove them wrong. Nor can we point to the crucial pre-

dictive and explanatory role of a term since the next theory might show that, ultimately, this term

was not playing such a crucial role. We need, in other words, to find a reliable and principled way

1In response to Laudan’s historical gambit, scientific realists also emphasize that many of his examples are not suf-
ficiently successful to be even considered candidates for realist commitments (e.g., Devitt, 1984, sec. 9.3; McMullin,
1984, p. 17; Worrall, 1989, p. 113). It is often recognized, however, that while this response might work for past
theories such as the crystalline spheres theory, other examples such as the phlogiston theory and 19th century theories
of the luminiferous ether appear to have enjoyed a sufficient amount of success to pose a genuine threat to realists
(e.g., Psillos, 1999, chap. 5).

2Structural realists would probably respond that the amount of discontinuity is much less important once we focus
on the structural content of our best past theories (e.g., Worrall, 1989; Ladyman, 1998; Ladyman et al., 2007). Even
if this proves to be right, both epistemic and ontic structural realists would still benefit from developing a similar
account, i.e., an account that: (i) specifies the mechanism by which some, but not all, mathematical equations or
structures come to relate to their target; and (ii) explains why some, but not all, mathematical equations or structures
are likely to be referentially or representationally stable under theory-change. For simplicity, I will restrict myself to
selective strategies closely associated with the traditional form of scientific realism in this chapter.
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of assessing referential success before theory-change, and adjust the semantics of theories accord-

ingly. I will refer to this challenge as “Stanford’s challenge" following Stanford’s criticism of the

selective realist strategy (2003a,b, 2006, 2015).3

The goal of this chapter is to design a theory of reference which allows selective realists to

address both the traditional problem of referential failure and Stanford’s challenge without making

referential success too easy or too hard. I will first engage with Kitcher’s (1978, 1993) and Psillos’s

(1999, 2012) accounts, and argue that they fail to address these issues in a satisfactory manner—

although not exactly for the reasons usually raised in the literature (cf., McLeish, 2005; Stanford,

2006; Chakravartty, 2007; Ladyman et al., 2007). Concerning Kitcher, I will argue that his attempt

to assess referential success based on the practices and intentions of scientists in different contexts

of utterance makes referential success and failure overly sensitive to scientists’ idiosyncratic atti-

tudes and willingness to speculate about their subject matter. Concerning Psillos, I will argue that

his specific use of causal and descriptive elements of reference-fixing introduces some pernicious

form of referential indeterminacy.

Drawing on Kitcher’s and Psillos’s accounts, I will then propose a theory of reference modeled

on the new paradigm of effective theories developed by physicists in the 1970-80s.4 One of the

distinctive features of effective theories is that they contain intrinsic empirical limitations, i.e., their

structure incorporates a robust specification of the scales at which they are likely to be empirically

inaccurate before we probe these scales in experiments. As a realist, a natural explanation of this

predictive pattern is to take effective theories to accurately represent a limited part of the world at

best. Hence, instead of focusing on the context of utterance as in Kitcher’s theory, I will argue that

referential success is best assessed by focusing on the limited objective context delineated by the

range of scales where the theory is empirically reliable. I will modify Psillos’s theory of reference

in light of this principle of selective reference and show that the resulting theory has two main

3Stanford also emphasizes another version of this challenge according to which there is no principled way of
distinguishing between indispensable and idle parts of a theory before theory-change (see also, e.g., Giere, 1988, p.
96).

4For a philosophical discussion of effective theories in the original context of Quantum Field Theory (QFT), see,
e.g., Cao and Schweber (1993), Hartmann (2001), and Williams (2019b).
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advantages:

(i) It is often, if not always, possible to identify before theory-change at least the limited context

where a successful theory has been found to be empirically accurate, which lays the ground

for responding to Stanford’s challenge. The case of effective theories is special: we can

estimate the limiting scale at which the theory is likely to become empirically inaccurate and

therefore extend its scope to scales which have not yet been probed in experiments within

the range delineated by this limiting scale.5

(ii) This sort of limited context provides a reliable basis for selecting the descriptions of the

theory which are likely to remain trustworthy under theory-change and therefore identifying

stable referents. As we will see, the selection process is remarkably robust in the case of

effective theories. In other cases, I will show with the examples of the phlogiston and the

luminiferous ether that the framework of effective theories still serves as a blueprint for

assessing the referential success of the central terms of a theory.

Two caveats before I begin. (i) One might be worried that this strategy does not handle well

cases where the new theory is found to be radically incompatible with the current theory even

within the range where it is empirically reliable. In response, I will suggest with the examples

of ‘phlogiston’ and ‘luminiferous ether’ that problematic cases of referential failure in the history

of science typically arise because the putative referent of the term at stake is specified outside of

the limited context where the theory of interest has been put to the test. For anomalous cases (if

any), I will argue that if the referent is characterized by descriptions which are restricted to or

associated with this sort of limited context, we still have independent grounds to believe that the

term successfully refers both before and after the advent of the new theory. (ii) While the notion

of objective context is precise in theoretical physics, it becomes increasingly vague and hard to

specify as we move towards the special sciences. So apart from the diagnosis of ‘phlogiston’, my

argument will be restricted to physics. I will nonetheless stretch it as far back as the framework of
5In general, estimating the value of these scales requires having appropriate empirical inputs in some accessible

regime and assuming that the dimensionless constants of the theory are of order one.
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effective theories seems to be applicable in the history of physics by relying on Galileo’s account

of gravitational phenomena with specific contrasts with Descartes and Newton when needed.6

The chapter is organized as follows. Section 4.2 discusses Kitcher’s and Psillos’s theories.

Section 4.3 offers a context-dependent theory of reference modeled on the framework of effec-

tive theories. Section 4.4 explains how this theory helps selective realists to address the issue of

referential stability and Stanford’s challenge. Section 4.5 responds to objections.

4.2 Kitcher and Psillos on Reference

Two competing intuitions are usually at play in the debate over the reference of scientific the-

oretical terms. Imagine for the sake of the argument that upon the publication of the first edition

of the Principia in 1687, most British and continental natural philosophers immediately came to

endorse Newton’s revolutionary conception of gravity as a force acting at a distance between mas-

sive bodies (which Newton himself was reluctant to endorse). Imagine further that it was clear to

these natural philosophers that the post-scholastic conception of gravity as an intrinsic quality of

matter and the Cartesian conception of gravity as arising from the action of material vortices were

radically mistaken (despite their dominance at the time). What would be written on the front page

of the French magazine La Gazette?

An advocate of the description theory of reference would probably write:

Revolution across the Channel: Newton discovered universal gravitation and demon-

strated that Descartes’s gravitational vortices do not exist.

Here the basic idea is that we pick out entities by means of their properties (see Frege, 1892,

and Russell, 1905, for early versions of the description theory). The theoretical term ‘gravity’

successfully refers if there is some unique entity satisfying the core description associated with the

6One might wonder whether Galileo’s earlier and later accounts of gravity were sufficiently successful to be of any
interest to selective realists (see, e.g., Galilei, 1590, 1632, 1638). Since my goal is to make a claim about the relevance
of effective theories for the topic of reference and not about the specific theories that we should include in the realist
gambit, I will ignore this worry. For more details about the success of Galileo’s accounts of gravity, see, e.g., Koyré
(1966, part II) and Drake’s introduction in (Galilei, 1638, esp. p. ix).
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term and fails to refer if there is nothing satisfying this description. For instance, since Descartes’s

description of gravity turns out to be radically false, it means that there is no such thing as Cartesian

gravity, i.e., gravity as Descartes describes it.

One immediate issue for selective realists tempted by the description theory is that it does not

give much leeway for changing the core description associated with a term without losing reference

altogether. If we require entities to be picked out by means of a comprehensive set of properties,

we are likely to find incompatible sets over time and make the history of science more referentially

discontinuous than it appears to us. Inversely, if we attempt to avoid this issue by keeping only

a minimal set of properties, or even only observable ones, the core description associated with

each term is likely to be satisfied by entities with radically incompatible properties. But referential

indeterminacy, i.e., the absence of a matter of fact as to which entity a term uniquely picks out,

is not really the sign of referential success. Or, at any rate, we will face some pernicious type of

underdetermination as to what makes the theory at stake approximately true if we allow for terms

to refer to radically different kinds of entities.

Being aware of these issues, an advocate of the causal or causal-historical theory of reference

would probably write instead:

Revolution across the Channel: Newton showed that the Cartesians were deeply mis-

taken about the nature of gravity.

Here the basic idea is that reference is originally fixed by means of some kind of causal contact with

the entity for which a new term is introduced and that referential continuity is ensured during the

transfers of the term among competent speakers if the speakers use the term in the same way and

intend to refer to the entity originally picked out (see, e.g., Kripke, 1972; Putnam, 1975, for early

views).7 Hence, even if a speaker along the chain decides to characterize the referent of a given

term by means of radically new properties, she might still intend to attribute these properties to
7Strictly speaking, it is not part of Kripke’s and Putnam’s views that the reference-fixing event necessarily involves

some causal contact. However, they both assume some element of indexicality in this initial event, which seems to
require some kind of contact with the actual world (see, e.g., Kripke, 1972, pp. 57-9; Putnam, 1973, pp. 202-4). For
simplicity, I will restrict myself to the “full causal theory of reference", to use Kroon’s expression (1985, p. 144),
which involves causal contact both in the reference-fixing event and the reference-borrowing process.
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the same entity picked out by the speaker who first introduced the term. Arguably, then, Descartes

and Newton were still talking about the same thing despite holding radically incompatible beliefs

about gravity because they were both attempting to characterize the same causal agent responsible

for the free fall of terrestrial bodies (among other phenomena).

The causal theory escapes the problems of referential failure and discontinuity that beset the

description theory. But it does so at the expense of making referential success too easy. If we

introduce a term to pick out the causal origin of a given phenomenon, the term will automatically

refer to something insofar as there is presumably always some causal agent for any given set of

observed phenomena (Stanford and Kitcher, 2000, p. 115, call this the “no failures of reference"

problem). In this case, however, referential success does not depend at all on whether the theory

is approximately true, which leaves selective realists tempted by the causal theory in an unstable

position. For it means that even if our best theories turn out to be radically false, we would still be

able to successfully speak about the fundamental entities of the world (if any) without having any

knowledge about them.

In the case of scientific theoretical terms, philosophers usually—and rightly in my view—think

that both theories of reference have something right about the mechanism of reference-fixing (see,

e.g., Enc, 1976; Sterelny, 1983; Lewis, 1984; Kroon, 1985, 1987, for early views). This suggests

a causal-descriptive or “hybrid" theory of reference, the gist of which is that referential success

originally depends both on some kind of bare causal link established between a speaker and a

referent during a baptismal event and on a privileged set of descriptions used by the speaker to

identify this referent. The difficulty, however, is to give a precise account of how the mechanisms

of reference-fixing via causal contact and via satisfaction of a description are to be combined with

one another. For it seems that we pick out an entity either by pointing at it or by uttering something

true—but not by doing both or, at any rate, that the mechanisms of reference-fixing work on their

own when we do both. I will call the problem of combining these two mechanisms the “combina-

tion problem". It is, of course, a problem for selective realists insofar as they wish to avoid making

referential success too hard or too easy, and therefore not a problem for the description and causal
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theories per se. Kitcher’s and Psillos’s solutions to the problem of referential failure can be seen

as two distinct ways of engaging with the combination problem in the first place.

Although Kitcher does not hold exactly the same view over time (see, e.g., Kitcher, 1978,

1982, 1993, 2001; Stanford and Kitcher, 2000), his solution to the combination problem and more

generally to the problem of referential failure is to make reference-fixing depend on the context

of utterance. For my purpose, the most important claims of his 1978-1993 account can be recon-

structed as follows:

(1) Scientists produce different term-tokens of the same term-type, i.e., different instances of

the same term, with different reference-fixing mechanisms. Depending on the context of

utterance, reference is originally fixed by baptism (causal link) or by description (satisfaction

link), and each term-type is associated with a “reference potential", i.e., with the set of ways

the reference of the term-type is fixed on different occasions. The referent of a term-type

is determined on a token-by-token basis by finding out the “mode of reference" associated

with each token.

(2) It is a matter of fact that scientists use the same term to refer to different things on differ-

ent occasions, i.e., tokens of the same term-type refer non-uniformly once we look closely

enough at scientific practice.

(3) Historians of science attribute referential success and failure by coming up with the best

explanation for the production of a token on the basis of the “principle of humanity", i.e.,

by trying to “impute to the speaker whom we are trying to translate a “pattern of relations

among beliefs, desires and the world [which is] as similar to ours as possible"" (Kitcher,

1978, p. 534; see Grandy, 1973, for the original reference).

(4) Even if most of the tokens of a term-type are found to be referentially unsuccessful over time,

we can still explain why particular scientists or communities of scientists were engaging in

successful practices by finding out the particular occasions on which they were grappling

with something real.
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Kitcher’s main insight, I believe, is that referential success is sensitive to the target scientists

have in mind: e.g., the underlying causal agent responsible for a set of observed phenomena or

the fundamental properties of the entity posited by some theoretical account. From the perspective

of Newtonian physics, for instance, Galileo’s early tokens of ‘gravitas’ failed to refer when he

intended to use ‘gravitas’ to refer to the intrinsic quality of bodies responsible for their tendency to

move towards their natural place, namely, the center of the Earth in the case of terrestrial bodies.8

In contrast, Galileo’s early tokens of ‘gravitas’ successfully referred to the approximately constant

Newtonian force between the Earth and massive terrestrial bodies when his dominant intention was

simply to use ‘gravitas’ to refer to the causal agent responsible for the free fall of bodies near the

surface of the Earth.

Is this insight sufficient to solve the issues we are concerned with? While there is no issue about

its suitability as a theory of reference for scientific terms per se, Kitcher’s theory does not appear to

help selective realists establish a reliable connection between the achievements of a theory and the

referential success of its central theoretical terms.9 In my view, the most serious issue arises from

Kitcher’s focus on individuals. Why should particular scientists or, worse, particular historians of

8This seems to be the consensus on Galileo’s theoretical understanding of gravity in De Motu and De Meccaniche
(e.g., Jammer, 1957, p. 97; Koyré, 1966; Westfall, 1971, chap. 1; Hooper, 1998, p. 153; Massimi, 2010). See Westfall
(1971, esp. p. 17, p. 22) and Koyré (1966, p. 35) for the insistence on Galileo’s focus on the non-Aristotelian notion of
natural places as multiple centers of an ordered cosmos. For a specific example of Galileo’s intention to use ‘absolute
heaviness’ (‘gravità assoluta’) to refer to the intrinsic quality of bodies, see Galileo’s explanation of the continuous
transition of terrestrial bodies moving upwards and subsequently falling once the gravitational force exerted by the
Earth overcomes the initial force impressed on them in Chap. 17 of De Motu (esp., Galilei, 1590, p. 81).

9Psillos (1997), Stanford (2003b, 2006), and McLeish (2005) also raise several criticisms against Kitcher’s account,
but I do not think that they make it untenable. (i) Psillos (1997, p. 269) and Stanford (2003b, p. 557; 2006, pp. 148-
50) argue that since successful reference is presumably only established by means of causal link in the case of deeply
mistaken theories, Kitcher’s theory reduces to and therefore faces the same issues as the original causal theory of
reference. In Kitcher’s defense, we do not need to have the sharp division between causal and descriptive modes of
reference which Psillos attributes to Kitcher’s theory (see, e.g., Psillos, 1997, p. 261). It is even an advantage of his
theory that it allows for purely causal, purely descriptive and, with the appropriate modifications, hybrid reference-
fixing mechanisms. (ii) Psillos (1997, p. 262) and McLeish (2005) also press Kitcher on what McLeish (2005, p.
669) calls the “discrimination problem", i.e., the problem that we, as interpreters, cannot legitimately discriminate
between referentially successful and unsuccessful past tokens by appealing to historical or modal facts, or by relying
on our own semantic intuitions. In Kitcher’s defense, again, it was never assumed that we have perfect access to past
scientists’ mental states, or that the interpretative task is easy or infallible. In general, we need to look at past scientists’
writings, practices, reports, and the contexts of their particular activities in order to formulate the best explanation of
their achievements. (iii) Psillos’s criticism that Kitcher’s strategy makes past scientists’ inferential practice look too
incoherent by the light of current standards is probably the most damaging one (see Psillos, 1997, pp. 265-6). But
even then, we might grant that scientists are sometimes vulnerable to linguistic slippages and fail to realize that they
talk about different things with the same word.
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science have any authority over the referential success of the central theoretical terms of a theory?

Even if we are able to mount the best explanation for scientists’ particular referential practices, we

still face the issue that scientists often have widely different beliefs, attitudes and methodologies,

even when they work with the same theory or on the same topic. For instance, the late Galileo was

careful enough not to commit to any fine-grained and fundamental causal explanation of gravity in

contrast to Descartes who, ironically, criticized him on this point (e.g., Descartes, 1991, p. 124 [AT

II: 380]). The empiricism and caution of the late Galileo presumably made him more referentially

successful than Descartes. But what does it have to do with the achievements of Galilean and

Cartesian physics? Koyré (1965, p. 186, 1966, part III) and Gabbey (1998, p. 666) even point

out that Galileo’s reluctance to speculate about the fundamental nature of gravity is likely to have

led him to miss the exact formulation of the inertial principle, and that Descartes’s mistaken views

about gravity were precisely what led him to be the first to successfully formulate this principle.

The particular paths that individual scientists take to reach successful results do not seem to be

reliably correlated to their ability to pick out real entities. Of course, the claim is not that the

correlation is always unreliable but rather that the focus on scientists’ idiosyncratic uses of term-

types is too fine-grained to enable selective realists to reliably assess whether the central terms of

successful theories latch onto the world or not. And even if we grant that scientists sometimes refer

non-uniformly, what really seems to separate successful from unsuccessful tokens is the ability of

a scientist to describe some causal agent at the right level of description and in the appropriate

physical circumstances (see sections 4.3 and 4.4 below).

Turning to Psillos (1999, 2012), his solution to the combination problem is to take both de-

scriptive and causal elements of reference-fixing to play an essential role for referential success.

His theory of reference can be reconstructed as follows. A theoretical term t in a theory T refers

to an entity x under three conditions:

(C) Causal link: t is introduced to pick out some causal origin x of a set of observed phenomena

φ;

(S) Satisfaction link: x satisfies the core causal-explanatory description of φ associated with t in
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the theory T ;

(T) Tracking condition: The core causal-explanatory description of φ captures the set of kind-

constitutive properties of x that play an indispensable role with respect to T in the causal

explanation of φ.10

In my view, the most interesting aspect of Psillos’s theory is its robust and precise identification

of the shared burden of reference-fixing via causal contact and via satisfaction. We can always

stipulate that a term in a theory picks out the causal origin of some observed phenomena and

thereby ensure the existence of some referent. But if the theory does not do any work, as it were,

we do not seem to have any means to ensure that the term does not pick out multiple entities.

We need, in general, some reasonable amount of information in order to uniquely circumscribe

the referent of a term. Inversely, if we do not link successive theories to the causal origin of the

phenomena they are supposed to account for, we undermine their ability to talk about the same

entity if they say different things about it. Psillos’s theory can be seen as avoiding these two issues

as follows: the term is first linked by causal contact to a set of referents {r1, ..., rn}, with n ≥ 1;

the core causal-explanatory description either fails to pick out any of these referents or selects a

subset of them {r1, ..., rm}, with m ≤ n; in principle, the tracking condition ensures that there is

only one referent left in {r1, ..., rm} which has the required properties.

For instance, ‘heaviness’ in Galileo’s later works is introduced to pick out some causal origin

for the observed free fall of terrestrial bodies. Because Galileo takes heaviness to be a coarse-

grained quality of bodies without committing to its deep nature or metaphysical status, Newton’s

gravitational force does satisfy the phenomenological descriptions associated with ‘heaviness’

(e.g., “gravity is responsible for the differences in velocities between the early and later times

of the free fall of a terrestrial body").11 Yet, these descriptions do not capture the kind-constitutive

10By ‘core causal-explanatory description’ Psillos means the description of x that anything has to satisfy in order
to play the same causal role as x with respect to φ. By ‘indispensable’ he means that the kind-constitutive properties
cannot be replaced by other non-ad hoc properties in T playing the same role in the causal explanation of φ (see
Psillos, 1999, p. 110).

11Here and after, I will follow Koyré (1966, part III, sec. 3) and understand Galileo’s notion of gravity in his later
works as a macroscopic “empirical" property of massive bodies.
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properties of Newton’s gravitational force, say, its dependency on the square of the inverse dis-

tance between massive bodies and on their respective masses, and Psillos’s theory thus entails that

‘heaviness’ does not refer to Newton’s gravitational force.

How then does Psillos’s theory fare with respect to the problem of referential failure and

Stanford’s challenge? We are confronted with two main issues here. First, Psillos’s appeal to

kind-constitutive properties appears to be overly restrictive. We might take some kind-constitutive

properties to play an indispensable role in the causal explanation of some observed phenomena.

And yet there might not be any causal agent possessing these properties or any well-delineated

kind of entity associated with these properties. Psillos (2012, p. 226) addresses this issue and sug-

gests replacing kind-constitutive properties by “stable identifying properties", provided that they

take an indispensable part in the causal explanation of the observed phenomena with respect to the

theory of interest. Yet, Psillos does not provide much detail about the notion of “stability" (Psillos,

2012, pp. 224-7). Equating stable properties with properties conserved under theory-change begs

the question (see, e.g., Stanford, 2003a,b, 2006; Chakravartty, 2007, p. 46; Ladyman et al., 2007,

p. 89). Appealing to properties playing an indispensable role in the explanation of the observed

phenomena φ does not help either. For if a theory is superseded by a more successful one in the

same domain, these properties will remain indispensable only if they appear to be so by the light

of the successor theory. Likewise, I agree with Stanford’s criticism that Psillos’s earlier appeal

to scientists’ judgments does not work (see Psillos, 1999, pp. 112-3; Stanford, 2006, sec. 7.3;

Ladyman et al., 2007, pp. 90-1). Past scientists might be deeply mistaken about the properties they

deem stable and, more generally, this solution would bring us back to the same sorts of issues that

beset Kitcher’s theory.

Second, and more importantly, Psillos’s theory makes referential success both too easy and

too hard to achieve. His own example of the luminiferous ether and the classical electromagnetic

field illustrates well the first case. Even if we accept that these entities play the same causal role

(e.g., dynamical structure for the propagation of light waves) and share a set of stable core causal

properties (e.g., continuous medium, repository of the kinetic and dynamical energy of light),
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this does not seem to be sufficient for granting that ‘luminiferous ether’ refers to the classical

electromagnetic field. As French (2014, pp. 4-5, p. 125) rightly points out, some of the core

individuating properties of the luminiferous ether such as its mechanical nature and its molecular

constitution are not shared by the classical electromagnetic field. If we eliminate these properties

as parts of what fixes the referent of ‘luminiferous ether’, referential success is achieved at the

expense of replacing (as it were) the ether as a self-standing entity with clear identity conditions

by a small cluster of stable properties. In this case, however, we face again the issue of radical

referential indeterminacy, i.e., the issue that ‘luminiferous ether’ might refer to radically different

types of entities, including an empty space containing collections of photons and other sorts of

particles.

Psillos’s theory also makes referential success too hard to achieve: the same theoretical term

might be associated with radically incompatible core causal descriptions in two different theories

and still successfully refer in both cases if the descriptions of each theory are used at the appropriate

level. To give one striking example: (i) the gravitational force in classical Newtonian mechanics

essentially plays the same causal role as the curvature of space-time in classical General Relativ-

ity with respect to terrestrial gravitational phenomena; (ii) the term ‘gravity’ is associated with

radically incompatible core causal-explanatory descriptions in the two theories (e.g., gravitational

forces are non-local while gravitational effects propagate locally in standard curved space-times);

(iii) and yet, near the Earth and more generally in contexts where the curvature of space-time is

sufficiently small and the observational time scale is sufficiently large, we seem to be justified in

identifying the causal origin of gravitational effects with an instantaneous force between massive

bodies.

These last two points signal that Psillos’s theory of reference does not have appropriate re-

sources to address what might be called the “problem of referential tracking": given some theory,

at which level of description should we locate the causal agent(s) responsible for a set of observed

phenomena? Consider for instance Galileo’s mature account of terrestrial gravitational phenom-

ena. Should we restrict our focus to medium-size entities close to the surface of the Earth, ignore
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the Earth itself, and take the set of macroscopic terrestrial properties to be the appropriate locus

of reference? Should we “zoom out", include the Earth, and take ‘heaviness’ to refer to a force

relating massive bodies? Should we “zoom out" even more and take ‘heaviness’ to refer to the

smoothly curved structure of space-time? Or perhaps should we rather “zoom in" and take ‘heavi-

ness’ to refer to collections of gravitons? The problem of referential tracking, in other words, is to

circumscribe some unique referent given equally plausible candidates specified at different levels

in the causal structure underlying a set of observed phenomena. I will argue in the next two sec-

tions that the most epistemically reliable way of addressing this problem is to focus our attention

on the range of parameters over which the theory is empirically reliable, and I will adjust Psillos’s

theory of reference accordingly.12

4.3 Reference and Effective Theories

Following Galileo’s lead of ignoring complications and searching for simplicity, physi-

cists have developed formalisms in which the separation between different ways of

talking—“effective field theories"—is precise and well-defined. (Carroll, 2016, p.

113)

Despite its deficiencies, Psillos’s theory has the merit of offering a convincing solution to the

combination problem and shifting the original problem of referential failure to the more tractable

issues of referential tracking and stability. In this section, I will propose a theory of reference

which addresses the issue of referential tracking by drawing on the framework of effective theories.

The idea, in a nutshell, is to identify the limited objective context where the theory is empirically

reliable and restrict the potential referents of its central terms accordingly. I will discuss the issue

of stability and Stanford’s challenge in the next section.

Recall that the problem of referential tracking consists in selecting some appropriate causal

agent(s) for a set of observed phenomena given equally plausible candidates specified at different

12For other extensions of Kitcher’s and Psillos’s proposals and distinct proposals which I will not discuss for lack
of space, see, e.g., Chakravartty (1998, 2007); Saatsi (2005); Field (1973), McLeish (2006), and Landig (2014).
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levels in the causal structure underlying these phenomena (or in the causal chain leading to these

phenomena). As we saw above, Psillos’s appeal to “kind-constitutive" or “stable" properties is

far from ensuring that a term tracks the appropriate causal agent. There might be no causal agent

possessing the required set of kind-constitutive properties or radically different kinds of causal

agents possessing the required set of stable properties. Kitcher’s theory, by contrast, appears at

first sight to offer a better solution: a scientist successfully isolates the appropriate causal agent if

she intends to refer to this causal agent. Yet we still face a serious issue here. The scientist needs

to extract some information from a given theory in order to circumscribe potential candidates and

select the appropriate target in her mind, and the selection process is likely to depend significantly

on how reliable she thinks that information is and therefore vary significantly from individual to

individual.

How can we constrain referential tracking without relying on scientists’ particular beliefs then?

Suppose that we restrict the set of appropriate causal agents for a given set of observed phenomena

by means of the physical context where the theory is putatively applicable. For instance, Galileo’s

mature law of free fall applies to the idealized motion of bodies falling in a hypothetic vacuum

near the Earth, but it does not apply to the motion of celestial bodies because Galileo’s account

presupposes that they follow circular and unconstrained uniform trajectories.13 Hence, Galileo’s

term ‘heaviness’ tracks entities in the vicinity of the Earth but not beyond. Does it mean that the

term tracks collections of gravitons near the surface of the Earth? We need to be careful here.

The putative domain of applicability of a theory does not only depend on its internal principles

and constraints but also on how we intend to define the scope of the theory in the first place. If

we take the theory to give a fundamental and complete description of the causal origin of some

phenomenon, we need to consider the whole world as the appropriate locus of reference for the

terms of the theory. If we take the theory to give only a phenomenological description of this causal

origin (e.g., “gravity causes macroscopic bodies to fall downwards near the surface of the Earth"),

we need to restrict ourselves to the domain of macroscopic entities. Either way, the selection

13For a discussion about Galileo’s inertial principle, see Drake (1964), Koyré (1966, part III), and Hooper (1998).
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process is still overly sensitive to particular interpretative choices, which brings us back again to

the set of issues that beset Kitcher’s theory.

One solution is to specify the physical context at work in referential tracking by means of

the limited range over which the theory is empirically reliable and impose the following seman-

tic constraint: a term t in a theory T tracks some entity x only if x is located at a level and in

circumstances specified by the range of scales over which T is empirically reliable. How do we

determine this range if we are to evaluate referential success before theory-change? In general, this

range simply corresponds to the range over which the theory has been found to be empirically ac-

curate. In some cases, however, we may be able to estimate the limited range over which a theory

is likely to remain empirically reliable even if we have not yet probed phenomena at the relevant

scales in experiments. As we will see below, effective theories provide a paradigmatic example.

We might also be able to extend this range if we find that the theory makes accurate predictions

in new regimes. Be that as it may, the important point for now is that scientists’ and interpreters’

dominant intentions and expectations do not significantly interfere at least with the specification

of the range where the theory has been found to be empirically accurate. They certainly need to

pick a reasonable standard of measurement accuracy and the extent of this range depends on the

experimental achievements reached at a certain time. But apart from that, we only need to assume

that the experimental predictions derived from the theory depend on, or can be associated with, a

set of independent parameters and that, as we vary these parameters, the comparison of predictions

with empirical data determines the limited range over which the theory is empirically accurate.

We can thus use this sort of objective limit to adjust the semantics of physical theories and assess

the referential success of their theoretical terms at a given time without facing the issues discussed

above.

Two comments are in order. First, the new semantic constraint provides a solution to the

problem of referential tracking in the sense that it restricts the set of appropriate causal agents

responsible for some observed phenomena. As we will see in section 4.4, the main reason for

making this semantic adjustment is epistemic, i.e., a causal agent is deemed “appropriate" if we
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have reliable epistemic access to it. Second, an objective context in theoretical physics simply

amounts to a set of physical conditions specified by a range of physical scales. As I will explain in

section 4.4, the specification of an objective context in less fundamental areas of scientific inquiry

is less straightforward and requires, in particular, background assumptions about the set of entities,

properties, and relations which characterize the target system.

Now, this solution to the problem of referential tracking is compatible with Psillos’s solution to

the combination problem only if it is possible to separate the descriptions of the theory according

to its empirical limitations. This is where the framework of effective theories proves to be partic-

ularly useful, and there are two general features which are important here: (i) the structure of an

empirically successful effective theory incorporates a robust specification of the scales at which it

is likely to be empirically inaccurate before we probe these scales in experiments; (ii) its structure

is such that we can separate its descriptions into two sets according to these empirical limitations.

I will provide concrete examples below. For now, we can understand these two general features as

follows (more details are given in chapter 3).

Suppose that the expressions of a theory T , say, its dynamical equation, depend on some pa-

rameter E, with 0 ≤ E < +∞. Then T is an “effective theory" if it satisfies the four following

properties:

1. The equation depends on some non-trivial scale Λ, with 0 < Λ < +∞;

2. It is possible to include increasingly many terms depending on E/Λ into this equation which

are consistent with the core principles governing its structure, with one arbitrary coefficient

for each new term introduced;

3. These terms are systematically organized according to the importance of their contributions

to predictions below and above Λ;

4. As we include increasingly many terms of increasing order in E/Λ, the predictions derived

from the equation remain approximately the same, say, for E � Λ and become increasingly

large for E ≥ Λ (and infinite if we include an infinite number of terms).
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The interpretation of Λ as an intrinsic empirical limiting scale is first suggested by the fact that if

we try to make T as empirically accurate as possible for E � Λ by including increasingly many

new terms, its predictions become ultimately deficient for E ≥ Λ. This predictive pattern is, of

course, not sufficient by itself. The interpretation is ultimately grounded in the experimental profile

of theories displaying the same predictive pattern. As it turns out, existing cases of low-energy

effective theories do become increasingly empirically inaccurate as we probe phenomena closer

and closer to their limiting scale. Adding increasingly many terms to compensate for experimental

discrepancies and maintaining their predictive power is usually not sufficient; and in the limit,

if we were to include increasingly many terms, the resulting theories with an infinite number of

terms would become predictively powerless at their limiting scale. We would not be able to collect

an infinite number of empirical inputs in order to fix their free parameters. And we would not

be able to select a finite number of terms in order to make approximate predictions since all the

terms contribute equally to predictions at the limiting scale itself. The experimental profile of

existing effective theories thus supports the interpretation of Λ as the maximal predictive limit of

T . And the scale Λ, in turn, separates its descriptions D(E) into two sets, i.e., {D(E), E < Λ}

and {D(E), E ≥ Λ}.

Now, if we rely on these two general features of effective theories and follow Psillos’s lead, we

can formulate an objective context-dependent theory of reference (CST*) as follows. A term t in a

theory T refers to an entity x under three conditions:

(C*) Causal link: t is introduced to pick out some causal origin x of a set of observed phenomena

φ within the objective context C delineated by the empirical limitations of T ;

(S*) Satisfaction link: x satisfies the core causal-explanatory description of φ associated with t in

T ;

(T*) Tracking condition: The core causal-explanatory description of φ ranges over, or is associ-

ated with, the objective context C.

To see how (CST*) works as a semantic constraint with toy-models of effective theories, let us
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first look at the standard Galilean and Newtonian laws of free fall, rewritten in their mathematically

most simple modern formulation for conceptual clarity (see Table 4.1 below). The target system in

the Galilean case is a heavy body dropped at some height z(t) from the ground. The target system

in the Newtonian case is a body of mass m located at some distance r(t) from the center of the

Earth. In each case, the equation of motion is derived from the action S defined as the integral over

time of the Lagrangian L, where L encodes information about the dynamics of the system. G is

the universal gravitational constant, M the mass of the Earth, and c some arbitrary constant.14

Galilean Newtonian

SG =
∫
dtLG(z(t)) SN =

∫
dtLN(r(t))

LG = m
2

(dz
dt

)2 −mgz LN = m
2

(dr
dt

)2 − GMm
r

d2z
dt2

= −g md2r
dt2

= −mg(r)

g = constant g(r) = GM
r2

Translation invariance (z → z + c) No translation invariance (r → r + c)

g: heaviness of matter in a vacuum

(universal quality of terrestrial bodies,

local internal action).

g(r): interaction force exerted by the

Earth on the body per unit mass (rela-

tional property, action at a distance)

Table 4.1: The Galilean and Newtonian laws of free fall.

How can we construct effective versions of the Galilean and Newtonian laws of free fall? As it

turns out, we already know their closest successor, i.e., respectively, Newton’s theory and classical

General Relativity. So we can simply follow the “top-down" strategy by appropriately restricting

the range of the more comprehensive theory and eliminating its theoretical constituents which do

not contribute significantly to predictions within this range. In the Galilean case, for instance, we

can replace the parameter r(t) by z(t) + RE in the Newtonian equation of motion, with RE the

14I eliminated the mass of the system in the Galilean equation of motion to avoid attributing to Galileo a distinc-
tion between the mass and the gravitational quality of heavy bodies, but kept it in the Lagrangian for dimensional
consistency.
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radius of the Earth, assume z(t)� RE , and expand g(r) in terms of z(t)/RE (see Eq. 4.1 below).

We can also pretend that we do not yet know the more comprehensive theory, i.e., pretend that

we are dealing with the theory at the time it is still a live concern, and follow the “bottom-up"

strategy. We first identify a limited range where we think that the theory is reliable. For instance,

we may have found that the Galilean law makes slightly inaccurate predictions for heavy bodies

dropped too far from the ground. Or we may suspect from the infinite value of g(r) = GM/r2

in the limit r → 0 that the Newtonian law is mathematically inadequate for describing arbitrarily

small bodies moving arbitrarily close to one another. Then, we restrict the range of the theory by

introducing some arbitrary limiting scale, namely, a large-distance scale z0 in the Galilean case

and a short-distance scale r0 in the Newtonian case. And finally, we include all the possible terms

depending on the limiting scale which are allowed by the symmetries of the original theory, with

one arbitrary coefficient for each new term. As we perform these steps, we do not need to know

anything about the value or the underlying meaning of the limiting scale, i.e., that z0 turns out

to be the radius of the Earth RE and r0 its Schwarzschild radius 2GM/c2, with c the speed of

light. The value of these scales and of the additional coefficients is ultimately fixed by means of

empirical inputs, at least for a finite number of them. In general, however, we need to assume that

the dimensionless constants of the theory are of order 1 to obtain a first estimate of the value of the

limiting scale (i.e., we need to take ai, bi = O(1) in Eqs. 4.1 and 4.2 below).

Now, whether we follow the top-down or the bottom-up strategy, the effective Galilean and

Newtonian laws take the following form:

Effective Galilean law of free fall:

For z � z0,

d2z

dt2
= −g

(
1 + a1

z

z0

+ a2(
z

z0

)2 + ...
)

(4.1)
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Effective Newtonian law of free fall:

For r � r0,

m
d2r

dt2
= −GMm

r2

(
1 + b1

r0

r
+ b2(

r0

r
)2 + ...

)
(4.2)

with ai and bi free parameters.15 In each case, the most complete effective theory includes an

infinite number of terms, i.e., all the possible terms allowed by the original dynamical variables

and symmetries of the equations.16 We may also need to introduce additional limiting scales and

new terms depending on these scales, such as the characteristic scale G~/2c3 used for quantifying

the importance of quantum gravitational effects (with ~ the reduced Planck constant).

These two simple examples show that the structure of an effective theory gives us precise con-

straints for implementing (CST*).17 Consider the effective Newtonian law in Eq. 4.2 for instance.

Suppose that we have empirical inputs to fix some of the parameters bi and estimate the value of

the limiting scale r0, and that we find that the theory is empirically successful for r � r0. The

structure of the theory gives us good reasons to believe that its predictions will become unreli-

able when gravitation becomes too strong and when the interaction between two massive bodies

occurs at too short distances. For the most complete effective theory, the separation is sharp and

precise. The infinite expansion 1 + b1r0/r + b2(r0/r)
2 + ... has an infinite value for r0/r ≥ 1 and

becomes predictively powerless for r ∼ r0. For the effective theories defined by means of a finite

number of terms, the separation is not as vivid and sharp. But as explained above, if we consider

their predictive pattern and the experimental profile of existing theories which display the same

pattern, we still have good reasons to think that their predictions are inaccurate for r � r0. In both

15More details about the first order relativistic and quantum corrections to the non-relativistic gravitational potential
can be found in Donoghue (1995), Burgess (2004), and Blanchet (2014).

16Sometimes, however, we need to break some of these symmetries: for instance, the effective version of the
Galilean law of free fall breaks translation invariance along z.

17Of course, I do not mean to suggest with these examples that every physical theory can be formulated as an
effective theory or that these simple Taylor expansions account for the entirety of gravitational phenomena in their
domains. It is worth emphasizing here that we often need more than one effective theory within a given domain.
Nuclear physics is a particularly good example in that respect (e.g., Chiral Perturbation Theory, Heavy Quark Physics,
Non-relativistic Quantum Chromodynamics, etc.).
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cases, and provided we have appropriate empirical inputs, the structure of the theory allows us to

delineate the range where it is likely to remain empirically reliable and to separate its descriptions

accordingly. And if we use these features to implement (CST*), we find that the term ‘gravity’

refers to a force at sufficiently large distance scales r � r0 whose strength is given by Eq. 4.2 with

r � r0. I have, of course, not said anything yet about the issue of referential stability (cf. section

4.4). But this simple toy-model already shows that the structure of an effective theory gives us

precise constraints for selecting entities at the appropriate level.

Compare with the original Galilean and Newtonian laws of free fall. On the face of it, these

theories are putatively applicable across all scales (apart from the trivial scale r = 0 in the New-

tonian case) and their structure does not encode information about some non-trivial scale at which

their predictions are likely to break down. If the Newtonian theory were our most fundamental

account of the phenomenon of free fall, we might wrongly take it to describe some fundamental

kind of entity specified, say, at arbitrarily short distance scales. Now, of course, we may also have

external reasons to believe that the theory is unreliable at short distances, decide to restrict the

potential referents of the term ‘gravity’ accordingly, and use only some of the descriptions of the

theory to select an appropriate set of referents. This selection is likely to be uncontroversial if we

have found some empirically successful and more comprehensive theory (i.e., classical General

Relativity in this case). At the time the theory is still a live concern, however, the selection is

likely to be more controversial and significantly depend on particular interpretative choices. If we

have appropriate empirical inputs at sufficiently large distances, the framework of effective theo-

ries allows us to obtain some estimate of the physical context where the theory is likely to remain

empirically reliable, separate its descriptions accordingly, and select a subset of entities within a

well-delineated physical context.

Before discussing the issue of stability and examining how (CST*) works for problematic his-

torical cases, it will be instructive to first look at current theories given what we expect from future

theories. A paradigmatic example is the possible existence of new space-time dimensions at short-

distance scales in string theories. To see how this works, consider the following Kaluza-Klein
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toy-model of “dimensional reduction" from five to four space-time dimensions:

S =
1

2

∫
d5x∂µφ(x)∂µφ(x) (4.3)

=
n=+∞∑

n=−∞

1

2

∫
d4xi(∂µψn(xi)∂

µψn(xi)−m2
nψ

2
n(xi))

with





φ(xi, y) =
∑n=+∞

n=−∞ ψn(xi)e
iny/R (i = 1, ..., 4)

m2
n = n2

R2

The first line gives the action S of a massless field living in a 5D space-time with one “com-

pact" dimension—say, a circle of radius R, with φ(x) the field variable specifying the value of the

field system at each point x of the 5D space-time. An observer living in this higher-dimensional

space-time can move both along the four directions xi of the 4D space-time and along the direc-

tion y of the circular dimension, with x = (xi, y). The second line is obtained by eliminating the

y-dependent terms in Eq. 4.3 after separating the xi- and y-dependent components of the origi-

nal field φ(xi, y). The resulting action S describes an infinite number of “new" fields ψn(xi) of

increasing mass mn living in the 4D space-time, with one massless field ψ0(xi).18

So far, I have described the “top-down" derivation of a 5D theory into a 4D theory. But we can

also take the “bottom-up" perspective of current experimenters probing shorter and shorter distance

scales (or, equivalently, higher and higher energy scales). Assuming that R is very small, an

observer living in the 5D world specified by the action S has good reasons to believe that the world

is four-dimensional at large enough distance scales L � R, i.e., at a level and in circumstances

where she does not detect the effects of the fifth circular dimension. According to the “effective"

4D description of this world, however, she will eventually detect increasingly many new types

of particles (i.e., field patterns) with increasingly heavy masses n2/R2 if she probes shorter and

shorter distance scales. Knowing the mechanism of dimensional reduction, she will have good

reasons to believe that these new types of particles stand for the effect of a fifth dimension and

18For introductions to the topic of extra dimensions, see, e.g., Csaki (2005), Perez-Lorenzana (2005), and Sundrum
(2005).
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therefore that she lives in a 5D space-time. Seen in their entirety, the 4D and 5D worlds look

radically different, both in terms of particle content and topological structure. And yet, at large

distances, the observer appears to be justified in taking ‘ψ0(x)’ to refer to a massless field living

in a 4D space-time relative to these scales even after having discovered the new types of particles.

At much shorter distance scales, the observer might detect effects indicating the presence of a new

circular dimension of radius R′ � R and realize again that she was justified in taking ‘φ(x)’ to

refer to a massless field living in a 5D space-time only relative to sufficiently large distance scales.

Whether the observer is ultimately justified in holding these beliefs, the important point here is that

it is crucial to specify some limited physical context if we want the terms of the theory to pick out

determinate entities at a particular level. (CST*) simply provides the semantic adjustment required

to deal with those sorts of situations.

4.4 Stability and Objective Context-Dependence

We have seen that we can constrain the terms of a theory to pick out entities at a particular

level of description by identifying the objective context delineated by the empirical limitations of

the theory. In this section, I will argue that this sort of constraint allows us to solve the issue of

referential stability, i.e., the level of description is “appropriate" in the sense that the terms of the

theory are likely to remain referentially successful under theory-change at this level. I will also

further clarify the notion of objective context and apply this strategy to the problematic cases of

the phlogiston theory and 19th century theories of the luminiferous ether.

Note, first, that (CST*) reduces the risk of referential failure. The case of effective theories

is straightforward. The structure of an effective theory delineates the scales where it is likely to

make inaccurate predictions and thereby provide false information about its target system. The

theory therefore gives us good reasons to believe that its descriptions ranging over these scales are

false and fail to be satisfied by anything real. By imposing the tracking condition (T*), we thus

have a direct way to ensure that these descriptions do not play any role in reference-fixing, i.e.,

to reduce the risk that the terms of the theory fail to refer to any of the candidates picked out by
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causal contact as specified by the condition (C*).

In the general case, if we are able to associate the descriptions of a theory with different physical

contexts, (CST*) still implies that the central terms of the theory do not refer to entities located at

a level and in circumstances which have not been put to the test yet, i.e., where we do not yet

have any reason to trust the content of the theory. Suppose for instance that we are working with

some empirically successful theory and that, in contrast to effective theories, its structure does not

contain any intrinsic empirical limitation. If we take the theory by itself, it may either continue to

make accurate predictions or break down in new regimes. In this case, a reasonable option would

be to remain agnostic about the referential success of the terms of the theory which are supposed

to pick out entities in the corresponding domain. It does not mean, however, that we should remain

agnostic about the referential success of the terms which are supposed to pick out entities in the

domains where the theory has been found to be empirically accurate. (CST*) therefore enjoins us

to err on the side of caution: we should look for entities in the domains where the theory has been

put to the test and, if we are to assess the referential success of its central terms at a given time,

assume that they fail to refer to anything real in unexplored domains until there is evidence to the

contrary.

As it turns out, there are also good reasons to believe that the terms selected through (CST*)

will remain referentially successful under theory-change. Again, the case of effective theories

is special and I need another one of their distinctive features which I have not yet discussed to

make this point: namely, that the descriptions which are the most relevant for predictions within

E � Λ are largely insensitive to the descriptions which are the most relevant within E � Λ.19

Consider for instance the effective Newtonian law of free fall with only a few first order terms

and suppose that its predictions have been found to be accurate at large distances r � r0. If we

discover a radically new theory which reveals that these predictions are slightly inaccurate, we

19For a similar argument employing renormalization group and effective field theory methods in the specific context
of QFT, see J. D. Fraser (2018) and Williams (2019b). For a discussion about the link between naturalness and inter-
scale insensitivity, see, e.g., Williams (2015). Note that a theory might be unnatural (in the sense that some of its free
dimensionless parameters are not of order one) and still contain parts which are largely insensitive to potentially new
types of high-energy physics (see, e.g., Donoghue, 2020, p. 4, for a similar point). We just need to be more selective
in this case.
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can always add higher-order terms in the effective Newtonian theory and fix their coefficients with

empirical inputs at large distances in order to compensate for the predictive discrepancy. This

move is, of course, largely ad hoc. But it shows that the higher-order terms can be used to encode

the contributions of new physics at large distances according to their relevance and that these

terms therefore do not simply correspond to arbitrary modifications of the theory with no physical

significance whatsoever. The ability of higher-order terms to stand for fine-grained features of new

physics is also supported by explicit derivations of effective theories from more comprehensive

ones, as it is for instance the case with the Galilean and Newtonian laws of free fall. And, in

general, the structure of an effective theory is such that we can parametrize the contributions of

any type of new physics at large distances up to an arbitrarily high degree of precision by adding

increasingly many terms depending only on the degrees of freedom of the original theory. In

the Newtonian case, we can even include such terms by preserving all the core principles of the

original theory (e.g., the structure of the classical Newtonian background space-time).

Now, the crucial point is that the contributions of the higher-order terms become increasingly

negligible at large distances r � r0, no matter what the new physics looks like. And insofar

as these higher-order terms stand for fine-grained features of new physics, this shows that the

descriptions of the effective theory which are relevant at large distances are largely insensitive to

the details of this new physics. It affects at most the value of the parameters of the first few order

terms. Hence, in the case of effective theories at least, the tracking condition (T*) selects core

properties at a particular level which, in general, do not significantly depend on more fine-grained

features (or coarse-grained ones). This, in turn, gives good reasons to believe that the central terms

of an effective theory selected through (CST*) successfully pick out determinate entities no matter

what they will look like from the perspective of a future theory.

In the general case, the principle of selective reference at work in (CST*) still gives us a reli-

able way of identifying the terms in the theory which are the most likely to remain referentially

successful under theory-change. Suppose again that we are able to delineate the limited context

where the theory is empirically reliable (e.g., macroscopic distance scales). Suppose further that
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we can separate the core causal-explanatory descriptions of the theory and thus different causal

components entering into the causal explanation of phenomena according to this context (e.g., the

mass of a macroscopic body and the set of microscopic particles which constitute it in order to

explain its trajectory over sufficiently long periods of time). Now, unless there is evidence to the

contrary, it is reasonable to attribute a greater degree of confirmation to those descriptions of causal

components which participate more directly in the explanation of the phenomena according to this

context (i.e., the mass of the macroscopic body given different types of trajectories and constraints)

and do not significantly depend on causal components participating less directly in this explanation

(i.e., the microscopic constitution of the body). Moreover, the empirical limitations of the theory

also give us good reasons to adopt a differentiated epistemic attitude towards these descriptions.

If we have not yet probed the system at some level (e.g., at short-distance scales), we do not yet

have any good reason to expect that the predictions of the theory will remain accurate at this level

and therefore that the theory describes well the causal components entering into the explanation of

phenomena at that level. By contrast, if we have probed the system at some level and found the

theory to be empirically accurate (e.g., at macroscopic scales), we do have good reasons to believe

that the theory describes well the causal structure of phenomena at this level. And overall, then,

we have better reasons to believe that the characterization of entities at this level will be (approxi-

mately) retained in future theories and therefore that the terms picking out entities specified at that

level will remain referentially successful under theory-change.

One might still be worried that (CST*) does not handle well cases of radical ontological discon-

tinuities. Consider again Galileo’s and Newton’s laws and assume for the sake of the argument that

Galileo’s mature description of gravity as an intrinsic coarse-grained quality of bodies is radically

incompatible with Newton’s description of gravity as a relation between massive bodies, even in

the limited context where both Galileo’s and Newton’s laws are empirically reliable. (CST*) yields

the following results. In the Galilean case, (C*) links ‘gravity’ to the set of terrestrial causal agents

responsible for gravitational effects near the Earth; (S*) restricts the set of causal agents to those

which possess a specific set of properties described by the theory; (T*) restricts this set of prop-
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erties to those which can be associated with terrestrial macroscopic contexts. In principle, then,

(CST*) isolates heaviness as the only referent of ‘gravity’ in terrestrial macroscopic contexts. In

the Newtonian case, a similar story applies and, in principle, (CST*) isolates the gravitational force

as the only referent of ‘gravity’ in terrestrial macroscopic contexts.

We have two choices here. (i) Either we grant that (CST*) fails in some cases: e.g., the term

‘gravity’ or ‘heaviness’ in Galilean physics does not refer to anything real by the light of Newtonian

physics. I suspect that most cases of referential failures concern domains which have not been put

to the test yet and therefore that this solution is acceptable. I will give some evidence below with

‘phlogiston’ and ‘luminiferous ether’ and, in the present case, it does seem plausible to reinterpret

the gravitational force mg(z) = mGM/(z + RE) ∼ mGM/RE as a macroscopic property of

terrestrial bodies close enough to the surface of the Earth (z � RE). (ii) Or we maintain that

(CST*) works in all cases and regard problematic cases to be problematic only insofar as they

enter in conflict with some further assumption about ontological reduction. That is, in the previous

example, (CST*) implies that both ‘heaviness’ and ‘gravitational force’ successfully refer, but it

does not address the further question of whether the referent is the same or not, and therefore

allows for referential success, stability, and discontinuity to be compatible with one another.

I am inclined to follow this second route for two main reasons. First, it is an advantage of a

theory of reference that it does not smuggle in too many metaphysical assumptions. Second, the

empirical success of a theory and the robustness of its descriptions within a limited context still

give us independent grounds to believe that the central terms of the theory restricted to this context

are referentially successful before and after the advent of a new theory, especially in the case of

effective theories.

Consider again the case of extra-dimensions for instance. The scientist who lives in a 5D

space-time appears to be justified in believing that the world is four-dimensional and contains one

kind of massless particle at large enough distance scales, even after the discovery of new data

supporting the existence of a new dimension, precisely because the descriptions of the 4D theory

are empirically well-supported at large distances and can be shown to be largely independent of
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the effects of the fifth circular dimension at these distances (i.e., the effect of arbitrarily massive

particles is negligible at large distances). Accordingly, (CST*) requires us to make the following

semantic adjustment: at large distances, the terms ‘space-time’ and ‘ψ0(xi)’ in the 4D theory

refer, respectively, to a 4D space-time and a massless field living in four dimensions. And this

adjustment does not introduce any issue of incommensurability: it is perfectly possible to compare

the properties and the causal role that the two space-times and the different kinds of particles play

at different levels and evaluate whether we are justified in identifying the ones with the others.

This further task, however, is a matter of ontological reduction and not referential success, strictly

speaking.

To summarize, the theory of reference (CST*) has the following advantages compared to

Kitcher’s and Psillos’s theories. First, the theory does not rely significantly on scientists’ dom-

inant intentions or practices. Second, the theory does not rely on theoretical constituents which

appear to be indispensable for the derivation of successful predictions but which do not character-

ize the main target of the theory at the relevant scale or even fall within its empirical reach (e.g., the

continuum structure of space and time in non-relativistic classical gravitational theories). Third,

the theory gives a precise characterization of Psillos’s notion of “stable identifying properties" by

reducing them to the properties which can be associated with the range of scales where the theory

is empirically reliable and robust with respect to new physics or irrelevant causal agents. Fourth,

the theory addresses Stanford’s challenge by providing a reliable and principled way of assessing

the putative referential success of the central terms of a theory before theory-change. As the exam-

ple of effective theories shows, we do not even need to have any knowledge about the theoretical

content of future theories if we want to estimate the scales where current theories are likely to

remain empirically reliable. And, of course, we can find the empirical limitations of a theory by

confronting it with data at the relevant scales without having found a better theory yet. Finally, the

theory does not offer a “pyrrhic victory" to scientific realism (Stanford, 2003b, 2006). All we need

is to be able to understand and formulate theories as effective theories or, if this proves impossible,

to have some way of separating their descriptions according to their empirical limitations. And,
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in principle at least, these limitations leave ample space for the terms of the theory to pick out

unobservable entities in some limited part of the world.

One important difficulty not addressed so far lies in the interpretation of the notion of “objective

context". We might ask: in what sense does a range of physical parameters define an “objective

context"? In what sense is this context “objective"? And what does it mean for reference-fixing to

be indexed to such context as expressed by the condition (C*)? At least as far as we are concerned

with physics, my proposal is that we should take an objective context to be nothing less and nothing

more than the set of physical conditions specified by a range of physical scales: for instance,

low temperatures and large mass densities. I intend this in a qualified operationalist sense. This

range is directly determined by means of experimental procedures and perhaps in some cases also

indirectly by means of previously tested theoretical relations. In high energy physics, for instance,

the characteristic energy scales of the particles colliding in scattering experiments determine the

characteristic distance scales of the interaction process. The former is operationally defined by

the acceleration process of the incoming particles while the later is inferred from the former by

assuming that the Einstein-Planck and the de Broglie relations hold at these energy scales. In

both cases, we do not need to make any substantive assumption about the nature of space-time

or quantum fields. Hence, by staying as closely operationalist as possible, we avoid as much

as possible interpretative disagreements about the set of entities, properties, and relations which

characterize a specific physical context.

Now, the advantage of physics is that the empirical limitations of theories are in general speci-

fiable by means of a few independent parameters. In the case of high energy physics, we typically

just need some energy parameter E. In the simplest case, then, the condition (C*) constrains ref-

erence to be fixed relative to a particular range of energy scales E ∈ [Λ1,Λ2] in the sense that the

terms of an empirically successful theory only pick out entities located at the level delineated by

the energy scales Λ1 and Λ2. The conditions (S*) and (T*) constrain the entities selected to sat-

isfy the descriptions D(E) of the theory ranging over the same range of energy scales, and these

descriptions attribute properties to these entities at a specific level.
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We surely need a more metaphysically involved notion of objective context as we move towards

applied physics and the special sciences: for instance, by endorsing background assumptions about

the set of entities, properties, and relations that characterize the target system. In this case, the

notion of objective context is more akin to a “window" into the target system, as it were, and

the scope of this window, i.e., the set of elements involved in the characterization of the target

system, can be restricted by using the empirical limitations of the theory. In the case of Galileo’s

law of free fall, for instance, we need to assume that the heavy body is falling towards the ground

near the surface of the Earth and have some pre-theoretical understanding of what this involves.

As we move towards the special sciences, we probably need to specify a variety of quantifiable

parameters (e.g., population number, decay rate, etc.), as well as the experimental set-up, the

materials involved, environmental conditions, and other non-quantifiable causal factors. The fact

that the list goes on presumably makes it more difficult to identify stable core causal-explanatory

descriptions in those areas.

Nevertheless, (CST*) still helps us to evaluate the most problematic cases of referential failure

discussed in the literature (e.g., Kitcher, 1978, 1993; Laudan, 1981; Psillos, 1999; Saatsi, 2005;

Chakravartty, 2007; Ladyman, 2011). Consider first the case of phlogiston.20 Among the core

properties required to identify the putative referent of ‘phlogiston’, one finds that phlogiston is

contained within different types of substances, including combustible ones, and released, in par-

ticular, during combustion and calcination processes. However, at the time the phlogiston theory

was a going concern, namely, before the new oxygen theory of chemistry developed by Lavoisier

became increasingly popular by the end of the 18th century, the phlogiston theorists did not have

any good experimental constraints to further specify the exchange process and the substance(s)

exchanged during combustion and calcination. They had clear evidence that something was ex-

changed. But this was not sufficient for taking the term ‘phlogiston’ to refer insofar as some of

its core properties were specified at a too “fine-grained" level of the exchange process for which

the phlogiston theory was not shown to be empirically reliable. For instance, the experiments per-

20See, e.g., White (1932) and Siegfried (2002) for more historical details.
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formed on metals and sulfur did not have the means to discriminate whether something was emitted

or absorbed during a calcination or combustion process. Similarly, it was common to assume that

phlogiston was lighter than air in order to explain the typical increase in weight of metals after

calcination. The phlogiston theorists, however, did not have the experimental means of testing this

assumption.

By studying a larger range of processes involving different types of substances, gases and water

in a wider variety of experimental situations, such as sulfur and phosphorus in enclosed environ-

ments involving a limited amount of air and water, the advocates of the new oxygen theory could

get a firmer experimental hold on the correct locus of the substance(s) exchanged during combus-

tion, calcination, respiration, and other processes.21 After all, if one believes that the principle of

conservation of mass universally applies to chemical reactions, there is strong evidence that a gain

of mass in most metals after calcination arises because of the participation of an external substance.

Here the context is delineated, in particular, by the set of different types, volumes, and weights of

the substances involved in distinct chemical processes.

Consider now the case of the luminiferous ether.22 The theoretical term ‘luminiferous ether’

fails to refer because some of the core properties of the luminiferous ether, e.g., that the ether has a

molecular structure with fine particles and that light waves are continuously transmitted by means

of the mechanical action of this molecular structure, could not be specified in domains where 19th

century scientists had a good experimental access. Their ability to successfully refer was indeed

constrained by the objective context delineated in terms of distance scales. While there was no

evidence for the fine-grained structure of light and its propagation at short-distance scales, there

was strong evidence from observed diffraction and interference patterns that light had a wave-like

structure. It was acceptable to speak about light waves, oscillating wave-like patterns and the like

(which explains the empirical and explanatory success of 19th century theories of the luminiferous

ether). But contra Psillos, there was not enough ground and there is not by our current light to

21This is, of course, not to say that all the terms of Lavoisier’s theory are referentially successful (e.g., ‘caloric’) or
that Lavoisier’s theory was more empirically adequate than the phlogiston theory at that time. See Chang (2010) for a
recent re-evaluation of the Chemical Revolution.

22See, e.g., Schaffner (1972) and Darrigol (2000) for more historical details.
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take ‘luminiferous ether’ to refer to anything real, and even less so to the classical electromagnetic

field. Relative to large-distance scales, we are not justified in believing that light waves propagate

thanks to the mechanical action of an entity possessing a molecular structure (compared, say,

to the “apparent" instantaneous propagation of gravitational effects for weak gravity and large

observational time scales).

4.5 Objections and Replies

In response to the theory of reference presented in section 4.3, one might either reject the

relevance of the focus on reference for defending scientific realism or agree with its relevance but

deny that the theory is correct. This goal of this section is to briefly address various forms of these

two types of objections. I will leave aside structuralist complaints since I am concerned here with

the standard form of scientific realism (see, e.g., Worrall, 1989; Saunders, 1993; Ladyman, 1998,

2011; Ladyman, 2011; French, 2014).

Objection 1: Whether the entities purportedly picked out by past theoretical terms exist or not,

there are many respects in which the models specified by past theories are similar to the world.

Insofar as past scientists intend their models to represent some target system, the relevant question

is not whether past theoretical terms successfully refer but the extent to which past models are

similar to their intended target. The semantic view of theories simply eschews the problem of

referential failure (e.g., Giere, 1988, p. 107).

Reply: Implicit in Giere’s objection is the claim that a model represents its target system be-

cause some scientist intends the model to do so. At least in the case of representational models

then, scientists introduce models to represent a target that they have in mind. If a scientist intro-

duces a model to represent the causal origin of a set of observed phenomena, we face the same

issues that beset the causal theory of reference. If a scientist introduces a model to represent a

target system supposed to satisfy a set of descriptions, we face the same issues that beset the de-

scription theory. And if we insist that the establishment of a representational link between a model

and its target—or reference-fixing in short—is achieved according to modelers’ intentions, we face
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the same issues that beset Kitcher’s theory. Chakravartty (2007, sec. 7.4) argues that Giere does

not escape the general problem of correspondence between a model and its target and that a mod-

eler needs to phrase her epistemic commitments about the model with the help of descriptions. I

agree; but I think that the real problem underlying Giere’s response is rather that it does not escape

the problem of referential failure at all and makes it even less easily tractable.

Objection 2: The context-sensitivity underlying the problem of referential tracking hardly

needs a new theory of reference. The specification of a particular context in (C*) and (T*) is idle

since the relevant context is already fixed by the meaning of the descriptions of the theory. If we

select carefully the component descriptions of the core causal-explanatory description associated

with a term, they will automatically pick out entities at the appropriate level.

Reply: I must concede that our everyday language is largely insensitive to the type of objective

context discussed here. It is implicit in the meaning of ‘red’ that it applies to macroscopic and

perhaps astronomical objects. Otherwise, it is wiser to speak of wavelengths comprised between

620-750nm when we intend to refer to more fine-grained features. It is not true, however, that the

same conclusion holds in physics. Taken by itself, Galileo’s law of free fall contains no specifi-

cation about the types of situations to which it applies and does not apply. Similarly, Newton’s

universal law of gravitation contains no specification to the effect that it does not apply to the grav-

itational interaction between subatomic entities. The situation is different in physics because at the

time a theory is a going concern, the scope of the theory has not yet been delimited by the next

theory. We might therefore disagree about the future success of the theory and about the putative

referential success of its terms in domains that have not yet been put to the test. A theory of ref-

erence that allows us to address the issue of stability must include a condition that specifies the

domain where a given theory is likely to remain reliable at a time the theory is still a live option.

Objection 3: The theory of reference (CST*) does not help selective realists to give a convinc-

ing defense of scientific realism. Too many entities that are deemed essential to the explanatory

and predictive achievements of theories are specified in ways that extend well-beyond their empir-

ical limits. For instance, the terms ‘classical electromagnetic field’, ‘Higgs field’, and ‘smoothly
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curved space-time’ appear to refer to entities that are specified by assigning core properties to some

target system at arbitrarily short distance scales. (CST*) therefore requires selective realists to be

too selective.

Reply: The apparent reference to arbitrarily short distances comes from the putatively funda-

mental character of the standard formulation of classical electromagnetism, the Standard Model of

particle physics, and classical General Relativity. Once we formulate these theories as effective

theories, the ambiguity disappears. We can indeed separate the descriptions of these theories ac-

cording to their probable empirical limitations and still characterize the electromagnetic field, the

Higgs field, and the metric field as continuum systems in the appropriate range. Hence, by select-

ing the continuum descriptions D(L) of these entities for large-distance scales L, we attribute a

continuum structure to entities living at large-distance scales. Or, to put it differently, the terms

‘electromagnetic field’, ‘Higgs field’ and ‘smoothly curved space-time’ refer to continuous sys-

tems at large-distance scales. One might think that the continuum structure of these entities enters

in conflict with the discrete structure of putatively more fundamental entities. Again, as I argued in

section 4.4, this apparent conflict reflects a particular view about ontological reduction, not an issue

about referential success. If we take the effective versions of classical electromagnetism, the Stan-

dard Model, and General Relativity by themselves, their structure gives us good reasons to believe

that ‘electromagnetic field’, ‘Higgs field’ and ‘smoothly curved space-time’ refer to continuous

entities at large-distance scales.

4.6 Conclusion

I have argued that the apparent failures of reference over the course of the history of science

are best analyzed by examining whether the central theoretical terms of a theory refer to entities

specified within the limited physical context where the theory is empirically reliable. Since it is

often, if not always, possible to determine at least partially such empirical limitations at the time

past theories were still of topical interest, this principle of selective reference enables selective

realists to address the challenge that there does not seem to be any principled and reliable way
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of distinguishing between referential success and failure from the perspective of each theory. I

have shown that the framework of effective theories provides us with a paradigmatic set-up for

implementing this selective strategy successfully. If we cannot directly use this framework, it

still provides us at least with a blueprint for assessing referential success. And in both cases, the

suggestion is that instead of implementing a “top-down" strategy by looking at the constituents of

a theory that are deemed indispensable to its predictive and explanatory achievements, we should

rather implement a “bottom-up" strategy based on the empirical limitations of the theory in order

to escape charges of post hoc rationalization.
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