Academic Commons

Theses Doctoral

The effect of surface structure on the optical and electronic properties of nanomaterials

Hull, Trevor David

Surface passivation of semiconductor quantum dots is essential to preserve their efficient and robust light emitting properties. By using a lattice matched (mismatch = 0.5%) lead halide perovskite matrix, we achieve shell-like passivation of lead sulfide QDs in crystalline films, leading to efficient infrared light emission. These structures are made from a simple one-step spin coating process of an electrostatically stabilized colloidal suspension. Photoluminescence and transient absorption spectroscopy indicate rapid energy transfer between the perovskite matrix and the QDs, suggesting an interface with few trap states. In addition to housing the efficient infrared QD emitters, lead halide perovskites themselves have good carrier mobilities and low trap densities, making these solution-processable heterostructures an attractive option for electrically pumped light emitting devices. The highest performing quantum dots for visible light applications are CdE (E=chalcogenide) core/shell heterostructures. Again, surface passivation plays a huge role in determining the brightness and robustness of visible QD emitters. Multilayer shell passivation is usually used to produce the highest quantum yield particles. Surface trap states are shown to be detrimental to luminescence output, even in thick-shelled particles. Spherical quantum wells allow for thicker shells and with good surface passivation, show promising reduction of biexciton auger recombination, as measured by a time correlated single photon counting (TCSPC) microscope. TCSPC methods were used to diagnose and identify QD architectures for LED applications and explore fundamental recombination dynamics using photon antibunching measurements, and statistical analysis of blinking traces.Introducing new surfaces onto graphitic substrates can be a useful for introducing new electronic properties, patterning device-specific geometries, or appending molecular catalysts. Metal nanoparticles were used to act as a catalyst for the gasification and etching of graphite and graphene. Several methods of controlling the initiation, propagation, and density of these trenches were explored. Patterning defects helped control where initiation occurred, while faceting existing defect sites could also enable more facile initiation and control the direction at the beginning of etching, due to the wetting mechanism of particle movement. Patterning the metal also was shown as a promising avenue to limit unwanted gasification and promote etching in specific, patterned regions. Surface functionalization using reactive gases was performed and characterized with outlook for future experiments.

Files

  • thumnail for Hull_columbia_0054D_15420.pdf Hull_columbia_0054D_15420.pdf application/pdf 4.49 MB Download File

More About This Work

Academic Units
Chemistry
Thesis Advisors
Owen, Jonathan S.
Degree
Ph.D., Columbia University
Published Here
September 24, 2019
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.