Essays in International Macroeconomics

Anurag Singh

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019
ABSTRACT

Essays in International Macroeconomics

Anurag Singh

This dissertation contains three essays in International Macroeconomics. The first two chapters study clustered sovereign defaults, the default events where multiple countries default in a relatively short period of time. In spite of the fact that clustering of defaults is a recurring phenomenon, there is a lack of empirical as well as quantitative research focusing on clustered defaults. Therefore, the first two chapters try to uncover the nature of shocks and the mechanism through which these shocks lead countries to clustered defaults.

The first chapter uses the data on 146 sovereign defaults from 1975 to 2014 and categorizes one-third of these defaults as clustered default episodes. It then asks if the nature of shocks that drive clustered defaults differ from those that drive idiosyncratic defaults. I find that global variables, global shocks to transitory component of output of the countries and world interest rate fluctuations, play a crucial role in predicting clustered default events. Additionally, for clustered default episodes, the predicted probability of default goes up by two-and-a-half times after the inclusion of global variables as explanatory variable. Idiosyncratic defaults, on the other hand, are not driven by the presence of global variables as explanatory variable in the specification, and the predicted probability of default remains unchanged.

Motivated by the finding of the first chapter, the second chapter builds a quantitative framework to study clustered defaults. The chapter begins with a joint estimation of structural parameters that drive the output process of 24 countries and a process for the world interest rate. The postulated output process includes transitory and permanent global components, as well as transitory and permanent country-specific components. I then build a sovereign default model augmented with financial frictions at the firm level. The model and the estimation process of driving forces are validated jointly when the shocks, estimated in-
dependently of the model or of default data, are fed into the model and the model reproduces the clustered default of 1980s. The two main findings of the chapter are: (1) the primary driver of clustered defaults are the global shocks to the transitory component of output; and (2) contrary to what is commonly believed, the Volcker interest rate hike was not a decisive factor for the 1980s developing country debt crisis.

The third chapter looks at one of the key financial frictions in emerging and poor economies—the presence of credit constrained households—and the way they affect consumption to output volatility ratio in these countries. A higher than one ratio of consumption volatility to output volatility in emerging and poor countries is at odds with the observation that emerging and poor countries are also the countries where a big fraction of consumers do not have access to financial services. This is because consumers with no access to financial services cannot smooth consumption and can only have a consumption volatility to output volatility ratio of one. Therefore, in the presence of credit constrained households, the consumption volatility to output volatility ratio in the theoretical models should move closer to one rather than going up and away from one. This chapter, therefore, incorporates credit constrained households in an augmented real business cycle (RBC) model to study their effect on economic fluctuations in a set on 75 countries.
Contents

List of Figures v

List of Tables viii

1 Clustered Sovereign Defaults: An Empirical Analysis 1

1.1 Introduction .. 2

1.2 Clustered and Idiosyncratic Sovereign Defaults 5

1.2.1 Data .. 5

1.2.2 Definition .. 7

1.2.3 Categorizing Defaults as Clustered or Idiosyncratic 8

1.3 Estimating Global and Country-Specific Shocks 10

1.4 Empirical Analysis ... 16

1.4.1 Global and Country-specific Shocks Around Default Episodes ... 17

1.4.2 Empirical Specifications 20

1.4.3 Results .. 24

1.4.3.1 Specification with Country-Specific Variables 25

1.4.3.2 Specification with Country-specific and Global Variables .. 26

1.4.3.3 Comparing Specifications: Clustered and Idiosyncratic De-

faults ... 28

1.5 Conclusion .. 31
2 Clustered Sovereign Defaults: A Quantitative Framework

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>2.2 Data</td>
<td>40</td>
</tr>
<tr>
<td>2.3 Estimating Global and Country-Specific Shocks</td>
<td>41</td>
</tr>
<tr>
<td>2.3.1 The Basic Version</td>
<td>41</td>
</tr>
<tr>
<td>2.3.2 The Full Version</td>
<td>47</td>
</tr>
<tr>
<td>2.4 Model</td>
<td>53</td>
</tr>
<tr>
<td>2.4.1 The Model Economy</td>
<td>55</td>
</tr>
<tr>
<td>2.4.1.1 Model Calibration</td>
<td>65</td>
</tr>
<tr>
<td>2.4.1.2 Grid Size</td>
<td>67</td>
</tr>
<tr>
<td>2.4.1.3 Solution Algorithm</td>
<td>68</td>
</tr>
<tr>
<td>2.4.2 Model Performance</td>
<td>69</td>
</tr>
<tr>
<td>2.4.3 Simulating the Defaults</td>
<td>74</td>
</tr>
<tr>
<td>2.4.3.1 Baseline Model with Constant World Interest Rate</td>
<td>75</td>
</tr>
<tr>
<td>2.4.3.2 Baseline Model with Stochastic World Interest Rate</td>
<td>82</td>
</tr>
<tr>
<td>2.4.3.3 Extended Model with Stochastic World Interest Rate</td>
<td>87</td>
</tr>
<tr>
<td>2.5 Conclusion</td>
<td>88</td>
</tr>
</tbody>
</table>

3 Credit Constrained Households and Consumption Volatility in Countries

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>92</td>
</tr>
<tr>
<td>3.2 Model</td>
<td>98</td>
</tr>
<tr>
<td>3.2.1 Households</td>
<td>98</td>
</tr>
<tr>
<td>3.2.1.1 Optimizing or Ricardian Households</td>
<td>99</td>
</tr>
<tr>
<td>3.2.1.2 Credit Constrained or Hand-to-mouth Households</td>
<td>101</td>
</tr>
<tr>
<td>3.2.1.3 Aggregate Values</td>
<td>102</td>
</tr>
<tr>
<td>3.2.2 Firms</td>
<td>102</td>
</tr>
<tr>
<td>3.2.3 Banks</td>
<td>104</td>
</tr>
<tr>
<td>3.2.4 Aggregating the Decentralized Economy</td>
<td>104</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Percentage of defaulting countries in a rolling 5-year window ... 2
1.2 Countries defaulting in a 5-year rolling window ... 9
1.3 Transitory and permanent components of output near default ... 18
1.4 World interest rate near default ... 19
1.5 Predicted probabilities of default using specification 1 and specification 2 28

2.1 Coefficient of Δr^* from output growth equation: $-(\psi_c - 1) \cdot \eta_c$ 52
2.2 Targeted moments: default frequency and average debt in nondefault periods 70
2.3 Non-targeted moments: first and second moments of spread ... 72
2.4 Non-targeted moments: correlations with spread .. 73
2.5 Aggregated default decisions of all countries: model with both country-specific shocks and global shocks vs data ... 75
2.6 Aggregated default decisions of all countries: model with only country-specific shocks vs model with only global shocks vs data ... 76
2.7 Aggregated default decisions of all countries: model with country-specific shocks and transitory global shocks vs model with country-specific shocks and permanent global shocks vs data ... 77
2.8 Default region: effect of output shocks on default decisions ... 79
2.9 Output decrease: transitory vs permanent shock .. 81
2.10 Aggregated default decisions of all countries: model with world interest rate shocks vs model without world interest rate shocks vs data ... 83
2.11 Percentage of countries defaulting when faced with different output and interest
rate shocks ... 84

2.12 Aggregated default decisions of all countries: full model with world interest rate
shocks vs full model without world interest rate shocks vs data 87

3.1 Consumption volatility to output volatility ratio vs composite measure for access
of financial services across countries .. 95

3.2 Consumption volatility to output volatility ratio vs persistence of stationary
shocks in models featuring different fractions of credit constrained households . 112

3.3 Consumption volatility for a representative Ricardian households or a represen-
tative capitalist vs persistence of stationary shocks in models featuring different
fractions of credit constrained households .. 114

3.4 Financial Access from Data Vs Credit Constrained Households from Model ... 116

A1 Countries defaulting in a 5-year rolling window by Region 128

A2 Global transitory and permanent components of output 129

A3 Transitory and Permanent Components of Output Near Default 130

A4 Change in Probability with changes in one explanatory 131

A5 Predicted probabilities: Specifications 1 vs Specifications 2 131

B1 global constituent for the transitory component of output/TFP 140

B2 Global Permanent Component of Output/TFP 141

B3 Simulation of Latent state variables on the Grid 142

B4 Simulation of interest rate on grid vs the data 143

B5 Sources of Output Shocks: Global output shocks, country-specific output shocks
or interest rate fluctuations ... 144

B6 Sources of Output Shocks: Global output shocks, country-specific output shocks
or interest rate fluctuations ... 145
Sources of Output Shocks: Global output shocks, country-specific output shocks or interest rate fluctuations

146

Sources of Output Shocks: Global output shocks, country-specific output shocks or interest rate fluctuations

147
List of Tables

1.1 Summary Stats: Default Episodes .. 8
1.2 Default Classification: World Level and Region Level 9
1.3 Logistic Regression Results ... 25
1.4 Predicted Probability of Default for Default Episodes 30
1.5 Predicted Probability of Default for Non-Default Episodes 30

2.1 Bayesian Estimation Results from Basic Model: Posterior means 46
2.2 Bayesian Estimation Results from Full Model: Posterior means 51
2.3 Calibrated Parameter Values .. 66

3.1 Calibrated Parameters ... 110
3.2 Estimation Results of Closed Economy Model 115
3.3 Estimation Results of Open Economy Model 117
3.4 Benchmark model : Variance Decomposition 118
3.5 Variance Decomposition Comparison for Volatility in Consumption Growth 120
3.6 Variance Decomposition Comparison for Volatility in Investment Growth 121

A1 Prior Distribution for Bayesian Estimation 132
A2 Panel A: Bayesian Estimation Results from Basic Model: Posterior means 133
A2 Panel B: Bayesian Estimation Results from Basic Model: Posterior means 134
A3 Summary Stats: Explanatory Variables 135
A4 Logistic Regression Results .. 135
Acknowledgements

No amount of words are commensurate with the invaluable advice, guidance and encouragement that I have received from my advisor, Martin Uribe, over the course of my stay at Columbia University. Our meetings and discussions not only helped me in developing a simplistic approach to build an understanding of complex issues but at the same time they kept me motivated to improve my work. I will always be grateful that I got an exposure to his skills, technical niche as well as the critical thinking.

I am highly indebted to Stephanie Schmitt-Grohe for her guidance. All three chapters of this dissertation are a product of ideas that I developed while attending her lectures. Her approach to research and detail-oriented questions always motivated me to be more coherent and precise in my arguments. I would also like to thank Andres Drenik for his invaluable discussions and advice. His suggestions related to the first two chapter of this dissertation not only improved my approach on research but also helped me appreciate the importance of maintaining focus on the bigger and important questions that need to be answered. I am deeply thankful to Jennifer La’O for her guidance during the Ph.D. program at Columbia University. She has always been available and has been a great source of help as well as motivation during my time here. I am eternally grateful to Jesse Schreger for the detailed and productive discussions. The discussions helped me a great deal in improving this dissertation as well as in being articulate and precise when talking about my work.

I am also grateful to Hassan Afrouzi, Irasema Alonso, Matthieu Gomez, Gernot Muller, Jon Steinsson, and the participants of economic fluctuations colloquium and macro lunch group at Columbia University for their comments that helped me improve this dissertation.

I am also thankful to the fellow Ph.D. students and friends at Columbia University, Mauricio Caceres Bravo, Bikramaditya Datta, Agnieszka Dorn, Sun Kyoung Lee, Xuan Li, Ildiko Magyari, Haaris Mateen, Seunghoon Na, Scott Weiner, Danyan Zha, and Qing Zhang, for their encouragement, support and numerous academic as well as non-academic
discussions. The last and an integral part of my stay at Columbia University: running and squash. I would like to thank Lin Tian for instigating the idea of running marathons in me, Scott Weiner for being the running partner, Kumar Somya Pandey and Jaebin Choi for the tiring, yet amazing, squash games and the invigorating post game conversations.

Last, I am immensely grateful to my family and numerous friends for their support and belief in me. I couldn’t have finished the PhD without the love of my parents, my sister, my brother-in-law, my niece—Aanya—and most importantly, my wife—Neha. In the jargon of economics, they smoothed out all the negative shocks and amplified the positive ones.
To my parents, Meena Singh & Ashok Kumar Singh,
my sister, Divya, and my wife, Neha.
Chapter 1

Clustered Sovereign Defaults: An Empirical Analysis

Anurag Singh

\[1\]

\[1\]I am highly indebted to Martin Uribe, Stephanie Schmitt-Grohe and Andres Drenik for their invaluable discussions, guidance and support. I am grateful to Hassan Afrouzi, Agnieszka Dorn, Jennifer La’O, Gernot Muller, Seunghoon Na, Jesse Schreger and Jon Steinsson for their comments that helped me improve the paper. I would also like to thank Viola Asri, Mauricio Caceres Bravo, Chun-Che Chi, Seungki Hong, Mai Li, Ildiko Magyari, Haaris Mateen, Gustavo de Cicco Pereira, Lin Tian, Leo Wang, Scott Weiner, the participants of economic fluctuations colloquium and macro lunch group at Columbia University for their helpful comments and suggestions. All errors are my own.
1.1 Introduction

Historical data on sovereign defaults tell us that clustered defaults, where multiple countries default in a relatively short period of time, is a recurring phenomenon. Figure 1.1 illustrates that the late 1820s, early 1870s, early 1930s and early 1980s were all eras when a large number of countries defaulted in a 5-year period.\(^2\) Despite the frequent recurrence of clustered defaults, only a handful of papers examine historical data to analyze the occurrence of clustered defaults and the role of global shocks in causing them.\(^3\) This chapter, therefore, performs a reduced form analysis that caters very specifically the need to understand clustered defaults. However, to understand clustered defaults, it is important not only to accommodate the possibility of global shocks but also to identify their nature i.e. transitory or permanent. This chapter, therefore, starts by disentangling different global and country-specific shocks that countries face and then uses the time series of these shock processes to understand the contribution of different shocks in causing clustered defaults.

Figure 1.1: Percentage of defaulting countries in a rolling 5-year window

\(^2\)There are six peaks between 1800 and 2015 but if I impose the requirement of calling episodes with more than one-third countries defaulting as clustered defaults, I am left with four clustered defaults.

\(^3\)Reinhart and Rogoff (2011b), Bordo and Murshid (2000), Kaminsky and Vega-Garcia (2016) etc.
The necessity of having a separate framework to study clustered defaults arises from the fact that most of the previous studies on sovereign default focus on idiosyncratic defaults; and examine countries in isolation. As a byproduct, shocks are considered country-specific and there is no role for global shocks in default decisions. Thus, a default where output decreases by 9% due to country-specific shocks and 1% due to global shocks would be treated the same way as a default where output decreases by 9% due to global shocks and 1% due to country-specific shocks because, in aggregate, the output decreased by 10% in both cases. This is precisely why a formal setup is required to disentangle different global shocks from country-specific shocks. Once we can distinguish the nature of shocks, it might have different implications for clustered and idiosyncratic defaults as well as for the policymakers.

Using the data on 92 countries that have been involved in 146 sovereign defaults between 1975 and 2014, I ask two questions: First, are global shocks necessary in order to explain clustered defaults? Second, which global shocks—global shocks to transitory or permanent components of output or world interest rate shocks—matter?

To answer these questions, this chapter is built in two parts. The first part addresses the decomposition of various global and country-specific shock processes. The second part uses the shock processes backed out in the first part to show a significant contribution of global shocks—global shocks to transitory component of the output and shocks to the world interest rate—in leading countries toward clustered defaults.

The first part, decomposition of shocks, is crucial as it deviates significantly from the existing sovereign default literature to capture the effect of global shocks on output of borrowers. It postulates an output process for every country and accommodates for the presence of five shocks—country-specific transitory and permanent shocks to output; global transitory and permanent shocks to output; and world interest rate fluctuations. Both global output shocks enter the output process of every country as well as the process of the world real interest rate. Thus, the estimation of the structural parameters requires a joint estimation with the output growth of all the countries and the world interest rate as observables. The
estimation is done using the Bayesian method and the time series of all country-specific and
global shocks are backed out using the Kalman smoothing algorithm.

In the second part, the time series of smoothed-out global and country-specific shocks are
used to perform the reduced form analysis using two regression specifications. The first spec-
ification contains only country-specific variables as explanatory variables while the second
specification contains both country-specific and global variables as explanatory variables. I
find that when the defaults are idiosyncratic—that is, not clustered—adding global variables
does not make a difference to the probability of default. For clustered defaults, however,
predicted probability of default increases by two-and-a-half times after adding the global
variables. This result is qualitatively similar to the one observed by Kaminsky and Vega-
Garcia (2016) who use a dataset on 7 Latin American countries defaulting between 1820 and
1930 to show that global variables do not explain idiosyncratic defaults but do play a role in
explaining clustered defaults. Unlike Kaminsky and Vega-Garcia (2016), this chapter shows
that it is global shocks to transitory component of output and the shocks to real interest
rate that are important to predict clustered defaults.

The introduction of two global output shocks in the output specification of every country
and in the specification of world interest rate is a deviation with respect to the sovereign
default literature. This modification makes the output of all the countries dependent on
global shocks and requires a joint estimation of the parameters. Using the Bayesian method,
I estimate the distribution of the parameters with data on the output of 59 countries and
world interest rate. An estimation of this type and scale has previously not been used
in the sovereign default literature. In other fields, there are some studies—Kose et al.
(2003), Kose et al. (2008), Miyamoto and Nguyen (2017)—that use a similar dynamic factor
method approach to disentangle different global and country-specific shocks but the number
of countries used in those studies is relatively small.

This paper also contributes to the empirical literature on clustered defaults. Most notable
papers that focus on clustered sovereign defaults are Bordo and Murshid (2000) and Reinhart
and Rogoff (2011a). Bordo and Murshid (2000) examines the possibility of contagion in crisis episodes over three different eras. By comparing the extent of co-movements across markets before and after the onset of a crisis, they find little evidence of the contagion phenomena in more recent crises of Asia and Latin America. Reinhart and Rogoff (2011a) document the clustering effect of crises, calling them serial defaults, using data from more than two centuries. Kaminsky and Vega-Garcia (2016) remains one of the few papers to perform a detailed empirical investigation of the possibility of global shocks—panics to financial centers—in causing clustered defaults. They use a dataset of 7 Latin American countries from 1820 to the great depression that captures a total of 27 defaults to show that global shocks are essential in predicting clustered defaults. Furthermore, they consider the international collapse of liquidity and the growth slowdown in the financial centers to be responsible for clustered defaults. The default definitions as well as the preliminary empirical setup used in this paper follow Kaminsky and Vega-Garcia (2016) but my study uses a dataset of 92 countries and 146 sovereign defaults between 1975 and 2014. Contradicting the results of Kaminsky and Vega-Garcia (2016), the empirical setup shows that global transitory shocks rather than permanent ones were mainly responsible for the clustered default of 1982.

The remainder of this chapter is structured as follows. Section 1.2 covers the data used in the paper and defines idiosyncratic and clustered defaults. Section 1.3 discusses the estimation process of global and country-specific shocks. Section 1.4 performs the empirical exercise. Section 1.5 concludes.

1.2 Clustered and Idiosyncratic Sovereign Defaults

1.2.1 Data

The chapter is divided into two main sections: the estimation section, and the section that performs the reduced form analysis. I start with the estimation section, in which data on country-specific output growth and the world interest rate are used. For the reduced form
analysis, I use the Kalman-smoothed time series of output shocks, which comes from the estimation section. Data on variables like debt to output ratio and net foreign assets as a fraction of output is also used for defaulting countries. The time series of world real interest rate and inflation adjusted oil prices is used as global variables to evaluate their explanatory power for the default decision of the country.

For the estimation of the parameters that drive the output process of different countries, I use output growth and world interest rate data as observables. I use yearly data on the real GDP starting from 1960 onward. This requirement decreases the set of defaulting countries from 92 to 49. Therefore, real GDP data on these 49 countries is used along with the same data on 10 developed countries that did not default in the sample period. I construct the data on the world real interest rate by using the 5-year treasury constant maturity rate and adding a market risk spread. This spread is constructed by using Moody’s seasoned BAA-rated corporate bonds and Moody’s seasoned AAA-rated corporate bonds. All three are retrieved from Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis. I further adjust the interest rate for inflation by using expectations for one-year-ahead annual average inflation measured by the GDP price index from the Survey of Professional Forecasters, Federal Reserve Bank of Philadelphia.

For the regression analysis, to capture the output shocks, I use the Kalman-smoothed time series of country-specific and global components of the output process for every country. This time series comes directly from the estimation section, and it captures 49 defaulting countries and 87 defaults for the period between 1960 and 2015. I test the robustness of the results by using HP-filtered components of GDP, which provides a larger set of countries. This expanded set of countries cover 99 sovereign defaults between 1975 and 2014. This data on default episodes come from Uribe and Schmitt-Grohé (2017) and as summarized in Table 1.1, this dataset contains a set of 92 countries that chose to default 146 times between 1975–2014. Since the data on defaults starts from 1975, I limit the time series of shocks to 1975 onward as well. The global shocks are proxied by using HP-filtered cycle and trend components of GDP for the US.
and 2014. Thus, the requirement of having an uninterrupted time series of real GDP and other country specific variables uses only a subset of the countries and the defaults reported in Table 1.1 for the regression analysis.

Table 1.1 shows that the greatest share of defaults captured in Uribe and Schmitt-Grohé (2017) comes from two regions: (1) Africa and the Middle East, where 42 countries led to 65 defaults, and (2) Latin America and the Caribbean, where 28 countries defaulted a total of 51 times. The dataset contains not only the years of default but also the number of years subsequent to the default episode during which the countries remained in default status.7,8 Additionally, I use country-specific data on the total external debt to GDP ratio of countries. I use the data on net foreign assets of the borrowers as a fraction of GDP from the full version of Lane and Milesi-Ferretti (2007) to proxy for total external debt to GDP ratio. Another proxy that I use is the data on government debt as a fraction of GDP from Abbas et al. (2010). Finally, spot crude oil price data, another global variable, is retrieved from FRED. I adjust the oil price for inflation using consumer price index data for all urban consumers, also retrieved from FRED.

1.2.2 Definition

Clustered defaults are those default episodes that occur during periods when a great number of countries are defaulting on their external debt obligations. To capture the clustered

7The data contain start and end dates of default. For example, Peru had one default with a start date of 1978 and an end date of 1978, and Argentina had a default with a start date of 1982 and an end date of 1993. I use the date of start of default as the default date and calculate the number of years that the country remained in default for every default episode. The number of years for the Peruvian default of 1978, for example, is calculated as 1, and the number of years for the Argentinean default of 1982 is calculated as 12.

8The definition of a country in default status is as follows, from Uribe and Schmitt-Grohé (2017), who in turn follow Standard and Poor’s specification: Standard and Poor’s defines default as the failure to meet a principal or interest payment on the due date (or within a specified grace period) contained in the original terms of a debt issue (Beers and Chambers, 2006). This definition includes not only situations in which the sovereign simply refuses to pay interest or principal, but also situations in which it forces an exchange of old debt for new debt with less-favorable terms than the original issue or it converts debt into a different currency of less than equivalent face value. A country is considered to have emerged from default when it resumes payments of interest and principal including arrears. In cases of debt renegotiation and restructuring, the country is assumed to rejoin the markets when the rating agency concludes that no further near-term resolution of creditors’ claims is likely.
defaults, I follow the same definition as that proposed by Kaminsky and Vega-Garcia (2016). The first step in their approach is to identify the years in which a large fraction of countries default; then the defaults that occur in those years are classified as clustered defaults.

Following Kaminsky and Vega-Garcia (2016), I constitute 5-year rolling windows in every year from 1975 to 2010. For every such window, I count the number of countries that defaulted in the 5-year window. If the total number of countries defaulting in a rolling window is more than one-third of all the countries that defaulted during 1975-2014, I call the 5-year rolling window a “window of clustered default” and all the default episodes that belong to the starting year of that window “clustered default episodes”. All the remaining defaults are “idiosyncratic defaults”.

1.2.3 Categorizing Defaults as Clustered or Idiosyncratic

Given the definition of clustered and idiosyncratic default episodes and a total of 92 countries that defaulted at least once in the period 1975-2014, any 5-year window with 31 or more countries defaulting is classified as a clustered default window. It is evident from Figure 1.2 that five 5-year rolling windows constitute clustered default windows: 1979-1983, 1980-1984, 1981-1985, 1982-1986, and 1983-1987. Thus, defaults in 1979, 1980, 1981, 1982, and 1983

9Since the data on default goes from 1975 to 2014, the last rolling window containing 5 years is 2010.
10The paper focuses on the number of countries that default and not on the number of defaults. Peru, for example, defaulted in 1978 and 1980. Thus, in the rolling 5-year window starting in 1978, Peru is counted only once.
11The window 1983-1987 contains 35 different defaulters. Of the 35, 17 countries defaulted in 1983, 2 in 1984, 5 in 1985, 7 in 1986, and 4 in 1987. Only the defaults in the first year of the window—i.e., 1983—are considered part of a clustered default episode, and not the ones in the subsequent years of this 5-year rolling window.
The left panel shows the number of countries in default every year from 1975 to 2014. The right panel shows the fraction of countries defaulting in a 5-year rolling window starting every year. The maroon line highlights the period of clustered defaults, and the blue line highlights idiosyncratic defaults.

Table 1.2: Default Classification: World Level and Region Level

<table>
<thead>
<tr>
<th>Region Name</th>
<th>No. of Defaulting Countries</th>
<th>Total Number of Defaults</th>
<th>Number of Clustered Defaults</th>
<th>Years of Default for Clustered Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>92</td>
<td>146</td>
<td>48</td>
<td>1979-1983</td>
</tr>
<tr>
<td>Africa & Middle East</td>
<td>42</td>
<td>65</td>
<td>34</td>
<td>1979-1985</td>
</tr>
<tr>
<td>Latin America & Caribbean</td>
<td>28</td>
<td>51</td>
<td>22</td>
<td>1978-1983</td>
</tr>
</tbody>
</table>

Alternatively, if one believes that the shocks, defaults, business cycles, etc. are more correlated across countries that are geographically close to each other, I can also define clustered and idiosyncratic defaults at the regional level. To do so, I count the total number of countries defaulting in a particular region between 1975 and 2014 and then look for 5-year rolling windows in every region in which more than one-third of the countries belonging to the respective region default. These 5-year windows will be the clustered default windows for that region.
Figure A1 in the appendix shows the years of clustered defaults for regional classification. The summary of the same data is presented in Table 1.2. Thirty-four of 65 defaults in ‘Africa and the Middle East’, 22 of 51 in ‘Latin America and the Caribbean’, 8 of 19 in ‘Europe and Central Asia’, and 4 of 11 in ‘Rest of Asia and the Pacific’ are classified as clustered defaults. Thus, with the regional classification, a total of 68 defaults fall into the category of clustered defaults, while the remaining 76 fall into the category of idiosyncratic defaults. Overall, depending on the classification, a big fraction of defaults—33% to 45% of all defaults—between 1975 and 2014 are found to be clustered.

This paper, henceforth, considers the world-level classification for the analysis of clustered and idiosyncratic defaults. All the results obtained remain robust to the regional classification as well. Thus, the results are independent of the classification method.

1.3 Estimating Global and Country-Specific Shocks

The output process of every country is assumed to have transitory and permanent components, as in Aguiar and Gopinath (2006). The modification here is that each of those components further have one country-specific and one global component. Thus, output of every country is assumed to have two country-specific and two global components: the transitory and the permanent. I postulate the time-varying processes for these components of output and then estimate the parameters governing these processes and the parameters of the output function using the Bayesian method.

As the name suggests, global shocks affect the output of all the countries. The way these global shocks affect different countries is different; therefore, the way the global shocks enter the output process of different countries is also different. Thus, the same global shock can affect, for example, Argentina completely differently than it affects Mexico.

The presence of global shocks in the output process of all the countries makes it necessary to observe the output processes of all the countries jointly in order to estimate the parameters
governing the output, the country-specific shock processes and the global shock processes.

I start by writing down the output of country \(c \), at given time \(t \) (omitted from the equation for convenience) as:

\[
Y^c = e^{z^c + \alpha^c z^w} X^c (X^w)^{\alpha_X^c}
\]

where a superscript \(c \) represents a country, and a superscript \(w \) represents the world.\(^{12}\)

Variables with superscript \(c \), \(z^c \) and \(X^c \), are country-specific transitory and permanent components of output. Similarly, \(z^w \) and \(X^w \) are global transitory and permanent components of output. In the log specification of output, the global components—\(z^w \) and \(\ln(X^w) \)—enter with a multiplicative factor of \(\alpha^c_z \) and \(\alpha^c_X \), respectively. Intuitively, a global shock can be transmitted to a local economy, depending on the interaction of the country with the global economy via financial markets, trade of goods or services, etc. If this interaction is negligible, then the values of both \(\alpha \)'s should be close to zero. In contrast, if the interaction is sizable, we should expect both \(\alpha \)'s to have a nonzero value. In terms of natural logarithms, the equation can be written as:

\[
y^c = z^c + \alpha^c z^w + \ln(X^c) + \alpha^c_X \ln(X^w)
\]

Both the transitory components—\(z^c \) and \(z^w \)—are assumed to follow an AR(1) process with persistence \(\rho^c_z \), \(\rho^w_z \) and standard deviation \(\sigma^c_z \), \(\sigma^w_z \) respectively. The long-run mean of both the transitory components is assumed to be 0.

\[
z^c_t = \rho^c_z z^c_{t-1} + \epsilon^c_{z,t} \\
z^w_t = \rho^w_z z^w_{t-1} + \epsilon^w_{z,t}
\]

The growth rate of the permanent components is given as: \(g^c_t = X^c_t / X^c_{t-1} \) and \(g^w_t = X^w_t / X^w_{t-1} \).

The logarithm of the growth rate in the permanent components, \(\ln(g^c) \) and \(\ln(g^w) \), follows AR(1) with persistence \(\rho^c_g \), \(\rho^w_g \); standard deviation \(\sigma^c_g \), \(\sigma^w_g \); and long-run means of \(g^c_{ss} \) and \(g^w_{ss} \).

\(^{12}\)The detrended version of output will therefore be \(\tilde{Y}^c = Y^c / (X^c_{t-1} \times \mu^c_g \times (X^w_{t-1})^{\alpha^c_X} \times (\mu^w_g)^{\alpha^c_X}) = e^{z^c + \alpha^c z^w} g^c (g^w)^{\alpha^c_X} / \mu^c_g \), where \(g^c = X^c / X^c_{t-1} \), \(g^w = X^w / X^w_{t-1} \) and \(\mu^c_g = 1 \).
\(g_{ss}^w \).

\[
\ln(g_c^t / g_{ss}^c) = \rho_c^g \ln(g_{c-1}^t / g_{ss}^c) + \epsilon_{g,t}^c
\]

\[
\ln(g_w^t / g_{ss}^w) = \rho_w^g \ln(g_{w-1}^t / g_{ss}^w) + \epsilon_{g,t}^w
\]

All the persistence levels are assumed to satisfy \(|\rho| < 1\), and the shocks are assumed to be normally distributed, \(\epsilon \sim N(0, \sigma^2) \).

State-Space Form

When the output growth rate for the countries is treated as observable, the output equation for country \(c \) can be rewritten as:

\[
y_c^t - y_{c-1}^t = z_c^t - z_{c-1}^t + \alpha_z^c(z_w^t - z_{w-1}^t) + \ln(g_c^w) + \alpha_X^c \ln(g_w^w)
\]

Additionally, I assume that the real interest rate follows:

\[
r_t^* = \bar{r}^* + \alpha_r z_t^w + \alpha_X^r \ln(g_w^w / g_{ss}^w) + \epsilon_r^t
\]

Since the interest rate is sum of treasury bill rate and a risk premium wedge, the observed world real interest rate can move either because of the monetary policy or because of increased risk aversion in the investors or because of completely exogenous shocks. Both the monetary policy and investors may respond to global shocks that increase or decrease the GDP of all the countries together, as reflected in the equation. The unexplained part, \(\epsilon_r^t \), is the exogenous shock. This shock is also assumed to follow an AR(1) process.

\[
\epsilon_r^t = \rho_r \epsilon_{r-1}^t + \epsilon_r^t
\]

Thus, I can add the above interest rate equation in the measurement equation. The measurement equation can now be written in the state space form using \((3 \cdot nc + 4)\) state variables: 1 interest rate process: \(\epsilon_r^t \); 3 global state variables: \(z_w^t \), \(z_{w-1}^t \), \(\ln(g_w^w / g_{ss}^w) \); and 3 country specific state variables: \(z_c^c \), \(z_{c-1}^c \), \(\ln(g_c^w / g_{ss}^c) \). Since the global state variables have an effect not only on the growth rate of output for all the countries but also on the real interest
rate, the state space equation for all the countries will have the global components making the contemporaneous observable of all the countries intertwined. I thus need to write the combined state space equation and estimate the parameters of all the countries together. To this end, I stack the output growth of all the countries one over the other at a given time \(t \) and treat it as an observable of time \(t \). The measurement equation of the state space form can then be written as:

\[
U = W + V \cdot \theta_t
\]

where, \(U = [r_t^*, \Delta y_t^1, \cdot, \Delta y_t^c, \cdot, \Delta y_t^{nc}]^T \). The dimension of \(U \) is \((nc+1) \times 1\) (where \(nc \) is the total number of countries). \(W \) is also \((nc+1) \times 1\) and it is time invariant. \(V \) is \((nc+1) \times (3*nc+4)\) and it is time invariant as well. The state variable vector, \(\theta_t \), is \((3*nc+4) \times 1\). The evolution of state vector (transition equation) can be represented as:

\[
\theta_t = K \cdot \theta_{t-1} + \lambda_t
\]

Section A.2.1 of appendix reproduces the state-space form and gives formulation of all the vectors and matrices related to the state-space form.

Estimation of Country-Specific and Global Parameters

I include the yearly output growth of all the defaulting countries with continuous data from 1960 onward as observable, thus restricting the number of countries to 49. If I estimate the latent states using this set of 49 countries, my estimates of global state variables may be biased due to the presence of only defaulting countries. To avoid this bias, I add 10 developed countries—Australia, Belgium, Canada, France, Italy, Japan, Netherlands, Spain, the United Kingdom, and the United States—taking the total number of countries to 59.

Since the output process of every country comprises four components, I have (i) two country-specific shock processes—\(z^c \) and \(\ln(g^c) \)—for every country, (ii) two global shock processes—\(z^w \) and \(\ln(g^w) \)—and (iii) two coefficients corresponding to the global shocks—\(\alpha^c_z \) and \(\alpha^c_X \)—for every country. For every component, I estimate the persistence and the variance.
of the process. With the data on 59 countries, I thus have 236 parameters related to country-specific shocks (ρ^c_z, ρ^c_g, σ^c_z and σ^c_g for every c). Moving on to global shocks, I normalize the standard deviation of the world shocks to 1 without loss in generality because ρ^c_z and ρ^c_X can account for any scale effect arising from a different value of standard deviation. Once the standard deviation of the world shocks is normalized to 1, the direction and the volatility of the effect of world shocks on a specific country will be governed by country-specific factors: α^c_z, α^c_X. Thus, there are 118 more parameters that govern the effect of global transitory and permanent components on the output of individual countries. Next, 2 persistence parameters remain: for global transitory and permanent shock processes. Last, I have 4 parameters related to the interest rate process: $\alpha^c_r z$, $\alpha^c_r X$, ρ^r and σ^r. Together the number of parameters to estimate reaches 360.

The average growth rate of countries, μ^c_g, is observable in the data; thus I assume that the steady-state growth rate in the country-specific permanent component, g^c_{ss}, is the same as in the former. I also make the assumption that $g^w_{ss} = 1$. One final identification assumption remains: I restrict α^c_z and α^c_X to be positive because a particular time series, z^w and $\ln(g^w)$, and the corresponding multiplicative parameter values, α^c_z and α^c_X, generate a particular time series of global shocks to every country’s output. If there are no restrictions on α, a time series that is negative of z^w and $\ln(g^w)$ along with the opposite signs of α^c_z and α^c_X will also generate the same contribution to every country’s output. To eliminate this multiplicity, I assume that for Venezuela, $\alpha^V_{VEN} > 0$ and $\alpha^V_{VEN} > 0$.

The paper uses the Bayesian method to estimate the parameters pertaining to the output process of all the countries. I assume a uniform prior for all the parameters and apply the Kalman filter to calculate the likelihood given the past data. The calculated likelihood along with the prior produces the posterior likelihood. The Metropolis-Hastings algorithm and the sequence of posterior likelihoods yield an approximate posterior distribution of all

13 Both z^w and $\ln(g^w)$ appear along with the α^c_z and α^c_X for every individual country. Writing the process of z^w in $MA(\infty)$ rather than $AR(1)$ form, we obtain: $\alpha^c_z z^w = \alpha^c_z (\epsilon^w_{z, t} + \rho^c_z \epsilon^w_{z, t-1} + (\rho^c_z)^2 \epsilon^w_{z, t-2} + (\rho^c_z)^3 \epsilon^w_{z, t-3} + \ldots) = \alpha^c_z \cdot \sigma^w \cdot (\epsilon^w_{z, t} + \rho^c_z \epsilon^w_{z, t-1} + (\rho^c_z)^2 \epsilon^w_{z, t-2} + (\rho^c_z)^3 \epsilon^w_{z, t-3} + \ldots)$, where $\epsilon = \epsilon / \sigma$ is standard normal. This shows that we can observe only the product, $\alpha^c_z \cdot \sigma^w$, and hence it is safe to normalize σ^w as well as σ^g to 1.
the parameters.

The prior distributions are shown in Table B1 in the appendix. All the persistence levels, country-specific as well as global, are assumed to have the same uniform prior distribution. The standard deviations of global shocks are normalized to 1, but all the country-specific standard deviations also have the same prior distribution. The prior for the α values for Venezuela is between 0.0001 and 2, but all other α values have a uniform prior between -2 and 2. With a Markov chain of 1 million draws, the posterior means of ρ_z^w and ρ_y^w are estimated to be 0.24 and 0.44. The posterior means for the remaining parameters are shown in Table A2.

Given that all the prior distributions are assumed to be uniform, the posterior distributions show that they differ significantly from the prior distributions. Among all the parameters related to a persistent level of shocks, the persistence of global shock to the transitory component of output is most precisely estimated. For some of the countries, the parameters related to the persistence level are not very precisely estimated. Though mean α values are positive for most of the countries, the distributions of these α values are not very precise for some countries. Therefore, it is difficult to say whether the α values differ significantly from 0 for those countries.

I use mean values from the posterior estimates of all the parameters and use the Kalman smoothing algorithm to smooth out all the latent shocks that different countries face. Figure A2 in the appendix shows the time series of the global transitory and permanent components of output. The top panel shows a large negative transitory shock in the early 1980s and then a very small negative transitory shock around the great recession. The bottom panel shows multiple permanent shocks, but those with the greatest impact are observed during the 1975s, during 1980s, during 1990s and during the great recession. Both time series are scaled to the parameters of Argentina. Thus, the time series show that during the early 1980s, Argentina faced a negative transitory shock that took detrended GDP from 16% to -6% in 2 years, and

14 Posterior distributions are not shown here. Only mean values are reported.
the negative permanent shock that took it from 0.5% to -1% in 4 years.

The time series obtained using the Kalman smoothing algorithm is used for the empirical exercise performed in the next section.

1.4 Empirical Analysis

The Kalman smoothed time series of shocks—country-specific shocks for every country and global shocks—obtained from the estimation part are used to perform some preliminary tests. Moreover, using a regression framework, I ask whether countries faced different shocks during clustered defaults vis-à-vis idiosyncratic defaults.

I start by examining the transitory and permanent shocks around idiosyncratic and clustered default episodes. I then decompose these shocks into their global and country-specific components to investigate their individual contributions to idiosyncratic and clustered default events. In the next step, I perform a regression analysis to uncover whether global shocks play a substantial role in explaining clustered defaults. I begin with a logistic regression exercise and predict the probability of default events. I then test whether including global shocks as an explanatory variable increases the predicted probability of the default events.

The data restrictions for the estimation procedure and the availability of other regressors reduces the defaulting countries to 49 and the number of defaults to 87. To check robustness, and to work on a larger set of countries, I perform HP-filtering (instead of using Bayesian method). Thus, in this robustness check, I use data on 58 countries and 99 defaults episodes.

15 The time series of all the four components of output that we use has a nice property. Since the only observable in the estimation is the output growth of countries, the estimation process is completely independent of the default data. Additionally, adding developed countries that have never defaulted to the estimation process ensures that the estimated global shocks are not contaminated by the presence of default events. Thus, adding these additional developed countries eliminates the reverse causality problem. A negative shock to some global component of output will not be a result of the output decline of a set of countries in response to default.
1.4.1 Global and Country-specific Shocks Around Default Episodes

I observe the behavior of aggregate transitory and permanent shocks, along with their global and country-specific components, around different default episodes in the data. In this manner, I aim to distinguish whether a representative clustered default episode faced different shocks, in terms of nature and severity, than a representative idiosyncratic default episode. I use the median values of shocks across all the default episodes, clustered or idiosyncratic or both types, to obtain the representative default in the respective category. The results remain robust to using mean values.

Since the basic version of the output process of a country, c, is given as:

$$Y_c^t = e^{z_c^t + \alpha_X^c z_w^t} \cdot X_c^t (X_w^t)^{\alpha_X^t}$$

I construct the aggregate transitory shock, $z_c^t + \alpha_X^c z_w^t$, and the aggregate permanent shock, $\ln(g_c^t/g_{c,ss}^c) + \alpha_X^c \ln(g_w^t)$, to the output of every country. I then decompose these aggregate transitory and permanent shocks into global and country-specific components to study their movements near the default episodes.

The first row of Figure 1.3 shows median values for the growth rate in the aggregate permanent component of the output and the median values for the aggregate transitory component of the output, both near default episodes. The three lines in each figure show median values across all default episodes, across clustered default episodes, or both, idiosyncratic default episodes. The figure suggests that during clustered defaults, even though the countries were doing much better 1 year before the crisis and 2 years before the crisis, they underwent a steep reduction in output as they approached the year of default. This drop is much more severe in the case of the transitory component of the output. For idiosyncratic defaults, half of the time, the countries were doing poorly even 2 years before the default, and they gradually did worse as they approached the default year. The next two rows decompose the permanent and transitory shocks into global and idiosyncratic components.
Figure 1.3: Transitory and permanent components of output near default

Notes: (1) 0 depicts the crisis year. -1 and -2 depict 1 and 2 years before the crisis, while 1 and 2 depict 1 and 2 years after the crisis. (2) The diagram is based on components of the output process obtained from estimation using data from 49 defaulting countries and 10 developed countries. The left panels plot growth rate in the permanent component of GDP. It starts with the total growth rate of the permanent component—\(\log(g_c^t/g_{cs}) + \alpha_c^z \log(g_w^t/g_{ws}) \)—in the first row and then decomposes its country-specific and global components—\(\log(g_c^t/g_{cs}) \) and \(\alpha_c^z \log(g_w^t/g_{ws}) \)—respectively. The right panels plot the transitory component of GDP. It starts with the total transitory component—\(z_c^t + \alpha_c^z z_w^t \)—in the first row and then decomposes its country-specific and global components—\(z_c^t \) and \(\alpha_c^z z_w^t \)—respectively.

Figure 1.3 further suggests that the large negative transitory shock that many borrowers
observe during clustered default episodes is driven mainly by the global shock to the transitory component of output rather than by idiosyncratic shock. In contrast, the permanent shock, which is slightly more pronounced in the clustered default episodes, comes mainly from country-specific shocks.

Another point to note in Figure 1.3 is that the decline in the transitory component of the GDP is much more severe than the actual magnitude of the transitory component, even in the year of default. Growth in the permanent component, on the other hand, is negatively affected for most of the defaulters.

The results for permanent and transitory shocks presented in Figure 1.3 remain robust to HP-filtering the output series of individual countries to obtain the cycle and the trend growth.

Figure 1.4: World interest rate near default

![Figure 1.4: World interest rate near default](image)

Note: 0 depicts the crisis year. -1 and -2 depict 1 and 2 years before the crisis while 1 and 2 depict 1 and 2 years after the crisis.

The last global variable I review is the world real interest rate. Since the period 1981-
1983 is a period of higher-than-usual interest rates as well as a period of clustered defaults, Figure 1.4 shows that the clustered defaults were accompanied by higher risk-free interest rates, while idiosyncratic defaults occurred at a median risk free rate of approximately 4%.

1.4.2 Empirical Specifications

A preliminary observation of country-specific and global shocks shows that countries involved in clustered defaults faced negative global transitory shocks to output as well as a hike in the world interest rate. In this subsection, I incorporate country-specific and global shocks into a regression framework to address the problem in a formal setting. I predict the probability of default for all the observed default events using two specifications: one with only country-specific explanatory variables and the other with both country-specific and global explanatory variables. Predicting the default probability for the default events and comparing them across the two specifications informs us about the marginal role played by global variables in influencing sovereign defaults. The empirical exercise shows that clustered default episodes can be explained significantly better when the specification includes global variables. Idiosyncratic defaults, on the other hand, are not influenced by the presence of global variables in the specification, and the predicted probability of default remains the same across both specifications.

Since the canonical work on sovereign default attributes defaults to the high indebtedness of the borrower or to the negative output shock to the borrowing countries, it is natural to assume the same for idiosyncratic defaults. Clustered defaults, however, due to the nature of being concentrated around a small window, suggest a role of worsening global fundamentals. Thus, I test whether global shocks play a different role in clustered defaults than in idiosyncratic defaults. Since the default decision is a 0/1 variable, I use a logistic regression framework, similar to that of Kaminsky and Vega-Garcia (2016), to explain default decisions.

The logistic regression framework attributes the default status of a country to a set of
factors including negative output shocks to countries. Negative output shocks to a borrowing country might keep the borrowing country in default status. This suggestion gives rise to a probable reverse causality concern. Not only low output in the country might lead the borrower to default and to remain in default status for a long time, but also, a default in the borrowing country might cause its output to remain low for the foreseeable future.17 Thus, to get ride of reverse causality issue, it is reasonable to eliminate data for the borrower for a few years after the country’s default. I remove data subsequent to a default for all years in which the borrower remains in default status and has difficulty accessing world financial markets.18

The two regression specifications are as follows:

\textbf{Specification 1:}

\[D_{c,t} = \beta X_{c,t} + \mu_c + e_{c,t} \]

\textbf{Specification 2:}

\[D_{c,t} = \beta X_{c,t} + \gamma X_{w,t} + \mu_c + e_{c,t} \]

In both specifications, the default dummy, \(D_{c,t} \), is the dependent variable. It takes a value of 1 in the year the country defaulted or is in default status and 0 otherwise. Since I remove data points in which the country is in default status after the country has defaulted because of reverse causality concerns, I have \(D_{c,t} = 1 \) only in the period of default. Both specifications include country fixed effects to account for unobserved country-specific differences. In terms of explanatory variables, both specifications have country-specific variables, \(X_{c,t} \). Only the second specification has global variables, \(X_{w,t} \), which is the difference between two specifications.

As most of the literature emphasizes, output shocks to borrowers are one of the most important criteria that explain sovereign defaults. To capture these output shocks, I use the

17The output can remain low after default for several reasons: reduced borrowing due to restricted access to financial markets, trade restrictions, increased unemployment due to default, etc.

18This data is available from Uribe and Schmitt-Grohé (2017).
same components of output that I obtained from the estimation exercise: country-specific and global shocks to transitory and permanent components of output.

In addition to the transitory and permanent components of country-specific output shocks, the next country-specific explanatory variable used here is the borrower’s net foreign asset position as a percentage of GDP.19 This ratio of net foreign assets to GDP measures the indebtedness of the borrower. For global explanatory variables, the first one that I use is real interest at the disposal of investors. I construct the data on the world real interest rates by using the rate on 5-year treasury constant maturity and adding a market risk spread to it. This spread is constructed by using Moody’s seasoned BAA-rated corporate bonds and Moody’s seasoned AAA-rated corporate bonds. I further adjust the interest rate for inflation by using expectations for one-year-ahead annual average inflation measured by the GDP price index. The next global variables are the transitory and permanent components of global shocks to output. Finally, I use inflation-adjusted oil prices to control for the investment surge hypothesis of defaults. The hypothesis, largely related to the Latin American defaults of 1982, suggests that a decrease in oil prices can cause defaults. The mechanism starts with a rise in oil prices that causes a surge in investment by oil-rich countries in emerging economies. This leads to overindebtedness, which results in default when oil prices plummet and investments dry up. Since this channel is expected to work through the debt level of a country, which the specification has already controlled for, it is unclear whether controlling for oil prices will matter. Oil price fluctuations can also lead to global shocks in output through the supply channel. Thus, global output shocks, both transitory and permanent, that are already added as explanatory variables, might capture the effect of oil price fluctuations in themselves. Hence, it again becomes unclear whether controlling for oil prices matter.

Before I move on to the results and compare the two specifications, I check whether

19The series on net foreign assets as a percentage of GDP is available only to 2011; thus, the paper uses the series on government debt as a fraction of GDP for robustness checks. The series on government debt is available for recent years and is highly correlated with the series on net foreign assets as a fraction of GDP (correlation coefficient of -0.84).
the regression coefficients concur with common beliefs in the literature about the effects of different explanatory variables on a default decision. First, negative output shocks lead to defaults. Second, high indebtedness or a low net foreign asset position as a fraction of output leads to default. Third, high world real interest rates lead investors to withdraw money from borrowing countries, making it harder for the borrower to obtain new loans and service existing debt. This difficulty eventually leads the borrower to default. Finally, plummeting oil prices cause investments to dry up in developing countries, which eventually results in default.

Returning to the specifications, the two regression specifications suggest two different hypotheses. The first specification suggests that a country’s decision to default depends, for the most part, on the borrowing country itself. A priori, we can expect that adverse output shocks to the borrowing country and too much debt as a fraction of output for the borrowing country can lead the country into default. The second specification also takes global variables into account. These global variables are proxies for shocks to global fundamentals that affect all borrowers together. In this specification, therefore, we expect worsening global fundamentals to cause default. Thus, the specification means that the default decisions depend not only on borrower-specific variables but also global variables.

Each regression specification and the corresponding hypothesis seem to fit one category of defaults better than the other. The first specification, which attributes defaults only to country-specific explanatory variables, seems to fit idiosyncratic defaults better. Since these defaults occur in isolation as compared to clustered defaults, in which default by a country is accompanied by defaults in multiple other countries, it is plausible that global shocks do not make a significant difference in leading countries to idiosyncratic defaults. For clustered default episodes, in contrast, global fundamentals usually worsen at approximately the same time that countries decide to default. Thus, it is appropriate to assume that clustered default episodes are a much better fit for the specification and the hypothesis that include global shocks as explanatory variables.
Since each specification and the corresponding hypothesis fit one category of default better than the other, we reformulate the hypotheses according to the default category. For idiosyncratic default episodes, we hypothesize that moving from specification 1 to specification 2 does not make a great difference in predicting idiosyncratic defaults, on average. In other words, adding global shocks to a specification that already has country-specific shocks does not make a significant difference in predicting idiosyncratic defaults compared to a specification with only country-specific shocks. For clustered defaults, we hypothesize that specification 2 significantly improves the predictive power of clustered defaults in comparison to specification 1.

To test the reformulated hypotheses, we perform regression for both the specifications. Once we obtain the regression coefficients, we predict the probability of default for each of the specification. We then examine the probability of default for the 87 default events in our sample. If the hypothesis is true, we expect the specification 1 to be better—or both specifications to be almost the same—for the idiosyncratic default events in our sample. Additionally, specification 2 must yield significantly higher default probabilities for the clustered default events in our sample. Mathematically,

\[
\hat{P}_r(D_{c,t} = 1|D_{c,t} = 1, S_1) \geq \hat{P}_r(D_{c,t} = 1|D_{c,t} = 1, S_2)
\]

\[
\hat{P}_r(D_{c,t} = 1|D_{c,t} = 1, S_1) < \hat{P}_r(D_{c,t} = 1|D_{c,t} = 1, S_2)
\]

1.4.3 Results

As emphasized in the literature, the results confirm that the debt level in a country as a percentage of GDP and country-specific shocks to the output of the borrowing economy are both good predictors of default. Additionally, real interest rate shocks and global shocks to the transitory component of the GDP are also good predictors of default events. For idiosyncratic defaults, the results show that the predicted probability of default events conditional on default is almost the same for both specifications. For clustered defaults, however, the
predicted probability of default conditional on default events is more than twice as high in specification 2 as in specification 1. Thus, global shocks make a great difference in leading countries to default in the case of clustered default events.

1.4.3.1 Specification with Country-Specific Variables

Motivated by the set of stylized facts discussed in section 1.4.1, I choose a 2-year change in the country-specific and global shocks to the transitory component of output as explanatory variables. The results are reported in Table 1.3. I also show that the results are robust to choosing the level of country-specific and global shocks to the transitory component of output rather than 2-year changes. The results with levels instead of changes are reported in Table A4 in the appendix. Table 1.3 shows that although all three country-specific explanatory variables have the expected signs, only the debt level and the country-specific shocks to the permanent component of the output are statistically significant in predicting the default decision of the borrowing country.
Columns 2 and 4 of Table 1.3 report the regression coefficients. Since the empirical specification uses logistic regression, the coefficient estimates have a lesser quantitative appeal beyond the signs. For this reason, I also report the marginal effects of changing an explanatory variable on the probability of default in columns 3 and 5 of Table 1.3. For example, Column 3 shows that 1 standard deviation decrease in net foreign asset as a fraction of output increases the probability of default by 0.09. Similarly, 1 standard deviation decrease in the growth rate from its average increases the probability of default by 0.13. A decrease in the 2-year difference of the country-specific shock to the transitory component of output decreases the probability of default, but the magnitude of this change is not significantly different from 0.

1.4.3.2 Specification with Country-specific and Global Variables

Column 4 of Table 1.3 shows the results of specification 2. As in specification 1, the coefficients related to all the country-specific variables remain very similar in terms of magnitude and effect on the default decision of the country. Among global variables, only the real interest rate in the US and the 2-year change in the transitory component of real output have a significant effect on the probability of default.

Column 5 of Table 1.3 shows that a 1 standard deviation increase in the US interest rate causes the default probability to increase by almost 0.10. This finding is in line with the belief that when credit becomes expensive, countries find it more difficult to roll over the existing debt, and they tend to default more often. It also supports the commonly held belief that increased risk-free rates have a substantial negative impact on default decisions. Negative global shock to the transitory component of the output also increases the default probability, as expected. A 1 standard deviation decrease in $\Delta z_{t,t-2}^w$ causes the default probability to increase by 0.06. The sign on the coefficient of global permanent growth shock to output is surprising, even if it is statistically indistinguishable from 0. This finding is also evident from the bottom-left panel of Figure 1.3 where, during and near the default episodes, the global
shocks to permanent component of output are nonexistent compared to other output shocks. The coefficient on oil prices, though not statistically significant, confirms our expectation that an oil price decrease leads to decreased lending in emerging countries. The decreased lending causes difficulties in repayment of the interest and the principal on existing debt, which lead to more frequent defaults. For oil-exporting developing economies, a decrease in oil prices leads to a decrease in export revenues and output which can also lead to default.

In columns 3 and 5 of Table 1.3, I report the changes in probability when I change an explanatory variable by 1 standard deviation. Whether we can interpret the change in probability by directly multiplying the marginal effect and the standard deviation together might be a cause of concern because of the shape of the logit function. It shows very small changes in probability with increases in the explanatory variable, both at low and high values of the explanatory variable. This concern is addressed in Figure A4 in the appendix. This figure shows that our estimates in column 5 of Table 1.3 are close estimates of the actual marginal changes.

With summary statistics of the explanatory variables in Table A3 and the marginal effects of these explanatory variables in Figure A4 in the appendix, we can return to examine the contributions of different global shocks in leading countries to clustered defaults vis-à-vis idiosyncratic defaults. As shown in Figure 1.4, the median real interest rate during a default is higher by almost 2.5% for clustered default episodes than for for idiosyncratic defaults. This finding shows that, all other variables remaining the same, real interest rate alone can account for an increase in the probability of default of 0.12. Figure 1.3 shows that a 2-year change in country-specific shock to the transitory component of output is -0.05 for clustered default episodes and close to 0 for idiosyncratic episodes. Thus, ceteris paribus, global shocks increase the probability of default by 0.15 during clustered default episodes compared to idiosyncratic default episodes. Both of these observations suggest a substantial role for global shocks when it comes to clustered defaults. The same global shocks, on the other hand, do not seem to play a major role in increasing the probability of default for
idiosyncratic default episodes. In the next section, I test this hypothesis more formally.

1.4.3.3 Comparing Specifications: Clustered and Idiosyncratic Defaults

Given the predicted probability of default from both specifications, this paper compares the two specifications across clustered and idiosyncratic defaults. Figure 1.5 shows the predicted probabilities for all the default events. The y-axis shows the predicted probabilities from specification 1, and the x-axis measures the same from specification 2. Additionally, there is a 45-degree line to determine whether the predicted probabilities are the same in both specifications or whether they are systematically higher in one specification than in the other. A default episode on the right side of the 45-degree line means that specification 2 outperforms specification 1 at predicting that particular default, while opposite means that specification 1 outperforms. The figure also attaches different markers to idiosyncratic and clustered defaults.

Figure 1.5: Predicted probabilities of default using specification 1 and specification 2

In an ideal scenario, since the predicted probabilities are conditional on the respective country defaulting in the data, all these predicted values should be close to 1. Figure 1.5
shows that this is clearly not the case, as the predicted probabilities are substantially lower than 1. This finding signifies the inability of the explanatory variables to predict default, which is also evident from the low pseudo-R^2 values in Table 1.3. Even though the values of the predicted probabilities are low, Figure 1.5 shows that clustered defaults lie systemically towards the right of the 45-degree line, while idiosyncratic defaults events appear to be evenly distributed on both sides of the 45-degree line. This finding shows that both specifications do equally well in predicting idiosyncratic defaults; hence, global variables play virtually no role in predicting idiosyncratic defaults. In contrast, adding global variables increases the probability of default for most of the defaults that occurred during the 1982 cluster.

Table 1.4 presents the results of Figure 1.5 more formally. It shows that on average, the predicted probability of default for idiosyncratic defaults is 0.063 when we use specification 1. Including global variables along with country-specific variables to predict idiosyncratic defaults does not make much of a difference. The average predicted probability of default in specification 2 is 0.056. The predicted probabilities of clustered defaults differ greatly based on the specification used. On average, the predicted probability of clustered default is 0.115 in specification 1. This average is higher than the one for idiosyncratic defaults with either specification. This finding shows that country-specific fundamentals were also poor during the clustered default episode of 1979-1983. With Specification 2, the average predicted probability of clustered default events jumps to 0.285. The difference of the mean t-statistic is negative and significant at 0.1%. An increase of close to 150% results just from adding global variables to the specification. Thus, even though country fundamentals were poor during the clustered default period, global fundamentals were much worse. This finding shows that including global variables in the specification makes a great difference in explaining the probability of default for clustered default episodes but makes no difference in explaining idiosyncratic default episodes. This signals a role of worsening global fundamentals in leading multiple countries to default during the clustered default period of 1979-1983.

The results in Figure 1.5 and Table 1.4 are robust to alternative specification in which
Table 1.4: Predicted Probability of Default for Default Episodes

| Default Type | N0. | Specification 1 | Specification 2 | \(P(D = 1|S_1) = P(D = 1|S_2) \) | t-stat |
|----------------------|-----|----------------|----------------|----------------------------------|--------|
| Idiosyncratic Default| 52 | 0.0634 | 0.0561 | | 1.2078 |
| Clustered Default | 35 | 0.1146 | 0.2853 | | -7.0813|

we use the levels of country-specific and global shock to the transitory component of output instead of their 2-year changes, as shown in Figure A5 and Table A5 in the appendix. The results are also robust to using government debt data instead of net foreign assets and to using HP-filtered data on the output of countries instead of the Kalman-smoothed data from the estimation exercise. However, these results are not attached in the appendix to avoid repetition.

The final issue of concern is the predicted probabilities of default conditional on non-default. First, since the default probabilities conditional on countries defaulting in a non-clustered period are already low, the default probabilities conditional on nondefault in the same period must be even lower. Second, in the clustered period, the probabilities of default conditional on countries defaulting is high. Conditional on countries not defaulting, the probability of default should not be high. It should not be the case that worsening global fundamentals predicted high probabilities of default even in cases when countries did not default.

Table 1.5: Predicted Probability of Default for Non-Default Episodes

| Period | N0. | Specification 1 | Specification 2 | \(P(D = 1|S_1) = P(D = 1|S_2) \) | t-stat |
|-------------------------|-------|----------------|----------------|----------------------------------|-----------|
| Non Clustered Default Period | 968 | 0.0360 | 0.0254 | | 11.0789 |
| Clustered Default Period | 165 | 0.0354 | 0.0635 | | -5.2251 |

Table 1.5 shows that in nonclustered periods, the predicted probability of default conditional on no default is almost half of the probabilities conditional on default in the same period. This finding shows that on average, in relatively calmer times, the predicted probability of default for nondefault cases is much smaller in magnitude. To address the concern
that poor global fundamentals in the clustered period might make the predicted default probabilities to be high even conditional on nondefault cases, I focus on row 2 of Table 1.5. The table shows that the predicted probabilities conditional on no default are very low compared to the predicted probabilities conditional on default during the clustered default period. Table A6 in the appendix shows that both results are robust to change in the explanatory variables.

1.5 Conclusion

This chapter conducts an empirical study of clustered sovereign defaults. It uses a 40-year dataset from 1975 to 2014 containing 92 defaulting countries and 146 sovereign defaults to establish that a big fraction of defaults in the data were clustered around the period of 1979 to 1983. The aim of the chapter is to uncover the importance of different country-specific or global shocks in leading countries to clustered defaults. To achieve this, the chapter proceeds in two steps: (1) first, it focuses on capturing different country-specific and global shocks to output faced by different countries, and (2) second, it utilizes a logistic regression framework to ask if the global shocks are indeed responsible to explain clustered defaults. The paper finds that global shocks do play a big role in explaining the clustered defaults. Moreover, it is global shocks to the transitory component of output world interest rate fluctuations that are important in explaining clustered defaults. Global shocks to permanent component of output do not play a role.
Chapter 2

Clustered Sovereign Defaults: A Quantitative Framework

Anurag Singh

1I am highly indebted to Martin Uribe, Stephanie Schmitt-Grohe and Andres Drenik for their invaluable discussions, guidance and support. I am grateful to Hassan Afrouzi, Agnieszka Dorn, Jennifer La’O, Gernot Muller, Seunghoon Na, Jesse Schreger and Jon Steinsson for their comments that helped me improve the paper. I would also like to thank Viola Asri, Mauricio Caceres Bravo, Chun-Che Chi, Seungki Hong, Mai Li, Ildiko Magyari, Haaris Mateen, Gustavo de Cicco Pereira, Lin Tian, Leo Wang, Scott Weiner, the participants of economic fluctuations colloquium and macro lunch group at Columbia University for their helpful comments and suggestions. All errors are my own.
2.1 Introduction

In spite of a big fraction of defaults being clustered defaults, most of the current literature focuses on idiosyncratic defaults, i.e. defaults that are not clustered. There are a few empirical studies on clustered defaults but theoretical work on the topic is still sparse. The existing theoretical work on idiosyncratic defaults as well as defaults in a multicountry setup examines the output process of countries in isolation. As a byproduct, shocks are considered country-specific and there is little role for global shocks in default decisions. Thus, for example, a default where output decreases by 9% due to country-specific shocks and 1% due to global shocks would be treated the same way as a default where output decreases by 9% due to global shocks and 1% due to country-specific shocks because, in aggregate, the output decreased by 10% in both cases. This is precisely why the formal setup of these studies does not suit clustered defaults. This chapter addresses the need of having a quantitative framework that can analyze clustered defaults and situations like above, likewise.

As a first step, the framework developed in this chapter accommodates for the possibility of global shocks affecting output of different countries. It starts by decomposing the output process of different countries into global transitory and permanent shocks; country-specific transitory and permanent shocks; and output changes resulting from world interest rate fluctuations. Once the shocks to output of different countries are decomposed into global and country-specific components, a model is developed, based on the traditional setups of Eaton and Gersovitz (1981); Arellano (2008); and Aguiar and Gopinath (2006), to study clustered defaults. This two-step framework, decomposing the shocks and using a quantitative model, helps in understanding the nature of shocks that countries face as well as the mechanism through which these shocks lead countries to clustered defaults. Specifically, the two-step quantitative framework enables this chapter to answer four important questions: First, are global shocks necessary in order to explain clustered defaults? Second, which global shocks—global shocks to transitory or permanent component of output or world interest rate fluctuations—matter? Third, if the Volcker interest rate hike was indeed responsible for the
clustered default of 1980s? Fourth, can the framework generate the 1982 default cluster, as observed in the data?

To answer these questions, the chapter is broadly categorized in two parts. The first part addresses the decomposition of output into various global and country-specific shock processes. The second part develops a quantitative model of sovereign default to capture the mechanism through which these shocks lead countries to clustered defaults. The results in this chapter confirm the empirical finding, of the previous chapter, that global transitory shocks contribute the most to generating clustered defaults. Next, I show that the quantitative model does predict a cluster during 1982, which is in line with the data in terms of both timing and magnitude. Finally, in regard to generating a cluster, the model does show that fluctuations in interest rate might lead to clustered defaults, but, contradicting a widely held notion, the model plays down the impact of the Volcker interest rate hike in causing the clustered default of 1982. 2

The first part, decomposition of shocks, is crucial as it deviates significantly from the existing literature on sovereign defaults to capture the effect of global shocks on output of borrowers. It postulates an output process for every country and accommodates for the presence of five shocks—country-specific transitory and permanent shocks to output; global transitory and permanent shocks to output; and world interest rate. Both global output shocks enter the output process of every country as well as the process of the world real interest rate. Thus, the estimation of the structural parameters requires a joint estimation with the output growth of all the countries and the world interest rate as observables. The estimation is done using the Bayesian method and the time series of all country-specific and global shocks are backed out using the Kalman smoothing algorithm.

The second part develops the model that is built on the setup of Arellano (2008) and Aguiar and Gopinath (2006) by making three important changes in order to accommodate all five shocks from the estimation part in a sovereign default model. First, it allows for two

global and two country-specific shocks to the output process. Second, the output is now produced using labor. Third, and most important, it incorporates the labor market and a financial friction in the form of working-capital constraint on the firm side. The inclusion of working-capital constraint in the model enables world interest rate, the fifth shock, to influence default decisions through two channels. I call the first channel the *debt-pricing channel* and the second channel the *endogenous output channel*.³

The two channels provide a novel way to capture the effect of interest rate movements on default decisions. In first channel, an increase in interest rate also raises the risky rate on the debt of the borrowers in order for lenders to remain indifferent between holding risk-free and risky assets. This increase causes a decrease in the price of government debt, thereby making borrowing costly and influencing the default decisions through *debt-pricing channel*. The second channel is captured through the labor market and the financial friction. The presence of working-capital constraint requires firms to borrow a fraction of their wage bill in advance. This borrowing through intraperiod loans becomes more costly whenever the world interest rate rises. This causes labor demand to decrease for a given level of wage. In equilibrium, the quantity of labor as well as output goes down. Thus, an increase in the interest rate endogenously affects output and influences the default decision.

The rest of the model remains the same and features incomplete markets (due to the presence of single-period non-state-contingent debt) and risk-neutral foreign lenders. When I simulate the model for every country on the time series of all the shock processes, the model generates the clustered default of 1982. This proves to be a joint validation of the model and the estimation procedure. Moreover, I find that the transitory global shock was most important in generating the clustered default of 1982. This counterintuitive result contradicts the finding of *Aguiar and Gopinath (2006)*, who attribute defaults to permanent rather than temporary shocks. The mechanism that drives this result depends on two features: the

³The shocks to output or technology affect the output of the country both exogenously and endogenously (through the labor market), but changes in interest rate work only through the endogenous channel (via the labor market).
convex output costs of default and the standard deviation of global temporary shocks. The convex output cost assumption makes transitory shocks more important than permanent shocks in leading countries to default; while high standard deviation of global transitory shocks makes global transitory shocks more important than the country-specific transitory shocks.\footnote{The output cost assumption, although ad hoc, is similar to the one used by Chatterjee and Evigungor (2012) and Uribe and Schmitt-Grohé (2017). More recently, Hébert and Schreger (2017) estimate the output cost of default for the Argentinean default of 2001, and the results support the assumption. In certain other papers, such as Mendoza and Yue (2012) and Na et al. (2015), convex costs arise endogenously through the model, hence providing some microfoundations for the assumption of the convex output cost of default.}

The intuition for how convex costs influence the result lies in the different nature of transitory and permanent shocks. After a negative transitory shock, the output decreases today but improves later. Thus, the cost of default tomorrow is much higher than the cost of default today. This difference makes countries prefer default after a negative transitory shock. Since lenders endogenize this situation, the level of debt that countries can hold after a negative transitory shock is much lower than the average level. This problem makes the debt distribution spread out enormously in the presence of only transitory shocks. Thus, after a few positive shocks to output, borrowing countries increase their debt holdings so much that a negative shock at that point leads to default because the deleveraging required to avoid default is too great. This channel is even more pronounced when a transitory shock has a high standard deviation because the debt distribution becomes even more spread out for the similar magnitude of shock compared to a transitory shock with smaller standard deviation. For negative permanent shocks, in contrast, the output decreases and goes down even more tomorrow. The cost of default is therefore greater today, and the countries prefer to delay default. Since lenders endogenize this situation, the countries are offered a higher level of debt, and the debt distribution is concentrated around the mean. Thus, when a country faces a negative shock after a profusion of positive shocks, the required deleveraging is still small. This situation makes countries prefer deleveraging over default after permanent shocks.
Finally, even after incorporating both the channels through which interest rate can have an effect on default decisions, the full version of the model shows that the Volcker interest-rate hike was not a decisive factor for the clustered default of 1982. The main reason behind this finding lies in the huge global output shocks that the countries were facing i.e. the borrowing countries when facing large negative shocks to output would have defaulted even if Paul Volcker had kept the interest rates constant.

Related Literature

The model built in this chapter is founded on the seminal work of Eaton and Gersovitz (1981); and the subsequent works of Arellano (2008) and Aguiar and Gopinath (2006), who develop quantitative frameworks for the analysis of the debt and default decisions of countries. In contrast to those papers, this paper focuses on clustered defaults by studying the impact of global shocks on default decisions. The model captures the effect of global shocks by introducing global output shocks and stochastic world interest rates in a multicountry setup. To best of my knowledge, (1) the introduction of two global output shocks and a real interest rate shock, (2) the joint estimation of the shocks processes in a multicountry setup, and (3) capturing the effect of world interest rate shocks (through the *debt pricing channel* and the *endogenous output channel*) on default decisions; have not been done in the sovereign default literature. The introduction of stochastic world interest rate and its two channels enable this paper to study the effect of interest rate changes on defaults. This paper, therefore, becomes the first in sovereign default literature to quantitatively study the impact of the Volcker interest-rate hike on the clustered default episode of 1982. Finally, the result that the Volcker interest rate hike was not a decisive factor for the clustered default of 1982 agrees with Almeida et al. (2018) who also conclude, in the case of Mexico, that Mexico would have defaulted even in the absence of an interest rate hike.

This paper introduces two global output shocks and real interest rate changes in the output specification of every country and in the specification of world interest rate. This
modification makes the output of all the countries dependent on global shocks and requires a joint estimation of the parameters. Using the Bayesian method, I estimate the distribution of 196 parameters with data on the output of 24 countries and world interest rate. An estimation of this type and scale has previously not been used in the sovereign default literature. In other fields, there are some studies—Kose et al. (2003), Kose et al. (2008), Miyamoto and Nguyen (2017)—that use a similar dynamic factor method approach to disentangle different global and country-specific shocks.

The full version of the estimation includes not only the global and country-specific shocks but also the endogenous effect of world interest rate changes on the output of different countries using a reduced form. This mechanism that captures the effect of interest rate changes in the US on the output of emerging countries is microfounded in the model section of the paper. This paper makes a methodological contribution to the literature that estimates the effect of monetary shocks in the US on the rest of the world. Georgiadis (2016) and Dedola et al. (2017) use VAR methodology to estimate the same effect, while Iacoviello et al. (2018) use the local projections method. In contrast, this paper microfounds a transmission mechanism in a general equilibrium model and estimates the structural parameters of the model using the Bayesian method to capture the effect of interest rate changes. The sensitivity of output to interest rate changes estimated in this paper falls in the same range as those in the aforementioned papers, validating the Bayesian estimation procedure.

To capture the effect of changes in world interest rate shocks through a model, this paper uses working-capital constraints, which is not a common approach in the sovereign default literature. The form of working-capital constraints used in this paper is borrowed from the small open economy setting of Neumeyer and Perri (2005) and Uribe and Yue (2006). Papers such as Mendoza and Yue (2012), Padilla (2013), and Mallucci (2015) use working-capital constraints in the sovereign default literature as well, but in a different setting and to answer different questions.

This paper uses a multicountry setup to study clustered defaults. Recent papers such
as Arellano et al. (2017) and Park (2014) also use multicountry setup to study the risk contagion between countries. In both papers, the default premiums of the countries are linked because the lenders are common and risk-averse. Thus, an idiosyncratic shock to a particular country can propagate to other countries causing risk premiums to co-move. There are a number of differences between this paper and the contagion papers that I have mentioned. First, the contagion papers focus mainly on the recent European debt crisis, in which only Greece defaulted, whereas this paper focuses on clustered defaults in which large number of countries defaulted in the past. Second, the success of the model used in papers on contagion is measured by matching the co-movement of spreads, whereas in this paper, I match the default events in 19 countries over a period of 40 years. Lastly, the channel through which countries affect each other in the contagion papers is the presence of risk-averse lenders, whereas in this paper, the lenders are assumed to be risk-neutral. Shocks that lead multiple countries to default propagate either through output decline or through increased world interest rate. Borri and Verdelhan (2011) features correlated shocks between the borrowing countries and the lending countries along with risk aversion on the lender side. My paper does not assume correlated shocks between borrowers and the lenders, as Borri and Verdelhan (2011) does. I examine global shocks, which affect different borrowers differently, whereas lenders remain risk neutral.

There are other papers that illustrate different mechanisms that lead countries to idiosyncratic defaults. For example, in Lizarazo (2013), the mechanism works through the presence of risk-averse lenders, and in Pouzo and Presno (2016), through the presence of uncertainty-averse lenders. Since these mechanisms work through the lender, a shock to the lender can propagate to multiple borrowers in a multicountry setting and can cause clustered defaults. The renegotiation channel studied in Benjamin and Wright (2009) and also used in Arellano et al. (2017) in conjunction with risk-averse lenders can also cause multiple countries to default at the same time. Bocola and Dovis (2016) and Lorenzoni and Werning (2013) study the role of expectations in self-fulfilling defaults and slow-moving crises, respectively. Since
these mechanisms work through the presence of multiple equilibria, or sunspots, they are also plausible mechanisms for generating clustered defaults. This paper neither favors nor rejects any of these explanations. As long as these mechanisms are in place and can slow the output growth of multiple borrowing countries together, this paper will capture all of them. The only requirement is that the slowdowns in output happen for multiple countries and they must be captured as global output shocks in my estimation procedure.

The remainder is structured as follows. Section 2.2 discusses the data used in this chapter. Section 2.3 discusses the estimation process of global and country-specific shocks. Section 2.4 builds the model of clustered sovereign default. Section 2.5 concludes.

2.2 Data

The chapter is divided into two main sections: the estimation section and the model section. I start with the estimation section, in which data on country-specific output growth and the world interest rate are used. In the model section, in order to perform simulations, the chapter uses the Kalman-smoothed time series of output shocks, which comes from the estimation section. In the model section, the chapter also performs calibration of different parameters that requires country-specific data.

For the estimation of the parameters that drive the output process of different countries, I use output growth and world interest rate data as observables. I use data on the real GDP of all borrowers along with some developed countries that did not default in the sample period. I construct the data on the world real interest rate by using the 5-year treasury constant maturity rate and adding a market risk spread. This spread is constructed by using Moody’s seasoned BAA-rated corporate bonds and Moody’s seasoned AAA-rated corporate bonds. All three are retrieved from Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis. I further adjust the interest rate for inflation by using expectations for

\footnote{France, Italy, Japan, United Kingdom, and United States—the biggest countries at the start of the data period.}
one-year-ahead annual average inflation measured by the GDP price index from the Survey of Professional Forecasters, Federal Reserve Bank of Philadelphia.

In the model section, I use the same GDP data and the world real interest rate data that I use during the estimation exercise. To calibrate the model, I use data on default frequency from Reinhart and Rogoff (2011b). When those data are unavailable, I use data from Uribe and Schmitt-Grohé (2017), which covers a shorter period. To obtain an estimate of debt that lenders cannot recover from borrowers, I use average haircut data from Cruces and Trebesch (2013). The data on net foreign assets as a fraction of GDP are the same as those used in the empirical section. The data on average years in default come from Reinhart and Rogoff (2011b). If they are unavailable, I again use the data from Uribe and Schmitt-Grohé (2017).

2.3 Estimating Global and Country-Specific Shocks

The output of every country is assumed to have two country-specific and two global components. I postulate the time-varying processes for these components of output and then estimate the parameters governing these processes and those of the output function using the Bayesian method.

I start by assuming a simple output function that is driven only by exogenous shocks and estimate the parameters governing such an output process. Subsequently, I go to the full version of the output function in which output is produced using labor. I then make some identification assumptions to estimate the parameters in this full version. The purpose of this full version is to capture the effect of changes in world interest rate shocks on the output of emerging economies.

2.3.1 The Basic Version

The output process of every country is assumed to have transitory and permanent shocks, as in Aguiar and Gopinath (2006). The modification here is that each type of shocks has
one country-specific component and one global component. Thus, the global shocks enter the output process through both - the transitory and the permanent component.

As the name suggests, global shocks affect the output of all the countries. The way these global shocks affect different countries is different; therefore, the way the global shocks enter the output process of different countries is also different. Thus, the same global shock can affect, for example, Argentina completely differently than it affects Mexico.

The presence of global shocks in the output process of all the countries makes it necessary to observe the output processes of all the countries jointly in order to estimate the parameters governing the output, the country-specific shock processes and the global shock processes.

I start by writing down the output of country c, at given time t (omitted from the equation for convenience) as:

$$Y^c = e^{z^c + \alpha^c z^w X^c (X^w)^{\alpha^X}}$$

where a superscript c represents a country, and a superscript w represents the world. Variables with superscript c, z^c and X^c, are country-specific transitory and permanent components of output. Similarly, z^w and X^w are global transitory and permanent components of output. In the log specification of output, the global components—z^w and $\ln(X^w)$—enter with a multiplicative factor of α^c_z and α^c_X, respectively. Intuitively, a global shock can be transmitted to a local economy, depending on the interaction of the country with the global economy via financial markets, trade of goods or services, etc. If this interaction is negligible, then the values of both αs is close to zero. In contrast, if the interaction is sizable, we find that both αs have a nonzero value. In terms of natural logarithms, the equation can be written as:

$$y^c = z^c + \alpha^c_z z^w + \ln(X^c) + \alpha^c_X \ln(X^w)$$

Both the transitory components—z^c and z^w—are assumed to follow an $AR(1)$ process with persistence ρ^c_z, ρ^w_z and standard deviation σ^c_z, σ^w_z respectively. The long-run mean of both

6The detrended version of output will therefore be $Y^c = Y^c / (X^c_{-1} \times \mu^c_g \times (X^w_{-1})^{\alpha^X} \times (\mu^w_g)^{\alpha^X}) = e^{z^c + \alpha^c_z z^w} g^c (g^w)^{\alpha^X} / \mu^c_g$, where $g^c = X^c / X^c_{-1}$, $g^w = X^w / X^w_{-1}$ and $\mu^c_g = 1$.

42
the transitory components is assumed to be 0.

\[z^c_t = \rho^c_z z^c_{t-1} + \epsilon^c_{z,t} \]
\[z^w_t = \rho^w_z z^w_{t-1} + \epsilon^w_{z,t} \]

The growth rate of the permanent components is given as:

\[g^c_t = \frac{X^c_t}{X^c_{t-1}} \text{ and } g^w_t = \frac{X^w_t}{X^w_{t-1}}. \]

The logarithm of the growth rate in the permanent components, \(\ln(g^c_t) \) and \(\ln(g^w_t) \), follows AR(1) with persistence \(\rho^c_g, \rho^w_g \); standard deviation \(\sigma^c_g, \sigma^w_g \); and long-run means of \(g^c_{ss} \) and \(g^w_{ss} \).

\[\ln\left(\frac{g^c_t}{g^c_{ss}}\right) = \rho^c_g \ln\left(\frac{g^c_{t-1}}{g^c_{ss}}\right) + \epsilon^c_{g,t} \]
\[\ln\left(\frac{g^w_t}{g^w_{ss}}\right) = \rho^w_g \ln\left(\frac{g^w_{t-1}}{g^w_{ss}}\right) + \epsilon^w_{g,t} \]

All the persistence levels are assumed to satisfy \(|\rho| < 1\), and the shocks are assumed to be normally distributed, \(\epsilon \sim N(0, \sigma^2) \).

State-Space Form

When the output growth rate for the countries is treated as observable, the output equation for country \(c \) can be rewritten as:

\[y^c_t - y^c_{t-1} = z^c_t - z^c_{t-1} + \alpha^c_z (z^w_t - z^w_{t-1}) + \ln(g^c_t) + \alpha^c_X \ln(g^w_t) \]

This measurement equation for country \(c \) can be written in the state-space form with 3 global state variables—\(z^w_t, z^w_{t-1}, \ln(g^w_t/g^w_{ss}) \)—and 3 country-specific state variables—\(z^c_t, z^c_{t-1}, \ln(g^c_t/g^c_{ss}) \).

\[\Delta y^c_t = \ln(g^c_{ss}) + \alpha^c_X \ln(g^w_{ss}) + \Delta z^c_t + \alpha^c_z \Delta z^w_t + \ln(g^c_t/g^c_{ss}) + \alpha^c_X \ln(g^w_t/g^w_{ss}) \]

As the equation suggests, the 3 global state variables—\(z^w_t, z^w_{t-1}, \ln(g^w_t/g^w_{ss}) \)—have an effect on the growth rate of output not only for country \(c \) but also for all other countries. Since the state-space equation for all the countries will have these global state variables, the contemporaneous observable is an \((nc \times 1)\) (where \(nc \) is the total number of countries) vector
of output growth of individual countries. That is, to estimate the parameters related to these
global state variables, the state-space equations of all the countries need to be stacked one
over the other for every time \(t \) and be treated as an observable at time \(t \). This combined
state-space equation can be used to estimate the parameters of all the countries together.
The measurement equation of this state-space form therefore appears as:

\[
\Delta y_t = W + V \cdot \theta_t
\]

The dimension of \(\Delta y_t \) is \((nc \times 1)\). \(W \) is also \((nc \times 1)\), and it is time invariant. \(V \)
\((nc \times (3 \times nc + 3))\), and it is time invariant as well. The state variable vector, \(\theta_t \), is
\(((3 \times nc + 3) \times 1)\). The evolution of the state vector (transition equation) can be represented as:

\[
\theta_t = K \cdot \theta_{t-1} + \lambda_t
\]

Section A.2.1 of appendix reproduces the state-space form and gives formulation of all
the vectors and matrices related to the state-space form.

Estimation of Country-Specific and Global Parameters

I include the output growth of all the defaulting countries from Latin America and the
Caribbean as observable, thus obtaining a total of 19 countries. If I estimate the latent
states using this set of 19 countries, my estimates of global state variables may be biased
due to the presence of only defaulting countries. To avoid this bias, I add 5 developed
countries—France, Japan, Italy, the United Kingdom, and the United States—taking the
total number of countries to 24.

Since the output process of every country comprises four components, I have (i) two
country-specific shock processes—\(z^c \) and \(\ln(g^c) \)—for every country, (ii) two global shock
processes—\(z^w \) and \(\ln(g^w) \)—and (iii) two coefficients corresponding to the global shocks—\(\alpha_z^c \)
and \(\alpha_x^c \)—for every country. For every component, I estimate the persistence and the variance
of the process. With the data on 24 countries, I thus have 96 parameters related to country-
specific shocks (\(\rho_z^c, \rho_g^c, \sigma_z^c \) and \(\sigma_g^c \) for every \(c \)). Moving on to global shocks, I normalize the
standard deviation of the world shocks to 1 without loss in generality because α^c_z and α^c_X can account for any scale effect arising from a different value of standard deviation. Once the standard deviation of the world shocks is normalized to 1, the direction and the volatility of the effect of world shocks on a specific country will be governed by country-specific factors: α^c_z, α^c_X. Thus, there are 48 more parameters that govern the effect of global transitory and permanent components on the output of individual countries. Finally, 2 persistence parameters remain: for global transitory and permanent shock processes. Together there are 146 parameters to estimate.

The average growth rate of countries, μ^c_g, is observable in the data; thus I assume that the steady-state growth rate in the country-specific permanent component, g^c_{ss}, is the same as in the former. I also make the assumption that $g^w_{ss} = 1$. One final identification assumption remains: I restrict α^c_z and α^c_X to be positive because a particular time series, z^w and $\ln(g^w)$, and the corresponding multiplicative parameter values, α^c_z and α^c_X, generate a particular time series of global shocks to every country’s output. If there are no restrictions on α, a time series that is negative of z^w and $\ln(g^w)$ along with the opposite signs of α^c_z and α^c_X will also generate the same contribution to every country’s output. To eliminate this multiplicity, I assume that for Venezuela, $\alpha^V_{VEN} > 0$ and $\alpha^V_{VEN} > 0$.

The paper uses the Bayesian method to estimate the parameters pertaining to the output process of all the countries. I start by using the output growth data on 24 countries from 1961 to 2014. I assume a uniform prior for all the parameters and apply the Kalman filter to calculate the likelihood given the past data. The calculated likelihood along with the prior produces the posterior likelihood. The Metropolis-Hastings algorithm and the sequence of posterior likelihoods yield an approximate posterior distribution of all the parameters.

The prior distributions are shown in Table B1 in the appendix. All the persistence levels, country-specific as well as global, are assumed to have the same uniform prior distribution.

7Both z^w and $\ln(g^w)$ appear along with the α^c_z and α^c_X for every individual country. Writing the process of z^w in $MA(\infty)$ rather than $AR(1)$ form, we obtain: $\alpha^c_z z^w = \alpha^c_z (\epsilon_{z,t} + \rho^c_z \epsilon_{z,t-1} + (\rho^c_z)^2 \epsilon_{z,t-2} + (\rho^c_z)^3 \epsilon_{z,t-3} + ... + \epsilon_{z,t-\infty}) = \alpha^c_z \cdot \sigma^c_z (\epsilon_{z,t} + \rho^c_z \epsilon_{z,t-1} + (\rho^c_z)^2 \epsilon_{z,t-2} + (\rho^c_z)^3 \epsilon_{z,t-3} + ... + \epsilon_{z,t-\infty})$, where $\epsilon = \epsilon/\sigma$ is standard normal. This shows that we can observe only the product, $\alpha^c_z \cdot \sigma^c_z$, and hence it is safe to normalize σ^c_w as well as σ^c_g to 1.
The standard deviations of global shocks are normalized to 1, but all the country-specific standard deviations also have the same prior distribution. The prior for the α values for Venezuela is between 0.0001 and 2, but all other α values have a uniform prior between -2 and 2. With a Markov chain of 1 million draws, the posterior means of ρ^w_z and ρ^w_g are estimated to be 0.94 and 0.50. The posterior means for the remaining parameters are shown in Table 2.1. Among the 4 output shocks, global shock to the transitory component with a persistence of 0.94 is the most persistent shock.

<table>
<thead>
<tr>
<th>Country</th>
<th>ρ^c_z</th>
<th>ρ^c_g</th>
<th>σ^c_z</th>
<th>σ^c_g</th>
<th>α^c_z</th>
<th>α^c_X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>0.5751</td>
<td>0.2774</td>
<td>0.0370</td>
<td>0.0190</td>
<td>0.0190</td>
<td>0.0157</td>
</tr>
<tr>
<td>Belize</td>
<td>0.4532</td>
<td>0.5530</td>
<td>0.0094</td>
<td>0.0301</td>
<td>0.0058</td>
<td>0.0043</td>
</tr>
<tr>
<td>Bolivia</td>
<td>0.6336</td>
<td>0.3433</td>
<td>0.0176</td>
<td>0.0238</td>
<td>0.0052</td>
<td>0.0080</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.2672</td>
<td>0.5619</td>
<td>0.0093</td>
<td>0.0248</td>
<td>0.0165</td>
<td>0.0045</td>
</tr>
<tr>
<td>Chile</td>
<td>0.6647</td>
<td>0.5342</td>
<td>0.0185</td>
<td>0.0305</td>
<td>0.0234</td>
<td>0.0048</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>0.7120</td>
<td>0.2835</td>
<td>0.0158</td>
<td>0.0128</td>
<td>0.0190</td>
<td>0.0015</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>0.7517</td>
<td>0.3894</td>
<td>0.0397</td>
<td>0.0190</td>
<td>0.0146</td>
<td>0.0025</td>
</tr>
<tr>
<td>Ecuador</td>
<td>0.6620</td>
<td>0.4509</td>
<td>0.0125</td>
<td>0.0210</td>
<td>0.0064</td>
<td>0.0051</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.4669</td>
<td>0.6373</td>
<td>0.0069</td>
<td>0.0112</td>
<td>0.0121</td>
<td>0.0001</td>
</tr>
<tr>
<td>Guyana</td>
<td>0.6988</td>
<td>0.3202</td>
<td>0.0228</td>
<td>0.0277</td>
<td>0.0092</td>
<td>0.0229</td>
</tr>
<tr>
<td>Honduras</td>
<td>0.5827</td>
<td>0.3248</td>
<td>0.0130</td>
<td>0.0142</td>
<td>0.0174</td>
<td>-0.0010</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.3328</td>
<td>0.3815</td>
<td>0.0094</td>
<td>0.0251</td>
<td>0.0176</td>
<td>0.0041</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0.6416</td>
<td>0.4959</td>
<td>0.0268</td>
<td>0.0485</td>
<td>0.0026</td>
<td>0.0106</td>
</tr>
<tr>
<td>Panama</td>
<td>0.7705</td>
<td>0.4015</td>
<td>0.0118</td>
<td>0.0313</td>
<td>0.0085</td>
<td>0.0152</td>
</tr>
<tr>
<td>Paraguay</td>
<td>0.5821</td>
<td>0.7096</td>
<td>0.0184</td>
<td>0.0194</td>
<td>0.0173</td>
<td>0.0070</td>
</tr>
<tr>
<td>Peru</td>
<td>0.8125</td>
<td>0.4263</td>
<td>0.0126</td>
<td>0.0329</td>
<td>0.0129</td>
<td>0.0214</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>0.6563</td>
<td>0.6455</td>
<td>0.0140</td>
<td>0.0322</td>
<td>0.0113</td>
<td>0.0024</td>
</tr>
<tr>
<td>Uruguay</td>
<td>0.5996</td>
<td>0.4348</td>
<td>0.0096</td>
<td>0.0255</td>
<td>0.0151</td>
<td>0.0186</td>
</tr>
<tr>
<td>Venezuela, RB</td>
<td>0.6204</td>
<td>0.3278</td>
<td>0.0333</td>
<td>0.0211</td>
<td>0.0227</td>
<td>0.0074</td>
</tr>
</tbody>
</table>

Posterior means for ρ^w_z and ρ^w_g are 0.9414 and 0.5038 respectively.

The countries included in the estimation process are 24. 19 defaulting countries from Latin America & Caribbean and 5 non-defaulting developed countries. Parameter estimates are reported only for 19 Latin America & Caribbean countries.

Given that all the prior distributions are assumed to be uniform, the posterior distributions show that they differ significantly from the prior distributions.\(^8\) Table B3 in the

\(^8\)Posterior distributions are not shown here. Only Mean and standard deviations are reported.
appendix shows the means and standard deviations of all the estimated parameters. Among all the parameters related to a persistent level of shocks, the persistence of global shock to the transitory component of output is most precisely estimated. This precision is evident from the standard deviation of ρ_{wz} reported to be 0.04 in Table B3. Some of the parameters related to the persistence level are not very precisely estimated. Table B3 shows that the posterior distribution of the standard deviations is precisely estimated for all the countries. Though mean α values are positive for most of the countries, as shown in columns 7 and 8 of Table B3, and the distributions of these α values are also precise, it is difficult to say whether the α values differ significantly from 0 for some of the countries.

I use mean values from the posterior estimates of all the parameters and use the Kalman smoothing algorithm to smooth out all the latent shocks that different countries face. Figure B1 in the appendix shows the time series of the global transitory and permanent components of output. The top panel shows a large negative transitory shock in the early 1980s and then a small negative transitory shock around the great recession. The bottom panel shows multiple permanent shocks, but those with the greatest impact are observed during the early 1980s and just before the 1990s. Both time series are scaled to the parameters of Argentina. Thus, the time series show that during the early 1980s, Argentina faced a negative transitory shock that took detrended GDP to 9% below 1 in 4 years, and the negative permanent shock that took it to 7% below 1 in 3 years.

The time series obtained using the Kalman smoothing algorithm is used for the empirical exercise performed in the next section. The time series is also used in the model section when I simulate the optimal debt and default decision for all the countries.

2.3.2 The Full Version

The full version of the estimation process is intended to capture the effect of changes in the world interest rate on the output of emerging countries. I start by hypothesizing an output function that is a modified form of the output function used in the basic version. This full
version not only captures the effect of changes in the world interest rate on output but can also be microfounded in a general equilibrium framework. This is done in Section 2.4.1 when I discuss the model of sovereign default. The mechanism works through labor demand and the working-capital constraint. Through this channel, changes in real interest rate affect equilibrium quantity of labor. Since output is assumed to be produced using labor, output is also affected by interest rate changes.

In the full version, the output of country c at given time t (omitted from the equation for convenience) is given as:

$$ Y^c = A^c(L^c)^{\alpha_L^c} $$

where $A^c = e^{z^c + \alpha_{z^c}^w} X^c(X^w)^{\alpha_X^c}$ represents technology level.9

The technology, A^c, in full version is exactly the same as the output in basic version. Thus, the technology grows with shocks around a trend. The labor, as we know from our macro models as well as the data, is stationary. Even though labor is stationary, it fluctuates along with fluctuations in technology. Thus, labor here is assumed to be dependent on detrended level of technology which make it stationary but at the same time responsive to technology shocks.

Additionally, I assume that labor is inversely proportional to the world interest rate, which can occur because production is costly and firms in emerging markets tend to borrow in order to produce. When the interest rates rise, the borrowing cost increases, which causes a decrease in labor demand as well as the output. This relationship between labor and interest rate is microfounded at a later stage, when I discuss the model.

The two assumptions together give: $L^c_t = \kappa \hat{A}^c_t / ((1 + r^*_t)^{\eta})$, where κ is a constant and \hat{A}_t is the detrended level of technology.10 The output can, therefore, be rewritten as:

9I call A^c_t as technology level and the corresponding shocks are shocks to technology but in reality, these shocks can be demand shocks or some other shocks. The purpose of the equation is to capture the shocks to output and in the full version, it is convenient to call the shocks as technology shocks.

10This functional form of labor is equivalent to $L^c_t = \kappa (\hat{A}_t)^\mu / ((1 + r^*_t)^\eta)$ since it can be written as $L^c_t = (\kappa_1 (\hat{A}_t)^\mu / ((1 + r^*_t)^\eta))^{1/\mu}$. Once I substitute this in the output function, any scale effect of μ can be taken into account by a different value of α_L^c.
\[Y^c = e^{z^c + \alpha^c z^w} X^c (X^w)^{\alpha^w} (\kappa e^{z^c + \alpha^c z^w} g^c (g^w)^{\alpha^w} / (1 + r^*))^{\alpha^L} \]

Taking logs, I can write the output growth in the full version as:\(^{11}\)

\[\Delta y^c_t = \psi^c \Delta z^c_t + \psi^c \alpha^c \Delta z^w_t + \psi^c \ln(g^c_t) + \psi^c \alpha^c_X \ln(g^w_t) \]
\[- (\psi^c - 1) \ln(g^c_{t-1}) - (\psi^c - 1) \alpha^c_X \ln(g^w_{t-1}) - (\psi^c - 1) \eta^c \Delta r^*_t \]

where \(\psi^c = 1 + \alpha^c_L \).

The 4 basic sources of shocks remain the same in the full version as in the basic version—\(z^c_t, z^w_t, \ln(g^c_t), \) and \(\ln(g^w_t) \)—although the interpretation of these shocks changes a little. In the basic version, all four processes are components of the output process. In the full version, they are components of technology (henceforth TFP). Thus, the four components of TFP follow the same process as their counterpart in the basic version. The parameters governing these processes also remain exactly the same.

An additional source of change in output growth is the stochastic world interest rate. The equation above shows that a 1% increase in interest rate reduces the borrower output by \((\psi^c - 1) \cdot \eta^c \) percent.

State-Space Form

With the output growth of the borrowing country as the observable, the measurement equation of country \(c \) can be written in the state-space form using the 4 global state variables—\(z^c_t, z^w_t, \ln(g^c_t), \ln(g^w_t) \)—and 4 country-specific state variables—\(z^c_t, z^c_{t-1}, \ln(g^c_t), \ln(g^c_{t-1}) \).

\[
\Delta y^c_t = \ln(g^c_{ss}) + \alpha^c_X \ln(g^c_{ss}) - (\psi^c - 1) \eta^c \Delta r^*_t + \psi^c \Delta z^c_t + \psi^c \alpha^c_X \Delta z^w_t + \psi^c \ln(g^c_t / g^c_{ss}) \\
+ \psi^c \alpha^c_X \ln(g^c_t / g^c_{ss}) - (\psi^c - 1) \ln(g^c_{t-1} / g^c_{ss}) - (\psi^c - 1) \alpha^c_X \ln(g^c_{t-1} / g^c_{ss})
\]

\(^{11}\)This equation of output growth looks exactly like the one that we get from the model which is solved in a general equilibrium framework. The interpretation of coefficients in this equation are slightly different than the ones obtained from the model because the later is based on the parameters of the model.
Again, the presence of global shocks in the output of all the countries makes it necessary for the combined state-space form to contain all the countries stacked one over the other for every time period t. The measurement equation of this combined state-space form at time t will appear as:

$$\Delta y_t = W_t + V \cdot \theta_t$$

The dimension of Δy_t is $(nc \times 1)$ (where nc is the total number of countries). W_t is not currently time invariant, as it depends on changes in the world interest rate. The dimension of W_t is also $(nc \times 1)$. V is $(nc \times (4 \times nc + 4))$ and is still time invariant, as before. The state variable θ_t is $((4 \times nc + 4) \times 1)$. The evolution of the state vector (transition equation) is represented as:

$$\theta_t = K \cdot \theta_{t-1} + \lambda_t$$

Section B.2.2 in the appendix reproduces the state-space form and gives formulation of all the vectors and matrices related to the state-space form.

Estimation of Country-Specific and Global Parameters

The dataset still consists of 19 defaulters from Latin America and the Caribbean plus 5 developed countries. Thus, with 24 countries, I still have the same 146 parameters to estimate as in the basic model. Additionally, in the full model, ψ^c and η^c must be estimated for all the countries, which brings the total number of parameters to 194.

The estimation procedure and the dataset remain the same as in the basic version. I retain the normalization assumptions, $\sigma^w_z = 1$, $\sigma^w_g = 1$; and $\alpha^{VEN}_z > 0$, $\alpha^{VEN}_g > 0$, for identification. The prior distributions are shown in Table B2 in the appendix. The priors are again uniform and are the same as in the basic model. For ψ and η, I use the equation from the model. In the model, ψ depends on the labor share as well as the Frisch elasticity.
Table 2.2: Bayesian Estimation Results from Full Model: Posterior means

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\rho_z)</td>
<td>(\rho_g)</td>
<td>(\sigma_z)</td>
<td>(\sigma_g)</td>
<td>(\psi)</td>
<td>(\eta)</td>
<td>(\alpha_z)</td>
</tr>
<tr>
<td>Argentina</td>
<td>0.2813</td>
<td>0.6431</td>
<td>0.0134</td>
<td>0.0141</td>
<td>2.0832</td>
<td>0.3924</td>
<td>0.0196</td>
</tr>
<tr>
<td>Belize</td>
<td>0.4934</td>
<td>0.7748</td>
<td>0.0028</td>
<td>0.0138</td>
<td>2.5386</td>
<td>0.3669</td>
<td>0.0041</td>
</tr>
<tr>
<td>Bolivia</td>
<td>0.9477</td>
<td>0.2448</td>
<td>0.0136</td>
<td>0.0036</td>
<td>2.3502</td>
<td>0.0713</td>
<td>0.0086</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.2033</td>
<td>0.8617</td>
<td>0.0025</td>
<td>0.0122</td>
<td>2.2738</td>
<td>0.6329</td>
<td>0.0078</td>
</tr>
<tr>
<td>Chile</td>
<td>0.9267</td>
<td>0.6321</td>
<td>0.0110</td>
<td>0.0210</td>
<td>1.7075</td>
<td>0.1645</td>
<td>0.0126</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>0.2902</td>
<td>0.5339</td>
<td>0.0039</td>
<td>0.0069</td>
<td>2.3933</td>
<td>0.9032</td>
<td>0.0073</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>0.3735</td>
<td>0.5430</td>
<td>0.0135</td>
<td>0.0235</td>
<td>1.7342</td>
<td>0.8289</td>
<td>0.0078</td>
</tr>
<tr>
<td>Ecuador</td>
<td>0.4392</td>
<td>0.7825</td>
<td>0.0084</td>
<td>0.0142</td>
<td>1.4405</td>
<td>0.7039</td>
<td>0.0092</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.7671</td>
<td>0.7034</td>
<td>0.0025</td>
<td>0.0083</td>
<td>1.7201</td>
<td>0.6772</td>
<td>0.0054</td>
</tr>
<tr>
<td>Guyana</td>
<td>0.3798</td>
<td>0.6713</td>
<td>0.0037</td>
<td>0.0125</td>
<td>2.9785</td>
<td>0.3414</td>
<td>0.0159</td>
</tr>
<tr>
<td>Honduras</td>
<td>0.4223</td>
<td>0.6674</td>
<td>0.0043</td>
<td>0.0096</td>
<td>2.0775</td>
<td>0.5282</td>
<td>0.0050</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.7295</td>
<td>0.7787</td>
<td>0.0057</td>
<td>0.0104</td>
<td>2.0862</td>
<td>0.2603</td>
<td>0.0105</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0.9303</td>
<td>0.7011</td>
<td>0.0152</td>
<td>0.0254</td>
<td>2.0281</td>
<td>0.7145</td>
<td>0.0073</td>
</tr>
<tr>
<td>Panama</td>
<td>0.5375</td>
<td>0.8314</td>
<td>0.0039</td>
<td>0.0141</td>
<td>2.5912</td>
<td>0.4966</td>
<td>0.0129</td>
</tr>
<tr>
<td>Paraguay</td>
<td>0.5385</td>
<td>0.6997</td>
<td>0.0047</td>
<td>0.0162</td>
<td>1.8303</td>
<td>0.1220</td>
<td>0.0121</td>
</tr>
<tr>
<td>Peru</td>
<td>0.4378</td>
<td>0.7591</td>
<td>0.0051</td>
<td>0.0205</td>
<td>1.8000</td>
<td>0.2680</td>
<td>0.0239</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>0.1823</td>
<td>0.8532</td>
<td>0.0040</td>
<td>0.0177</td>
<td>1.9957</td>
<td>0.0632</td>
<td>0.0054</td>
</tr>
<tr>
<td>Uruguay</td>
<td>0.9247</td>
<td>0.7466</td>
<td>0.0088</td>
<td>0.0117</td>
<td>1.7514</td>
<td>0.7631</td>
<td>0.0261</td>
</tr>
<tr>
<td>Venezuela, RB</td>
<td>0.8535</td>
<td>0.5335</td>
<td>0.0174</td>
<td>0.0105</td>
<td>2.0829</td>
<td>0.3363</td>
<td>0.0129</td>
</tr>
</tbody>
</table>

Posterior means for \(\sigma_z \) and \(\sigma_g \) are 0.8897 and 0.7555 respectively.

The countries included in the estimation process are 24. 19 defaulting countries from Latin America & Caribbean and 5 non-defaulting developed countries. Parameter estimates are reported only for 19 Latin America & Caribbean countries.

of labor supply; thus, I assume a uniform prior from 1.01 to 4.\(^{12}\) In the model, \(\eta \) is a fraction of the wage bill needed in advance. I use a uniform prior between 0.0001 and 0.9999 for \(\eta \).

Table 2.2 reports the mean of posterior distribution from a Markov chain of 2 million draws. Table B4 in the appendix reports both the mean and the standard deviation. Table 2.2 shows that the global shocks to both transitory and permanent components of TFP are very persistent, \(\rho_z = 0.89 \) and \(\rho_g = 0.76 \). Some negative values of \(\alpha_c \) show that global shock led some countries to see increased growth when other countries experienced a growth

\(^{12}\) The expression of Frisch elasticity of labor supply from the model is \(1/(\omega - 1) \). Given that many microeconometric estimates of Frisch elasticity lie between 0.3 and 0.5, while many macroeconomists use an estimate between 2 and 4, I calculate \(\omega \) to vary from 1.2 to 6 given that I allow the Frisch elasticity to vary from 0.2 to 5. Additionally, \(\alpha_L \) is labor share, which is considered close to 0.7, and I assume it to vary from 0.3 to 0.9. Thus, the value of \(\psi = \omega/(\omega - \alpha_L) \) varies from 1.0526 to 4, which is a subset of the interval of my prior on \(\psi \).
slowdown. The values of ψ^c are close to 2 rather than the prior mean of 2.5. Values of ψ^c close to 2 suggest a Frisch elasticity value of 2.5 if we assume that the labor share is 0.7. This value of Frisch elasticity means $\omega = 1.4$ which is close to what other papers use in the macroeconomics literature.13 Values of η^c vary from 0.07 to 0.90, showing that, for example, Bolivia needed 7% of wage bills in advance, whereas Costa Rica needed 90%.

Table B4 shows that the persistence parameters are much more precisely estimated in the full model than in the basic model. Small standard deviations for α values show that α is more precisely estimated than in the basic version, and the table also shows that α values are statistically different from 0 for many countries. Standard deviation values for ψ^c and η^c show that those values are also precisely estimated. The standard deviations are much smaller for ψ^c than for η^c.

Figure 2.1: Coefficient of Δr^* from output growth equation: $-(\psi^c - 1) \cdot \eta^c$

Given the values of ψ^c and η^c, I calculate the value of $-(\psi^c - 1) \cdot \eta^c$, which is the coefficient of Δr^* in the output growth equation of the full version. This value shows the change in output that a borrower experiences if the world interest rate changes by 1%. Figure 2.1

13Mendoza (1991), for example, uses $\omega = 1.455$, which gives a Frisch elasticity value of 2.2.
shows the magnitude of this coefficient for different countries. Most of the countries lie around the -0.5 line, which means that a 1% increase in the world interest rate would cause the output of countries such as Argentina, Guatemala, Belize, and Uruguay to go down by almost 0.5%. Countries such as Brazil, Panama and Nicaragua show higher sensitivity in output with respect to changes in the borrowing rate, while countries such as Mexico, Chile and Peru show lower sensitivity.

Using the mean values from the posterior estimates of all the parameters and the Kalman smoothing algorithm, I smooth-out the latent global and country-specific shocks that different countries face, exactly as done in the basic version. Figure A2 in the appendix shows the time series of the global transitory and permanent components of output. The top panel shows a large negative transitory shock that began in the early 1980s and reached a minimum in 1990. Another large negative transitory shock occurred in the early 2000s. The bottom panel shows multiple permanent shocks, but those with the greatest impact are observed during the 1975s and 1980s and at the onset of the great recession. In the basic version, the great recession was captured as a global transitory shock to output, but here, it is captures as a global permanent global shock. As before, both time series are scaled to the parameters of Argentina.

The time series obtained using the Kalman smoothing algorithm is used in the model section when I simulate the optimal debt and default decision for all the countries.

2.4 Model

Chapter 1 highlights two important facts: (1) Global variables are mainly responsible for leading countries to default during clustered default episodes but play no role during idiosyncratic defaults, and (2) among global shocks, it is the shocks to the transitory component of the output and the shocks to interest rate that seem to drive clustered defaults. In this chapter, I build a model incorporating three global shocks, to the transitory and permanent
components of output as well as the world interest rate fluctuations. The presence of three
global shocks enables the model to assess the causal impact of these global shocks on default
decision through the lens of a sovereign default model.

The model is built on a standard Eaton-Gersovitz framework. I start with a basic version
of the model in which the output has country-specific transitory and permanent components
as well as global transitory and permanent components. At the beginning of the basic version,
the world interest rate is assumed to be constant in order to assess the relative impacts of
different output shocks on default decisions. I then make the world interest rate stochastic
so that changes in the interest rate can influence default decisions through changes in the
price of debt. This change enables the model to assess the contribution of world interest
rate shocks, through the *debt-pricing channel* relative to the contribution of output shocks.
Finally, I build a full version of the model that incorporates financial frictions in the form
of working-capital constraints at the firm level. The presence of financial frictions enables
changes in the world interest rate to affect the default decision through endogenous changes
in the output of the borrowing countries. The full version, therefore, assesses the contribution
of world interest rate shocks, through the *debt-pricing channel* and the *endogenous output
channel*, relative to the contribution of output shocks.

Despite the fact that the shocks are estimated independently of the model or of the default
data, once fed into the model, they reproduce the clustered default of 1982, providing a joint
validation of the model and the estimated driving forces. The model predicts that the global
shocks to the transitory component of output are most important in leading countries to
default in clusters. Interest rate shocks are also important and can lead multiple countries to
default, but in contrast to common belief, the Volcker interest rate hike was not a determinant
factor of the 1982 developing country debt crisis.\(^{14}\)

\(^{14}\)The Volcker interest rate hike, in nominal terms, was large. Even after adjusting for inflation i.e. in
real terms, interest rates increased a lot. This increase can partly be observed at the start of the 1980s from
Figure B4 in the appendix.
2.4.1 The Model Economy

This section outlines the model of sovereign default. The model is based on the standard Eaton-Gersovitz framework and is closely related to the work of Aguiar and Gopinath (2006) and Arellano (2008). The model features incomplete markets due to the presence of single-period non-state-contingent debt that countries use to borrow. In the absence of a commitment device, the countries can optimally choose to default on the outstanding debt in certain periods.

The framework of the model is built on the assumption of exogenous but stochastic output realizations. I begin with the same assumption in the baseline model but relax the assumption by including endogenous labor choice in the model, which determines the level of output in the full version. Since the full version encapsulates the basic version to a high degree, I explain the full version of the model here and present equations related to the basic version in Section B.3.1 in the appendix.

The agents involved in the full model are similar to those described in most papers in the literature—households, firms, a benevolent planner or a government, and a foreign lender. Neither the households nor the firms are involved in borrowing inter-period loans from the rest of the world. The government issues debt and transfers the proceeds to households every period. Households make consumption and labor supply decision. Firms produce the final good by employing labor, but the amount of labor that can be demanded at a given wage is constrained by the working-capital requirement. To finance working-capital, firms obtain intra-period loans from foreign lenders, and they do not default on these loans.\(^{15}\) The government, however has no commitment device and is free to default if defaulting is optimal. Foreign lenders are assumed to be risk neutral.

\(^{15}\)The rate on these loans is the rate on US treasury plus the spread between BAA-rated Moody’s 5 year bonds and AAA-rated Moody’s 5 year bonds. This rate captures the increase in risk aversion among the investors that is not coming from country risk. This rate is then discounted by expected inflation data from the survey of professional forecasters. This rate might not reflect the rate at which the firms in the borrowing country get loans at but as long as the changes in these rates are consistent or even proportional, results remain the same.
Households

The household gains utility from consuming the final good and receives disutility from supplying labor. The utility function takes the form of GHH preferences from Greenwood et al. (1988) and is concave, strictly increasing and twice differentiable.

\[U(C_t, L_t^*) = \left(\frac{C_t - \Gamma_{t-1}(L_t^*)^\omega}{\omega} \right)^{1-\gamma} \]

where \(\gamma \) represents the Arrow-Pratt measure of relative risk aversion, \(1/(\omega - 1) \) is the Frisch elasticity of labor supply and \(\Gamma \) is the scaling factor used to detrend the variables that grow over time. Since consumption grows over time but labor is stationary, the scaling factor acts as a coefficient of the labor term in order to make it grow over time.

Every period, households earn wage income along with the profits earned from the firms that they own. They cannot borrow from the rest of the world, but the government borrows, and households receive transfers from the government. The household budget constraint is therefore given as:

\[C_t = w_t L_t + \Pi_t^f + T_t \quad (2.1) \]

Taking wages, profits and transfers as given, households maximize the present discounted value of their lifetime utility subject to the budget constraint thereby making consumption and labor supply decision in every period \(t \). Since households are not directly involved in borrowing and holding debt, they make no intertemporal decisions. The household problem is given as:

\[\mathcal{L} = \sum_{t=0}^{\infty} \beta^t \left[\left(\frac{C_t - \Gamma_{t-1}(L_t^*)^\omega}{\omega} \right)^{1-\gamma} + \lambda_t \Gamma_t^{-\gamma} \{ w_t L_t^* + \Pi_t^f + T_t - C_t \} \right] \]

The first order conditions with respect to labor and consumption can be reduced to:

\[\Gamma_{t-1}(L_t^*)^{\omega-1} = w_t \quad (2.2) \]
which is the labor supply equation. The left side shows the marginal rate of substitution between leisure and consumption, while the right side is wages. Intuitively, if I forgo one unit of leisure, i.e., I supply one more unit of labor, I obtain a disutility of \[
\left(C_t - \frac{\Gamma_{t-1}(L_t^s)}{\omega} \right)^{-\gamma} \Gamma_{t-1}(L_t^s)^{\omega-1} \].
In contrast, an additional unit of labor provides wages of \(w_t\), which can increase consumption. This increase will lead to an increase in utility by \[w_t \left(C_t - \frac{\Gamma_{t-1}(L_t^s)}{\omega} \right)^{-\gamma}\]. At the margin, the household must be indifferent between supplying an additional unit of labor and not supplying it. Thus, equating the marginal utility from increased consumption with marginal disutility from increased labor, we obtain Equation 2.2.

The budget constraint, Equation 2.1, and the first order condition, Equation 2.2, constitute the household equilibrium conditions.

Firms

Firms are the final good producers that demand labor to produce output at every time period \(t\).16 To hire labor and produce output, firms need working-capital in advance. The working-capital requirement entails firms to keep a fraction of the labor wage payments in advance. To finance working-capital, firms obtain intraperiod loans from foreign lenders.17 Firms do not default on these intraperiod loans and therefore make a payment of \((1 + r_t^*)M_t\) at the end of period \(t\) for a loan of \(M_t\) that they obtained at the start of period \(t\).

Assuming that the technology in country \(c\) at time \(t\) is \(A_t^c = e^{z_t^c + \alpha_c z_t^w X_t^c (X_t^w)^{\alpha_c^*}}\), the output of country \(c\) at time \(t\) can be written as:

\[Y_t^c = A_t^c (L_t^{d,c})^{\alpha_L^c}\]

where \(L_t^{d,c}\) represents the labor demand of country \(c\) at time \(t\), and \(\alpha_L^c\) is the labor share in output. Henceforth, I will omit the country superscript \(c\) for convenience. Given the output,

16We abstain from dealing with capital, but an assumption of constant capital stock also works. The reason is to abstain from capital accumulation dynamics.

17Alternatively, we can include banks in the model and assume that firms obtain these intraperiod loans from home-country banks, and the banks have some endowment.
the profit of the firm at time t is given as:

$$\Pi^f_t = (1 - \phi(z_t, z^w_t, g_t, g^w_t)) \cdot A_t(L^d_t)^{\alpha_L} - w_t L^d_t + M_t - (1 + r^*_t) M_t$$

(2.3)

where ϕ is a function of technology shocks and takes a value of 0 in normal times. When a country defaults, the country suffers a drop in total factor productivity (TFP), and the function ϕ governs this decrease in TFP.

Like households, firms do not borrow via the single-period debt from foreign lenders. Additionally, assuming no role for capital spares us from the intertemporal dynamics of capital accumulation. Thus, firms, like households, have no intertemporal decisions to make. Firms maximize the present discounted value of lifetime profit subject to the period-by-period working-capital constraint.

$$\max \sum_{t=0}^{\infty} \beta^t \lambda_t \left[(1 - \phi_t(\cdot)) A_t(L^d_t)^{\alpha_L} - w_t L^d_t + M_t - (1 + r^*_t) M_t \right]$$

subject to

$$M_t \geq \eta w_t L^d_t$$

The firm problem may be described as:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t \lambda_t \left[(1 - \phi_t(\cdot)) A_t(L^d_t)^{\alpha_L} - w_t L^d_t + M_t - (1 + r^*_t) M_t + \xi_t \{ M_t - \eta w_t L^d_t \} \right]$$

The first order conditions with respect to L^d_t and M_t are given as:

$$\alpha_L (1 - \phi_t(\cdot)) A_t(L^d_t)^{\alpha_L - 1} = (1 + \eta \xi_t) w_t$$

$$r^*_t = \xi_t$$

Since the two first order conditions can be condensed into one, and given that the working-capital constraint always binds, the firm equilibrium conditions are given by the profit function and the following two equations:

$$M_t = \eta w_t L^d_t$$

(2.4)
\[
\alpha_L (1 - \phi_t(\cdot)) A_t(L_t^d)^\alpha - 1 = (1 + \eta r^*_t) w_t
\]

Equation 2.5 captures the essence of the working-capital constraint. The marginal benefit from having an extra worker is still the marginal product of labor, but the marginal cost of having extra labor is higher with the working-capital constraint. The firm not only pays the wage for an extra worker but also pays the interest on the intraperiod loan that it needed in order to hire an extra worker. This intraperiod loan is a fraction of the wage of that additional labor; hence, the total interest on that intraperiod loan is \(\eta r^*_t w_t \). This is the extra term in the firm first order condition.

Government

The aim of a benevolent social planner or the government is to maximize the utility of households. Unlike households and firms, the government has access to foreign credit markets and can borrow by issuing single-period non-state-contingent debt at a price \(q_t \). The government transfers its proceeds from the borrowing to households as a lump-sum transfer. Additionally, the government Repay the outstanding debt.

Repayment of the outstanding debt is costly, especially when the price of new debt is low, as the repayment of old debt must come from either the output or new borrowings. The lower price of new debt causes the total value of new borrowing to be low. Thus, there is a possibility that the benefits of not repaying debt might be high even compared to the cost of not borrowing at all. In such cases, the government might find it optimal to default in some scenarios. When the government does default on its debt, it not only loses access to the credit markets but also suffers an additional output loss because productivity plunges in the country. From the next period on, the government can rejoin the market with a fixed probability \(\lambda \) and a debt level of 0. With probability \((1 - \lambda) \), the government stays in the state where it has no access to credit.

Since there is a possibility that the government may find the short-term gain of not repaying higher than the benefit of having continued access to the financial markets and
being able to smooth consumption, defaults occur in some states of the world. Depending on the probability of such defaults, the lender may not receive full repayment; thus, the lending is not risk-free. The lenders factor this possibility of default into the price of the debt q_t.

If the government chooses not to default and repays its debt, it can choose a new debt level d_{t+1} to be repaid in the next period. In this case, the amount borrowed, the net of repayments, is transferred by the government to the household.

$$T_t = q_t d_{t+1} - d_t$$ (2.6)

When the government decides to default, there is no additional borrowing, and the government transfer is 0.

The presence of debt makes government optimization an intertemporal problem. Due to the presence of this intertemporal element in the optimization problem, most papers in the literature use recursive dynamic programming to solve the government’s optimization. The first step in solving the problem is to identify the state variables that affect the total value of flow utility received by households in a given period. The value function for a particular period depends on 4 set of state variables: (1) the output shocks in the period, (2) the world interest rate in the period, (3) the debt level with which the country enters the period, and (4) whether the country started the period in good or bad standing, $f_t = \{0, 1\}$.

A country starts a period in good standing, $f_t = 0$, if it has access to credit markets. In this case, the government can decide to repay the debt and have continued access in the next period, $f_{t+1} = 0$, or it can decide to default today. If the government chooses to default today, it will not have access to debt today, but it also will not have to repay the old debt. Additionally, the government can be redeemed with probability λ tomorrow. If it is redeemed, the government starts the next period with 0 debt and will have access to financial markets, $f_{t+1} = 0$. If the government remains in the bad standing with probability $(1 - \lambda)$, it will not have access to markets in the next period, $f_{t+1} = 1$.
The continuation payoff, i.e., the value function when the agent does not default and continues to repay the debt, is given as:

\[
V^C(d_t; z_t, z_t^w, X_t, X_t^w, r_t^*) = \max_{c_t, d_t+1} \left[u(c_t) + \beta E_{y,r} [V^G(d_{t+1}; z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*)] \right] \quad (2.7)
\]

subject to the equilibrium conditions of households and firms along with the government transfer condition. Here, \(V^G \) represents the value function when the agent enters the period with good financial standing \((f = 0)\).

If the agent enters a period in bad financial standing \((f_t = 1)\) or decides to default \((F_t = 0)\), it has 0 debt to repay but cannot borrow any new debt either. Additionally, the agent faces an exogenous decrease in TFP that reduces its output and hence consumption even further. In the next period, the agent can re-enter the financial markets and be in good standing \((f_{t+1} = 0)\) with probability \(\lambda\).

\[
V^B(z_t, z_t^w, X_t, X_t^w, r_t^*) = u(c_t^A) + \beta E_{y,r} \{\lambda V^G(0; z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*) + (1 - \lambda)V^B(z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*)\} \quad (2.8)
\]

subject to the household and firm equilibrium conditions and with a transfer to households of 0. In this case, the function \(\phi\), which governs output loss in default, will also be nonzero. The function \(\phi\), and thus the output loss in default, depends on individual technology shocks.

If the government is in good standing at the start of a particular period, it has two options: continue to repay the debt or default. If it continues to repay the debt, its flow utility for that period will be \(V^C\). If the government decides to default, its flow utility for that period will be \(V^B\). The government chooses the option that gives it a higher flow utility.

\[
V^G(d_t; z_t, z_t^w, X_t, X_t^w, r_t^*) = \max\{V^C(d_t; z_t, z_t^w, X_t, X_t^w, r_t^*), V^B(z_t, z_t^w, X_t, X_t^w, r_t^*)\} \quad (2.9)
\]

The default rule is therefore given as:

\[
F(d_t; z_t, z_t^w, X_t, X_t^w, r_t^*) = \begin{cases}
1 & \text{if } V^B(z_t, z_t^w, X_t, X_t^w, r_t^*) > V^C(d_t; z_t, z_t^w, X_t, X_t^w, r_t^*) \\
0 & \text{otherwise}
\end{cases} \quad (2.10)
\]
Lender

The last piece of the model is the foreign lender. I assume a large number of risk-neutral lenders. Risk-free return is therefore adjusted for the probability of default to obtain a rate of return on debt.

\[(1+r_t) \times \text{Prob}_{y,r}(V_C(d_{t+1}; z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*) > V_B(z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*)) = 1+r_t^*\]

Given the price of debt, \(q_t = 1/(1+r_t)\), we have

\[q_t(d_{t+1}; z_t, z_t^w, X_t, X_t^w, r_t^*) = \frac{\text{Prob}_{y,r}(V_C^{t+1} > V_B^{t+1})}{1+r_t^*} \quad (2.11)\]

Equilibrium

In equilibrium, households, firms, government and the lender solve their respective optimization problem, and the market for consumption good, labor, and debt clears (lenders choose a price level of debt so that they obtain zero expected profits). Formally:

Definition

A sequence of variables: \(\{C_t, L_t, M_t, \Pi_t^f, d_{t+1}, F_t, w_t, q_t\}\) and value functions \(\{V_C, V_B, V_G\}\) constitute a recursive equilibrium given the initial debt level, \(d_t\), TFP processes: \(\{z_t, z_t^w, g_t, g_t^w\}\) and the world real interest rate process, \(\{r_t^*\}\), if:

1. Households choose \(\{C, L^S\}\) to solve equations 2.1 and 2.2 given the wage rate \(w_t\), government transfers \(T_t\) and profits from firms \(\Pi_t^f\).

2. Firms choose \(\{\Pi_t^f, M_t, L_t^D\}\) to solve equations 2.3, 2.4 and 2.5 given wage rate \(w_t\) and world real interest rate \(r_t^*\).

3. Wage rate, \(w_t\), is such that the labor market clears \(L^S = L^D\) in cases of both default and continuation.
4. The government chooses \(\{d_{t+1}, F_t, T_t\} \) to solve equations 2.6, 2.7, 2.8, 2.9 and 2.10 given the starting debt level, \(d_t \), the world real interest rate process, \(\{r_t^*\} \), and the solutions to household and firm optimization problems.

5. The equilibrium bond price, \(q_t \), is as in equation 2.11 and is such that households, firms and the government solve their optimization problem and the risk-neutral international lenders obtain zero expected profits, thereby clearing the debt market.

Autarkic Equilibrium

If the government enters the period in autarky, it does not have an optimization problem to solve. It makes no transfer to households, \(T_t = 0 \), and it has no debt or default choice to make. Alternatively, if the government enters the period in good standing but finds that the utility from defaulting is higher than the utility from borrowing and repayment, then it defaults. Again, the government does not have any choice variables once it decides to default. The transfers, consequently, are zero, \(T_t = 0 \), and no debt choice is possible. Thus, in autarky, only firms and households will make equilibrium choices.

The first thing to note is that firms face an output cost of default during autarky. Thus, the output produced decreases depending on the state of the economy. Since the output cost is convex in nature, the output loss in autarky will be higher when the economy is doing relatively better (positive/less-negative shocks to different components of the technology level in the economy). Firms’ optimality conditions will therefore be given by:

\[
\alpha_L (1 - \phi_t(\cdot)) \cdot A_t (L_t^{Aut})^{\alpha_L - 1} = (1 + \eta_t r_t^*) w_t^{Aut}
\]

which is the same condition that captures the effect of the working-capital constraint on the cost of hiring an additional worker. The profit for the firm will be:

\[
\Pi_t^{f,Aut} = (1 - \phi_t(\cdot)) \cdot A_t (L_t^{Aut})^{\alpha_L} - w_t^{Aut} L_t^{Aut} - \eta_t r_t^* w_t^{Aut} L_t^{Aut}
\]

where \(\phi_t(\cdot) = \phi(z_t, z_t^w, g_t, g_t^w) \) is a function of states.
Households solve their first order conditions and supply labor such that:

$$\Gamma_{t-1}(L^\text{Aut}_t)\omega^{-1} = w^\text{Aut}_t$$

Solving household and firm first order conditions will give closed-form solutions to the equilibrium quantity of labor and wage level in autarky as a function of state variables and parameters. These values are then used to obtain the values of equilibrium output and profit that households receive. These profits through the household budget constraint provide the value of household consumption in autarky.

$$C^\text{Aut}_t = (1 - \phi^\text{Aut}) \cdot A_t(L^\text{Aut}_t)^{\alpha L} - \eta r^\ast_t w^\text{Aut}_t L^\text{Aut}_t$$

Equilibrium with borrowing

Equilibrium with borrowing is the equilibrium in which the government is able to choose a debt level, d_{t+1}, in the current period. This can occur in two ways: is the government repaid the debt in the previous period and enters the current period with good standing or if was in a bad standing in the previous period but re-entered the market; and the government finds it optimal to continue with the repayment of debt in both the cases.\(^{18}\) In the former case, the government enters the period with a debt, d_t, to be repaid, while in the latter case, $d_t = 0$.

The first order conditions of the firm and the household provide us with a closed-form solution for the equilibrium quantity of labor:

$$L_t = \left(\frac{\alpha L A_t}{\Gamma_{t-1}(1 + \eta r^\ast_t)} \right)^{\frac{1}{\omega - \alpha L}}$$

which can be used to obtain the equilibrium wage rate from the household first order condition. Given the value of the wage rate, equilibrium quantity of labor, and an initial debt level d_t, the government chooses a new debt level, d_{t+1}, to maximize its continuation utility

$$V^C(d_t; z_t, z^w_t, g_t, g^w_t, r^\ast_t) = \max_{C_t, d_{t+1}} \left\{ u(C_t, L_t) + \beta E_g[V^G(d_{t+1}; z_{t+1}, z^w_{t+1}, g_{t+1}, g^w_{t+1}, r^\ast_{t+1})] \right\}$$

\(^{18}\)An event that occurs with probability λ after entering the period in bad standing.
subject to:

\[C_t = A_t L_t^{\alpha L} - \eta_t^\alpha \Gamma_t - L_t^\omega + q_t(d_{t+1}; z_t, z_t^w, X_t, X_t^w, r_t^*) \cdot d_{t+1} - d_t \]

\[L_t = \left(\frac{\alpha_t A_t}{\Gamma_t (1 + \eta_t^*)} \right)^{\frac{1}{\omega - \alpha_L}} \]

\[q_t(d_{t+1}; z_t, z_t^w, X_t, X_t^w, r_t^*) = \frac{\text{Prob}(V_{t+1}^C > V_{t+1}^B)}{1 + r_t^*} \]

where \(V_{t+1}^B \) is the value function in autarky which can be solved using equations 2.8, 2.9 and the autarky equilibrium.

2.4.1.1 Model Calibration

The calibration is performed for each version of the model separately. There are three version of the model: (1) basic model with a constant world interest rate, (2) basic model with stochastic world interest rate, and (3) full model with stochastic world interest rate. I begin with the basic version of the model with a constant interest rate; continue to the basic version, where the interest rate fluctuates; and finally move to the full version of the model.

The parameters in the model are related to the coefficient of relative risk aversion (\(\gamma \)), the world interest rate (\(r^* \)), the average yearly growth rate of the country (\(\mu c g \)), the probability of rejoining the financial markets after default (\(\lambda \)), and impatience (\(\beta \)). Additionally, for the basic version, I use the following loss function specification:\(^{19}\)

\[\phi_t = \max \{0, a_1 + a_2 \cdot e^{z^\epsilon + \alpha_z^g z^g} \cdot (g^w)^{\alpha_y^g} \} \]

which provides us with two more parameters (\(a_1, a_2 \)). Since the expression in the \(\phi_t \) function is same as the detrended output of the country, total detrended output net of the output loss is effectively: \(\tilde{y} - \tilde{y} \cdot \max \{a_1 + a_2 \cdot \tilde{y}\} \). This is similar to the quadratic output loss specification used in Chatterjee and Eyigungor (2012). The full version of the model will

\(^{19}\)The output loss specification used in this paper is similar to the one used in Chatterjee and Eyigungor (2012) and also explained in Uribe and Schmitt-Grohé (2017) but I modify the specification to incorporate the feature from Aguiar et al. (2016) that loss function depends on individual shocks rather than total output.
have an output loss function which looks a bit more complicated than the one used in the basic version. This is due to the presence of the interest rate shocks that affect output of the country. Nonetheless, total output net of output loss in the full version will also boil down to the same expression. Hence, I have the same two parameters \((a_1, a_2)\) in the full version of the model.

Table 2.3: Calibrated Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Example</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
<td>2</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>(r^*)</td>
<td>3.67% pa</td>
<td>Standard</td>
<td>Average value from 1960 to 2014</td>
</tr>
<tr>
<td>(\mu_c)</td>
<td>C-specific</td>
<td>1.025 for Arg</td>
<td></td>
</tr>
<tr>
<td>(\lambda)</td>
<td>C-specific</td>
<td>0.095 for Arg</td>
<td>Matched 10.5 years in default on an average in 200 years</td>
</tr>
<tr>
<td>(\beta)</td>
<td>C-specific</td>
<td>0.83 for Arg</td>
<td>(\sim 0.95) quarterly; Matches defaults/100yr, NFA/Y</td>
</tr>
<tr>
<td>(a_1)</td>
<td>C-specific</td>
<td>-0.26 for Arg</td>
<td>Matches defaults/100yr, NFA/Y</td>
</tr>
<tr>
<td>(a_2)</td>
<td>C-specific</td>
<td>0.27 for Arg</td>
<td>Matches defaults/100yr, NFA/Y</td>
</tr>
</tbody>
</table>

Notes:
(1) Interest rate, \(r^*\), is constant only in the first version of the baseline model
(2) The examples for the values of \(\beta\), \(a_1\), and \(a_2\) correspond to the first version of the baseline model

The coefficient of relative risk aversion, \(\gamma\), follows the existing literature. For example, Mendoza (1991), Arellano (2008) etc. assume \(\gamma\) to be equal to 2.

Since a unit of time in the model is a year instead of a quarter, the world interest rate, \(r^*\), is calibrated to the average value between 1960 to 2014. This provides \(r^* = 3.67\%\).

Steady state growth rate is different for different countries. Thus, to calibrate \(\mu_c\), I take the average yearly growth rate from the data spanning 1960 to 2014 for all the countries. For example, \(\mu_{\text{Arg}}^{\text{ss}} = 1.025\) corresponds to the average yearly growth rate of 2.5% for Argentina from 1960 to 2014.

In order to calibrate the probability of re-entry into the financial markets after a default, \(\lambda\), I use data from Reinhart and Rogoff (2011b) and Uribe and Schmitt-Grohé (2017). The parameter \(\lambda\) is also different for different countries. For example, using an average of 6 years for the exclusion period of Argentina, I calibrate Argentina’s probability of re-entry to be 0.1667.
Three parameters remain: the impatience parameter, β, and parameters governing the output loss function, a_1 and a_2. All three parameters are also country-specific and are calibrated to match the average number of defaults in 100 years and the average debt-to-GDP ratio when the country is in good financial standing for each country separately.

2.4.1.2 Grid Size

I solve the model using finite state-space method. I, therefore, begin by detrending all the variables and make them stationary. Since the detrended variables do not grow over time, the state-space needed for the iterations remains fixed. The state variables in the detrended form of the model are: $\{z_t^c, z_t^w, g_t^c, g_t^w\}$. In the full version of the model, I also have $\{r_t^*\}$. The debt level, $\{d_t\}$, is an endogenous state variable.

I use 7 grid points for each of the output shocks taking the output grid size to 2,401 points in the basic version of the model. With stochastic interest in the full model, endogenous output channel is present and the grid points on the interest rate grid also contribute to changes in output. Thus, an additional of 10 grid points for the interest rate take output grid size to 24,010 points. The number of grid points for the debt level is taken as 100. Thus, the total number of grid points on both, output and debt, are large enough to alleviate the concerns of Hatchondo et al. (2010) about the inefficiency of the discrete state-space technique.

The grid points are also used in the simulation exercise when I simulate the time series of the Kalman smoothed state variables to feed into the model. I, therefore, analyze the grid points that I use to approximate the movements of the state variables and examine whether these grids can simulate the estimated global state variables. Figure B3 in the appendix shows the detrended output for the basic model and for the full model. Each panel shows a version obtained from the Kalman smoothing algorithm as well as a version which is simulated through $7 \times 7 \times 7 \times 7$ grid points. It can be observed that the version simulated through the grid points matches the original Kalman smoothed version very well.
Thus, the number of grid on output match the movement of detrended output very closely.

Simulation of state variables also requires simulating the interest rate through the grid points. For this purpose, I match the interest rate simulated through grid points and the actual movement of interest rate in the data to test if 10 grid points are sufficient to match the movements. Figure B4 shows that 10 grid points are sufficient to simulate the interest rate movements and this matches closely with the actual movements in data.

2.4.1.3 Solution Algorithm

The presence of global shocks in the model makes the global output shocks and the interest rate fluctuations common across countries. Thus, the grid and the transition probability matrices of all the global shocks—2 global output shocks and the interest rate shocks—remain common across all the countries. The grid for the global output shocks are then scaled according to the parameters α_z^c and α_X^c for every country. Given these grids and transition probability matrices for the global shocks, the model is solved on country-by-country basis. For calibrating the parameters of the model, the moments are matched for one country at a time. The remaining algorithm for model solution remains similar to one available online from Uribe and Schmitt-Grohé (2017).

One more addition in the model, and hence the algorithm, is the introduction of firms and thus, labor. This addition doesn’t come at a very big cost because equilibrium quantity of labor can be solved analytically, both when country wants to default and when it does not. Therefore, labor, with and without default costs, can be calculated based on the 5 exogenous state variables—4 output shocks and interest rate. This gives a closed form solution for output as well as consumption based on the values of all 6 state variables, the sixth being initial debt level. Thus, current utility can be calculated using the utility function and it can then be used to calculate the flow utilities. Once the flow utility is calculated, the remaining part of the algorithm becomes similar to the standard algorithm available from Uribe and Schmitt-Grohé (2017).
Once the model is solved, simulation is relatively straightforward as the time series of global and country-specific shocks are already available for every country from Section 2.3. The time series for these output shocks as well as the interest rate are available from 1960 to 2014. I assume the initial debt in 1960 to be 0.20 Given the endogenous state—debt level in 1960—and the exogenous states—four output shocks and the interest rate—every country chooses the default decision for 1961. Additionally, if the country chooses not to default in 1961, the country chooses the debt level. If the country choose to default in 1961, the initial debt level in 1961 automatically goes to 0. Thus, the optimal debt and default decision in 1961 proves a value for endogenous state variable in 1961, d_{1961}. Repeating this process till 2014, I get the time series of default decision for all the countries. Aggregating across all the countries, I plot the percentage of countries defaulting in a rolling 5-year window for every year from 1960 to 2010.

2.4.2 Model Performance

Before exploring the simulation of optimal debt and default decisions for different countries, I start by evaluating the performance of the model based on a set of moments in the data and their counterpart from the model. Some of these moments were targeted while calibrating the parameters of the model; hence, these moments are expected to have a good match in the model and as they are in the data. Some additional moments—mean and standard deviations of risk spread; correlation between spread and output; correlation between trade balance to output ratio and spread—were not targeted by the model, and comparing these moments from the data and the model gives us more information about the performance of the model. I find that the model does extremely well in matching most of the moments from the data. This result shows that apart from matching the clustered default, that I show later, the model exhibits remarkable performance in multiple other dimensions too.

20The data on government debt or NFA to GDP ratio is mostly available from 1970 onward. If we use this data and change the first year of simulation from 1960 to 1970, the results remain the same. This is because the initial debt level does not have much of an impact 2 or 3 years after the start of the period. Countries increase or decrease the debt level very quickly.
Figure 2.2: Targeted moments: default frequency and average debt in nondefault periods

Average Frequency of Default: Model Vs Data

Average frequency of default is measured as defaults per 100 years.

Avg Debt in Non-Default Periods: Model Vs Data

Net Foreign Assets as a % of GDP: Data

Country - 45 degree Line
Figure 2.2 shows the moments generated by the model and the moments observed in the data. While performing the calibration, I chose some country-specific parameters to match the average default frequency per 100 years and the average debt level as a percentage of output in the respective country. Since I target these moments, Figure 2.2 shows that the match of the model-generated moment and the moment from the data is very good except in the case of Guyana. The data shows that Guyana, on average during non-default periods, held a negative net foreign asset amount equivalent to 144% of its output after accounting for 90% of the average haircut level. This high level of debt coupled with a default rate of 5 times per 100 years is hard to match. The model attempts to go as high as possible in terms of average debt as a percentage of output. To this end, Guyana holds a debt of approximately 60% of its output in the model, but there is a sacrifice in terms of default frequency, which decreases to 1.4 defaults per 100 years.

The next two figures, Figure 2.3 and Figure 2.4, show the moments that were not targeted by the model. Both the figures present moments related to country spread. These moments, mean and standard deviation, require data on spreads that comes from J.P. Morgan EMBI database. The database contains the global stripped spreads for only 10 of the 19 countries included in the paper. Thus, the moments are matched only for these 10 countries.

Figure 2.3 displays the means and standard deviations of the spreads. The top panel shows the average spread in nondefault episodes. The points that correspond to different countries are not as close to the 45-degree line as they were in the case of targeted moments. Most of the countries, except Chile, Mexico and Peru, are still in the neighborhood of the 45-degree line. The standard deviation of spreads in nondefault periods is matched much more closely. Other than Chile and Uruguay, other countries are in close proximity to the 45-degree line.

21 Figure 2.2 and the subsequent figures compare moments from basic version of the model with data.
Figure 2.3: Non-targeted moments: first and second moments of spread

Average Spread: Model Vs Data

Standard Deviation of Spread: Model Vs Data
Figure 2.4: Non-targeted moments: correlations with spread

Correlation between Spread and Output: Model Vs Data

Correlation between TBY and Spread: Model Vs Data

TBY represents trade balance to output ratio
The two remaining non-targeted moments pertain to the correlation of spreads. Figure 2.4 shows that the model does well to explain the counter-cyclicality, sign and not the exact magnitudes, of the country premium, but the model does not do very well in terms of predicting the correlation between trade balance to output ratio and spread. Some of the countries show positive correlation between trade-balance to output ratio and spread, while some portray negative correlation in the data. The model, on the other hand, displays a small and positive correlation between trade balance to output ratio and spread.

2.4.3 Simulating the Defaults

For every country, the model provides the optimal decision—the level of debt that the country chooses and whether the country wants to default—for any value of the state variables (four output shocks, the interest rate shock and an initial level of debt). Thus, feeding the model with actual time series of output shocks and interest rate shocks from 1960 to 2014, I obtain the default decision for every country and every year from 1960 to 2014. Aggregating these default decisions across all the countries from 1960 to 2010, I show the percentage of countries defaulting in a 5-year window for every year. Switching different shocks on and off and comparing the model predicted defaults with the data, the paper finds two important results. The first results is that primary driver of clustered defaults is global shock to the transitory component of output. The second result plays down the importance of the Volcker interest-rate hike in causing the 1982 developing country debt crisis.

I use three version of the model in simulations: (1) the baseline model with constant world interest rate, (2) the baseline model with stochastic world interest rate, and (3) the full model with stochastic world interest rate. These three models enable three comparisons.

(1) Which output shocks are mainly responsible for the clustered default episode of 1982?

(2) What is the marginal impact of introducing the real interest rate fluctuations, that cause fluctuations in the price of debt, on the default decision of countries? (3) What is the marginal impact of having a second channel, the *endogenous output channel*, on the default
decisions? Following the three steps, I delineate if the interest rate fluctuations influence the default decision more than the output shocks.

2.4.3.1 Baseline Model with Constant World Interest Rate

The time series of output shocks begins in 1960. The world interest rate is kept constant at 3.66%, and the initial level of debt in 1960 is assumed to be 0.\(^{22}\) For all the subsequent periods, countries choose whether it is optimal for them to default. This default choice is then aggregated across countries and I match the percentage of countries defaulting in the model with its counterpart from the data.

Figure 2.5: Aggregated default decisions of all countries: model with both country-specific shocks and global shocks vs data

![Graph showing aggregated default decisions of all countries](image)

Figure 2.5 shows that the model predicts the clustered default of 1982 very well. The model also shows a subsequent decline in defaults, and a small surge of defaults in the early 2000s. This surge is predicted a bit early in the model—in late 1990s. Additionally, the model overpredicts the defaults at the time of the great recession. This overprediction is not

\(^{22}\)The results are robust to changes in the initial level of debt.
surprising given that the model does not incorporate a bailout mechanism or a lender of last resort, which might have helped multiple countries avoid default after the great recession.

Figure 2.6: Aggregated default decisions of all countries: model with only country-specific shocks vs model with only global shocks vs data.

The model succeeds in generating the cluster, but it raises the next question: Are global shocks essential in generating the cluster of 1982? To capture the effect of global shocks, I perform two exercises. First, I shut down all the global shocks by equating the global transitory shock with 0 and the growth rate in global permanent shock with 1 for the entire period from 1960 to 2014. In this exercise, only country-specific shocks move the output of countries; hence, default decisions are affected only by country-specific shocks. In the second exercise, I do the opposite: I shut down all the country-specific shocks by equating the country-specific transitory shock with 0 and the growth rate in country-specific permanent shock with the average growth rate of the country for the entire period from 1960 to 2014. In this exercise, only global shocks move the output of countries; hence, default decisions are affected only by global shocks.

Figure 2.6 shows the results of the two aforementioned exercises and the observed defaults.
in the data. With only country-specific shocks, the percentage of countries defaulting is very small, and we do not observe a cluster. With global shocks, in contrast, a cluster reappears. The size of this cluster is smaller than that observed in the data, attributing some importance of country-specific shocks too.

Figure 2.7: Aggregated default decisions of all countries: model with country-specific shocks and transitory global shocks vs model with country-specific shocks and permanent global shocks vs data

The success of global variables in generating the cluster raises a new question: Which type of global shock—global transitory shock or global permanent shock—matters more in generating the cluster of 1982? To capture the effect of individual global shocks, I perform two more exercises. First, I shut down only the global permanent shock by equating the growth rate in global permanent shock with 1 for the entire period from 1960 to 2014. In this exercise, both the country-specific shocks and global transitory shocks move the output of countries; hence, default decisions are affected by all three. In the second exercise, I shut down only the global temporary shock by equating the global transitory shock with 0 for the entire period from 1960 to 2014. Thus, both the country-specific shocks and the global
permanent shocks move the output of countries, thereby affecting the default decision.

Figure 2.7 illustrates that global temporary shocks are relatively more important in replicating the cluster than global permanent shocks. Though the difference in the figure from the two exercises is not as stark as in the previous case, the finding that temporary shocks are more important than permanent shocks is surprising and counterintuitive. This result is surprising because it contradicts the finding of Aguiar and Gopinath (2006) that permanent shocks rather than temporary shocks are more important in generating sovereign defaults. It therefore becomes interesting to understand the mechanism through which transitory shocks cause relatively more defaults.

Role of Global Transitory Shocks in Causing Defaults

To discuss the importance of the global transitory shocks over other output shocks in causing clustered defaults, let us take the example of Argentina. Though the simulations already confirm the importance of global transitory shocks in causing clustered default of 1982, the indifference curve between the value functions from the model provides more details about the mechanism. Figure 2.8 shows the default and the non-default regions for different shocks. The y-axis shows the output of Argentina in different scenarios, while the x-axis represents the debt level of the country. The solid navy line corresponds to the case in which the economy is hit by global transitory shocks only. All other shocks remain constant at their mean values. Given that the shocks are only to the global transitory component (z^w-shocks), the y-axis shows the output in the presence of z^w-shocks only. The area to the right of this line is the default region, while the area to the left of it shows different combinations of z^w and d for which the country chooses not to default.

According to the solid navy line of Figure 2.8, after a few consecutive positive shocks to the global transitory component, the country can accumulate much debt and still be in the nondefault region. More specifically, with an output of 12% above the detrended mean in the presence of global transitory shocks, Argentina can accumulate a debt of up
to 25% and still remain in the nondefault region. At this point, if Argentina experiences 2 standard deviations of negative shock to the global transitory component, it will default unless it holds a debt of less than 8% of GDP. Thus, the accumulation of debt after positive z^w shocks leads to a scenario in which Argentina must deleverage substantially when it experiences a negative z^w shock. Thus, in some cases, Argentina might prefer to default than undergo a large deleveraging.

Moving on to the remaining three shocks, the indifference lines between default and non-default regions are much steeper for other shocks. Thus, under these shocks, the amount of deleveraging required to stay in nondefault status is not high. Thus, countries default much less under these shocks than under global transitory shocks. This result holds even when the size of shocks are similar. Figure 2.8, therefore, raises two questions: (1) Why do transitory and permanent shocks behave differently? (2) Why do global and country-specific transitory shocks behave differently?

Figure 2.8: Default region: effect of output shocks on default decisions

Note: (1) Right side of the line represents the default region and left side represents non-default region. (2) Only one of z^w, z^c, $\ln(g^c)$ and $\ln(g^w)$ vary at a time. Others remain 0.
Transitory vs Permanent Shocks

The first reason why transitory shocks become more important than permanent shocks in causing clustered defaults is because they are relatively bigger in size than permanent shocks. Taking Argentina for example, one standard deviation shock to the global transitory component changes the detrended GDP of Argentina by 6%. One standard deviation shock to the global permanent component changes the detrended GDP by almost 2%. One standard deviation shocks to the country-specific transitory and permanent components changes the detrended GDP by 5% and 2%, respectively. Thus, in the case of Argentina, both the transitory shocks have a greater impact on the detrended GDP. The second reason that makes transitory shocks become more important in causing clustered defaults is the interaction of the convex nature of default costs with transitory and permanent shocks.

The interaction between convex default costs and transitory/permanent shocks makes transitory shocks more important even when comparing with a permanent shock of similar magnitude. Figure 2.9 elaborates the intuition behind this and shows the detrended output of a country struck by a 5% transitory shock (maroon line) and by 5% permanent shock (navy line). When the country is struck by a negative transitory shock, the output decreases today but increases in the future as it starts recovering tomorrow. Thus, with the convex cost of default, defaulting tomorrow entails a higher output cost than defaulting today. Since both the lenders and the borrower know this, the lenders endogenize the situation, and the price of debt today decreases. This decrease causes the borrowing or the debt level to decrease as well. Thus, for a given value of average debt, the debt distribution is very spread out in the case of transitory shocks. After a negative permanent shock, in contrast, the output decreases today and decreases even more in the future, as it is a growth shock. With the convex cost of default, defaulting tomorrow entails a lower output cost than defaulting today. Since both the lenders and the borrower know this, the lenders endogenize this situation.

\footnote{The impact of global shocks on different countries depends on the coefficients α. Thus, for Argentina, the size of global shocks account for α_{z}^{ARG} and α_{X}^{ARG}.}
and the price of debt today is relatively higher (even if it goes down). This effect causes the borrowing or the debt to decrease, but not by much. Thus, for a given value of average debt, the debt distribution is highly concentrated near the mean in the case of permanent shocks.

A spread-out distribution of debt, therefore, causes countries to accumulate much debt after transitory shocks compared to similar levels of permanent shocks. Additionally, when countries face a negative shock after a series of positive shocks, the deleveraging required to stay in nondefault status is much greater for transitory shocks than permanent shocks. Thus, countries prefer to default rather than undergo painful and huge deleveraging after negative transitory shocks.

Figure 2.9: Output decrease: transitory vs permanent shock

Global Transitory vs Country-specific Transitory Shocks

The difference between global and country-specific transitory shocks arises due to high standard deviation of global transitory shocks. To illustrate the intuition behind this result, I go back to Figure 2.8 and compare the indifference lines corresponding to global transitory shocks and country-specific transitory shocks. The key here is that the line corresponding
to global transitory only is flatter even for the same size of output shock. Thus, using the aforementioned logic, when countries face a negative global transitory shock after a series of positive global transitory shocks, the deleveraging required to stay in nondefault status is much greater. This leads countries to prefer default rather than undergo painful and huge deleveraging after negative global transitory shocks.

The last intuition that needs explaining is the flatter line corresponding to global transitory shocks compared to country-specific transitory shocks in Figure 2.8. To this end, compare the cases of 10% positive shocks to both global and country-specific components. Since the global component has a high standard deviation, the probability of receiving another positive shock is relatively higher. Contrarily, after being 10% above the detrended level, with a very high probability the country specific component is expected to decline. Thus, the maximum debt level that Argentina can hold, without defaulting, is higher after a global transitory shock than after a country-specific transitory shock which makes the indifference line flatter for global transitory shock.

The results are different from those in Aguiar and Gopinath (2006) because of the presence of convex instead of a proportional default cost. The debt distribution here is much more spread out than in the case of proportional default cost. In the proportional default cost case, agents do not hold much debt even after positive transitory shocks because when default costs are proportional, and not convex, the probability of default is higher even at a high level of output. This situation causes defaults to occur in both good as well as bad times, rather than specifically in bad times.

2.4.3.2 Baseline Model with Stochastic World Interest Rate

This section investigates the contribution of interest rate shocks, through the debt-pricing channel, in causing clustered defaults by performing two exercises and comparing their results.
First, I simulate the optimal default choices of countries by using all five shocks—four output shocks and one interest rate shock. Second, I shut down the interest rate shock and use a constant interest rate of 3.67% across all periods from 1960 to 2014. The comparison is shown in Figure 2.10, and surprisingly, it shows that the presence of the stochastic interest rate does not cause clustered defaults. Output shocks still explain all the defaults in the clustered default period of 1982. This result goes against the commonly held belief that the Volcker interest rate hike in 1980s was mainly responsible for the emerging country debt crisis of 1982.

The result showing a negligible role of the Volcker interest rate hike does not rule out the role of interest rate shocks, in general, in causing clustered defaults. Therefore, I perform a series of experiments, and the results of those experiments are shown in Figure 2.11. The results highlight the importance of interest rate fluctuations in causing clustered defaults, but only in knife-edge cases.
Figure 2.11: Percentage of countries defaulting when faced with different output and interest rate shocks

Note: Every country receives the same detrended output series and world interest rate series.
For the first three experiments, I simulate the time series of all the countries using detrended output as 1 for the entire period from 1961 to 2014. Interest rate shock takes different forms. For the first experiment, the time series of the interest rate is exactly the same as that observed in the data. Experiment 1 in Figure 2.11, therefore, shows that without fluctuations in output, the Volcker interest rate hike could not have forced any country to default. Thus, output shocks are important in causing defaults.

The absence of defaults with no output shocks raises a concern about the effectiveness of the interest rate shocks in the model. More specifically, Does increase in the interest rate cause defaults? To test whether the interest rate shocks can influence default decisions at all in the absence of negative output shocks, I run two experiments. In Experiment 2, I increase the interest rate to 4% for one period in 1988, and it returns to approximately 0 from the next period onward.\(^{24}\) In Experiment 3, I increase the interest rate to 9% for one period in 1988, and it returns to approximately 0 from the next period onward. I find that the 4% increase in the interest rate is still not enough to cause default even in a single country in the absence of output shocks. An interest rate increase of 9% for one period causes 4 of 19 countries to default at the onset of the interest hike: Bolivia, Costa Rica, Guyana and Honduras. The remaining 15 countries prefer to deleverage. The common feature of the countries that default is that they hold high levels of debt. This debt is the debt that is forgotten, i.e., not repaid by the borrowers after netting for haircuts.\(^{25}\) Thus, countries have a higher incentives to default if the level of forgotten debt is high. For example, compare two countries with debt levels of 10% and 30% of GDP. An increase in the risk-free rate of 8% causes the price of debt to decrease by 8%, plus any change in the probability of default. If the probability of default does not change much, this translates into a change in consumption of 0.8% and 2.4% for the two countries, respectively. Thus, if the interest rate

\(^{24}\)This increase is similar in magnitude to the Volcker shock but here the interest rate goes up from almost 0. Thus, there is a possibility that the countries might have issued more debt at near 0 rates which can also effect default decision.

\(^{25}\)Haircuts are realized investor losses out of the lending. For example, a 90% haircut means 90% of the debt is forgotten.
increase is high enough, countries with high debt have an incentive to default, and they can default even in the absence of output shocks.

Having shown that interest rate shocks can cause defaults even in the absence of output shocks, proceed to the next question: what occurs when the increase in the interest rate is accompanied by a decrease in the output?

To evaluate the effect of an interest rate hike when output decreases, I use changes only in the global transitory component of output. Thus, for the next four experiments, the global transitory component decreases by 1 standard deviation in 1988 and remains there forever. Given the change in the global transitory component of output, I perform different experiments with interest rate changes. Even when interest remains constant, 10 of 19 countries default. Thus, output shocks have a much greater impact than interest rate shocks. If the interest rate increases by 4% for one period and this period coincides with the period of decrease in output, 4 more countries default. If the interest rate goes up by 9% for one period and this period coincides with the period of decrease in output, 6 more countries default, bringing the total number of defaulters to 16 of 19. Instead of increasing the interest rate, if I decrease it by 9%, 3 fewer countries default, bringing the total number of defaulters to 7 of 19.

The set of experiments shows that interest rate shocks can be an important driving force that can cause clustered defaults. Both increasing and decreasing the interest rate can be a vital policy measure, depending on the type and size of the output shocks as well as the debt level in countries. Nonetheless, for the clustered default of 1982, interest rate shocks did not matter much because the output shocks during the 1980s were so great that even if there had been no interest rate hike, the countries would still have defaulted.

The experiments show that when there are no output shocks, the interest rate hike needs to be unrealistically high to force countries into default.\footnote{Or the risk aversion in the market must shoot up in the absence of interest rate hike.} On the other extreme, when countries face huge output shocks, then they will default no matter the interest rate. Even
a small decline in interest rates cannot save the countries from defaulting. In the knife-edge cases, on the other hand, when countries are face some output shocks which are not too huge, interest rate increase can lead to a clustered default. This finding shows that interest rate policy should be considered carefully in conjunction with the output shocks that borrowing countries face.

2.4.3.3 Extended Model with Stochastic World Interest Rate

In the previous section, the effect of interest rate came only from the debt-pricing channel and not the endogenous output channel. Thus, to capture the full effect of interest rate shocks, I continue to the full version of the model with the stochastic interest rate. I again feed in the time series of output shocks, and the time series of the world interest rate from 1960 onward and set the initial level of debt in 1960 to 0. I repeat the same exercise with a constant interest rate and compare the two results.
As evident in Figure 2.12, interest rate shocks still have a negligible effect in causing the cluster of 1982. This finding again shows that interest rate changes can have an effect on default decisions, but not when the decline in output is too large, as was the case in the early 1980s.

The reason behind this result is evident from Figures B5 to B8 in the appendix. All the figures are result of the estimation exercise of Section 2.3 and decompose output shocks received by different countries into shocks from three sources—global shocks to output, country-specific shocks to output, output changes coming from interest rate fluctuations. As it is clearly evident, most of the output decline suffered during 1980s is coming either from global output shocks or country-specific output shocks. The contribution is interest rate fluctuation in output decline for countries is much smaller. Costa Rica is the only country where the Volcker interest rate hike caused a seemingly big decline in output of 6% but the decline coming from two sources of output shocks combined is 16%. Thus, Costa Rica would have also defaulted due to the 16% decline even in the absence of interest rate hike. The result confirms that even through the endogenous output channel, the Volcker interest rate hike did not not lead countries to the clustered default of 1980s.

2.5 Conclusion

In spite of clustered defaults being frequent and costly, a multicountry theoretical framework equipped to study the clustered defaults is still lacking. Therefore, this chapter studies the clustered defaults in a multicountry setup. The essence of the framework of this chapter is in: (1) capturing the global shocks—global output shocks and world interest rate shocks—that different countries face, and (2) understanding the mechanism through which these global shocks influence defaults. The framework provides a perfect setting not only to quantify the importance of different shocks in causing clustered defaults, but also to study the role of the Volcker interest rate hike on the clustered default of 1982. Equipped with the framework, the
paper uncovers two main findings. The first finding shows that global shock to the transitory component of output is the primary driver of clustered defaults. The second finding shows, contrary to what is commonly believed, the Volcker interest rate hike was not a decisive factor for the 1982 clustered default.

The first essential element of the framework—capturing global shocks—is crucial in order as it disentangles the effects five shocks: transitory and permanent country-specific shocks to output, transitory and permanent global shocks to output, and world interest rate. Thus, a framework like this can be used not only to figure out which countries are more susceptible to global shocks but also to predict how susceptible the world is to a clustered default. Furthermore, knowing more susceptible countries can make bailout policies more targeted in order to avoid the possibility of having clustered defaults.

The second essential element of the framework deals with the mechanism that drives defaults. A unique feature of the model developed here is that it captures the effect of changes in world interest rates on default decisions of borrowing countries through two channels. I call these channels the *debt pricing channel* and the *endogenous output channel*. The introduction of the two channels makes the default decisions more sensitive to world interest rate changes compared to the existing literature. Thus, a framework like this can also be used to study the interest rate policies of large economies and their spillover effects on the borrowing economies to assess future default probabilities.

Both the essential elements of the framework—capturing the global shocks, and understanding the mechanism through which global shocks influence defaults—makes this study crucial for future policy work on clustered defaults. The same spirit is expressed succinctly in the words of Paul Krugman from Diaz-Alejandro et al. (1984):

... why does it matter how we got where we are? ... If the problems of debtor countries basically reflected irresponsible behavior, such a bailout would provide encouragement for more such behavior in the future. If, on the other hand, the
debt crisis can be viewed basically as an act of God (or his earthly manifestation, Paul Volcker), this is not a concern.
Chapter 3

Credit Constrained Households and Consumption Volatility in Countries

Anurag Singh¹

¹I am highly indebted to Martin Uribe and Stephanie Schmitt-Grohe for their invaluable discussions, guidance and support. I am grateful to Yoon Joo Jo for the help with the data. I would also like to thank Cynthia Balloch, Yang Jiao, Xavier Moncasi, Seunghoon Na, and the participants of economic fluctuations colloquium at Columbia University for their helpful comments and suggestions. All errors are my own.
3.1 Introduction

A key stylized fact about economic fluctuations in small open economies is that the consumption becomes more volatile than income as we move from rich to emerging, and then from emerging to poor countries. A consumption volatility to output volatility ratio of greater than one is at odds with the observation that emerging and poor countries are also the countries where a big fraction of consumers do not have access to financial services. The reason why these two facts are at odds lies in the presence of consumers with no access to financial services because these consumers cannot smooth consumption and can only have a consumption volatility to output volatility ratio of one. Therefore, in the presence of more and more credit constrained consumers, as is the case in emerging and poor economies, the consumption volatility to output volatility ratio should move closer to one rather than going up and away from one. Thus, it becomes important to incorporate credit constrained households, an essential financial friction in emerging and poor countries, in theoretical models of small open economies to study the business cycle fluctuations in these countries.

This chapter, therefore, incorporates credit constrained households in an augmented real business cycle (RBC) model to study their effect on economic fluctuations in different countries. I first ask if this financial friction, a fraction of agents being credit constrained, pushes the ratio of consumption volatility to output volatility towards one or it also generates a ratio of higher than one. Next, I look at the relative importance of the main drivers—transitory and permanent productivity shocks; preference shocks; government spending shocks; and country interest rate shocks—of high consumption volatility to output volatility ratio in an RBC model with and without credit constrained households. Last, using a dataset on 75 countries—18 rich, 32 emerging and 25 poor—and the RBC model, I decompose the drivers

2The consumption volatility to output volatility ratio in emerging and poor countries, therefore, is not only high, it is higher than one. See Uribe and Schmitt-Grohé (2017) for detailed business cycle facts on rich, emerging, and poor economies.

3Here I assume that the remaining consumers are able to smooth consumption and they have a volatility ratio of less than one. Contrarily, if these consumers have a volatility ratio of higher than one, countries with more and more credit constrained household will have a higher than one, but decreasing, volatility ratio.
of economic fluctuations for rich, emerging and poor countries.

With a simplified version of the RBC model, I show that the presence of this financial friction results in aggregate consumption to be more volatile than output. This surprising result goes against the intuition that the more credit constrain consumers, who can’t borrow or save and can only have a consumption to output volatility ratio of one, the closer we will be to the volatility ratio of 1. I show that the intuition behind this result lies in the presence of Ricardian households who own the firms, and hence act as capitalists. In the presence of credit constrained consumers it is only the Ricardian consumers, the unconstrained ones, who make the investment decision. Thus, a country where the fraction of credit constrained consumers is high is also a country where the fraction of Ricardian agents is small. In this economy, even less persistent stationary technology shocks generate a big consumption response from these Ricardian agents as the Ricardian agents or capitalists are benefited more from a bigger profit share.

The theoretical framework of this chapter is built on an augmented RBC model from Garcia-Cicco et al. (2010) with an addition of credit constraints households, a financial friction that proxies for the access to financial services in different countries. Thus, the model in this chapter features five shocks and two financial frictions. The shocks include transitory and permanent productivity shocks; preference shocks; government spending shocks; and country interest rate shocks. The first financial frictions is the presence of credit constrained consumers and the second financial friction is the presence of working capital constraints at the firm level.

Since cross country data on the fraction of credit constrained households is not available, I start with a closed economy RBC model. The closed economy model is used to estimate the parameters of the model for each of 75 countries separately. This is done using the Bayesian technique and taking the time series of output, consumption and investment as an observable for the respective countries. Once the parameters are estimated, I take the parameter corresponding to the fraction of hand to mouth consumers in different countries
and use it in the open economy RBC model to disentangle the relative importance of shocks that drive economic fluctuations in these countries.

On a set of 18 rich, 32 emerging and 25 poor countries, the average estimate for the fraction of hand to mouth consumers are obtained to be equal to 0.17 across rich countries, 0.41 across emerging countries and 0.56 across poor countries. These cross-country estimates for the fraction of hand to mouth consumers correlate significantly with a composite measure of financial access developed by Honohan (2008).

The open economy model with hand to mouth consumers suggests a contribution of non-stationary shocks towards movements in output growth to be 22% for rich countries, 25% for emerging countries, and 30% for poor countries. These values are in contradiction of both Aguiar and Gopinath (2007) and Garcia-Cicco et al. (2010) where the former suggested that the movements in TFP growth are driven mainly by non-stationary shocks while the later attribute negligible role of non-stationary shocks towards the movements in TFP growth. The open economy model also shows that both stationary and non-stationary shocks are important in explaining the output and consumption volatilities across the countries. At the same time, the model shows that the volatility in trade balance to output ratio in explained jointly by non-stationary productivity shocks, preference shocks and country premium shocks.

Comparing the open economy models with and without credit constraint households, I show that preference shocks become much more important rather than productivity or the country premium shocks in the absence of credit constraint households

Related Literature

The motivation for this work comes from two strands of literature. First is the literature on consumption to output volatility ratio in small open economies. As highlighted in Uribe and Schmitt-Grohé (2017), this ratio, on an average, is 0.87 across rich countries, 0.98 across emerging countries and 1.12 across poor countries. The second literature talks about the
fact that a big fraction of households in emerging and poor economies do not have access
to financial services. Honohan (2008), for example, constructs a cross country composite
measure for the access of financial services across countries. When data from both the
aforementioned works is plotted against each other, in Figure 3.1, we observe a remarkable
correlation between access to financial services and consumption to output volatility ratio
across countries.

Figure 3.1: Consumption volatility to output volatility ratio vs composite measure for access
of financial services across countries

This correlation could have had a plausible explanation if the ratio had been lower than
one. In such a case, since emerging and poor countries have bigger and bigger fraction of
households that do not have access to financial services, they have a big fraction of people
can’t borrow or save.\(^4\) Thus, these households consume all their income and have a

\(^4\)No borrowing is evident from a big fraction of people not having access even to bank accounts. No
volatility ratio of 1. Even if the remaining Ricardian households smooth consumption, this fraction of credit constraint households will take the volatility ratio to 1 and this volatility will be increasing in the fraction of such households. On the other extreme, if the Ricardian households do not smooth consumption, the fraction of credit constraint households will still take the volatility ratio to 1 but this volatility will be decreasing in the fraction of such households. Thus, the volatility ratio, in theory, is expected to be either lower than one and increasing or higher than one and decreasing. Therefore, a volatility ratio of higher than one and increasing in the fraction of credit constraint households creates a puzzle. By developing a theoretical framework to provide an explanation for the role of credit constrained households in the observed volatility ratio, this chapter contributes in bringing together the two strands of literature.

Honohan (2008) develops a composite measure of financial access based on microfinance survey across 162 countries comes closest to having a data on the fraction of credit constrained households across a set of poor, emerging and rich countries. The work done in this chapter uses time series of macro data on output, consumption and investment to estimate this fraction for a set of 75 countries. The econometric estimates using a macro data correlate significantly with the microdata estimates of Honohan (2008). A possible drawback is that the correlation does not hold when the same estimation is run for an open economy model with the observable macro data also including a time series of trade balance to output ratio. A plausible explanation might be that most of the emerging and poor economies for periods before 1990s were relatively closed economies.

Credit constrained households or rule-of-thumb consumers have featured in models of macroeconomics literature but to answer different set of questions. For example, Gali et al. (2004) introduce rule-of-thumb consumers in a dynamic sticky price model to study their implication on interest rate rules. Colciago (2011) also uses rule-of-thumb consumers with nominal-wage stickiness to study interest rate rules. Though these papers use a modeling saving assumption makes sense when we look at the inflation rates in these countries. High inflation rates in these countries makes it undesirable for households to save.
strategy that includes credit constrained households, they are trying to answer entirely dif-
ferent questions. In terms of the model and the quantitative exercise, this chapter is closely
related to the works of Bhattacharya and Patnaik (2013) and Garcia-Cicco et al. (2010). The
work by Bhattacharya and Patnaik (2013) studies the affect of credit constrained households
on consumption volatility in an emerging country setup. Their reasoning for a similar puzzle
as discussed here is based on higher volatility ratio of Ricardian agents. Thus, in their setup,
if two, otherwise similar, countries receive same output shocks the country with higher frac-
tion of credit constrained households will have a lower volatility ratio. This reasoning does
not seem to hold when we look at the cross country data of volatility ratio and the frac-
tion of credit constrained households in Figure 3.1. The reasoning proposed in this chapter,
therefore, works better to explain the cross country pattern. Additionally, Bhattacharya and
Patnaik (2013) do not analyze the impact of the presence of credit constrained households on
the investment decision of Ricardian households which in turn impacts the volatility ratio.
They also do not consider the impact of other important shocks or financial frictions faced
by emerging countries. Therefore, in this chapter I build on the model of Garcia-Cicco et al.
(2010) and add credit constrained households in their framework.

The results in this chapter are closely related to the results about the importance of
non-stationary shocks in Aguiar and Gopinath (2007) and Garcia-Cicco et al. (2010). My
results are in contradiction to Aguiar and Gopinath (2007) who suggest that the movements
in TFP growth are driven mainly by non-stationary shocks. At the same time, my results
also contradict Garcia-Cicco et al. (2010) who attribute a negligible role to non-stationary
shocks towards the movements in TFP growth.

The rest of the chapter is organized as follows. Section 3.2 discusses the model. Section
3.3 provides the model solution method; the intuition behind the effect of hand to mouth
consumers on consumption volatility; and discusses the results. Section 3.4 concludes.
3.2 Model

I develop a small open economy model populated by two types of consumers: Ricardian consumers who do not face any credit constraints and hand-to-mouth consumers who do face credit constraints. The model helps to explain how access to financial services can be important in predicting aggregate fluctuations in small open economies.

The main assumption in the model is that credit constrained households earn only the wage income while the Ricardian households earn the wage income, the rents from lending the capital to firms and the profits from owning the firms. Thus, the Ricardian households make all the investment decisions and it is them who help in generating a high volatility ratio. This intuition highlights the feature that the presence of capitalists in the economy is key in driving high volatility ratio. It the model redistributes some of the rental income or the profit income to the credit constrained households, this channel attenuates.

From now on, variables with superscript R represent Ricardian consumers and variable with superscript L stands for liquidity/credit constrained consumers.

3.2.1 Households

The economy is assumed to be populated by a fraction λ of credit constrained households and a fraction $(1 - \lambda)$ of Ricardian households. There are two main differences between credit constrained and Ricardian households. First, as the name suggests, credit constrained households do not have access to financial services and therefore they can not borrow and save. Ricardian households, on the other hand, are free to borrow and save through a single period, non state-contingent debt. Second, credit constrained household supply labor and earn only the wage income. Ricardian households, however, own the capital as well as firms. Thus, Ricardian households supply labor and make investment decisions to earn wage income, rental income from capital and profit income from firms.
3.2.1.1 Optimizing or Ricardian Households

An infinitely lived representative Ricardian agent maximizes its utility given by:

\[E_0 \sum_{t=0}^{\infty} \nu_t \beta^t U(C_t^R, h_t^R) \]

where period utility is

\[U(C_t^R, h_t^R) = \frac{(C_t^R - X_{t-1} \frac{(h_t^R)\omega}{\omega})^{1-\gamma} - 1}{1 - \gamma} \]

where \(C_t^R \) denotes consumption, \(h_t^R \) is labor supply, and \(\beta \) is subjective discount factor. \(E_0 \) denotes the expectations operator conditional on information set at the start of period 0. \(\nu_t \) is coming from exogenous preference shock which follows following process,

\[\ln \nu_{t+1} = \rho \nu_t + \epsilon_{t+1}^\nu \]

The growth rate of \(X_t \) governs the trend component of the output for the economy and follows a stationary process, as follow:

\[g_t = \frac{X_t}{X_{t-1}} \]

\[\ln(g_{t+1}/g) = \rho_g \ln(g_t/g) + \epsilon_g^{t+1} \]

This utility function is in the form of GHH preferences from Greenwood et al. (1988) and is concave, strictly increasing and twice differentiable. The parameter \(\gamma \) represents the Arrow-Pratt measure of relative risk aversion, \(1/(\omega - 1) \) is the Frisch elasticity of labor supply and \(X \) is the scaling factor used to detrend the variables that grow over time. Since consumption grows over time but labor is stationary, the scaling factor acts as a coefficient of the labor term in order to make it grow over time.

Ricardian agent maximizes the discounted lifetime utility subject to the sequential budget constraint given as:

\[C_t^R + I_t^R + AC_t^R + S_t^R + D_t^R = \frac{D_{t+1}^R}{1 + r_t} + W_t h_t^R + u_t K_t^R + \pi_t^R \quad (3.1) \]
where I_t^R is the investment done by Ricardian agents and AC_t^R if the associated investment adjustment cost borne by the Ricardian agents. S_t^R is the government expenditure that is financed by taxing Ricardian agents. W_t is wage rate and u_t is rental rate of capital. Other than labor and capital income, Ricardian agents also collect profit from the firms in the economy. For each period t, the Ricardian agents borrow new debt $\frac{D_{t+1}^R}{1+r_t}$ so that the debt D_t will be repaid in the next period, $t+1$. The investment or capital accumulation equation is standard

$$I_t^R = K_{t+1}^R - (1-\delta)K_t^R$$

whereas the investment adjustment cost is given as

$$AC_t^R = \frac{\phi}{2} \left(\frac{K_{t+1}^R}{K_t^R} - g \right)^2 K_t^R$$

The detrended government expenditure, $s_t = S_t/X_{t-1}$, follows an AR(1) process around the mean, \bar{s}:

$$\ln(s_{t+1}/\bar{s}) = \rho_s \ln(s_t/\bar{s}) + \epsilon_{t+1}^s$$

There is an additional no-ponzi condition given as:

$$\lim_{j \to \infty} E_T \frac{D_{t+j+1}^R}{\Pi_{s=0}^j (1+r_{t+s})} \leq 0$$

The optimization problem of the Ricardian agent can therefore be given as:

$$\mathcal{L}^R = E_0 \sum_{t=0}^{\infty} \beta^t \left[\nu_t \left(\frac{C_t^R - X_{t-1} - (h_t^R)^\omega}{\omega} \right)^{1-\gamma} - 1 \right] + \zeta_t X_{t-1}^{-\gamma} \left\{ \frac{D_{t+1}^R}{1+r_t} + W_t h_t^R + u_t K_t^R \right. \\
+ \pi_t - C_t^R - K_{t+1}^R + (1-\delta)K_t^R - \frac{\phi}{2} \left(\frac{K_{t+1}^R}{K_t^R} - g \right)^2 K_t^R - S_t^R - D_t^R \right\}$$

The first order conditions with respect to $\{C_t^R, h_t^R, D_{t+1}^R, K_{t+1}^R\}$ are therefore given as:

$$\nu_t \left[\frac{C_t^R}{X_{t-1}} - \frac{(h_t^R)^\omega}{\omega} \right]^{-\gamma} = \zeta_t$$

(3.2)

$$\nu_t \left[\frac{C_t^R}{X_{t-1}} - \frac{(h_t^R)^\omega}{\omega} \right]^{-\gamma} (h_t^R)^{\omega-1} = \zeta_t W_t / X_{t-1}$$

(3.3)
\[\zeta_t = \frac{\beta(1 + r_t)}{g_t} E_t \zeta_{t+1} \]

(3.4)

\[\zeta_t \left[1 + \phi \left(\frac{K_{t+1}^R}{K_t^R} - g \right) \right] = \frac{\beta}{g_t} E_t \zeta_{t+1} \left[(1 - \delta) + u_{t+1} + \frac{\phi}{2} \left(\frac{K_{t+2}^R}{K_{t+1}^R} \right)^2 - g^2 \right] \]

(3.5)

The last equation equates the marginal cost of increasing one unit of capital for the next period to its marginal benefit. To increase the capital by a unit next period, I need to make one unit of investment and I need to pay an adjustment cost of \(\phi(K_{t+1}^R/K_t^R - g) \). On the cost side, this will cause a decrease in today’s budget by an amount equal to \([1 + \phi(K_{t+1}^R/K_t^R - g)] \). In terms of benefit, this extra unit of capital will amass a rent of \(u_{t+1} \) next period. Additionally, this one unit of capital at the end of the period will be worth \((1 - \delta) \) units accounting for the depreciation. Last, more capital tomorrow will also cause a decrease in investment adjustment cost, as the firms will need to make adjustment from a higher base value of capital. This adjustment cost will be \(0.5\phi(K_{t+2}^R/K_{t+1}^R)^2 - 0.5\phi g^2 \).

3.2.1.2 Credit Constrained or Hand-to-mouth Households

Infinitely lived hand-to-mouth consumers maximize life time utility given as

\[E_0 \sum_{t=0}^{\infty} \nu_t \beta^t U(C_t^L, h_t^L) \]

where the period utility remains same as in the case of Ricardian agents

\[U(C_t^L, h_t^L) = \frac{(C_t^L - X_{t-1}(h_t^L)^{\omega})^{1-\gamma}}{1-\gamma} - 1 \]

However, hand-to-mouth consumers have following sequential budget constraint

\[C_t^L = W_t h_t^L \]

(3.6)

Hand-to-mouth consumers, therefore, consume all of their labor income every period and they do not save or borrow. In other words, they do not have any access to financial services. Setting up the problem for hand-to-mouth agents in a similar way, we get the following first order condition:

\[W_t = X_{t-1}(h_t^L)^{\omega-1} \]

(3.7)
As we have GHH preference, there is no income effect for labor choice. So credit constrained consumers have the same labor decision problem as Ricardian agents. Equation 3.2 and 3.3 give the same result as equation 3.7.

3.2.1.3 Aggregate Values

Since a fraction λ of people are credit constrained, aggregate variables are given as follows.

\[
C_t = \lambda C^L_t + (1 - \lambda) C^R_t
\]

(3.8)

\[
h_t = \lambda h^L_t + (1 - \lambda) h^R_t = h^L_t = h^R_t
\]

(3.9)

\[
K_t = (1 - \lambda) K^R_t
\]

(3.10)

\[
I_t = (1 - \lambda) I^R_t
\]

(3.11)

\[
D^h_t = (1 - \lambda) D^R_t
\]

(3.12)

3.2.2 Firms

The economy is assumed to be populated with a measure 1 of firms owned by Ricardian households. The production function of these firms is a simple Cobb-Douglas function is given as:

\[
Y_t = A_t K^\alpha_t (X_t h_t)^{1-\alpha}
\]

(3.13)

where A_t is total factor productivity and X_t is labor-augment productivity. K_t represents the aggregate level of capital stock and h_t is aggregate level of labor. Total factor productivity, A_t follows exogenous stationary shock process, given as

\[
\ln A_{t+1} = \rho_A \ln A_t + \epsilon^A_{t+1}
\]

As already mentioned, labor augmented productivity, X_t, represents the non-stationary TFP shock process and it’s rate also follows an $AR(1)$ process as is specified earlier.
Firms also adhere to a working capital constraint and thus need to hold a non interest bearing asset in an amount of at least η fraction of wage bill

$$M_t \geq \eta W_t h_t$$

As long as $r_t > 0$, this constraint will always bind and the firm will not hold money (which is not paying any returns) in excess of $\eta W_t h_t$. Profit of the firm, π_t^F, at time t can therefore be calculated from:

$$Y_t - u_t K_t - W_t h_t + \left(\frac{D_{t+1}^F}{1 + r_t} - D_t^F \right) = \pi_t^F + (M_t - M_{t-1}) \tag{3.14}$$

Firms chooses the level of capital, labor, output, money holding and firm-level debt in order to maximize total discounted lifetime profits

$$E_0 \sum_{t=0}^{\infty} \beta^t \cdot \zeta_t X_{t-1}^{\gamma} \cdot \pi_t^F$$

Additionally, firms also need to adhere to a no-ponzi condition given by:

$$\lim_{j \to \infty} E_t \frac{D_{t+j+1}^F - M_{t+j+1}}{\Pi_{s=0}^{j}(1 + r_{t+s})} \leq 0$$

Setting up the firm problem by substituting $\eta W_t h_t$ for M_t:

$$\mathcal{L}^R = E_0 \sum_{t=0}^{\infty} \beta^t X_{t-1}^{\gamma} \zeta_t \left[A_t K_t^\alpha (X_t h_t)^{1-\alpha} - u_t K_t - W_t h_t - (M_t - M_{t-1}) + \left(\frac{D_{t+1}^F}{1 + r_t} - D_t^F \right) + \xi_t \{ M_t - \eta W_t h_t \} \right]$$

The first order conditions with respect to $\{K_t, h_t, D_{t+1}^F, M_t\}$ are given as:

$$\alpha A_t \left(\frac{X_t h_t}{K_t} \right)^{1-\alpha} = u_t \tag{3.15}$$

$$(1 - \alpha) A_t \left(\frac{K_t}{X_t h_t} \right)^\alpha X_t = W_t [1 + \eta \xi_t] \tag{3.16}$$

$$\zeta_t = \frac{\beta (1 + r_t)}{g_t} E_t [\xi_{t+1}] \tag{3.17}$$

$$(1 - \xi_t) \xi_t = \frac{\beta}{g_t} E_t [\xi_{t+1}] \tag{3.18}$$

The last two equations can be solved to get $\xi_t = \frac{r_t}{1 + r_t}$.

103
3.2.3 Banks

Representative bank in this economy lends to optimizing agents and firms. Balance sheet of bank can be written as following.

\[\frac{D_{t+1}}{1+r_t} + M_t = \frac{D^b_{t+1}}{1+r_t} + \frac{D^F_{t+1}}{1+r_t} = \frac{(1-\lambda)D^R_{t+1}}{1+r_t} + \frac{D^F_{t+1}}{1+r_t} \] \hspace{1cm} (3.19)

Profit of the representative bank is given as:

\[\pi^B_t = D^F_t + D^H_t - D_t - M_{t-1} = D^F_t + (1-\lambda)D^R_t - D_t - M_{t-1} \] \hspace{1cm} (3.20)

and the aggregate profit in the economy is \(\pi_t = \pi^B_t + \pi^F_t \). As the owner of banks as well as firms, the Ricardian agents get all the profits

\[\pi^R_t = \pi_t/(1-\lambda) \]

3.2.4 Aggregating the Decentralized Economy

3.2.4.1 Specification of Interest Rate Shocks

In order to induce stationarity, I make the interest rate elastic to debt level in the country i.e. a higher debt level will entail a high interest rate. Additionally, there can be exogenous shocks to the country interest rate. Thus, the interest rate specification of the country is given as:

\[r_t = r^* + \psi \left(e^{\frac{\delta_{t+1}/\bar{y} - \bar{d}}{\gamma}} - 1 \right) + e^{\mu t - 1} - 1 \] \hspace{1cm} (3.21)

where \(\bar{d} \) is the detrended cross sectional average debt level and \(\bar{y} \) is the cross sectional average output of the country. \(\bar{D}_{t+1} \) is the debt level acquired by the country at time \(t \) to be repaid at time \(t+1 \). This debt is held by the bank. The last shock is to the country specific interest rate spread and is represented by \(\mu_t \) here. It follows an AR(1) process, given as

\[\ln \mu_{t+1} = \rho_\mu \ln \mu_t + \epsilon^\mu_{t+1} \]
3.2.4.2 Listing the Frictions and the Shocks in the Model

The paper features two financial frictions and five exogenous shocks. The presence of hand-to-mouth consumers acts as the first financial friction. This enables the model to capture the presence of households who do not have access to financial services in the country. The second financial friction is in the form of working capital constraint. Working capital constraints amplify the effect of interest rate fluctuations on output through firms’ labor demand in the labor market. The five exogenous shocks in the model pertain to preference shock, government expenditure shock, stationary and non-stationary productivity shocks, and shocks to interest rate spread. The processes of all fives shocks are reproduced here for convenience.

Preference shock, affecting the utility function of the agents, follows:

\[\ln \nu_{t+1} = \rho_\nu \ln \nu_t + \epsilon_{\nu, t+1} \]

The aggregate spending shock or the government expenditure shock, that manifests in the detrended value of government spending \((s_t = S_t/X_{t-1})\), follows:

\[\ln (s_{t+1}/\bar{s}) = \rho_s \ln (s_t/\bar{s}) + \epsilon_{s, t+1} \]

The stationary and non-stationary productivity shocks follow:

\[\ln A_{t+1} = \rho_A \ln A_t + \epsilon_{A, t+1} \]
\[\ln (g_{t+1}/g) = \rho_g \ln (g_t/g) + \epsilon_{g, t+1} \]

where \(g_t = X_t/X_{t-1}\).

Last, the shock to interest rate spread follows:

\[\ln \mu_{t+1} = \rho_\mu \ln \mu_t + \epsilon_{\mu, t+1} \]

3.2.4.3 Aggregate Resource Constraint

Resources in the economy are shared between banks, firms and households. The profits that Ricardian households earn come either from the banks or the firms. Thus, profit in the
economy can be written as:

\[\pi_t = \pi^F_t + \pi^B_t \]

which also gives the profit that every Ricardian agent gets every period \(\pi^R_t = \pi^F_t \). Substituting the values of firm and bank profits, we get:

\[
\pi_t = [Y_t - u_tK_t - W_th_t + (D_{t+1}^F/(1 + r_t) - D_t^F) - (M_t - M_{t-1})] + [D_t^F + (1 - \lambda)D_t^R - D_t - M_{t-1}]
\]

\[= Y_t - u_tK_t - W_th_t + D_{t+1}^F/(1 + r_t) + (1 - \lambda)D_t^R - M_t - D_t \]

The profit here can be used to get the profit of a representative Ricardian household which in turn can be used in the budget constraint of the Ricardian household.

\[
C^R_t + I^R_t + AC^R_t + S^R_t + D_t^R = \frac{D_{t+1}^R}{1 + r_t} + W_th_t^R + u_tK_t^R + \frac{\pi_t}{1 - \lambda}
\]

Using the profit equation and the fact that \(K_t = (1 - \lambda)K_t^R \) and \(h_t = h_t^R \):

\[
C^R_t + I^R_t + AC^R_t + S^R_t = \frac{D_{t+1}^R}{1 + r_t} + \frac{Y_t}{1 - \lambda} - \frac{\lambda}{1 - \lambda}W_th_t^R + \frac{1}{1 - \lambda}D_t^F_{t+1} - \frac{M_t}{1 - \lambda} - \frac{D_t}{1 - \lambda}
\]

Using the bank’s balance sheet to substitute for \(D_{t+1}^F \)

\[
C^R_t + I^R_t + AC^R_t + S^R_t = \frac{Y_t}{1 - \lambda} - \frac{\lambda}{1 - \lambda}W_th_t^R + \frac{1}{1 - \lambda}D_t^F_{t+1} - \frac{1}{1 - \lambda}D_t
\]

Multiplying both sides by \(1 - \lambda \), and using aggregate values and the budget constraint of the hand-to-mouth household: \(W_th_t^R = W_th_t^L = C_t^L \), we get

\[Y_t + \frac{D_{t+1}}{1 + r_t} = (1 - \lambda)C^R_t + \lambda C_t^L + I_t + AC_t + S_t + D_t \quad (3.22) \]

This aggregate resource constraint of the economy encompasses the profit equation and the balance sheet of banks; profit function of firms; budget constraints of the Ricardian and hand-to-mouth consumers; and the equations for aggregate values. The equation illustrates that the output and total borrowings by the banks in the economy are used for consumption of Ricardian and hand-to-mouth households; investment and the associated adjustment costs borne by the firms; spending by the government; and repayment of the old debt.
3.2.5 Equilibrium

In equilibrium, Ricardian households; hand-to-mouth households; and the firms solve their respective optimization problem given the shock processes \{\nu_t, s_t, \mu_t, A_t, g_t\}; the initial levels of labor-augmented component of productivity, debt and the capital; interest rates and the aggregate resource constraint.

1. Ricardian households choose \{C^R_t, h_t, \zeta_t, K_{t+1}\} to solve 3.2, 3.3, 3.4 and 3.5 (after converting the variables \(h^R, K^R\) to aggregate variables) given the shock processes, wages, and rental rate.

2. Hand-to-mouth households choose \{C^L_t, h_t\} to solve 3.6 and 3.7 given the wages.

3. Firms choose \{K_t, h_t\} to solve 3.15 and 3.16 given \(\xi_t = \frac{r_t}{1+r_t}\), the shock processes, wages, and rental rate.

4. Equilibrium wage clear the labor market and equilibrium rental rate clears the capital market.

5. Aggregate resource constraint 3.22 is satisfied.

Finally, I detrend all the variables using \(X_{t-1}\) and define: \(y_t = \frac{Y_t}{X_{t-1}}, \ c_t = \frac{C_t}{X_{t-1}}, \ c^R_t = \frac{C^R_t}{X_{t-1}}, \ c^L_t = \frac{C^L_t}{X_{t-1}}, \ d_t = \frac{D_t}{X_{t-1}}, \ k_t = \frac{K_t}{X_{t-1}}, \ w_t = \frac{W_t}{X_{t-1}}\). Thus, a competitive equilibrium is a set of processes \(\{c^R_t, c^L_t, c_t, k_{t+1}, d_{t+1}, h_t, w_t, r_t, \zeta_t\}\) satisfying:

\[
\nu_t \left[c^R_t - \frac{(h_t)^\omega}{\omega} \right]^{-\gamma} = \zeta_t
\]
(3.23)

\[
w_t = h_t^{\omega-1}
\]
(3.24)

\[
\zeta_t = \frac{\beta(1+r_t)}{g_t} E_t \zeta_{t+1}
\]
(3.25)

\[
\zeta_t \left[1 + \phi \left(\frac{k_{t+1}}{k_t} g_t - g \right) \right] = \frac{\beta}{g_t} E_t \zeta_{t+1} \left[(1-\delta) + \alpha A_t \left(\frac{g_{t+1} h_{t+1}}{k_{t+1}} \right)^{1-\alpha} + \frac{\phi}{2} \left(\frac{k_{t+2}}{k_{t+1}} g_{t+1} \right)^2 - g^2 \right]
\]
(3.26)

\[
c^L_t = w_t h_t
\]
(3.27)
\[c_t = \lambda c_t^L + (1 - \lambda)c_t^R \] \hspace{1cm} (3.28)

\[w_t = \frac{1 - \alpha}{1 + \frac{1}{r}} A_t \left(\frac{k_t}{g_t h_t} \right)^{\alpha} g_t \] \hspace{1cm} (3.29)

\[A_t k_t^\alpha (g_t h_t)^{1-\alpha} + g_t d_{t+1}^{1+r_t} = c_t + g_t k_{t+1} - (1 - \delta)k_t + \frac{\phi}{2} \left(\frac{k_{t+1}}{k_t} g_t - g \right)^2 k_t + s_t + d_t \] \hspace{1cm} (3.30)

\[r_t = r^* + \psi \left(e^{\frac{d_{t+1} - \bar{d}}{\bar{r}}} - 1 \right) + e^{\mu_t - 1} - 1 \] \hspace{1cm} (3.31)

given \(\bar{d} = d_t \), the transversality conditions, \(d_{-1}, k_0 \), and the time series of shocks processes.

Trade balance and current account equations follow by definition.

\[tb_t = A_t k_t^\alpha (g_t h_t)^{1-\alpha} - c_t - (g_t k_{t+1} - (1 - \delta)k_t) - \frac{\phi}{2} \left(\frac{k_{t+1}}{k_t} g_t - g \right)^2 k_t - s_t \] \hspace{1cm} (3.32)

\[ca_t = tb_t - \frac{r_{t-1}}{1 + r_{t-1}} d_t = \frac{d_t}{1 + r_{t-1}} - g_t \frac{d_{t+1}}{1 + r_t} \] \hspace{1cm} (3.33)

3.2.6 Steady State

In the absence of shocks, all the de-trended variables remain constant over time in the deterministic steady state. These detrended variables can be backed out in such a steady state and therefore the steady state is called deterministic steady state. The law of motion of economic variables is later approximated around this steady state. To start with, Equation 3.31 produces a steady state interest rate to be \(r^* \) if the debt level in steady state satisfies \(\bar{d} = d = \bar{d} \).\(^5\) Thus, equation 3.25 reduces to \(\zeta_t = \zeta_{t+1} \) with the assumption \(\beta(1 + r^*) = g^\gamma \).

Equation 3.26 in the steady state, gives effective capital labor ratio

\[\kappa = \frac{k}{gh} = \left(\frac{\alpha}{r^* + \delta} \right)^{\frac{1}{1-\alpha}} \]

which along with Equations 3.29 and 3.24 gives the steady state level of labor

\[h = \left(g \cdot \frac{(1 - \alpha)(1 + r^*)}{1 + r^* + \eta r^*} \left(\frac{\alpha}{r^* + \delta} \right)^{\frac{\alpha}{1-\alpha}} \right) \frac{1}{1-\alpha} \]

\(^5\)The steady state value of debt is chosen to calibrate the average level of trade balance to output ratio.
Equations 3.24 and 3.27 together with the steady state value of h give values of wages as well as consumption of hand-to-mouth households

$$w = h^{\omega - 1}$$

$$c_L = h^\omega$$

The values of h and k/gh also give the state value of k and y

$$k = g \cdot h \cdot \kappa$$

$$y = \kappa^\alpha \cdot gh$$

The values of k and h give the steady state value of output. This along with calibrated values of average government expenditure, \bar{s}, and the steady state level of debt, \bar{d}, provide the aggregate consumption in the economy from Equation 3.30.

$$c = y - (g - 1 + \delta)k - \left(1 - \frac{g}{1 + r^*}\right)\bar{d} - \bar{s}$$

which can be used to get the steady state value of consumption for the Ricardian households using Equation 3.28.

$$c^R = \frac{c - \lambda c_L}{1 - \lambda}$$

The steady state level of trade balance is given as:

$$tb = \bar{d} - \frac{g}{1 + r^*}\bar{d}$$

3.3 Model Solution

Since the equilibrium of the model is expressed as set of non-linear stochastic difference equations which can not be solved analytically, I resort to using a linear approximation of the equilibrium conditions near the steady state in order to study the dynamics of the system.
3.3.1 Calibrated Parameters

A set of parameters in the model that are calibrated either by following the existing literature or in order to match moments. The remaining parameters are estimated econometrically.

Intertemporal elasticity of substitution, γ, is set to 2 which is standard in the macroeconomics literature. A depreciation rate, δ, of 12.55% is assumed following the value for Argentina used in Garcia-Cicco et al. (2010). The labor share, α, is set to 0.32 following the literature. The value of ω is set to 1.455 following Mendoza (1991) which gives a Frisch elasticity of labor supply to be equal to 2.20. Average yearly government spending is calibrated to match the average of 54 years for respective countries. For example, the value of \bar{s} for Brazil is set to 0.1459 showing a government spending of 14.59% out of GDP on an average. Average growth rate of per capita output is also country specific and used from the data. For example, the value of g for Brazil is set to be equal to 1.0229 representing a 2.29% of growth rate over a period of 54 years. The time series of real interest is not available for individual countries. Therefore, I set the impatience parameter, β to 0.96 and calibrate r^* for individual countries to satisfy the steady state assumption of $\beta(1 + r^*) = g^7$.

This gives us an average interest rate of 8.47% across countries with a minimum of 1.29% and a maximum of 17.95%. The interest rate for Brazil, for example, turns out to be 8.99%. The value of \bar{d} is country specific and chosen to match the average trade balance to output ratio in the country $\bar{d} = \frac{tb}{(1 - g/(1 + r))}$. This way, the average debt level for Brazil is set to be 0.0025.

Table 3.1: Calibrated Parameters

<table>
<thead>
<tr>
<th>Country Specific (Yes/No)</th>
<th>β</th>
<th>γ</th>
<th>δ</th>
<th>α</th>
<th>ω</th>
<th>\bar{s}</th>
<th>g</th>
<th>r^*</th>
<th>\bar{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (For Brazil, if country specific)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Alternatively, I can take average long run value of g from the data and assuming the value of r^* to be equal to 4.5%, 6.5% and 8% across rich, emerging and poor countries, I can calibrate the value of β to satisfy the same equation. Here, the equation shows that high value of g and a low value of r^* might generate a value of β greater than 1. To get rid of situations like these, I assume $\beta_c = \frac{\beta_{calibrated}}{0.96}$, 0.96 is by assumption. But this way, there can be cases where the condition, $\beta(1 + r^*) = g^7$, might not hold.
3.3.2 Estimated Parameters

All the remaining parameters are estimated using the likelihood-based Bayesian method. These are a total of 17 parameters which consist of 13 structural parameters and 4 parameters governing measurement error. The structural parameters govern the investment adjustment costs, through ϕ; debt elasticity of the world interest rate faced by different countries, through ψ; the extent of working capital constraints, through η. Remaining structural parameters govern the persistence and the volatility of five shock processes: $\{\rho_A, \sigma_A\}$, $\{\rho_y, \sigma_y\}$, $\{\rho_s, \sigma_s\}$, $\{\rho_{\mu}, \sigma_{\mu}\}$ and $\{\rho_{\nu}, \sigma_{\nu}\}$. The last 4 parameters allow for measurement error in the observables: $\{\sigma_{me}^{gY}, \sigma_{me}^{GC}, \sigma_{me}^{gI}, \sigma_{me}^{tby}\}$. Since I allow for standard error, the observables are:

\[
\begin{bmatrix}
\Delta \ln Y_t + \sigma_{me}^{gY} \epsilon_t^{me,gY} \\
\Delta \ln C_t + \sigma_{me}^{GC} \epsilon_t^{me,GC} \\
\Delta \ln I_t + \sigma_{me}^{gI} \epsilon_t^{me,gI} \\
tby + \sigma_{me}^{tby} \epsilon_t^{me,tby}
\end{bmatrix}
\]

All the 17 parameters are assumed to have a uniform prior. The upper and lower bounds of the priors are as shown in Table C2 of the Appendix.

3.3.3 Role of Credit Constraints: An Illustration

The presence of credit constrained households plays a role in increasing volatility ratio of an economy beyond 1 through the presence of Ricardian agents who act as capitalists. These capitalists own the firms and make investment decisions to earn rental as well as profit income. The bigger the fraction of credit constrained households, the smaller will be the fraction of capitalist and thus, the capitalists govern a bigger share of per capita profits which prompts them to have a bigger investment response. A bigger portion of profit and a bigger investment response causes the capitalists to have a higher consumption volatility in the presence of credit constrained households.
Consider a simple example where stationary technology shock is the only shock in the model with no financial friction. In such a scenario, if consumption has to be more volatile than output, the technology shocks has to be very persistent. Only in this case, the households expect the future income increase to be higher than the current increase in income. Thus, the current response of consumption will be higher than the current response of income making consumption more volatile than output. Given this volatility ratio of more than 1 for the Ricardian households, if we add credit constrained households in the model as described in this chapter, the credit constrained households will reduce the volatility ratio of the economy but the ratio will still be higher than one.7 On the other extreme, if the Ricardian households smooth consumption and the volatility ratio is less than one in the

7As the credit constrained households will always have a volatility ratio of 1.
absence of credit constrained households, adding credit constrained households is going to increase the volatility ratio of the economy towards 1.

The aforementioned idea is depicted in Figure 3.2. The solid line represents the case when none of the households are credit constrained and hence replicated the figure from Uribe and Schmitt-Grohé (2017). The dotted lines represent cases when the fraction of credit constrained households is assumed to be 0.2, 0.4, 0.6 and 0.8 respectively. All these lines except the one with $\lambda = 0.8$ can be rationalized using the same aforementioned idea. After including credit constrained households, volatility ratio increases and goes towards 1 for the regions where volatility ratio in the absence of credit constrained households was less than 1. Contrarily, volatility ratio decreases and goes towards 1 for the regions where volatility ratio in the absence of credit constrained households was more than 1. The dotted line representing the model with $\lambda = 0.8$ shows a surprising movement suggesting a role for another mechanism.

This mechanism arises from the assumption that it is only the capitalists that own the firms and earn the rental and the profit income. Since a model with higher fraction of credit constrained households will have a lower fraction of capitalists, the non-labor income will consequently be shared within a smaller fraction of capitalists. Thus, even at lower persistence level for the stationary shocks, a higher fraction of non-wage income will generate a higher volatility ratio because the volatility ratio for capitalists will increase. This consumption volatility of the representative Ricardian household or a representative capitalist is shown in Figure 3.3.

Figure 3.3 shows that an increase in the fraction of credit constrained households causes the volatility ratio of capitalists to go up. Thus the volatility ratio of the aggregate economy rises and goes beyond 1.

8Chapter 5, Figure 5.1.

9In the thought experiment, we were assuming that: (1) If volatility ratio of capitalists is 1.2 and we add credit constrained households with volatility ratio of 1, the aggregate volatility ratio will decrease but will be above 1; or (2) If volatility ratio of capitalists is 0.8 and we add credit constrained households with volatility ratio of 1, the aggregate volatility ratio will increase but will be lower to 1. The model shows that when we add credit constrained households, the volatility ratio of capitalists might increase to 1.3 causing
3.3.4 Results: Closed Economy Framework

The closed economy model abstains from any external debt and thus it does not feature trade balance to output ratio as an observable. I estimate the parameter values, including the fraction of credit constrained households, for this closed economy and use the parameter governing the fraction of credit constrained households, λ, in the open economy model. I find that the mean value from the posterior distribution of λ, the fraction of hand to mouth consumers, correlates well with the composite measure of financial access from Honohan (2008).

Table 3.2 shows the results from the estimation along with the data from Uribe and Schmitt-Grohé (2017) in Row 1 and Honohan (2008) in Row 2. The mean values of parameter estimates for the countries are averaged across the groups of poor, emerging and rich.
Table 3.2: Estimation Results of Closed Economy Model

<table>
<thead>
<tr>
<th></th>
<th>Poor Countries</th>
<th>Emerging Countries</th>
<th>Rich Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number = 18</td>
<td>0.961</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>Number = 32</td>
<td>0.620</td>
<td>44.733</td>
<td>89.867</td>
</tr>
<tr>
<td>σ<sub>c</sub>/σ<sub>y</sub></td>
<td>1.258</td>
<td>0.961</td>
<td>0.953</td>
</tr>
<tr>
<td>Measure of Financial Access</td>
<td>26.120</td>
<td>0.411</td>
<td>0.169</td>
</tr>
<tr>
<td>λ</td>
<td>0.560</td>
<td>0.411</td>
<td>0.169</td>
</tr>
<tr>
<td>σ<sub>y</sub></td>
<td>0.018</td>
<td>0.015</td>
<td>0.010</td>
</tr>
<tr>
<td>ρ<sub>y</sub></td>
<td>0.335</td>
<td>0.339</td>
<td>0.524</td>
</tr>
<tr>
<td>σ<sub>α</sub></td>
<td>0.024</td>
<td>0.022</td>
<td>0.011</td>
</tr>
<tr>
<td>ρ<sub>α</sub></td>
<td>0.665</td>
<td>0.745</td>
<td>0.619</td>
</tr>
<tr>
<td>σ<sub>ν</sub></td>
<td>0.691</td>
<td>0.692</td>
<td>0.561</td>
</tr>
<tr>
<td>ρ<sub>ν</sub></td>
<td>0.661</td>
<td>0.700</td>
<td>0.849</td>
</tr>
<tr>
<td>σ<sub>s</sub></td>
<td>0.197</td>
<td>0.190</td>
<td>0.095</td>
</tr>
<tr>
<td>ρ<sub>s</sub></td>
<td>0.155</td>
<td>0.452</td>
<td>0.899</td>
</tr>
<tr>
<td>φ</td>
<td>2.545</td>
<td>2.777</td>
<td>2.499</td>
</tr>
<tr>
<td>σ<sub>me</sub></td>
<td>0.011</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>σ<sub>me</sub></td>
<td>0.033</td>
<td>0.022</td>
<td>0.005</td>
</tr>
<tr>
<td>σ<sub>me</sub></td>
<td>0.053</td>
<td>0.043</td>
<td>0.015</td>
</tr>
</tbody>
</table>

(1) First two rows show statistics from data.
(2) All the parameters are average for the mean value of the posterior distribution of that parameter across the group of countries.

Table 3.2 also shows that on an average, the percentage of credit constrained households is 56% for poor countries, 41.1% for emerging countries and 16.9% for rich countries. Values of σ_a and σ_y, indicate that both the stationary and non stationary shocks are more precisely estimated for rich countries than for poor or emerging countries. Unlike both Aguiar and Gopinath (2007) and Garcia-Cicco et al. (2010), the estimates show a smaller persistence across countries for both stationary and non-stationary shocks which also follows from the illustration in the previous section. Non-stationary shocks to rich countries display higher persistence, ρ_y = 0.524, compared to emerging and poor countries, ρ_y = 0.339 and ρ_y = 0.335 respectively.
countries. For individual subgroups, the correlation is not significant for poor countries but for the subgroups of rich and emerging countries, it is again negative and significant.

Figure 3.4: Financial Access from Data Vs Credit Constrained Households from Model

The parameter for the fraction of credit constrained households, \(\lambda \), is therefore used from this setting in the open economy model described in this chapter.

3.3.5 Results: Open Economy Framework

The open economy model uses the calibrated parameters mentioned in Table 3.1; the fraction of credit constrained households, \(\lambda \), from the previous section. The remaining parameters are estimated using the Bayesian method.\(^\text{11}\) The model with these parameter values is then used to compare against a model with same parameters except one, fraction of credit constrained households set to 0. This way I compare the marginal affect of introducing credit constrained households on otherwise similar models.

\(^\text{11}\)Alternatively, rather than getting the estimate for credit constrained households from a closed economy model, I can directly use the micro data estimate of credit constrained households for the US from Dogra and Gorbachev (2016) and extrapolate the fraction for for other countries using Honohan (2008). The results remain robust to using this this alternative estimated of credit constrained households.
Table 3.3: Estimation Results of Open Economy Model

<table>
<thead>
<tr>
<th></th>
<th>Poor Countries</th>
<th>Emerging Countries</th>
<th>Rich Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number = 18</td>
<td>Number = 32</td>
<td>Number = 25</td>
</tr>
<tr>
<td>σ_c/σ_y</td>
<td>1.258</td>
<td>0.961</td>
<td>0.953</td>
</tr>
<tr>
<td>Measure of Financial Access</td>
<td>26.120</td>
<td>44.733</td>
<td>89.867</td>
</tr>
<tr>
<td>λ</td>
<td>0.560</td>
<td>0.411</td>
<td>0.169</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.026</td>
<td>0.020</td>
<td>0.013</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.666</td>
<td>0.616</td>
<td>0.645</td>
</tr>
<tr>
<td>σ_a</td>
<td>0.024</td>
<td>0.021</td>
<td>0.015</td>
</tr>
<tr>
<td>ρ_a</td>
<td>0.710</td>
<td>0.786</td>
<td>0.861</td>
</tr>
<tr>
<td>σ_ν</td>
<td>0.398</td>
<td>0.450</td>
<td>0.278</td>
</tr>
<tr>
<td>ρ_ν</td>
<td>0.747</td>
<td>0.692</td>
<td>0.756</td>
</tr>
<tr>
<td>σ_μ</td>
<td>0.079</td>
<td>0.066</td>
<td>0.013</td>
</tr>
<tr>
<td>ρ_μ</td>
<td>0.585</td>
<td>0.656</td>
<td>0.581</td>
</tr>
<tr>
<td>ϕ</td>
<td>1.620</td>
<td>2.220</td>
<td>2.560</td>
</tr>
<tr>
<td>ψ</td>
<td>3.460</td>
<td>3.160</td>
<td>3.400</td>
</tr>
<tr>
<td>η</td>
<td>2.170</td>
<td>2.120</td>
<td>1.80</td>
</tr>
<tr>
<td>σ_{me}^{gY}</td>
<td>0.012</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>σ_{me}^{gC}</td>
<td>0.031</td>
<td>0.019</td>
<td>0.005</td>
</tr>
<tr>
<td>σ_{me}^{gI}</td>
<td>0.050</td>
<td>0.041</td>
<td>0.012</td>
</tr>
</tbody>
</table>

(1) First two rows show statistics from data and λ is estimated in the previous part.
(2) All the parameters are average for the mean value of the posterior distribution of that parameter across the group of countries.

Table 3.3 shows the results from the estimation along with the data from Uribe and Schmitt-Grohé (2017) in Row 1; Honohan (2008) in Row 2 and the fraction of credit constrained households, λ, from previous section in Row 3. The mean values of parameter estimates for the countries are averaged across the groups of poor, emerging and rich countries. The estimates for persistence of stationary shock goes down as we go from rich to emerging and emerging to poor countries. Estimates of parameter governing investment adjustment costs, ϕ, on an average, are substantially lower than those in Garcia-Cicco et al. (2010) whereas the estimates of parameters governing the debt elasticity of interest rate, ψ, and working capital constraints, η, are substantially higher. A high value for the parameter related to working capital constraint, η, is surprising not only because it is high but also higher than 1. It suggests that output is more sensitive to interest rate fluctuations that working capital constraints with a fraction of wage bill can explain. A high value for the
parameter governing debt elasticity of interest rate, ψ, shows that the interest rate is highly sensitive to the debt level of the countries.

Once the parameters are estimated, I do a variance decomposition to distinguish the driving forces behind volatilities in output growth, consumption growth, investment growth and trade balance to output ratio. This variance decomposition is done both for the benchmark open economy model, with estimated parameters, as well as the counterfactual open economy model, which has same parameters except the fraction of credit constrained households is set to 0.

Table 3.4: Benchmark model : Variance Decomposition

<table>
<thead>
<tr>
<th>Countries</th>
<th>Shocks</th>
<th>g^Y</th>
<th>g^C</th>
<th>g^I</th>
<th>TB/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor Countries</td>
<td>Non-stationary Shock</td>
<td>0.2957</td>
<td>0.1853</td>
<td>0.1309</td>
<td>0.3175</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.5146</td>
<td>0.2101</td>
<td>0.1327</td>
<td>0.0988</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.0863</td>
<td>0.4487</td>
<td>0.3481</td>
<td>0.2652</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.0834</td>
<td>0.1175</td>
<td>0.3444</td>
<td>0.2916</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0200</td>
<td>0.0383</td>
<td>0.0439</td>
<td>0.0269</td>
</tr>
<tr>
<td>Emerging Countries</td>
<td>Non-stationary Shock</td>
<td>0.2543</td>
<td>0.1702</td>
<td>0.1757</td>
<td>0.2985</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.5345</td>
<td>0.1930</td>
<td>0.1381</td>
<td>0.0736</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.0829</td>
<td>0.4199</td>
<td>0.2756</td>
<td>0.2154</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.1075</td>
<td>0.1786</td>
<td>0.3628</td>
<td>0.3993</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0208</td>
<td>0.0382</td>
<td>0.0478</td>
<td>0.0133</td>
</tr>
<tr>
<td>Rich Countries</td>
<td>Non-stationary Shock</td>
<td>0.2248</td>
<td>0.2694</td>
<td>0.1807</td>
<td>0.2752</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.6466</td>
<td>0.3405</td>
<td>0.2105</td>
<td>0.0723</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.0813</td>
<td>0.2975</td>
<td>0.3193</td>
<td>0.3624</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.0357</td>
<td>0.0752</td>
<td>0.2244</td>
<td>0.2866</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0117</td>
<td>0.0175</td>
<td>0.0652</td>
<td>0.0036</td>
</tr>
</tbody>
</table>

Contrary to Garcia-Cicco et al. (2010), the variance decomposition of the benchmark model shows that non-stationary productivity shocks to productivity are important in explaining the variance of all the variables. Almost a third of the variance in output growth as well as trade balance to output ratio is explained by non-stationary technology shocks. For volatility in growth rate in consumption and investment, 18.5% and 13%, is explained by non-stationary technology shocks. The other main result of Garcia-Cicco et al. (2010) that interest rate shocks are most important in explaining trade balance to output ratio does
not hold. All three, non-stationary productivity shocks, preference shocks and interest rate shocks have similar effect in explaining the volatility of trade balance to output ratio which is true for each group of countries. Stationary technology shocks explain a big fraction of the variation in output growth but it is still not as high. Close to a third is still explained by non-stationary technology shocks.

An interesting observation is that neither stationary nor non-stationary productivity shocks seem to explain the major extent of consumption volatility. The results suggest that preference shock is most important to explain excess consumption volatility. This results puts the intuition behind the illustration for the role of credit constraints in the doubt. To dig deeper I compare the variance decomposition result of consumption growth for the benchmark model with the counterfactual model. As shown in Table 3.5, in the counterfactual model, with no credit constrained households, the contribution of preference shock toward excess consumption volatility is even higher. As soon as I add credit constrained households, the contribution of preference shock goes down from 59% to 45% for poor countries, 56% to 42% for emerging countries and 34% to 30% for rich countries. Thus, for poor and emerging countries, an introduction of credit constrained households causes productivity shocks, both stationary and non-stationary, to explain 10% more of excess volatility in consumption growth. Though the magnitude of this channel is not huge, it lends support to the the illustration where introduction of credit constrained households increases investment volatility even for less persistent technology shocks. Another test of the illustration is to compare the contribution of productivity shocks in the volatility of growth rate of investment between Benchmark and Counterfactual models.

Table 3.6 shows that in the Counterfactual model, volatility in investment growth was mainly driven by preference and interest rate shocks. The inclusion of credit constrained households reduces the contribution of preference shocks here as well. The contribution of preference shock goes down by 11%, on an average, for both poor and emerging countries. The contribution of technology shocks, stationary and non-stationary together, goes up by
Table 3.5: Variance Decomposition Comparison for Volatility in Consumption Growth

<table>
<thead>
<tr>
<th>Countries</th>
<th>Shocks</th>
<th>Benchmark Model: g^C</th>
<th>Counterfactual Model: g^C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor Countries</td>
<td>Non-stationary</td>
<td>0.1853</td>
<td>0.1443</td>
</tr>
<tr>
<td></td>
<td>Shock</td>
<td>0.2101</td>
<td>0.1589</td>
</tr>
<tr>
<td></td>
<td>Preference</td>
<td>0.4487</td>
<td>0.5901</td>
</tr>
<tr>
<td></td>
<td>Shock</td>
<td>0.1175</td>
<td>0.0775</td>
</tr>
<tr>
<td></td>
<td>Measurement</td>
<td>0.0383</td>
<td>0.0291</td>
</tr>
<tr>
<td></td>
<td>error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emerging</td>
<td>Non-stationary</td>
<td>0.1702</td>
<td>0.1298</td>
</tr>
<tr>
<td>Countries</td>
<td>Shock</td>
<td>0.1930</td>
<td>0.1466</td>
</tr>
<tr>
<td></td>
<td>Preference</td>
<td>0.4199</td>
<td>0.5624</td>
</tr>
<tr>
<td></td>
<td>Shock</td>
<td>0.1786</td>
<td>0.1340</td>
</tr>
<tr>
<td></td>
<td>Measurement</td>
<td>0.0382</td>
<td>0.0272</td>
</tr>
<tr>
<td></td>
<td>error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rich Countries</td>
<td>Non-stationary</td>
<td>0.2694</td>
<td>0.2652</td>
</tr>
<tr>
<td></td>
<td>Shock</td>
<td>0.3405</td>
<td>0.3037</td>
</tr>
<tr>
<td></td>
<td>Preference</td>
<td>0.2975</td>
<td>0.3445</td>
</tr>
<tr>
<td></td>
<td>Shock</td>
<td>0.0752</td>
<td>0.0697</td>
</tr>
<tr>
<td></td>
<td>Measurement</td>
<td>0.0175</td>
<td>0.0169</td>
</tr>
<tr>
<td></td>
<td>error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6% while the contribution of interest rate shocks goes up by 5% in the Benchmark model. The magnitude of the change is again small but this also lends support to the the illustration where introduction of credit constrained households increases investment volatility.

To summarize, using a large set of countries, I have summarized some important facts:
(1) Non-stationary productivity shocks remain important in explaining the volatility of all the variables; (2) The importance of stationary productivity shocks is still higher than that of non-stationary shocks in explaining volatility of most of these variables; (3) Interest rate shocks are important in explaining the volatility of trade balance to output ratio but the importance is much smaller than the one emphasized in Garcia-Cicco et al. (2010); (4) Introduction of credit constrained households increases the contribution of technology shocks, both stationary and non-stationary, in explaining the volatility of almost all the variables at the expense of decreasing the importance of preference shock.
Table 3.6: Variance Decomposition Comparison for Volatility in Investment Growth

<table>
<thead>
<tr>
<th>Countries</th>
<th>Shocks</th>
<th>Benchmark Model: g^I</th>
<th>Counterfactual Model: g^f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor Countries</td>
<td>Non-stationary Shock</td>
<td>0.1309</td>
<td>0.1039</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.1327</td>
<td>0.1058</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.3481</td>
<td>0.4604</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.3444</td>
<td>0.2959</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0439</td>
<td>0.0340</td>
</tr>
<tr>
<td>Emerging Countries</td>
<td>Non-stationary Shock</td>
<td>0.1757</td>
<td>0.1488</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.1381</td>
<td>0.1133</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.2756</td>
<td>0.3881</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.3628</td>
<td>0.3114</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0478</td>
<td>0.0385</td>
</tr>
<tr>
<td>Rich Countries</td>
<td>Non-stationary Shock</td>
<td>0.1807</td>
<td>0.1778</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.2105</td>
<td>0.2079</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.3193</td>
<td>0.3349</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.2244</td>
<td>0.2163</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0652</td>
<td>0.0631</td>
</tr>
</tbody>
</table>

3.4 Conclusion

By introducing credit constrained households in an augmented RBC model, this paper shows that even for less persistent productivity shocks, a consumption volatility to output volatility ratio of higher than one can be generated. The mechanism works the investment response of Ricardian households who own the firms and act as capitalists.

Using a large set of 75 countries—18 rich, 32 emerging and 25 poor—I also look at the importance of different shocks in driving volatility among a set of variables. I show that non-stationary productivity shocks remain important in explaining the volatility of all the variables and that the interest rate shocks are not as important in explaining the volatility across countries as emphasized in the literature.
Bibliography

Aguiar, M. and G. Gopinath (2006). Defaultable debt, interest rates and the current account. *Journal of International Economics* 69(1), 64–83. 1.3, 2.1, 2.1, 2.3.1, 2.4.1, 2.4.3.1, 2.4.3.1

Almeida, V., C. Esquivel, T. J. Kehoe, and J. P. Nicolini (2018). Did the 1980s in Latin America need to be a lost decade? 2.1

Arellano, C. (2008). Default risk and income fluctuations in emerging economies. *American Economic Review* 98(3), 690–712. 2.1, 2.1, 2.4.1, 2.4.1.1

Borri, N. and A. Verdelhan (2011). Sovereign risk premia. 2.1

Eichengreen, B. and A. Mody (1998). Interest rates in the north and capital flows to the south: is there a missing link? *International Finance* 1(1), 35–57. 2

Honohan, P. (2008). Cross-country variation in household access to financial services. *Journal of Banking & Finance* 32(11), 2493–2500. 3.1, 3.1, 3.1, 3.3.4, 3.3.4, 11, 3.3.5

124

Mallucci, E. (2015). Domestic debt and sovereign defaults. 2.1

Park, J. (2014). Contagion of sovereign default risk: the role of two financial frictions. 2.1

Uribe, M. and S. Schmitt-Grohé (2017). Open economy macroeconomics. Princeton University Press. 1.2.1, 8, 18, 4, 2.2, 19, 2.4.1.1, 2.4.1.3, 2, 3.1, 3.3.3, 3.3.4, 3.3.5

Appendix A

Appendix to Chapter 1
A.1 Figures and Tables

Figure A1: Countries defaulting in a 5-year rolling window by Region

The top panel shows number of countries in default in every year from 1975-2014 at the region level. The bottom panel shows fraction of countries defaulting in a 5-year rolling window starting every year at the region level. Maroon line highlights the period of clustered default while navy line highlights idiosyncratic defaults.
The figure shows the times series of Kalman smoothed global components scaled for Argentina. The top panel shows $\alpha^{ARG}_z z^w_t$ while the bottom panel shows $\alpha^{ARG}_x \ln(g^w_t)$.

Figure A2: Global transitory and permanent components of output
Note: (1) 0 depicts the crisis year. -1 and -2 depict 1 and 2 years before the crisis while 1 and 2 depict 1 and 2 years after the crisis. (2) The diagram is based on components of output process obtained from estimation using data from 49 defaulting countries and 10 developed countries.

The left panels plot growth rate in the permanent component of GDP. It starts with the total growth rate of permanent component—\(\log(\frac{g_{ct}}{g_{ctss}}) + \alpha_{cX}\log(\frac{g_{wt}}{g_{wss}}) \)—in the first row and then decomposes its country-specific and global parts—\(\log(\frac{g_{ct}}{g_{ctss}}) \) and \(\alpha_{cX}\log(\frac{g_{wt}}{g_{wss}}) \)—respectively. The right panels plot the transitory component of GDP. It starts with the total transitory component—\(z_{ct} + \alpha_{cz}\log(\frac{g_{wt}}{g_{wss}}) \)—in the first row and then decomposes its country-specific and global parts—\(z_{ct} \) and \(\alpha_{cz}\log(\frac{g_{wt}}{g_{wss}}) \)—respectively.
Figure A4: Change in Probability with changes in one explanatory

The figure depicts marginal change in probability of default if one explanatory variable changes (keeping all other explanatory variables fixed). The mean value of explanatory variables are highlighted with the vertical dashed line. The dash-dot line represents one standard deviations for respective explanatory variables.

Figure A5: Predicted probabilities: Specifications 1 vs Specifications 2
Table A1: Prior Distribution for Bayesian Estimation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uniform Prior Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ^c_z</td>
<td>0.0001 0.99</td>
</tr>
<tr>
<td>ρ^c_g</td>
<td>0.0001 0.99</td>
</tr>
<tr>
<td>σ^c_z</td>
<td>0.0001 0.9</td>
</tr>
<tr>
<td>σ^c_g</td>
<td>0.0001 0.9</td>
</tr>
<tr>
<td>ρ^w_z</td>
<td>0.0001 0.99</td>
</tr>
<tr>
<td>ρ^w_g</td>
<td>0.0001 0.99</td>
</tr>
<tr>
<td>α^W_{VEN}</td>
<td>0.0001 2</td>
</tr>
<tr>
<td>α^W_X</td>
<td>0.0001 2</td>
</tr>
<tr>
<td>α^c_z</td>
<td>-2 2</td>
</tr>
<tr>
<td>α^c_X</td>
<td>-2 2</td>
</tr>
<tr>
<td>α^r_z</td>
<td>-1 1</td>
</tr>
<tr>
<td>α^r_X</td>
<td>-1 1</td>
</tr>
<tr>
<td>ρ^r</td>
<td>0.0001 0.99</td>
</tr>
<tr>
<td>σ^r</td>
<td>0.0001 0.9</td>
</tr>
</tbody>
</table>

σ^c_z and σ^c_g are normalized to 1.
Table A2: Panel A: Bayesian Estimation Results from Basic Model: Posterior means

<table>
<thead>
<tr>
<th>Country</th>
<th>Posterior (Means)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρ_z^c</td>
</tr>
<tr>
<td>Algeria</td>
<td>0.1626</td>
</tr>
<tr>
<td>Argentina</td>
<td>0.6878</td>
</tr>
<tr>
<td>Belize</td>
<td>0.3905</td>
</tr>
<tr>
<td>Bolivia</td>
<td>0.7101</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.5867</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>0.3376</td>
</tr>
<tr>
<td>Cameroon</td>
<td>0.8621</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>0.8773</td>
</tr>
<tr>
<td>Chile</td>
<td>0.7050</td>
</tr>
<tr>
<td>Congo, Dem. Rep.</td>
<td>0.6105</td>
</tr>
<tr>
<td>Congo, Rep.</td>
<td>0.7061</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>0.1237</td>
</tr>
<tr>
<td>Cote d’Ivoire</td>
<td>0.2296</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>0.8124</td>
</tr>
<tr>
<td>Ecuador</td>
<td>0.6488</td>
</tr>
<tr>
<td>Gabon</td>
<td>0.8252</td>
</tr>
<tr>
<td>Ghana</td>
<td>0.5805</td>
</tr>
<tr>
<td>Greece</td>
<td>0.6912</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.8100</td>
</tr>
<tr>
<td>Guyana</td>
<td>0.3991</td>
</tr>
<tr>
<td>Honduras</td>
<td>0.5753</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.7164</td>
</tr>
<tr>
<td>Iran, Islamic Rep.</td>
<td>0.7373</td>
</tr>
<tr>
<td>Kenya</td>
<td>0.4121</td>
</tr>
<tr>
<td>Liberia</td>
<td>0.7149</td>
</tr>
</tbody>
</table>

Posterior means for ρ_z^c and ρ_y^c are 0.2428 and 0.4405 respectively.

The countries included in the estimation process are 59: 49 defaulting countries and 10 non-defaulting developed countries. Parameter estimates are reported only for 49 countries.
Table A2: Panel B: Bayesian Estimation Results from Basic Model: Posterior means

<table>
<thead>
<tr>
<th>Country</th>
<th>(\rho^c w)</th>
<th>(\rho^c g)</th>
<th>(\sigma^c w)</th>
<th>(\sigma^c g)</th>
<th>(\alpha^c w)</th>
<th>(\alpha^c X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madagascar</td>
<td>0.7012</td>
<td>0.2027</td>
<td>0.0277</td>
<td>0.0242</td>
<td>0.2641</td>
<td>0.0762</td>
</tr>
<tr>
<td>Malawi</td>
<td>0.3748</td>
<td>0.1971</td>
<td>0.0358</td>
<td>0.0243</td>
<td>0.3807</td>
<td>0.0223</td>
</tr>
<tr>
<td>Mauritania</td>
<td>0.3585</td>
<td>0.7058</td>
<td>0.0401</td>
<td>0.0222</td>
<td>-0.0198</td>
<td>0.1282</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.8485</td>
<td>0.2912</td>
<td>0.0179</td>
<td>0.0198</td>
<td>0.1995</td>
<td>0.3175</td>
</tr>
<tr>
<td>Myanmar</td>
<td>0.0965</td>
<td>0.7824</td>
<td>0.0229</td>
<td>0.0265</td>
<td>-0.0630</td>
<td>-0.2378</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0.5453</td>
<td>0.4486</td>
<td>0.0258</td>
<td>0.0523</td>
<td>0.1093</td>
<td>0.3091</td>
</tr>
<tr>
<td>Niger</td>
<td>0.8652</td>
<td>0.1404</td>
<td>0.0409</td>
<td>0.0373</td>
<td>0.2027</td>
<td>-0.2293</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.7130</td>
<td>0.4299</td>
<td>0.0240</td>
<td>0.0696</td>
<td>-0.0197</td>
<td>0.3720</td>
</tr>
<tr>
<td>Pakistan</td>
<td>0.2445</td>
<td>0.4417</td>
<td>0.0104</td>
<td>0.0168</td>
<td>-0.0213</td>
<td>0.1119</td>
</tr>
<tr>
<td>Panama</td>
<td>0.8199</td>
<td>0.3982</td>
<td>0.0109</td>
<td>0.0383</td>
<td>-0.0011</td>
<td>0.1594</td>
</tr>
<tr>
<td>Paraguay</td>
<td>0.8244</td>
<td>0.5602</td>
<td>0.0188</td>
<td>0.0238</td>
<td>0.2323</td>
<td>0.1831</td>
</tr>
<tr>
<td>Peru</td>
<td>0.3866</td>
<td>0.3374</td>
<td>0.0083</td>
<td>0.0419</td>
<td>0.2771</td>
<td>-0.0051</td>
</tr>
<tr>
<td>Philippines</td>
<td>0.9152</td>
<td>0.4705</td>
<td>0.0086</td>
<td>0.0243</td>
<td>0.0097</td>
<td>0.0632</td>
</tr>
<tr>
<td>Rwanda</td>
<td>0.8806</td>
<td>0.1984</td>
<td>0.1112</td>
<td>0.0407</td>
<td>0.3250</td>
<td>0.0164</td>
</tr>
<tr>
<td>Senegal</td>
<td>0.9055</td>
<td>0.7179</td>
<td>0.0251</td>
<td>0.0087</td>
<td>0.0120</td>
<td>-0.0803</td>
</tr>
<tr>
<td>Seychelles</td>
<td>0.4508</td>
<td>0.2376</td>
<td>0.0369</td>
<td>0.0292</td>
<td>0.4763</td>
<td>0.1367</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>0.3747</td>
<td>0.9015</td>
<td>0.0423</td>
<td>0.0249</td>
<td>0.0312</td>
<td>0.1226</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.4836</td>
<td>0.5937</td>
<td>0.0056</td>
<td>0.0158</td>
<td>0.1321</td>
<td>0.1751</td>
</tr>
<tr>
<td>Togo</td>
<td>0.1650</td>
<td>0.2487</td>
<td>0.0234</td>
<td>0.0426</td>
<td>0.1152</td>
<td>0.4184</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>0.8807</td>
<td>0.5966</td>
<td>0.0134</td>
<td>0.0352</td>
<td>0.0700</td>
<td>0.1437</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.8412</td>
<td>0.4141</td>
<td>0.0324</td>
<td>0.0127</td>
<td>0.1549</td>
<td>0.1400</td>
</tr>
<tr>
<td>Uruguay</td>
<td>0.6730</td>
<td>0.3523</td>
<td>0.0126</td>
<td>0.0286</td>
<td>0.4200</td>
<td>-0.0647</td>
</tr>
<tr>
<td>Venezuela, RB</td>
<td>0.7877</td>
<td>0.5600</td>
<td>0.0410</td>
<td>0.0131</td>
<td>0.3437</td>
<td>0.2939</td>
</tr>
<tr>
<td>Zambia</td>
<td>0.8779</td>
<td>0.1242</td>
<td>0.0248</td>
<td>0.0346</td>
<td>0.2236</td>
<td>0.0340</td>
</tr>
</tbody>
</table>

Posterior means for \(\rho^c w \) and \(\rho^c g \) are 0.2428 and 0.4405 respectively

The countries included in the estimation process are 59: 49 defaulting countries and 10 non-defaulting developed countries. Parameter estimates are reported only for 49 countries.
Table A3: Summary Stats: Explanatory Variables

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country-Specific Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NFA as a % of GDP)(c_t)</td>
<td>-50.160</td>
<td>51.870</td>
</tr>
<tr>
<td>(\log(g_c^t/g_{cs}^c))</td>
<td>0.001</td>
<td>0.0310</td>
</tr>
<tr>
<td>(z_c^t)</td>
<td>-0.001</td>
<td>0.0397</td>
</tr>
<tr>
<td>(\Delta z_{c,t-2}^c)</td>
<td>0.001</td>
<td>0.0387</td>
</tr>
<tr>
<td>Global Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Real interest rate in US)(t)</td>
<td>3.898</td>
<td>1.9481</td>
</tr>
<tr>
<td>(\log(g_w^t/g_{ws}^w))</td>
<td>-0.003</td>
<td>0.0056</td>
</tr>
<tr>
<td>(z_w^t)</td>
<td>-0.001</td>
<td>0.0238</td>
</tr>
<tr>
<td>(\Delta z_{w,t-2}^w)</td>
<td>-0.000</td>
<td>0.0158</td>
</tr>
<tr>
<td>(Inflation Adjusted Oil Prices)(t)</td>
<td>64.560</td>
<td>27.8581</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1220</td>
<td></td>
</tr>
</tbody>
</table>

Table A4: Logistic Regression Results

<table>
<thead>
<tr>
<th></th>
<th>Specification 1</th>
<th></th>
<th>Specification 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>(\frac{d(Prob)}{dx_i})-(\sigma_{x_i})</td>
<td>Coefficient</td>
<td>(\frac{d(Prob)}{dx_i})-(\sigma_{x_i})</td>
</tr>
<tr>
<td>Country-Specific Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NFA as a % of GDP)(c_t)</td>
<td>-0.00768(***)</td>
<td>-0.0876</td>
<td>-0.00678(**)</td>
<td>-0.0449</td>
</tr>
<tr>
<td>(\log(g_c^t/g_{cs}^c))</td>
<td>-19.49(***)</td>
<td>-0.1331</td>
<td>-19.88(***)</td>
<td>-0.0787</td>
</tr>
<tr>
<td>(z_c^t)</td>
<td>-2.554</td>
<td>-0.0223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta z_{c,t-2}^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Real interest rate in US)(t)</td>
<td>0.364(***)</td>
<td></td>
<td>0.0905</td>
<td></td>
</tr>
<tr>
<td>(\log(g_w^t/g_{ws}^w))</td>
<td>25.20</td>
<td>0.0180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_w^t)</td>
<td>-14.82*</td>
<td></td>
<td>-0.0450</td>
<td></td>
</tr>
<tr>
<td>(Inflation Adjusted Oil Prices)(t)</td>
<td>0.00301</td>
<td>0.0107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country Fixed Effects</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1220</td>
<td></td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td>pseudo (R^2)</td>
<td>0.101</td>
<td></td>
<td>0.215</td>
<td></td>
</tr>
</tbody>
</table>

* \(p < 0.10\), ** \(p < 0.05\), *** \(p < 0.01\)

Table A5: Predicted Probability of Default for Default Episodes

| Default Type | N0. | Specification 1 | Specification 2 | \(P(D = 1|S_1) = P(D = 1|S_2)\) |
|-----------------------------|-----|-----------------|-----------------|---------------------------------|
| Idiosyncratic Default | 52 | .0634 | .0604 | 0.4418 |
| Clustered Default | 35 | 0.1148 | 0.2631 | -6.1837 |

135
Table A6: Predicted Probability of Default for Non-Default Episodes

<table>
<thead>
<tr>
<th>Period</th>
<th>No.</th>
<th>Specification 1</th>
<th>Specification 2</th>
<th>Average(Predicted probability of default conditional on no default)</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Clustered Default Period</td>
<td>968</td>
<td>0.0360</td>
<td>0.0274</td>
<td>$P(D = 1</td>
<td>S_1) = P(D = 1</td>
</tr>
<tr>
<td>Clustered Default Period</td>
<td>165</td>
<td>0.0353</td>
<td>0.0555</td>
<td></td>
<td>-4.0970</td>
</tr>
</tbody>
</table>
A.2 Estimation Equations

A.2.1 State Space Form: The Basic Version

Measurement Equation

\[U = W + V \cdot \theta_t \]

where,

\[U = \begin{bmatrix} r^*_t, \Delta y^1_t, \cdots, \Delta y_t^n, \Delta y_t^{nc} \end{bmatrix}^T \]

\[W = \begin{bmatrix} r^*_t, \ln(g_{ss}) + \alpha^1_X \ln(g_{ws}) + \alpha^c_X \ln(g_{cs}) + \alpha^{nc}_X \ln(g_{nc}) \end{bmatrix}^T \]

\[V = \begin{bmatrix} 1 & \alpha^r_z & 0 & \alpha^r_X & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

and

\[\theta_t = \begin{bmatrix} e^r_t z^w_t z^w_{t-1} \ln(g_t^w/g_{ss}^w) z^1_{t-1} \ln(g^1_t/g_{ss}^1) z^c_t z^c_{t-1} \ln(g^c_t/g_{ss}^c) \cdots z^{nc}_t z^{nc}_{t-1} \ln(g^{nc}_t/g_{ss}^{nc}) \end{bmatrix}^T \]

The dimension of \(U \) is \((nc + 1) \times 1\) (where \(nc \) is the total number of countries). \(W \) is also \((nc + 1) \times 1\) and it is time invariant. \(V \) is \((nc + 1) \times (3 \times nc + 4)\) and it is time invariant as well. The state variable vector, \(\theta_t \), is \((3 \times nc + 4) \times 1\).

Transition Equation

The evolution of state vector (transition equation) can be represented as:

\[\theta_t = K \cdot \theta_{t-1} + \lambda_t \]

where \(\lambda_t = [\epsilon^r_t, \epsilon^w_t, 0, \epsilon^c_{g,t}, \epsilon^1_{g,t}, \cdots, \epsilon^c_{g,t}, 0, \epsilon^c_{g,t}, \epsilon^{nc}_{g,t}]^T \), \(\epsilon^r \sim N(0, (\sigma^r)^2) \), \(\epsilon^w \sim N(0, (\sigma^w)^2) \), \(\epsilon^c \sim N(0, (\sigma^c)^2) \) and \(\epsilon_g \sim N(0, (\sigma_g)^2) \) and
$$K = \begin{bmatrix}
\rho^r & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0

0 & \rho^w_z & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0

0 & 0 & \rho^w_g & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0

0 & 0 & 0 & \rho^l_z & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0

0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0

0 & 0 & 0 & 0 & 0 & \rho^l_g & 0 & 0 & 0 & 0 & 0 & 0

0 & 0 & 0 & 0 & 0 & 0 & \rho^c_z & 0 & 0 & 0 & 0 & 0

0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^c_g & 0 & 0 & 0

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^{nc}_z & 0

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^{nc}_g
\end{bmatrix}$$
Appendix B

Appendix to Chapter 2
B.1 Figures and Tables

Figure B1: global constituent for the transitory component of output/TFP

Argentina: Time Series of Global Components

The figure shows global transitory component scaled for Argentina from different models. The top panel shows $\alpha^{ARG}_z z^w_t$ from the basic model. The bottom panel shows $\psi^{ARG} \alpha^{ARG}_z z^w_t$ from the full model.
The figure shows growth in global permanent component scaled for Argentina from different models. The top panel shows $\alpha^{ARG}_X \ln(g^w_t)$ from the basic model. The bottom left panel shows $\psi^{ARG} \alpha^{ARG}_X \ln(g^w_t)$ from the full model.
The top panel shows the detrended output simulated using the grid points and the detrended output calculated from the series of four Kalman smoothed components of output. The middle panel shows the same two series of detrended output for the full model.
The figure shows the movement of interest rate on a grid of 10 points used in the model and for simulation. It also shows the movement of interest rate in the data.
The figure shows decomposition of output shocks into country specific shocks to output, global shocks to output and output shocks resulting from world interest rate fluctuations. This decomposition is a result of estimation process of Section 2.3 and not a result of sovereign default model. The solid black line represents the contribution of global output shocks to the detrended output. The dashed navy line represents the contribution of country-specific output shocks to the detrended output. The dashed red line represents the contribution of world interest rate fluctuations to the detrended output.
The figure shows decomposition of output shocks into country specific shocks to output, global shocks to output and output shocks resulting from world interest rate fluctuations. This decomposition is a result of estimation process of Section 2.3 and not a result of sovereign default model. The solid black line represents the contribution of global output shocks to the detrended output. The dashed navy line represents the contribution of country-specific output shocks to the detrended output. The dashed red line represents the contribution of world interest rate fluctuations to the detrended output.
The figure shows decomposition of output shocks into country specific shocks to output, global shocks to output and output shocks resulting from world interest rate fluctuations. This decomposition is a result of estimation process of Section 2.3 and not a result of sovereign default model. The solid black line represents the contribution of global output shocks to the detrended output. The dashed navy line represents the contribution of country-specific output shocks to the detrended output. The dashed red line represents the contribution of world interest rate fluctuations to the detrended output.
Figure B8: Sources of Output Shocks: Global output shocks, country-specific output shocks or interest rate fluctuations

The figure shows decomposition of output shocks into country specific shocks to output, global shocks to output and output shocks resulting from world interest rate fluctuations. This decomposition is a result of estimation process of Section 2.3 and not a result fo sovereign default model. The solid black line represents the contribution of global output shocks to the detrended output. The dashed navy line represents the contribution of country-specific output shocks to the detrended output. The dashed red line represents the contribution of world interest rate fluctuations to the detrended output.

Table B1: Prior Distribution for Bayesian Estimation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uniform Prior Distributions</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_z^g</td>
<td></td>
<td>0.0001</td>
<td>0.99</td>
</tr>
<tr>
<td>ρ_z^c</td>
<td></td>
<td>0.0001</td>
<td>0.99</td>
</tr>
<tr>
<td>σ_z^c</td>
<td></td>
<td>0.0001</td>
<td>0.9</td>
</tr>
<tr>
<td>σ_z^g</td>
<td></td>
<td>0.0001</td>
<td>0.9</td>
</tr>
<tr>
<td>ρ_z^w</td>
<td></td>
<td>0.0001</td>
<td>0.99</td>
</tr>
<tr>
<td>ρ_w^Z</td>
<td></td>
<td>0.0001</td>
<td>0.99</td>
</tr>
<tr>
<td>α_{VEN}^z</td>
<td></td>
<td>0.0001</td>
<td>2</td>
</tr>
<tr>
<td>α_{VEN}^X</td>
<td></td>
<td>0.0001</td>
<td>2</td>
</tr>
<tr>
<td>α_{z}^c</td>
<td></td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>α_{X}^c</td>
<td></td>
<td>-2</td>
<td>2</td>
</tr>
</tbody>
</table>

σ_z^w and σ_g^w are normalized to 1
Table B2: Prior Distribution for Bayesian Estimation: Full Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uniform Prior Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>ρ_z^c</td>
<td>0.0001</td>
</tr>
<tr>
<td>ρ_g^c</td>
<td>0.0001</td>
</tr>
<tr>
<td>σ_z^c</td>
<td>0.0001</td>
</tr>
<tr>
<td>σ_g^c</td>
<td>0.0001</td>
</tr>
<tr>
<td>ρ_z^w</td>
<td>0.0001</td>
</tr>
<tr>
<td>ρ_g^w</td>
<td>0.0001</td>
</tr>
<tr>
<td>ψ^c</td>
<td>1.01</td>
</tr>
<tr>
<td>η^c</td>
<td>0.0001</td>
</tr>
<tr>
<td>α_{VEN}^c</td>
<td>0.0001</td>
</tr>
<tr>
<td>α_{VEN}^X</td>
<td>0.0001</td>
</tr>
<tr>
<td>α_z^c</td>
<td>-2</td>
</tr>
<tr>
<td>α_X^c</td>
<td>-2</td>
</tr>
</tbody>
</table>

σ_z^w and σ_g^w are normalized to 1
Table B3: Bayesian Estimation Results from Basic Model: Posterior means

<table>
<thead>
<tr>
<th>Country</th>
<th>Statistic</th>
<th>Posterior (Mean & Standard Deviation)</th>
<th>(\rho_{cz})</th>
<th>(\rho_{cg})</th>
<th>(\sigma_{cz}^2)</th>
<th>(\sigma_{cg}^2)</th>
<th>(\alpha_{cz})</th>
<th>(\alpha_{cg})</th>
<th>(\alpha_{CX})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Mean</td>
<td>0.5751 0.2774 0.0370 0.0190 0.0190 0.0157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2075 0.2019 0.0117 0.0151 0.0207 0.0234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td>Mean</td>
<td>0.4532 0.5530 0.0094 0.0301 0.0058 0.0043</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2310 0.1441 0.0058 0.0047 0.0100 0.0104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td>Mean</td>
<td>0.6336 0.3433 0.0176 0.0238 0.0052 0.0080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2917 0.2002 0.0091 0.0091 0.0110 0.0106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>Mean</td>
<td>0.2672 0.5619 0.0093 0.0248 0.0165 0.0045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1914 0.1560 0.0049 0.0050 0.0123 0.0188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>Mean</td>
<td>0.6647 0.5342 0.0185 0.0305 0.0234 0.0048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2495 0.1635 0.0092 0.0083 0.0164 0.0229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Mean</td>
<td>0.7120 0.2835 0.0158 0.0128 0.0190 0.0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1802 0.1802 0.0060 0.0072 0.0127 0.0162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Mean</td>
<td>0.7517 0.3894 0.0397 0.0190 0.0146 0.0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1498 0.2268 0.0117 0.0152 0.0129 0.0154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>Mean</td>
<td>0.6620 0.4509 0.0125 0.0210 0.0064 0.0051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2388 0.1922 0.0067 0.0063 0.0082 0.0091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>Mean</td>
<td>0.4669 0.6373 0.0069 0.0112 0.0121 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.3095 0.1878 0.0030 0.0031 0.0088 0.0117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guyana</td>
<td>Mean</td>
<td>0.6988 0.3202 0.0228 0.0277 0.0092 0.0229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2267 0.1896 0.0111 0.0115 0.0258 0.0209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>Mean</td>
<td>0.5827 0.3248 0.0130 0.0142 0.0174 -0.0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2886 0.1823 0.0067 0.0067 0.0129 0.0141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>Mean</td>
<td>0.3328 0.3815 0.0094 0.0251 0.0176 0.0041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2627 0.1451 0.0058 0.0049 0.0121 0.0183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Mean</td>
<td>0.6416 0.4959 0.0268 0.0485 0.0026 0.0106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2062 0.2308 0.0161 0.0145 0.0191 0.0175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panama</td>
<td>Mean</td>
<td>0.7705 0.4015 0.0118 0.0313 0.0085 0.0152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1549 0.1549 0.0082 0.0067 0.0182 0.0177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraguay</td>
<td>Mean</td>
<td>0.5821 0.7096 0.0184 0.0194 0.0173 0.0070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2761 0.1758 0.0059 0.0068 0.0125 0.0194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>Mean</td>
<td>0.8125 0.4263 0.0126 0.0329 0.0129 0.0214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1149 0.1530 0.0089 0.0068 0.0245 0.0235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>Mean</td>
<td>0.6563 0.6455 0.0140 0.0322 0.0113 0.0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2137 0.1413 0.0075 0.0070 0.0117 0.0157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td>Mean</td>
<td>0.5996 0.4348 0.0096 0.0255 0.0151 0.0186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2519 0.1715 0.0068 0.0062 0.0201 0.0207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela, RB</td>
<td>Mean</td>
<td>0.6204 0.3278 0.0333 0.0211 0.0227 0.0074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2247 0.2298 0.0121 0.0148 0.0123 0.0213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>World</th>
<th>Statistic</th>
<th>Posterior (Mean & Standard Deviation)</th>
<th>(\rho_{cz}^w)</th>
<th>(\rho_{cg}^w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>0.9414 0.5638</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0433 0.1599</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The countries included in the estimation process are 24. 19 defaulting countries from Latin America & Caribbean and 5 non-defaulting developed countries. Parameter estimates are reported only for 19 Latin America & Caribbean countries.
Table B4: Bayesian Estimation Results from Full Model: Posterior means

<table>
<thead>
<tr>
<th>Country</th>
<th>Statistic</th>
<th>ρ_{cz}</th>
<th>ρ_{cg}</th>
<th>σ_{cz}</th>
<th>σ_{cg}</th>
<th>ψ_{c}</th>
<th>η_{c}</th>
<th>α_{cz}</th>
<th>α_{cX}</th>
<th>ρ_{wz}</th>
<th>ρ_{wg}</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Mean</td>
<td>0.2813</td>
<td>0.6431</td>
<td>0.0134</td>
<td>0.0141</td>
<td>2.0832</td>
<td>0.3924</td>
<td>0.0196</td>
<td>0.0029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2314</td>
<td>0.0743</td>
<td>0.0064</td>
<td>0.0076</td>
<td>0.0769</td>
<td>0.0895</td>
<td>0.0055</td>
<td>0.0057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td>Mean</td>
<td>0.4934</td>
<td>0.7748</td>
<td>0.0028</td>
<td>0.0138</td>
<td>2.5386</td>
<td>0.3669</td>
<td>0.0041</td>
<td>0.0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.9096</td>
<td>0.0757</td>
<td>0.002</td>
<td>0.0017</td>
<td>0.1036</td>
<td>0.148</td>
<td>0.0033</td>
<td>0.0033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td>Mean</td>
<td>0.9477</td>
<td>0.2448</td>
<td>0.0136</td>
<td>0.0141</td>
<td>2.0832</td>
<td>0.3924</td>
<td>0.0196</td>
<td>0.0029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.2023</td>
<td>0.1542</td>
<td>0.002</td>
<td>0.0026</td>
<td>0.1037</td>
<td>0.0506</td>
<td>0.0033</td>
<td>0.0033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>Mean</td>
<td>0.9267</td>
<td>0.6321</td>
<td>0.0028</td>
<td>0.0138</td>
<td>2.5386</td>
<td>0.3669</td>
<td>0.0041</td>
<td>0.0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0411</td>
<td>0.0539</td>
<td>0.002</td>
<td>0.0026</td>
<td>0.1037</td>
<td>0.0506</td>
<td>0.0033</td>
<td>0.0033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>Mean</td>
<td>0.2902</td>
<td>0.5339</td>
<td>0.0039</td>
<td>0.0069</td>
<td>2.3393</td>
<td>0.9032</td>
<td>0.0073</td>
<td>0.0092</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1159</td>
<td>0.1386</td>
<td>0.0023</td>
<td>0.0024</td>
<td>0.1737</td>
<td>0.0572</td>
<td>0.0028</td>
<td>0.0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Mean</td>
<td>0.3735</td>
<td>0.543</td>
<td>0.0135</td>
<td>0.0235</td>
<td>1.7342</td>
<td>0.8289</td>
<td>0.0078</td>
<td>0.0089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0965</td>
<td>0.0731</td>
<td>0.0069</td>
<td>0.0058</td>
<td>0.1156</td>
<td>0.0916</td>
<td>0.0068</td>
<td>0.0054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Mean</td>
<td>0.4392</td>
<td>0.7825</td>
<td>0.0084</td>
<td>0.0142</td>
<td>1.4405</td>
<td>0.7039</td>
<td>0.0092</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0925</td>
<td>0.0928</td>
<td>0.004</td>
<td>0.0034</td>
<td>0.1037</td>
<td>0.0857</td>
<td>0.0047</td>
<td>0.0044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>Mean</td>
<td>0.7671</td>
<td>0.7034</td>
<td>0.0025</td>
<td>0.0083</td>
<td>1.7201</td>
<td>0.6772</td>
<td>0.0054</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0806</td>
<td>0.0687</td>
<td>0.0016</td>
<td>0.0013</td>
<td>0.1368</td>
<td>0.1588</td>
<td>0.0031</td>
<td>0.0029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>Mean</td>
<td>0.3798</td>
<td>0.6713</td>
<td>0.0037</td>
<td>0.0125</td>
<td>2.9785</td>
<td>0.3414</td>
<td>0.0159</td>
<td>-0.035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1044</td>
<td>0.1285</td>
<td>0.0024</td>
<td>0.0022</td>
<td>0.1592</td>
<td>0.0869</td>
<td>0.0037</td>
<td>0.0044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guyana</td>
<td>Mean</td>
<td>0.4223</td>
<td>0.6674</td>
<td>0.0043</td>
<td>0.0096</td>
<td>2.0775</td>
<td>0.5282</td>
<td>0.005</td>
<td>0.0103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1067</td>
<td>0.0843</td>
<td>0.0022</td>
<td>0.0019</td>
<td>0.0552</td>
<td>0.1607</td>
<td>0.0035</td>
<td>0.0033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>Mean</td>
<td>0.7295</td>
<td>0.7787</td>
<td>0.0057</td>
<td>0.0104</td>
<td>2.0862</td>
<td>0.2603</td>
<td>0.0105</td>
<td>0.0107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0982</td>
<td>0.0648</td>
<td>0.0033</td>
<td>0.0030</td>
<td>0.0863</td>
<td>0.0706</td>
<td>0.004</td>
<td>0.0041</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>Mean</td>
<td>0.9303</td>
<td>0.7011</td>
<td>0.0152</td>
<td>0.0254</td>
<td>2.0281</td>
<td>0.7145</td>
<td>0.0073</td>
<td>-0.0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0465</td>
<td>0.0787</td>
<td>0.0094</td>
<td>0.0082</td>
<td>0.1693</td>
<td>0.1683</td>
<td>0.0078</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Mean</td>
<td>0.5375</td>
<td>0.8314</td>
<td>0.0039</td>
<td>0.0141</td>
<td>2.5912</td>
<td>0.4966</td>
<td>0.0129</td>
<td>-0.0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1635</td>
<td>0.075</td>
<td>0.0032</td>
<td>0.0026</td>
<td>0.2035</td>
<td>0.1027</td>
<td>0.0043</td>
<td>0.0039</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panama</td>
<td>Mean</td>
<td>0.5385</td>
<td>0.6997</td>
<td>0.0047</td>
<td>0.0162</td>
<td>1.8303</td>
<td>0.122</td>
<td>0.0121</td>
<td>0.0081</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1257</td>
<td>0.1002</td>
<td>0.003</td>
<td>0.0028</td>
<td>0.1154</td>
<td>0.0895</td>
<td>0.0048</td>
<td>0.0046</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraguay</td>
<td>Mean</td>
<td>0.4378</td>
<td>0.7591</td>
<td>0.0051</td>
<td>0.0205</td>
<td>1.8</td>
<td>0.268</td>
<td>0.0239</td>
<td>-0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1151</td>
<td>0.0907</td>
<td>0.0037</td>
<td>0.0029</td>
<td>0.1233</td>
<td>0.0781</td>
<td>0.0068</td>
<td>0.0062</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>Mean</td>
<td>0.1823</td>
<td>0.8532</td>
<td>0.004</td>
<td>0.0177</td>
<td>1.9957</td>
<td>0.0632</td>
<td>0.0054</td>
<td>0.0079</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.1085</td>
<td>0.049</td>
<td>0.0027</td>
<td>0.0022</td>
<td>0.0816</td>
<td>0.0516</td>
<td>0.0047</td>
<td>0.0045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td>Mean</td>
<td>0.9247</td>
<td>0.7466</td>
<td>0.0088</td>
<td>0.0117</td>
<td>1.7514</td>
<td>0.7631</td>
<td>0.0261</td>
<td>0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0489</td>
<td>0.107</td>
<td>0.0049</td>
<td>0.0051</td>
<td>0.0682</td>
<td>0.1214</td>
<td>0.0054</td>
<td>0.0065</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela, RB</td>
<td>Mean</td>
<td>0.8535</td>
<td>0.5335</td>
<td>0.0174</td>
<td>0.0105</td>
<td>2.0829</td>
<td>0.3363</td>
<td>0.0129</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.0943</td>
<td>0.1222</td>
<td>0.0062</td>
<td>0.0077</td>
<td>0.1941</td>
<td>0.1569</td>
<td>0.0054</td>
<td>0.0043</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>ρ^{\text{wz}}</th>
<th>ρ^{\text{wg}}</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>0.8897</td>
<td>0.7555</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The countries included in the estimation process are 24. 19 defaulting countries from Latin America & Caribbean and 5 non-defaulting developed countries. Parameter estimates are reported only for 19 Latin America & Caribbean countries.
B.2 Estimation Equations

B.2.1 State-space Form: The Basic Version

Measurement Equation

\[\Delta y_t = W + V \cdot \theta_t \]

where,

\[\Delta y_t = [\Delta y_1, \cdots, \Delta y_c, \cdots, \Delta y_{nc}]^T \]

\[W = \left[\ln(g_{ss}^1) + \alpha_1 X_1 \ln(g_{sw}^c), \cdots, \ln(g_{ss}^c) + \alpha_X \ln(g_{sw}^w), \cdots, \ln(g_{ss}^{nc}) + \alpha_X \ln(g_{sw}^{wc}) \right]^T \]

\[V = \begin{bmatrix}
\alpha_1 & -\alpha_1 & \alpha_X & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 & & & \\
\vdots & \ddots \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 & & & \\
\end{bmatrix} \]

and

\[\theta_t = \left[z_t^w, z_{t-1}^w, \ln(g_t^w/g_{ss}^w), z_t^1, z_{t-1}^1, \ln(g_t^1/g_{ss}^1), \cdots, z_t^c, z_{t-1}^c, \ln(g_t^c/g_{ss}^c), \cdots, z_t^{nc}, z_{t-1}^{nc}, \ln(g_t^{nc}/g_{ss}^{nc}) \right]^T \]

The dimension of \(\Delta y_t \) is \((nc \times 1)\). \(W \) is also \((nc \times 1)\) and it is time invariant. \(V \) is \((nc \times (3 \times nc + 3))\) and it is time invariant as well. The state variable vector, \(\theta_t \), is \(((3 \times nc + 3) \times 1)\).

Transition Equation

The evolution of state vector (transition equation) can be represented as:

\[\theta_t = K \cdot \theta_{t-1} + \lambda_t \]

where \(\lambda_t = [\epsilon_t^w, 0, \epsilon_t^w, \epsilon_t^1, 0, \epsilon_t^1, \cdots, \epsilon_t^c, 0, \epsilon_t^c, \cdots, \epsilon_t^{nc}, 0, \epsilon_t^{nc}]^T, \epsilon_t^w \sim N(0, (\sigma_{w}^2)^2), \epsilon_t^w \sim N(0, (\sigma_{g}^w)^2), \epsilon_t^c \sim N(0, (\sigma_{c}^2)^2), \epsilon_t^c \sim N(0, (\sigma_{c}^2)^2) \) and
\[
K = \begin{bmatrix}
\rho^w_z & 0 \\
1 & 0 \\
0 & 0 & \rho^w_g & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \rho^1_g & 0 \\
0 & 0 & 0 & 0 & 0 & \rho^c_z & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \rho^c_g & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^{nc}_z & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^{nc}_g & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^{nc}_g & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

B.2.2 State-space Form: The Full Version

Measurement Equation

\[
\Delta y_t = W_t + V \cdot \theta_t
\]

where,

\[
\Delta y_t = [\Delta y^1_t, \cdots, \Delta y^i_t, \cdots, \Delta y^{nc}_t]^T
\]

\[
W_t = \left[\ln(g^1_{ss}) + \alpha^1_X \ln(g^w_{ss}) - (\psi^1 - 1) \eta^1 \Delta r^*_t, \cdots, \ln(g^{nc}_{ss}) + \alpha^{nc}_X \ln(g^w_{ss}) - (\psi^{nc} - 1) \eta^{nc} \Delta r^*_t \right]^T
\]

\[
\theta_t = [z^w_t, z^{w}_{t-1}, \ln(g^w_t / g^w_{ss}), \ln(g^w_{t-1} / g^w_{ss}), z^1_t, z^{1}_{t-1}, \ln(g^1_t / g^1_{ss}), \ln(g^1_{t-1} / g^1_{ss}), \cdots, \ln(c^c_t / g^c_{ss}), \ln(c^c_{t-1} / g^c_{ss}), \cdots, \ln(g^{nc}_t / g^{nc}_{ss}), \ln(g^{nc}_{t-1} / g^{nc}_{ss})]^T
\]
and

\[
V = \begin{bmatrix}
\psi^1 \alpha^1_z & \psi^c \alpha^c_z & \psi^{nc} \alpha^{nc}_z \\
-\psi^1 \alpha^1_z & -\psi^c \alpha^c_z & -\psi^{nc} \alpha^{nc}_z \\
\psi^1 \alpha^1_X & \psi^c \alpha^c_X & \psi^{nc} \alpha^{nc}_X \\
-(\psi^1 - 1) \alpha^1_X & -(\psi^c - 1) \alpha^c_X & -(\psi^{nc} - 1) \alpha^{nc}_X \\
\psi^1 & 0 & 0 \\
-\psi^1 & 0 & 0 \\
\psi^1 & 0 & 0 \\
-(\psi^1 - 1) & 0 & 0 \\
0 & \psi^c & 0 \\
0 & -\psi^c & 0 \\
0 & \psi^c & 0 \\
0 & -(\psi^c - 1) & 0 \\
. & . & . \\
. & . & . \\
0 & 0 & \psi^{nc} \\
0 & 0 & -\psi^{nc} \\
0 & 0 & \psi^{nc} \\
0 & 0 & -(\psi^{nc} - 1)
\end{bmatrix}
\]

The dimension of Δy_t is $(nc \times 1)$ (where nc is the total number of countries). W_t is not time invariant now as it depends on changes in world interest rate. The dimension of W_t is also $(nc \times 1)$. V is $(nc \times (4*nc + 4))$ and it is still time invariant as before. The state variable θ_t is $((4*nc + 4) \times 1)$.

Transition Equation

The evolution of state vector (transition equation) is represented as:

$$\theta_t = K \cdot \theta_{t-1} + \lambda_t$$
where

\[
K = \begin{bmatrix}
\rho^w_z & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \rho^w_g & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \rho^w_g & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \rho^w_z & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^w_z & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^w_g & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \rho^w_z & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

and \(\lambda_t = [\epsilon^w_z, 0, \epsilon^w_g, 0, \epsilon^1_z, 0, \epsilon^1_g, 0, \epsilon^c_z, 0, \epsilon^c_g, 0, \epsilon^{nc}_z, 0, \epsilon^{nc}_g] \)\(^T\), \(\epsilon^w_z \sim N(0, (\sigma^w_z)^2) \), \(\epsilon^w_g \sim N(0, (\sigma^w_g)^2) \), \(\epsilon^c_z \sim N(0, (\sigma^c_z)^2) \) and \(\epsilon^c_g \sim N(0, (\sigma^c_g)^2) \).

B.3 Model Equations

B.3.1 Basic Version of the Model: Equations

Households

In the basic version, the household gets utility only from consumption of the final good

\[
U(C_t, L^*_t) = \left[\frac{C^{1-\gamma}_t}{1-\gamma} \right]
\]

where \(\gamma \) represents the Arrow-Pratt measure of relative risk aversion.

Every period households get exogenous endowment in the form of output and transfer from the government. The household budget constraint is therefore given as:

\[
C_t = Y_t + T_t \quad \text{(B.1)}
\]

Since both output and transfers are given, households consumption level is also given and there is no optimization problem to solve for the household. The government decides the level of transfer in order to maximize household utility. The equations of the basic version of the model are kept in a similar as the full model. Alternatively, we can allow household
to borrow from rest of the world and make debt, default and consumption decisions. In terms of the model equations and the solution, this alternative way is exactly the same as the current version of the of the baseline model.

Government

The aim of benevolent social planner or the government is to maximize the utility of the households. Therefore, the government’s problem remains the same as in the full version of the model. The amount borrowed, net of repayments, is again the transfer when government decides not to default:

$$T_t = q_t d_{t+1} - d_t$$ \hspace{1cm} (B.2)

When the government decides to default, there is no additional borrowing and government transfer is 0.

The continuation payoff i.e. value function when the agent doesn’t default and continues to repay the debt, is given as:

$$V^C(d_t; z_t, z_{t+1}^w, X_t, X_{t+1}^w, r_t^*) = \max_{c_t, d_{t+1}} [u(c_t) + \beta E_{y,r}[V^G(d_{t+1}; z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*)]] \hspace{1cm} (B.3)$$

subject to the household budget constraint and the government transfer condition. Here V^G represents the value function when the agent enters the period with good financial standing ($f = 0$).

The continuation payoff in bad standing is given as:

$$V^B(z_t, z_{t+1}^w, X_t, X_{t+1}^w, r_t^*) = u(c_t^A) + \beta E_{y,r} \{\lambda V^G((0; z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*) \}

+ (1 - \lambda)V^B(z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*)\} \hspace{1cm} (B.4)$$

subject to the household budget constraint and that the transfer to households is now 0. In this case, the function ϕ, that governs output loss in default, will also be non-zero. The function ϕ and thus, the output loss in default depends on individual technology shocks.

The continuation payoff when agent starts a period in good standing:

$$V^G(d_t; z_t, z_t^w, X_t, X_{t+1}^w, r_t^*) = \max\{V^C(d_t; z_t, z_t^w, X_t, X_{t+1}^w, r_t^*), V^B(z_t, z_t^w, X_t, X_{t+1}^w, r_t^*)\} \hspace{1cm} (B.5)$$

The default rule is therefore be given as:

$$F(d_t; z_t, z_t^w, X_t, X_{t+1}^w, r_t^*) = \begin{cases} 1 & \text{if } V^B(z_t, z_t^w, X_t, X_{t+1}^w, r_t^*) > V^C(d_t; z_t, z_t^w, X_t, X_{t+1}^w, r_t^*) \\ 0 & \text{otherwise} \end{cases} \hspace{1cm} (B.6)$$

Lender

The last piece of the model is to explain the lender side. I assume a large number of risk neutral lenders. Risk free return is therefore adjusted for the probability of default to get rate of return on debt.

$$(1+r_t) \times \text{Prob}_{y,r}(V^C(d_{t+1}; z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*) > V^B(z_{t+1}, z_{t+1}^w, X_{t+1}, X_{t+1}^w, r_{t+1}^*)) = 1+r_t^*$$
Given that the price of debt, \(q_t = 1/(1 + r_t) \), we have

\[
q_t(d_{t+1}; z_t, z^w_t, X_t, X^w_t, r^*_t) = \frac{Prob_{y,r}(V^C_{t+1} > V^B_{t+1})}{1 + r_t}
\]

(B.7)

B.3.2 Equations in Detrended Form

All the equations and time \(t \) variables are detrended by \(\Gamma_{t-1}^c \equiv X_{t-1}^c (X_{t-1}^w)^{\alpha_X} \cdot \mu^c \mu^w_{\alpha_X} \) and a detrended variable \(\nu \) after detrending becomes \(\tilde{\nu}_t = \frac{\nu_t}{\Gamma_{t-1}} \). Thus the detrended output is given as:

\[
\tilde{Y}_t = e^{z_t + \alpha z^w_t} g_t (g_t^w)^{\alpha_X} / (\mu^c (\mu^w)^{\alpha_X})
\]

The budget constraint of the household when not in default is given as:

\[
c_t = y_t + q_t d_{t+1} - d_t
\]

\[
\Rightarrow \frac{c_t}{\Gamma_{t-1}} = \frac{y_t}{\Gamma_{t-1}} + \frac{q_t d_{t+1}}{\Gamma_{t-1}} - \frac{d_t}{\Gamma_{t-1}}
\]

\[
\Rightarrow \tilde{c}_t = \tilde{y}_t + \frac{\Gamma_t}{\Gamma_{t-1}} \cdot \frac{q_t d_{t+1}}{\Gamma_t} - \tilde{d}_t
\]

\[
\Rightarrow \tilde{c}_t = \tilde{y}_t + g_t (g_t^w)^{\alpha_X} \cdot q_t \tilde{d}_{t+1} - \tilde{d}_t
\]

In a similar fashion, we can detrend the utility function and hence the value functions too. The only difference is that we detrend them by \((\Gamma_{t-1})^{1-\gamma}\) instead of \(\Gamma_{t-1}\). This is because of the peculiar form of utility function used.\(^1\) The detrended utility function can thus be written as:

\[
\tilde{u} (\tilde{c}_t) \equiv \frac{u(c_t)}{(\Gamma_{t-1})^{1-\gamma}} = \frac{\tilde{c}_t^{1-\gamma}}{1 - \gamma}
\]

The value functions can also be detrended in the same way. The continuation value is given as:

\[
v^c(y_t, d_t) = \max_{d_{t+1}} \{ u(y_t + q_t d_{t+1} - d_t) + \beta \cdot E [v^g(y_{t+1}, d_{t+1})] \}
\]

\[
\Rightarrow \frac{v^c(y_t, d_t)}{(\Gamma_{t-1})^{1-\gamma}} = \max_{\tilde{d}_{t+1}} \left\{ u(\tilde{y}_t + g_t (g_t^w)^{\alpha_X} \cdot q_t \tilde{d}_{t+1} - \tilde{d}_t) + \beta \cdot \frac{(\Gamma_t)^{1-\gamma} E [v^g(y_{t+1}, d_{t+1})]}{(\Gamma_{t-1})^{1-\gamma}} \right\}
\]

\[
\Rightarrow \tilde{v}^c(\tilde{y}_t, \tilde{d}_t) = \max_{\tilde{d}_{t+1}} \left\{ u(\tilde{y}_t + g_t (g_t^w)^{\alpha_X} \cdot q_t \tilde{d}_{t+1} - \tilde{d}_t) + \beta \cdot (g_t (g_t^w)^{\alpha_X})^{1-\gamma} \cdot E \left[v^g(\tilde{y}_{t+1}, \tilde{d}_{t+1}) \right] \right\}
\]

The value function when the country defaults or is in bad standing is given by:

\[
v^b(y_t) = u (y \cdot (1 - \phi(z_t, z^w_t, g_t, g_t^w))) + \beta \cdot E \left[\lambda v^g(y_{t+1}, 0) + (1 - \lambda) v^b(y_{t+1}) \right]
\]

\(^1\)which is why we use \(u(c) = \frac{c^{1-\gamma} - 1}{1-\gamma} \) instead of \(u(c) = \frac{c^{1-\gamma}}{1-\gamma} \)
\[
\tilde{v}^b(y_t) = \tilde{u}(\tilde{y}_t \cdot (1 - \phi(z_t, z_t^w, g_t, g_t^w))) + \beta \cdot (g_t(g_t^w)^{\alpha X})^{1-\gamma} \cdot E \left[\lambda \tilde{v}^g(\tilde{y}_{t+1}, 0) + (1 - \lambda) \tilde{v}^b(\tilde{y}_{t+1}) \right]
\]

Detrended version of value function in good standing is:

\[
v^g(y_t, d_t) = \max \left\{ v^b(y_t), v^c(y_t, d_t) \right\}
\]

\[
\implies \tilde{v}^g(\tilde{y}_t, \tilde{d}_t) = \max \left\{ \tilde{v}^b(\tilde{y}_t), \tilde{v}^c(\tilde{y}_t, \tilde{d}_t) \right\}
\]
Appendix C

Appendix to Chapter 3
C.1 Figures and Tables

Table C1: List of countries

<table>
<thead>
<tr>
<th>Poor Countries</th>
<th>Emerging Countries</th>
<th>Rich Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>σ</td>
<td>Period</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>3.23</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Burundi</td>
<td>1.06</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Cameroon</td>
<td>0.82</td>
<td>1966 2014</td>
</tr>
<tr>
<td>China</td>
<td>1.17</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Cote d’Ivoire</td>
<td>0.77</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Honduras</td>
<td>1.44</td>
<td>1961 2014</td>
</tr>
<tr>
<td>India</td>
<td>1.07</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1.17</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Kenya</td>
<td>0.98</td>
<td>1965 2014</td>
</tr>
<tr>
<td>Madagascar</td>
<td>0.81</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Malawi</td>
<td>0.83</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1.29</td>
<td>1967 2014</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>1.27</td>
<td>1962 2004</td>
</tr>
<tr>
<td>Philippines</td>
<td>0.75</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Rwanda</td>
<td>0.73</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Senegal</td>
<td>1.49</td>
<td>1961 2014</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1.66</td>
<td>1966 2010</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>0.99</td>
<td>1975 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of 75 countries. Data periods are as shown in the table. Classification of poor, emerging, and rich countries and σ comes from Schmitt-Grohé and Uribe (2016).
Table C2: Prior Distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min</th>
<th>max</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_g</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_g</td>
<td>-0.99</td>
<td>0.99</td>
<td>0</td>
</tr>
<tr>
<td>σ_a</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_a</td>
<td>-0.99</td>
<td>0.99</td>
<td>0</td>
</tr>
<tr>
<td>σ_ν</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_ν</td>
<td>-0.99</td>
<td>0.99</td>
<td>0</td>
</tr>
<tr>
<td>σ_s</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_s</td>
<td>-0.99</td>
<td>0.99</td>
<td>0</td>
</tr>
<tr>
<td>σ_μ</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_μ</td>
<td>-0.99</td>
<td>0.99</td>
<td>0</td>
</tr>
<tr>
<td>ϕ</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>ψ</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>η</td>
<td>0</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>σ_{me}^a</td>
<td>0.0001</td>
<td>0.25 \times σ_Y</td>
<td></td>
</tr>
<tr>
<td>σ_{me}^C</td>
<td>0.0001</td>
<td>0.25 \times σ_C</td>
<td></td>
</tr>
<tr>
<td>σ_{me}^I</td>
<td>0.0001</td>
<td>0.25 \times σ_I</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{me}^{TB/\gamma}$</td>
<td>0.0001</td>
<td>0.25 \times $\sigma_{TB/Y}$</td>
<td></td>
</tr>
</tbody>
</table>

Prior distribution is uniform distribution.

Table C3: Counterfactual model : Variance Decomposition

<table>
<thead>
<tr>
<th>Countries</th>
<th>Shocks</th>
<th>g^γ</th>
<th>g^C</th>
<th>g^I</th>
<th>TB/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor Countries</td>
<td>Non-stationary Shock</td>
<td>0.2727</td>
<td>0.1443</td>
<td>0.1039</td>
<td>0.2976</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.4805</td>
<td>0.1589</td>
<td>0.1058</td>
<td>0.0874</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.1437</td>
<td>0.5901</td>
<td>0.4604</td>
<td>0.3536</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.0843</td>
<td>0.0775</td>
<td>0.2959</td>
<td>0.2421</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0188</td>
<td>0.0291</td>
<td>0.0340</td>
<td>0.0192</td>
</tr>
<tr>
<td>Emerging Countries</td>
<td>Non-stationary Shock</td>
<td>0.2293</td>
<td>0.1298</td>
<td>0.1488</td>
<td>0.2831</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.5048</td>
<td>0.1466</td>
<td>0.1133</td>
<td>0.0687</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.1417</td>
<td>0.5624</td>
<td>0.3881</td>
<td>0.3032</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.1049</td>
<td>0.1340</td>
<td>0.3114</td>
<td>0.3348</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0194</td>
<td>0.0272</td>
<td>0.0385</td>
<td>0.0102</td>
</tr>
<tr>
<td>Rich Countries</td>
<td>Non-stationary Shock</td>
<td>0.2210</td>
<td>0.2652</td>
<td>0.1778</td>
<td>0.2720</td>
</tr>
<tr>
<td></td>
<td>Stationary Shock</td>
<td>0.6412</td>
<td>0.3037</td>
<td>0.2079</td>
<td>0.0730</td>
</tr>
<tr>
<td></td>
<td>Preference Shock</td>
<td>0.0920</td>
<td>0.3445</td>
<td>0.3349</td>
<td>0.4117</td>
</tr>
<tr>
<td></td>
<td>Interest rate Shock</td>
<td>0.0342</td>
<td>0.0697</td>
<td>0.2163</td>
<td>0.2399</td>
</tr>
<tr>
<td></td>
<td>Measurement error</td>
<td>0.0116</td>
<td>0.0169</td>
<td>0.0631</td>
<td>0.0034</td>
</tr>
</tbody>
</table>