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Abstract

Machine Learning Methods for Fusion and Inference of Simultaneous EEG and fMRI

Tao Tu

Simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging

(fMRI) have gained increasing popularity in studying human cognition due to their potential to

map the brain dynamics with high spatial and temporal fidelity. Such detailed mapping of the

brain is crucial for understanding the neural mechanisms by which humans make perceptual

decisions. Despite recent advances in data acquisition and analysis of simultaneous EEG-fMRI,

the lack of effective computational tools for optimal fusion of the two modalities remains a major

challenge. The goal of this dissertation is to provide a recipe of machine learning methods for

fusion of simultaneous EEG-fMRI data. Specifically, we investigate three types of fusion

approaches and apply them to study the whole-brain spatiotemporal dynamics during a rapid

object recognition task where subjects discriminate face, car, and house images under ambiguity.

We first use an asymmetric fusion approach capitalizing on temporal single-trial EEG variability

to identify early and late neural subsystems selective to categorical choice of faces versus

nonfaces. We find that the degree of interaction in these networks accounts for a substantial

fraction of our bias to see faces. Based on a computational modeling of behavioral measures, we

further dissociate separate neural correlates of the face decision bias modulated by varying levels

of stimulus evidence. Secondly, we develop a state-space model based symmetric fusion approach

to integrate EEG and fMRI in a probabilistic generative framework. We use a variational

Bayesian method to infer the network connectivity among latent neural states shared by EEG and



fMRI. Finally, we use a data-driven symmetric fusion approach to compare representations of the

EEG and fMRI against those of a deep convolutional neural network (CNN) in a common

similarity space. We show a spatiotemporal hierarchical correspondence in visual processing

stages between the human brain and the CNN. Collectively, our results show that the

spatiotemporal properties of neural circuits revealed by the analysis of simultaneous EEG-fMRI

data can reflect the choice behavior of subjects during rapid perceptual decision making.
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Chapter 1: Introduction

1.1 Overview

The primary goal of this dissertation is to investigate the applications of machine learning meth-

ods for integration of multimodal neuroimaging data. Speci�cally, we will focus on the fusion of

two simultaneously collected non-invasive brain imaging modalities: electroencephalogram (EEG)

and functional magnetic resonance imaging (fMRI). We will leverage the complementary strengths

of concurrent EEG-fMRI to understand the spatiotemporal brain dynamics underlying perceptual

decision-making in humans.

A wide array of non-invasive neuroimaging tools have been successfully used to provide a de-

tailed structural or functional mapping of the brain across multiple temporal and spatial scales [1].

Each imaging modality has its own strengths and weaknesses as each can only detect change in a

speci�c aspect of the brain. Therefore, combining data from multiple imaging modalities and lever-

aging their complementary strengths is crucial to obtaining a comprehensive picture of the brain.

Among various functional imaging modalities, EEG and fMRI are two dominant tools employed

in neuroscience research [2, 3, 4, 5]. They complement each other in terms of their spatial and tem-

poral characteristics. Recent efforts in the data collection and analysis of EEG-fMRI fusion have

opened up possibilities to advance our understanding of human cognition and neuropathology with

simultaneous high spatial and temporal speci�city [6, 7, 8, 9, 10, 11, 12]. The main challenge now

is no longer the technical dif�culty in concurrent data acquisition, but rather the lack of ef�cient

data analysis tools. Speci�cally, we need to develop the tools capable of optimally combining the

information from these two modalities with high �delity while recognizing their unique strengths

and weaknesses.

Broadly, EEG/fMRI data fusion methods fall into two categories [13, 14, 15, 16, 17]: asym-
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metric fusion and symmetric fusion. If one modality is treated as a prior or constraint to guide the

analysis of the other modality, the fusion is asymmetric. Alternatively, if the information from each

modality is used equally, the fusion is symmetric. Symmetric fusion can be further divided into

two categories: model-driven and data-driven. In model-driven approaches, EEG and fMRI are

integrated in a generative framework by explicitly modeling the neurovascular coupling through

their common neural substrates. Data-driven approaches, on the other hand, avoid the complex

modeling of the generative processes of EEG and fMRI. They directly exploit the covariance be-

tween EEG and fMRI in the feature space using some computational machinery regardless of the

differences in their biophysical properties.

In this dissertation, we will focus on the development of machine learning methods to fuse si-

multaneously recorded EEG and fMRI data. Since data acquisition in neuroimaging studies is both

labor intensive and expensive, most simultaneous EEG-fMRI datasets have a small sample size.

Given the high-dimensional and inherently noisy nature of simultaneous EEG-fMRI recordings,

we will direct special attention to methods that are well suited to uncover complex structures in

the data with limited sample size. We will explore different types of data fusion approaches and

demonstrate their applicability in understanding the neural basis of human behavior in the context

of perceptual decision making.

1.2 Motivation

1.2.1 Scienti�c Motivation

Perceptual decision making is a mapping from sensation to action. Humans are capable of con-

tinuously monitoring environmental cues, quickly reorienting their goals during decision making,

and generating timely actions to adapt to changes in their environment. This cognitive ability relies

on a concerted sequence of cognitive processes, such as sensory processing, attention modulation,

decision formation and action execution [18, 19, 20, 21, 22, 23, 24, 25]. Delineating this network-

level neural cascade with high spatial and temporal details leads to a deeper understanding on the

neural basis of �exible cognition in human. For instance, our bias in decision making under uncer-
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tainty are ubiquitous, yet intriguing - we see a human face when staring up at a cloud formation or

down at a piece of toast at the breakfast table [26, 27, 28, 29]. Characterizing constituent cognitive

processes underlying the perceptual bias towards faces both in space and time offers new insight

into the mechanism as to how such bias emerges in the brain and how it interacts with the incom-

ing environmental stimulus to affect our decision. The knowledge of such processes can help aid

the design of future brain-computer interface systems, for example, to better predict users' intent.

In addition, the understanding of these neural processes can help us identify and understand the

disruptions in neural processes underlying cognitive de�cits [30, 31, 32].

1.2.2 Technical Motivation

Despite the potential appeal of achieving high spatiotemporal resolution, fusion of simultane-

ously recorded EEG and fMRI is challenging for three reasons: 1) The interference between EEG

and fMRI data acquisitions leads to degraded signal quality in both modalities; 2) EEG and fMRI

are both indirect measure of the underlying neural activity and they have completely different bio-

physical generation processes; 3) EEG is high-dimensional in time and fMRI is high-dimensional

in space, but the number of subjects is normally quite limited.

The choice of analysis methods employed to link EEG with fMRI heavily depends on the

scienti�c questions to address. In light of these technical challenges, researchers favor simple

models with strong interpretability as opposed complex "black-box" models. One of the popular

EEG-fMRI fusion approaches where the single-trial EEG variability is integrated in the fMRI

analysis framework as covariates has been successfully used in numerous studies [28, 29, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42]. This approach enables temporal tagging of fMRI activity with EEG

variability derived at various time windows. However, this asymmetric approach is considered

suboptimal as only part of the EEG information is extracted and treated as a prior to inform the

analysis of fMRI. A more elegant approach would require the information from both modalities to

be combined equally in a probabilistic framework where the statistical dependence between EEG,

fMRI observations and shared unobserved neural states is well captured.
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In this dissertation, we aim at providing a recipe of machine learning methods for fusion of

simultaneous EEG-fMRI, which have applications beyond the context of cognitive neuroscience.

Using human neuroimaging and behavioral data, we will �rst demonstrate how we can exploit

temporal single-trial EEG variability in an EEG-informed fMRI analysis to uncover a network-

level neural circuit predictive of subjects' biased choice towards faces. We will then develop a

state-space model to tie EEG and fMRI observations to their shared inherent neural dynamics in

a probabilistic generative framework. In the end, we will leverage more complex and powerful

computational models such as deep neural networks to unify EEG and fMRI in order to gain new

insights into the hierarchically organized spatiotemporal dynamics during rapid decision making.

1.3 Background

1.3.1 Simultaneous EEG-fMRI Integration

EEG measures the electric activity generated during the depolarization of neurons from elec-

trodes on the scalp. The majority of neural activity measured by the scalp EEG is a summation

of postsynaptic potentials of neurons in the cortex [43]. The interpretation of scalp EEG becomes

obscure due to volume conduction [44]. Volume conduction makes it dif�cult to localize the un-

derlying EEG generators from scalp recordings as the activity at one recording site consists of

the activity generated by a large number of sources, including the ones that are distant from the

recording electrode. Therefore, the major limitation of scalp EEG is the lack of spatial resolution

[45]. Nevertheless, EEG can provide temporally resolved brain brain dynamics on the millisecond

range [46]. Blood oxygenation level dependent (BOLD) fMRI, on the other hand, measures in-

homogeneities in the magnetic �eld due to changes in the level of oxygenated hemoglobin in the

blood �ow across the entire brain volume [47]. fMRI BOLD activity re�ects the blood oxygena-

tion changes in response to the oxygen consumption by active neurons. The coupling between the

neural activity and BOLD response is still unclear, however, several studies have suggested that

BOLD signal is correlated with slow-varying postsynaptic activity as opposed to action potentials

[48, 49]. There is emerging evidence that BOLD signal links to the power of EEG at different
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frequency bands [50, 51]. A key feature of BOLD signal is that it is a delayed and temporally

blurred hemodynamic response of the leading neural activity [52]. Despite the high spatial resolu-

tion and whole-brain coverage, the poor temporal resolution of fMRI along with regional variations

in hemodynamic response pose a signi�cant challenge in the analysis of fMRI data [53].

Simultaneous EEG and fMRI acquisition techniques can help us combine high temporal speci-

�city with precise anatomical localization; this cannot be achieved by either modality alone [54,

55]. However, the combined bene�ts come at the cost of a reduced signal-to-noise ratio (SNR) in

both modalities [56]. Compared to stand-alone EEG, EEG collected inside MR scanner exhibits

two types of large and periodic artifacts: gradient artifact and ballistocardiogram (BCG) artifact

[57]. Gradient artifact is caused by the switching of the gradient magnetic �eld and it typically is

much larger in magnitude compared to EEG activity. Successful gradient artifact removal requires

the synchronization between the EEG clock and MR scanner clock such that an accurate average

template of the artifact can be obtained [58]. BCG artifact arises from the pulsatile movements

of the EEG electrodes that are synchronized to the cardiac cycles [59]. It is more challenging to

remove because its frequency band overlaps with true EEG signals. A conservative method based

on principle component analysis (PCA) is widely used to remove BCG artifacts to avoid excluding

useful neural activity [60]. Figure 1.1 illustrates the gradient and BCG artifacts and clean EEG

signals after artifacts removal. fMRI also measures a small percent signal change in BOLD rela-

tive to the mean signal variability, which is about 1-5% under an active task [61]. The presence of

EEG wires further increases the magnetic �eld inhomogeneity and thus leads to attenuated SNR

in BOLD especially near the top of the head at the exit of the wire bundle on EEG cap. Figure

1.2 shows example slices of the BOLD image. Fortunately, many solutions have been proposed to

deal with the noise reduction and preprocessing for simultaneous EEG-fMRI measurements [62,

63, 64, 65, 66].

Next, we will brie�y review three major types of EEG-fMRI fusion approaches. Asymmet-

ric fusion refers to the integration method where information of one modality is used as a prior

or weighting for the other modality. For example, EEG information (amplitude, frequency, and
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