Theses Doctoral

How do nitrogen-fixing trees influence the extent to which forests mitigate and exacerbate climate change?

Kou-Giesbrecht, Sian

Nitrogen (N)-fixing trees can both mitigate climate change, by relieving N limitation of plant growth which promotes carbon dioxide (CO²) sequestration in plant biomass, and exacerbate climate change, by stimulating nitrification and denitrification which promotes nitrous oxide (N²O) emissions from soils. The balance between the negative radiative forcing (CO² sequestration in plant biomass) and positive radiative forcing (N²O emissions from soils) of N-fixing trees is unresolved. In this thesis I use a sequence of theoretical and empirical approaches to investigate the influence of N-fixing trees on CO² sequestration by forests and N²O emissions from forest soils, i.e., the net CO²-N²O effect of forests.

The first chapter establishes a basis for the N²O effect of N-fixing trees with a meta-analysis, to accompany existing meta-analyses of the CO² effect of N-fixing trees. Chapter one demonstrates that N- fixing trees significantly increase N²O emissions from forest soils relative to non-fixing trees. The second chapter explores the controls and potential global importance of the net CO²-N²O effect of N-fixing trees using a theoretical ecosystem model. The third chapter explores the net CO²-N²O effect of N-fixing trees under manipulations of these controls with a field experiment paired with a modified version of the theoretical ecosystem model from the second chapter. Together, chapters two and three suggest that the net CO²-N²O effect of N-fixing trees is controlled by N limitation of plant growth and the extent to which N-fixing trees can regulate N fixation: N-fixing trees mitigate climate change relative to non-fixing trees under N limitation of plant growth, but N-fixing trees that cannot regulate N fixation exacerbate climate change relative to non-fixing trees under non-N limitation of plant growth. The fourth chapter represents the ecological mechanisms studied in chapters one, two and three in a land model: LM4.1-BNF is a novel representation of biological N fixation (BNF) and an updated representation of N cycling in the Geophysical Fluid Dynamics Laboratory Land Model 4.1 (LM4.1). LM4.1-BNF includes a mechanistic representation of asymbiotic BNF by soil microbes, the competitive dynamics between N-fixing and non-fixing plants, N limitation of plant growth, and N2O emissions from soils. Together these chapters elucidate the influence of N-fixing trees on the capacity of forests to mitigate and exacerbate climate change and establish a framework to analyse and project the trajectory of the net CO²-N²O effect of forests under global change.

Files

  • thumnail for KouGiesbrecht_columbia_0054D_16410.pdf KouGiesbrecht_columbia_0054D_16410.pdf application/pdf 3.31 MB Download File

More About This Work

Academic Units
Ecology, Evolution, and Environmental Biology
Thesis Advisors
Menge, Duncan N. L.
Degree
Ph.D., Columbia University
Published Here
March 22, 2021