Academic Commons

Theses Doctoral

Seasonality and Regionality of ENSO Teleconnections and Impacts on North America

Jong, Bor-Ting

The El Niño – Southern Oscillation (ENSO) has far-reaching impacts across the globe and provides the most reliable source of seasonal to interannual climate prediction over North America. Though numerous studies have discussed the impacts of ENSO teleconnections on North America during boreal winter, it is becoming more and more apparent that the regional impacts of ENSO teleconnections are highly sensitive to the seasonal evolution of ENSO events. Also, the significant impacts of ENSO are not limited to the boreal winter seasons. To address these knowledge gaps, this thesis examines the seasonal dependence of ENSO teleconnections and impacts on North American surface climate, focusing on two examples.

Chapter 1 examines the relationship between El Niño – California winter precipitation. Results show that the probability of the anomalous statewide-wetness increases as El Niño intensity increases. Also, the influences of El Niño on California winter precipitation are statistically significant in late winter (Feb-Apr), but not in early winter even though that is when El Niño usually reaches its peak intensity. Chapter 2 further investigates why the strong 2015/16 El Niño failed to bring above normal winter precipitation to California, focusing on the role of westward shifted equatorial Pacific sea surface temperature anomalies (SSTAs) based on two reasons: the maximum equatorial Pacific SSTAs was located westward during the 2015/16 winter compared to those during the 1982/83 and 1997/98 winters, both of which brought extremely wet late winters to California. Also, the North American Multi-Model Ensemble (NMME) forecasts overestimated the eastern tropical Pacific SSTAs and California precipitation in the 2015/16 late winter, compared to observations. The Atmospheric General Circulation Model (AGCM) experiments suggested that the SST forecast error in NMME contributed partially to the wet bias in California precipitation forecast in the 2015/16 late winter. However, the atmospheric internal variability could have also played a large role in the dry California winter during the event.

ENSO also exerts significant impacts on agricultural production over the Midwest during boreal summer. Chapter 3 examines the physical processes of the ENSO summer teleconnection, focusing on the summer when a La Niña is either transitioning from an earlier El Niño winter or persisting from an existing La Niña winter. The results demonstrate that the impacts are most significant during the summer when El Niño is transitioning to La Niña compared to that when La Niña is persisting, even though both can loosely be defined as developing La Niña summer. During the transitioning summer, both the decaying El Niño and the developing La Niña induce suppressed deep convection over the tropical Pacific and thereby the corresponding Rossby wave propagations toward North America, resulting in a statistically significant anomalous anticyclone over northeastern North America and, therefore, a robust warming signal over the Midwest. These features are unique to the developing La Niña transitioning from El Niño, but not the persistent La Niña.

In Chapter 4, we further evaluate the performance of NCAR CAM5 forced with historical SSTA in terms of the La Niña summer teleconnections. Though the model ensemble mean well reproduces the features in the preceding El Niño/La Niña winters, the model ensemble mean has very limited skill in simulating the tropical convection and extratropical teleconnections during both the transitioning and persisting summers. The weak responses in the model ensemble mean are attributed to large variability in both the tropical precipitation, especially over the western Pacific, and atmospheric circulation during summer season.

This thesis synthesizes the physical processes and assessments of climate models in different seasons to establish the sensitivity of regional climate to the seasonal dependence of ENSO teleconnections. We demonstrate that the strongest impacts of ENSO on North American regional climate might not be necessarily simultaneous with maximum tropical Pacific SST anomalies. We also emphasize the importance of the multi-year ENSO evolutions when addressing the seasonal impacts on North American summertime climate. The findings in this thesis could benefit the improvement of seasonal hydroclimate forecasting skills in the future.

Files

  • thumnail for Jong_columbia_0054D_15457.pdf Jong_columbia_0054D_15457.pdf application/pdf 6.63 MB Download File

More About This Work

Academic Units
Earth and Environmental Sciences
Thesis Advisors
Ting, Mingfang
Degree
Ph.D., Columbia University
Published Here
September 27, 2019