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Abstract

Beyond summary statistics: extracting etiological insights from genome-wide association cohorts

Jie Yuan

Over the past 20 years, Genome-Wide Association Studies (GWAS) have identified

thousands of variants in the genome linked to genetic diseases. However, these associations often

reveal little about underlying genetic etiology, which for many phenotypes is thought to be highly

heterogeneous. This work investigates statistical methods to move beyond conventional GWAS

methods to both improve estimation of associations and to extract additional etiological insights

from known associations, with a focus on schizophrenia. This thesis addresses the above aim

through three primary topics: First, we describe DNA.Land, a web platform to crowdsource the

collection of genomic data with user consent and active participation, thereby rapidly increasing

sample sizes and power required for GWAS. Second, we describe methods to characterize the

latent genomic contributors to heterogeneity in GWAS phenotypes. We develop a Z-score test to

detect heterogeneity using correlations between variants among affected individuals, and we

develop a contrastive tensor decomposition to explicitly characterize subtype-specific SNP effects

independently of confounding heterogeneity such as ancestry. Using these methods we provide

evidence of significant heterogeneity in GWAS cohorts for schizophrenia. Lastly, a major avenue

of investigation beyond GWAS is identifying the genes through which associated SNPs

mechanistically affect the presentation of phenotypes. We develop a method to improve

estimation of expression quantitative trait loci by joint inference over gene expression reference

data and GWAS data, incorporating insights from the liability threshold model. These methods

will advance ongoing efforts to explain the complex etiology of genetic diseases as well as

improve the accuracy of disease prediction models based on these insights.
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Chapter 1: Introduction and Background

Nearly two decades since the preliminary sequencing of the human genome [1, 2], genomic

data is now an ubiquitous component of epidemiology and medicine [3]. The development of

Next Generation Sequencing technologies enabled faster and cheaper generation of genotype data,

with cost reductions outpacing Moore's law since 2008 [4, 5]. This has allowed research consortia

to recruit large cohorts for genomic studies, such as the UK Biobank with nearly 500k partic-

ipants and the Precision Medicine Initiative which aims to recruit 1 million participants [6, 7].

Direct-To-Consumer genotyping companies have achieved even greater success in recruitment,

with 23andMe claiming more than 12 million customers and Ancestry.com more than 15 million

[8, 9].

Throughout these advancements, the Genome-Wide Association Study (GWAS) has been a

�xture of statistical assessments of genomic disease risks. Between 2005 and 2018, nearly 3,700

GWAS have been conducted on 3,500 unique traits, discovering tens of thousands of genomic

variants associated with a trait [10]. GWAS have also produced actionable insights into disease

etiology by tagging genes with known disease-relevant mutations and drug interaction sites in traits

such as type 2 diabetes, lipid levels and Crohn's disease [11, 12]. Despite these achievements, the

GWAS framework also carries many drawbacks [12]. The summary statistics reported by GWAS

tend to explain only a small fraction of the total variance of most complex traits, and as reported

signals are merely associations, they give little insight into whether relevant variants are causal,

or what their roles are in the broader etiology of diseases. Further exacerbating these issues,

the high polygenicity observed in most complex traits often result in weak associations dispersed

throughout most of the genome, possibly due to highly inter-connected gene regulatory networks

[13].

Despite these drawbacks, few alternative models have been proposed to supplant GWAS, due
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to the aforementioned polygenicity resulting in very weak and widespread signals. While deep

learning has made signi�cant inroads into the discovery of interaction sites with gene regulatory

elements [14, 15], preliminary work applying neural networks to predict disease status from geno-

type data found that the predictive accuracy of these networks did not signi�cantly outperform the

additive linear estimates currently derived from GWAS [16]. These �ndings suggest the drawbacks

of GWAS may not be primarily attributable to the limitations of the linear models currently in use.

In this thesis, I explore methods to extract additional insights from case/control GWAS data be-

yond conventionally reported summary statistics, with a focus on schizophrenia GWAS. First, large

sample sizes are required to detect the small and widely dispersed associations typical of GWAS

but can be dif�cult to obtain by traditional recruitment and sequencing of human participants. In

Chapter 2, I present DNA.Land, a web framework for the rapid collection of genotype and phe-

notype data from customers of direct-to-consumer genotyping companies. This section describes

measures taken to ensure privacy and consent of users and encourage continued participation in the

website, the resources required, as well as lessons learned from operation of the website, during

which we collected over 50k genomes within two years of operation.

Next, I describe efforts to both detect and characterize heterogeneity in genotype data at-

tributable to sub-types with distinct genomic risk factors. In some diseases comprising observ-

able differences between sub-types, such as type-I and type-II bipolar disorder, sub-type speci�c

variant associations may be identi�ed, further clarifying the etiology of the disease as a whole

[17]. Schizophrenia is widely understood to be heterogeneous with unique subtype-speci�c ge-

nomic contributors [18], and these subtypes are suspected to have unique genetic correlations with

other traits such as educational attainment [19]. However, to date there are few methods which are

well-powered to investigate heterogeneity in single case/control traits in an unsupervised genome-

wide approach and are capable of disentangling heterogeneity attributable to disease etiology from

background strati�cation such as ancestry. In Chapter 3, I describe CLiP, a method which trades

discriminativeness for increased power. Rather than decompose sub-type speci�c SNP associa-

tions, CLiP relies on expected correlation patterns between variants in non-heterogeneous cohorts
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to detect heterogeneity present in cases and not controls. In Chapter 4, I describe a mixture model

method to explicitly characterize subtype-speci�c variant effects. This method relies on a con-

trastive spectral decomposition [20], which identi�es mixtures in cases while ignoring those also

present in controls. Using these methods, we detect signi�cant heterogeneity in schizophrenia

cohorts and identify potential subtypes with unique variant associations.

Lastly, in recent years Transcriptome-Wide Association Studies (TWAS) have emerged as a

popular tool to enhance the explanatory power of GWAS by incorporating gene expression data.

TWAS are conducted in a two-stage process in which variant-gene effects are estimated from typi-

cally small reference panels, and these are then used to impute gene expression for gene-trait asso-

ciation tests in large GWAS cohorts. In Chapter 5, I describe EMBER, a method which improves

estimation of variant-gene effects over regression in a reference panel by performing inference

over both the reference panel and a separate GWAS cohort simultaneously. We demonstrate that

EMBER improves estimation accuracy over linear regression as measured by concordance with

results from replication data.

The remaining sections of this introduction give a brief overview of GWAS and TWAS.

1.1 Genome-Wide Association

Genome-Wide Association Studies (GWAS) concern the identi�cation of particular loci in the

genome that are predictive of a phenotype, often case/control status with respect to a disease. This

analysis is performed typically over Single Nucleotide Polymorphisms (SNPs) which are known to

vary widely between individuals. A discovered SNP-trait association may be the result of several

mechanisms: the SNP may be located within a gene coding for a protein that ultimately has some

causal effect on the disease; the SNP may be located in a promoter or enhancer region, and SNP

variability in�uences expression of a gene; or the SNP may only be in close proximity to a gene,

and a particular effect allele co-occurs with a particular gene variant. The latter results from a

phenomenon called Linkage Disequilibrium (LD), in which SNPs or genes in close proximity

tend to be correlated, due to the block-wise nature in which chromosomes are recombined during
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meiosis.

1.1.1 Linear regression and covariates

GWAS conventionally employ linear regression models to discover additive effects among a set

of SNP predictors. Assume a quantitative trait such as height or BMI is measured and standardized

as. � # ¹0–1º, and a set of" SNPs is collected for# individuals and stored in the# � " matrix

- 2 f0–1–2g. The objective is to �nd the effect sizesV maximizing the prediction of the trait in

the equation. = -V . The SNPs whose effect sizesV are suf�ciently large to pass a signi�cance

threshold are reported in summary statistics. It is also important to remove the effect of covariates

in the GWAS study, such as age, sex, and ancestry which may result in spurious associations with

the sample data. This is achieved in linear regression by adding these labels as additional predictors

in the linear model. Ancestry is incorporated by performing a principal component analysis on the

genotyped data [21]: the degree to which each individual's genotype vector aligns along a number

of top eigenvectors, typically 10 to 20, are also added as covariates. In practice, GWAS typically

regresses a single SNP along with the full set of covariates, and reports the p-values of association

in a Manhattan plot. Modern GWAS methods often apply assumptions from multi-SNP linear

mixed models to re-estimate effect sizes accounting for LD between SNPs, such as LDpred [22],

or to estimate the additive variance explained by all genome-wide SNPs, such as GCTA or BOLT-

REML [23, 24].

1.1.2 Polygenic Risk Scores and heritability

The set of learned effect sizesVcan serve as a linear prediction model for disease risk. If a vec-

tor of the same SNPs is constructed for a new set of individuals- 0, then- 0Vwill be a continuous

score called a Polygenic Risk Score (PRS) quantifying risk of disease for that set of individuals.

For clinical applications, these scores are often binned into ranges of increasing risk with the high-

est scoring bins warranting some further investigation [25]. Oftentimes the predictability, or the

fraction of trait variance explained of these models, is low. The heritability, or total fraction of
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variance explained by all genomic variants, can be estimated from twin studies, and in a meta-

analysis of nearly 18,000 traits was found to be on average 49% [26]. But the variances explained

of summary statistics obtained from GWAS are frequently much lower, in the neighborhood of 1

to 5%, in what has been called the “missing heritability” problem [27]. Over time, consensus has

arisen that this is due to the high polygenicity of most traits: thousands of SNPs each contribute

additively a very small effect to determination of a trait, and the vast majority of these effects re-

main undetected due to the underpowered status of most modern GWAS studies. For this reason

PRS explain only a very small percentage of variance and may not be very predictive on an indi-

vidual basis. The very low signal to noise ratio of almost all GWAS applications is also a principal

challenge in detecting heterogeneity in GWAS.

1.1.3 Case/Control GWAS and the Liability Threshold Model

Most disease traits are not reported as quantitative variables, but as cases or controls. For this

reason logistic regression is used instead: rather than the trait value, the log function of the odds of

acquiring the trait for a given individual is the prediction variable. This permits the interpretation

of the effect sizes as the log odds ratio of acquiring the disease given one risk allele for the given

SNP is added, and these odds ratios are typically reported in summary statistics.

However, the logistic regression model does not explicitly de�ne the variance explained by the

model, and this must be estimated using pseudo-A2 methods. For ease of simulation and interpre-

tation, another popular model in use is the liability threshold model [28]. This model assumes an

underlying standard normal variable quanti�es subjects' disease status, and one is assigned to be

a case if one passes some �xed threshold) in the distribution of this variable, as shown in Figure

1.1. The threshold location is determined by the prevalence of the disease in the population. The

PRS-V contributes to the hidden variable, but only by a small percentage� 2
V, and the remaining

variance explained is modeled as normally distributed noise with variance1 � � 2
V. As the noise

variance is unaccounted for by the model, an individual's probability of being classi�ed as a case

5



is determined by the individual's PRS, speci�cally, the probability that the unobserved total score

passes the threshold, as determined by the normal CDF function� :

%¹. = 1º = �

 
-V � )
q

1 � � 2
V

!

(1.1)

Figure 1.1: Liability Threshold Model

1.1.4 Transcriptome-Wide Association

Transcriptome-Wide Association Studies (TWAS) leverages gene expression data to derive fur-

ther insights into causal relationships between genomic variants and phenotypes [29, 30, 31, 32].

While gene expression data can be measured through methods quantifying the amount of tran-

scribed RNA through methods such as RNAseq, a persistent challenge is the increased cost of

acquiring gene expression data in comparison to genomic sequence data. Therefore gene expres-

sion data sets tend to be far smaller, often numbering in the hundreds of samples. To discover

gene-trait associations, rather than regressing on the transcriptome directly, TWAS instead learns

models to predict expression levels based on genomic variants located in cis with the locus of the

gene. This �rst step is performed over small cohorts of individuals who have available both ge-

nomic and transcriptomic data to learn a set of effectsV predicting the transcript. Then for much

larger cohorts of individuals with only genomic data- , expression levels are inferred using the
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linear model, calculated with-V . The inferred expression variables are then regressed against

phenotype dataHof the larger cohorts. The regression effectsUof these inferred transcripts can be

calculated according to ordinary least squares regression [31]

U =
Cov¹-V– Hº

Var¹-V º
(1.2)

As TWAS is in essence a two-stage regression, it can also be conducted when only summary

statistics and LD information is available by representing imputed gene-trait effects as linear func-

tions of known SNP-trait associations scaled by matrices of SNP-gene and SNP-SNP covariances.
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Chapter 2: A digital biobank framework for the era of abundancy of genetic

information

This work is published in Nature Genetics and was coauthored with Assaf Gordon (co-�rst

author), Daniel Speyer, Richard Aufrichtig, Dina Zielinski, Joseph Pickrell, and Yaniv Erlich.

doi: https://doi.org/10.1038/s41588-017-0021-8

2.1 Abstract

Precision medicine necessitates large scale collections of genomes and phenomes. Despite de-

creases in the costs of genomic technologies, creating genome/phenome collections at scale is still

a daunting task that usually requires consortium-scale resources. Here, we describe DNA.Land,

a digital biobank to collect genomes and phenomes with a fraction of the resources of traditional

studies at the same scale. Our approach relies on crowd-sourcing data from a growing number of

individuals that have access to their own genomic datasets through consumer genomic companies.

To recruit participants, we developed a series of automatic return-of-results features in DNA.Land

that increase users' engagement while complying with human subject research protection. So far,

DNA.Land has collected over 50,000 genomes in 20 months of operation, orders of magnitude

higher than previous digital attempts by academic groups. We report lessons learned in running

a digital biobank, our technical framework, and our approach regarding ethical, legal, and social

implications.

2.2 Introduction

Elucidating the genetic basis of complex traits requires substantial quantities of genomic data

[33]. In the last twenty years, the �eld has seen an exponential decline in the cost of genomic
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technologies. As of today, a genotyping array costs on the order of tens of dollars and whole

genome sequencing costs about one thousand dollars. However, collecting genetic and phenotype

data at scale is a time and resource consuming task that poses massive logistical and operational

challenges. On top of the costs of genotyping, researchers need to advertise the study, recruit

participants, obtain consent, provide DNA collection kits, track and store samples, extract DNA,

and prepare the DNA library before data is available in a digital format. Phenotyping requires

further resources even if it is done using online questionnaires. These operations are labor intensive

and translate to massive costs. For example, the NIH's Precision Medicine Initiative (“All of Us”)

has recently allocated $50 million for recruitment centers (“HPO”) and biobank operations that

collectively proposed to recruit and handle bio-specimens and basic phenotypic information from a

total of 500,000 participants. These costs translate to about $100 per participant before genotyping

and the inclusion of more advanced data collection methods such as wearable devices (Table A.1).

In Europe, the UK Biobank reported that it needed “careful con�guration” of its operational chain

to support the recruitment of one hundred participants per day in each of its centers [34, 35].

We sought to develop a cost-effective alternative for collecting genome and phenome data at

scale. The past �ve years have witnessed the advent of large-scale direct-to-consumer (DTC)

genetic services for genealogy and personal curiosity, with companies such as 23andMe, Ances-

tryDNA, FamilyTreeDNA, and MyHeritage [36]. These services provide a dense genotyping array

with approximately half a million SNPs for about $69 to $99 per participant. As of today, more

than eight million individuals have been tested with these services and over ten thousand new

DTC kits are purchased daily. None of these companies currently share individual level data with

researchers and to the best of our knowledge only 23andMe and MyHeritage collect phenotype

information on disease traits. These policies restrict the ability to migrate data to academic studies

by collaborating with these companies. However, all of these services hold the view that the raw

genetic information belongs to the tested individual and allow downloading the genomic data in

a tabulated textual format. The ability to download the raw genotypes provides an opportunity to

reach out to individuals to crowd source the raw genetic data and repurpose the data for academic

9



studies, circumventing the cumbersome sample processing procedures of traditional studies.

Previous efforts to crowd source DTC genomic data using an online platform have shown mixed

results. For example, OpenSNP.org offers a not-for-pro�t service and provides a basic mechanism

for users to upload their DTC genomic data and publicly share their data, but do not offer features

such as privacy controls or a IRB-protections to participate in research [37]. While serving as an

important open resource for the community, OpenSNP's approach has yet to become a viable alter-

native to traditional genomic data collection. Analysis of uploading dates shows that the website

attracts only 1 to 2 participants per day. After �ve years of operation, this website has reached

only �ve thousand participants. Another website for crowdsourcing DTC genomic data is Ged-

Match.com, which is operated by a small for-pro�t company. This website offers a wide repertoire

of genetic-genealogy tools that extend the features offered by DTC companies. By serving the

genetic genealogy community, GedMatch has reached critical mass and grown a large commu-

nity of hundreds of thousands of individuals in approximately �ve years of operation. However,

the website does not focus on basic research: it neither consents users nor collects phenotypic

information, and provides minimal privacy settings, reducing its attractiveness for human genetic

research by academic groups. Nonetheless, its success highlights the possibility of reaching a large

scale collection of DTC data by developing a 3rd party service offering added value in the form of

genetic-genealogy analysis for participants.

Building upon these observations, we developed DNA.Land, a website to crowd source ge-

nomic and phenotypic information for human genetics research. DNA.Land has two overall goals:

(a) to demonstrate the potential for genotype and phenotype collection by crowdsourcing data from

users of direct-to-consumer companies, and (b) to promote the idea of patient-led genetic research,

with controls left to the participants such as a choice of the degree of sharing of phenotype data,

and avenues for providing feedback to researchers. In 20 months of operation, DNA.Land has

collected over 50,000 genomic datasets from DTC participants and growing daily. Importantly,

this effort was accomplished by a small team in an academic environment. In this manuscript, we

describe the operating guidelines, ELSI approach, and technical details of our website, while high-
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lighting key points and lessons learned to operate a digital biobank. We hope this information can

be useful for other academic efforts seeking alternatives to traditional approaches of constructing

genetic databases, for start-ups that operate in the growing DTC domain, and for bioinformaticians

interested in learning more about the architecture of scalable pipelines for the analysis of genetic

data.

2.3 Design principles and user experience

The design and operation of DNA.Land have emphasized two principles: reciprocation and

autonomy, which were highlighted by previous studies as a viable route for large scale engagement

in genomics [38, 39, 40]. Participants who volunteer their genomic data contribute an essential

resource for advancing research. We hypothesized that providing services in return would help

maintain user interest and interaction with our study and encourage participation from new users.

For every piece of information requested of the user, we aim to reciprocate by displaying online

reports detailing interesting information about his or her genome. In addition, we provide a “Learn

More” link that explains the value of the information for science and for the user. To respect

the autonomy of individuals, we give our users the ability to choose the extent of involvement

in the website in terms of data contribution and information sharing. Lastly, security is a major

concern of the website, and we discuss measures taken to safeguard uploaded genetic data and user

information in the Supplementary Material (Chapter A).

New users start their interaction with DNA.Land with account creation and a consent form.

Previous studies have shown that users rarely read the terms of service of websites [41], but despite

that IRBs insist on overly long consent forms [42, 43]. To address this challenge, our consent

philosophy uses a `just-in-time' presentation of information. Rather than enumerating all possible

scenarios as in a traditional consent form for broad research [44, 45], our consent sets only the

framework for the relationships between the user and the study and describes the risks and bene�ts

for sharing genetic data in plain language. While exploring the website, users may decide to

increase their involvement by answering questionnaires about health traits or contributing their

11



genealogy data. In these cases, we present additional consent forms that are geared towards the

speci�c feature before allowing the user to contribute more data. The `just-in-time' approach

allows the general consent form to be only 1500 words long, or a �ve-minute read in a normal

pace, increasing the chance that users will read it. We share the consent language under CC-BY-

2.0 to facilitate adoption by the community (see Supplementary Material in Chapter A).

We found that the amount of time users spent on the consent documents corresponds to their

length. For example, the users spent approximately 17sec (sd=22sec) on the `just-in-time' consent

page displayed for a breast cancer survey that has approximately 250 words. For the trait consent

with twice as many words, the users spent 34sec (sd=22sec) on average. These reading rates

correspond to 15 words/sec. The increased dwell time on longer consent pieces suggest that most

users do not just “click through” the page. However, the fast reading time indicates that the users

mostly skim through the language, presumably to detect major issues, and argues against lengthy

consent forms.

After the consent, participants upload their genetic data and can optionally provide minimal

information about themselves. We currently accept data �les from all major DTC companies:

23andMe, AncestryDNA, FamilyTreeDNA, and MyHeritage.

Once the user has logged in, the main pro�le page presents three primary types of reports to

users: ancestry composition, relative matching, and trait prediction (Figure 2.1). On average, the

ancestry reports are available after 7.1 hours (median: 4.6 hours) and the relative matching and the

trait predictions are processed by batch every 12 hours, so typically users will wait a maximum of

24 hours for results.

Currently, our trait prediction reports describe only physical and wellness features such as

height and neuroticism and do not include any disease-related traits to avoid regulatory complex-

ities. However, we do collect questionnaires about disease traits, such as family history of breast

cancer. The relative �nder and trait prediction reports are opt-in and implement a `just-in-time'

consent for participation. About 90% of the users opted-in for the relative matching report that

includes making their username and email address publicly visible for other genetically-related
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Figure 2.1: The DNA.Land reports (A) Ancestry Report based on a STRUCTURE-like algorithm
and a specialized reference of world-wide populations (B) Trait Prediction Report. Predictions
are calculated from published GWAS summary statistics and users' imputed genomes. The report
also displays the distribution of DNA.Land predicted scores and the effect sizes and locations of
relevant SNPs (C) Relative matching is based on �nding shared IBD segments and calculating
the most likely genealogical relationship. Each row of the report indicates a matching user and
statistics relevant to the match such as degree of relatedness, total length of matching segments,
the likelihood distribution on the degree of relatedness, and a display of the location of matching
segments on the chromosomes.
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DNA.Land users. The trait prediction report, having launched a year after the main site, currently

has a 34% opt-in rate, likely since early users have not visited the website to activate this feature.

Interestingly, the popularity of the reports did not match our initial expectations. We initially

believed that the ancestry report would generate only secondary interest among users as similar

reports are returned by DTC services. However, the ancestry report has proven to be one of the most

popular features and generates nearly equal traf�c to the relative matching report (Figure A.1A).

The launch of a more visually appealing ancestry report in April 2016 generated a massive spike

in traf�c, and we have since observed many participants publicly sharing their ancestry results in

Facebook pages dedicated to genetic genealogy. On the other hand, we believed that users would

highly value the option to download their fully imputed genome with 39 million variants compared

to their half a million array. We instead found that most users do not have the computational

resources to analyze their genome and this feature proved to be infrequently used [46].

Finally, we provide tech support and engagement for our users through a dedicated member of

our team. The need for this task became apparent when we were �ooded with hundreds of emails

after the launch, which strained our ability to respond and diverted signi�cant amounts of time from

the development team. In addition, our DNA.Land Facebook page has become a place for users to

report bugs and pose questions about the website, whereas our initial expectation was that it would

only serve for promotional purposes with minor importance. Our tech support answers emails,

responds to user comments on our Facebook page, and writes blog posts promoting DNA.Land on

social media, keeping users appraised of our development efforts.

2.4 Data Acquisition during the project

DNA.Land collects several forms of data from users: genome-wide genotyping data, basic

demographic information about the participant and their immediate family, and questionnaires

about traits. With exception of the genomic information, all other types of data are optional for

participation in DNA.Land.

We launched DNA.Land on Oct. 2015. As of July 2017, the project has collected 50,000
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Figure 2.2: The growth of DNA.Land (A) The number of new users participating in DNA.Land
during the �rst 16 months of operation. Pink indicates the number of new user registrations. Green
indicates the net number of user genomes uploaded, with users who subsequently deleted their
accounts subtracted. Dark Blue indicates the number of users completing at least one of the trait
prediction questionnaires. Large spikes in new user uploads occurred during launch and after the
release of an updated ancestry report in April 2016 (B) Cumulative new users per week since
launch. (C) The bar graph corresponds to the net genomes uploaded and indicates the proportion
of total genomes arriving from each currently-accepted direct-to-consumer genotyping company.

genomic datasets from participants (Figure 2.2A-B; Figure A.1B-C). In general, we can divide

the participation rates into three phases. The launch phase in the �rst month saw a rapid rate of

growth of nearly 8,000 genomes. Then, after the initial excitement, the rate declined to an average

of 900 genomes per month. Finally, after launching the improved ancestry report in April 2016,

we have seen a steady growth of nearly 2,000 new genomic datasets per month. About 45% of

the users submit �les from AncestryDNA, 40% from 23andMe, and 15% from FamilyTreeDNA

(Figure 2.2C).

We also allow users to delete their account at any time. Since the launch of the website,

the deletion rate has remained at an average fraction of 4.9% of new user uploads. The reasons
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for deletions are mostly technical and re�ect users that encountered technical problems such as

uploading a truncated genome �le. In addition, about 6.3% of all submitted the genomes are

essentially identical. These cases mostly re�ect users that were tested with more than one company

and created a separate pro�le for each one of their genome datasets.

We gather phenotypes by providing users with various questionnaires about physical and health

traits (Figure A.2A-B). Each questionnaire pertains to a single trait, and users may choose which

questionnaires to complete. To facilitate participation, we limited the number of questions in each

questionnaire to a maximum of 15, and most users spend less than 2 minutes completing each ques-

tionnaire (Figure A.2C). We launched the questionnaires in October 2016, a year after DNA.Land

launched, and since then about 12,000 of our users have completed at least one questionnaire.

Users have since answered over 275,000 questions in total, or about 3,100 questions per day since

the feature's launch. We did not discover any signi�cant differences between participation rate in

the questionnaires although they sampled very different traits.

We also give users the opportunity to provide detailed information about relatives, with an

emphasis on identifying nuclear families. We have integrated into DNA.Land's relative �nder an

option for users of Geni.com, a website for building family trees, to link their Geni accounts with

those of their matching relatives on DNA.Land. Family trees built by Geni.com users have been

shown to facilitate large-scale analyses of populations, such as historical migration patterns [47].

We also provide survey questions for users to directly identify their mother and father. Lastly, an

analysis of the results of the relative matching algorithm across all DNA.Land users shows that

7,100 pro�les have at least one immediate family member. Additional information about relative

matching statistics of DNA.Land users are presented in Figure A.3.

Analysis of the demographic data provided by users shows that the average participant is of

North European ancestry in her late 40s (interquartile region: 36-63 years old) (Figure A.4A). We

see a slight over-presentation of self-reported females (53%) versus male (47%). To understand the

ethnic composition of our study, we analyzed the genetic ancestry of individuals and identi�ed the

leading ancestry component of each individual. While this measure may not directly correspond to
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how users self-identify their ancestry [48], it provides a proxy for the demography of in our data.

The genetic analysis shows that the primary ancestry of 53.9% of our users is Northern European,

with the next most common groups from other parts of Europe (Table A.2; Figure A.4B-C).

2.5 Data acquisition costs

DNA.Land employs a hybrid cloud design to reach a cost-effective, scalable operation (Fig-

ure 2.3A). The Supplementary Note (Chapter A) extensively documents the architecture of the

project, and we outline here only general details important to the operation costs. Brie�y, the

front-end of the website operates on an Amazon Web Services (AWS) EC2 reserved instance. It

provides the web interface for managing users, collecting genomic and phenotypic data, compiling

surveys, and reporting relative matching and trait prediction results. The pipeline for processing

of genomic data (e.g. imputation and ancestry analysis) is executed on AWS spot instances, which

process each genome in parallel and allow us to scale out quickly in periods of high demand. The

imputation and ancestry results are stored on AWS S3 storage. A physical in-house server then

runs relative matching and trait prediction processes, which are CPU, RAM, and disk intensive.

These processed results, including lists of inferred relatives, are transferred to the database on the

front-end server.

The data acquisition costs of our digital approach are low and translate to a few dollars per

genome. The costs of running our hybrid cloud operation is on the order of $5000 per month

(Figure 2.3B), which includes compute engines, storage, and transfer costs, in addition to irregular

costs for development and purchase of our in-house server. To keep the costs low, we have devel-

oped an automated bidding system that will bid for spot instances for up to $0.60 per hour, but we

can manually decide to bid higher prices in situations of acute need, such as the days following

a feature launch during which we experience an in�ux of new users. As of December 2016, the

cumulative cost has been approximately $73.4k, or about $2 per genome-wide genotyping array, a

phenome that consist of tens of data points, and genealogy information. In addition, the DNA.Land

team has consisted of approximately two full time academic programmers who are mainly required
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Figure 2.3: DNA.Land operation and expenses (A) Overview of DNA.Land architecture. EC2
spot instances process uploaded genome �les and perform imputation and ancestry inference. The
physical server performs computation involved in relative matching and trait prediction, and per-
forms backups of genotype data. Genotype �les and output �les of the impute pipeline are stored
in an S3 repository, and selected results are stored in a database on the frontend server. SQS is
used to manage assignment of new users to spot instances or processing by the physical server
(B) Monthly expenses for all AWS services. EC2 services (Blue) are used to process new users
in the pipeline. S3 (Yellow) is used to store uploaded genotype �les and any output �les from the
imputation pipeline. Transfer costs (Green) pertain to user downloads of their imputed genome
�les. Irregular costs (Pink) indicate purchases of EC2 reserved instances, as well as purchase of
our current physical server, in February 2016.

for the development of new features to collect new types of information, and a part-time position

for technical support.

2.6 Discussion

We have described a scalable, software-based method to gather direct-to-consumer genotype

data at low cost and low personnel requirements relative to traditional bio-banking methods. In the

span of 20 months, we have managed to obtain over 50,000 genomes, many of which are paired

with additional phenotypic, demographic, and family data.

We credit the success of DNA.Land to several factors. First, we achieved great momentum

immediately after the launch of the project, and within the �rst month of operation we had collected

over 8,000 genomes. We attribute the successful launch to working closely with leaders in the

genetic genealogy community, who promoted the resource to their social media followers and
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were paramount to communicating to us the needs of the community. Indeed, only less than half of

our traf�c comes from Google searches and a substantial portion of the users comes from Facebook

pages mentioning DNA.Land, genetic genealogy community websites, and blog posts (Table A.3).

In addition, the initial website already included several interesting features not presented in existing

DTC reports, such as a visualization of shared IBD segments between matching relatives, which is

not shown by some DTC companies. Second, we invested considerable efforts into addressing user

concerns on a variety of issues including the quality of our results, privacy and consent policies, and

even suggestions for improving our user-interface, such as making our visualizations color-blind

friendly. We posit that this process, while resource-intensive, has signaled to the community that

we are serious partners that can be trusted with their information. Third, we placed an emphasis

on scalable software. After the initial growing pains of stabilizing the website, the day-to-day

operation of DNA.Land has required only minimal efforts to maintain. This has allowed our small

team to mainly focus on development of new features and reports, which further drive participation.

This stands in contrast to traditional bio-banking techniques that requires scaling personnel to

increase their sample collection efforts.

We also faced a few challenges in running DNA.Land. First, in academia, the availability of

scienti�c software is usually welcomed regardless of its quality. This is not the case when providing

a public website for a non-academic population. Most of our users showed little patience for

technical issues in our website, and we found very quickly that we needed to operate on the highest

standards of software development and quality assurance, such as support for various browsers as

well as mobile and laptop devices. Initially, this led to high stress levels when launching new

features and longer development cycles than anticipated. We addressed this issue in part by having

a development environment that enables prototyping and testing of code before the launch. In

addition, we found that soft launching (launching without substantial promotion) to be a more

reliable path. This technique has allowed us to test the feature with a smaller set of users and detect

technical issues before the feature is discussed and promoted widely on the Facebook groups of

our participants. In the future, we hope also to be able to launch a feature only to a small subset of

19



users, but currently our framework does not support this option.

Second, our experience highlights the necessity of a `customer support' function. We were

initially overwhelmed by the amount of communication from participants, mainly on our Facebook

page which we had established to release messages to the community. We did not anticipate the

necessity of a support function before the launch and found ourselves answering thousands of

emails and Facebook posts in the �rst week of operation while managing development issues that

occurred during the launch. We encourage others that undertake such a similar endeavor to dedicate

a member of the team to answering those emails. In addition, we greatly bene�ted from an internal

system developed by the team that allows tracking the status of each sample in the computational

pipeline. This has allowed us to serve participants with accurate information and manage technical

issues.

Third, unlike traditional bio-banking, DNA.Land can only recruit people that were already

tested with one of the DTC companies. Not every person can participate in our biobank. Thus,

our marketing needs to focus on this much smaller group compared to the general population.

We partly overcame this problem by introducing the website to leaders in the genetic genealogy

community, but even this community only encompasses a fraction of the overall people that were

tested with DTC companies. In addition to create a marketing challenge, this restriction means

that the ethnic composition of our users re�ects the DTC customer base and consists mostly of

Northern European ancestry. We hope that as the price of genotyping DTC services continues to

decrease, our website will see an increased representation of minority groups.

Finally, we learned to pay closer attention to the “actionability” of the data from the user

perspective. The research community usually encourage sharing of various types of raw data, but

we found some challenges to that philosophy among our participants. For example, we thought

that the imputation feature would be of high demand, as we generate for participants the status

of 39 million variants from an array which may have only 700,000 SNPs. However, this feature

met negative feedback from many users who found that it was not clear what to do with the �le

and noted that the �le is impossible to open with standard applications such as Excel or Notepad.
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We have addressed this by development of more tools, such as DNA.Land Compass [46], which

provides a GUI-based website to browse the data and learn about each SNP.

The future for DNA.Land involves more granular consent and expansion of the ways we col-

lect phenotypic information. We are developing a method for participants to share their data with

other organizations using an organization-speci�c consent. In a �rst attempt, we recently partnered

with the National Breast Cancer Coalition (NBCC), a patient advocacy group, to collect genotype

and phenotype information for breast cancer research. We re-consent users who participant in our

survey and allow them to opt-in for sharing their genome with the NBCC under a speci�c code of

conduct provided by the NBCC. Six month after launching the feature, more than 10,000 partici-

pants have completed the survey. We aim to create more opportunities that will empower partici-

pants to decide for themselves about sharing their data. In addition, we plan to reduce the burden

on our participants when collecting phenotypic information. The current procedure of answering

questionnaires is cumbersome and does not scale well, as it requires participants to repeatedly visit

the website. The last few years have highlighted the rise of digital phenotypes, which refers to

quantifying phenotypes from human interactions with digital technology [49]. Recent studies have

shown that a range of traits can be measured with data collected on web activity. These include

measuring �ve factor personality traits from Facebook likes [50], highly accurate quanti�cation of

heart rate from videos [51], and �nding early signals of pancreatic cancer from Internet searches

[52]. Unlike traditional questionnaires, digital phenotypes require less labor from the participant

as they leverage existing data using APIs of social media sites such as Facebook and allow mea-

surement of longitudinal changes. We hope to focus on collecting such phenotypes after proper

consent from our participants.

As an ultimate goal, we hope to create a digital biobank that integrates streams of data from

genetic, genealogical, and social media resources. This approach will establish a complementary

effort to existing large-scale traditional studies. Our data-intensive society offers growing numbers

of opportunities to harness existing resources, and we envision that the value and scope of such

integrative approaches will continue to rise.
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Chapter 3: Leveraging correlations between variants in polygenic risk

scores to detect heterogeneity in GWAS cohorts

This work is published in PLOS Genetics and was coauthored with Hengrui Xing, Alexandre

Louis Lamy, The Schizophrenia Working Group of the Psychiatric Genomics Consortium, Todd

Lencz, and Itsik Pe'er

doi: https://doi.org/10.1371/journal.pgen.1009015

3.1 Abstract

Evidence from both GWAS and clinical observation has suggested that certain psychiatric,

metabolic, and autoimmune diseases are heterogeneous, comprising multiple subtypes with dis-

tinct genomic etiologies and Polygenic Risk Scores (PRS). However, the presence of subtypes

within many phenotypes is frequently unknown. We present CLiP (Correlated Liability Predic-

tors), a method to detect heterogeneity in single GWAS cohorts. CLiP calculates a weighted sum

of correlations between SNPs contributing to a PRS on the case/control liability scale. We demon-

strate mathematically and through simulation that among i.i.d. homogeneous cases generated by a

liability threshold model, signi�cant anti-correlations are expected between otherwise independent

predictors due to ascertainment on the hidden liability score. In the presence of heterogeneity from

distinct etiologies, confounding by covariates, or mislabeling, these correlation patterns are altered

predictably. We further extend our method to two additional association study designs: CLiP-X

for quantitative predictors in applications such as transcriptome-wide association, and CLiP-Y for

quantitative phenotypes, where there is no clear distinction between cases and controls. Through

simulations, we demonstrate that CLiP and its extensions reliably distinguish between homoge-

neous and heterogeneous cohorts when the PRS explains as low as 3% of variance on the liability
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scale and cohorts comprise50–000� 100–000samples, an increasingly practical size for modern

GWAS. We apply CLiP to heterogeneity detection in schizophrenia cohorts totaling¡ 50–000

cases and controls collected by the Psychiatric Genomics Consortium. We observe signi�cant het-

erogeneity in mega-analysis of the combined PGC data (p-value8•54� 10� 4), as well as in individ-

ual cohorts meta-analyzed using Fisher's method (p-value 0.03), based on signi�cantly associated

variants. We also apply CLiP-Y to detect heterogeneity in neuroticism in over10–000 individu-

als from the UK Biobank and detect heterogeneity with a p-value of1•68 � 10� 9. Scores were

not signi�cantly reduced when partitioning by known subclusters (“Depression” and “Worry”),

suggesting that these factors are not the primary source of observed heterogeneity.

3.2 Author Summary

Several traits, such as bipolar disease, are known to be heterogeneous and comprise distinct

subtypes with unique genomic associations. For other traits such as schizophrenia, heterogeneity

may be suspected, but speci�c subtypes are less well characterized. Furthermore, conventional

mixture model-based methods to detect subtypes in genome-wide association data struggle with the

high polygenicity of complex traits. We propose CLiP (Correlated Liability Predictors), a method

that does not identify subtype-speci�c effects, but is very well-powered to detect heterogeneity

of any kind within the very weak signals of GWAS. CLiP serves as a method to �ag particular

phenotypes for potential further study into the genomic factors driving heterogeneity, as well as

a means to evaluate the transferability of polygenic risk scores. We also develop extensions of

CLiP applicable to scoring heterogeneity in quantitative phenotypes and quantitative predictors

such as gene expression. We apply CLiP to scoring heterogeneity in schizophrenia cohorts from

the Psychiatric Genomics Consortium and neuroticism in individuals in the UK Biobank and �nd

signi�cant heterogeneity in both phenotypes, warranting further study.
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3.3 Introduction

In recent years Genome-Wide Association Studies (GWAS) have identi�ed thousands of ge-

nomic risk factors and generated insights into disease etiologies and potential treatments [53, 54,

55]. Many GWAS apply logistic regression to case/control data to report SNPs with odds ratios

of signi�cant magnitude. An alternate formulation is the liability threshold model, which assumes

case/control labels are sampled by thresholding a hidden quantitative polygenic risk score (PRS)

with linear effects over SNPs [56]. This view of GWAS underlies a large body of work in pre-

dicting risks of disease using PRSs [55, 57] as well as quantifying the variance explained of the

PRS [23, 58]. The logistic and liability models have been reported to be largely interchangeable by

transforming log odds ratios to effects on the liability scale [59] and produce similar estimates of

disease risk [28, 60]. Increasingly, there has been interest in advancing beyond these associations

towards obtaining a deeper understanding the mechanisms by which genomic factors in�uence

disease [53, 61]. These require models beyond simply combining linear effects of variants, as they

often modulate phenotypes indirectly, through the expression of other genes [13, 62].

One such avenue has concerned the apparent heterogeneity of diseases which has not been

suf�ciently recognized by GWAS: while individuals in cohorts for these studies are frequently

classi�ed simply as cases or controls, clinical evidence for several GWAS traits have suggested

that there are multiple different subtypes consisting of distinct sets of symptoms and association

with distinct rare risk alleles [63, 64]. For example, polygenic risk scores for major depressive

disorder explain more of the phenotypic variance when cases are partitioned into two known sub-

types (typical and atypical), and the two subtypes exhibit polygenicity with distinct traits [65].

Similarly, by separating bipolar disorder into its two known subtypes corresponding to manic and

hypomanic episodes, distinct polygenic risk scores comprising different associated SNPs are dis-

covered, with genetic correlation being signi�cantly lower than when individuals are partitioned

otherwise, e.g. by batch. Additionally, only the manic subtype shares a high degree of pleiotropy

with schizophrenia [17]. Aside from psychiatric traits, heterogeneity of genomic associations be-
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tween known subtypes has been observed in diseases such as lupus [66], multiple sclerosis [67],

epilepsy [68], encephalopathy [69], and juvenile idiopathic arthritis [70]. Elucidating the nature of

heterogeneity in these traits may also play a role in addressing the missing heritability problem in

GWAS, as hidden heterogeneity reduces power to detect SNP associations [56].

Heterogeneity in disease etiology has also become a concern for clinical applications, as the

predictive accuracy of polygenic risk scores is known to vary across different demographics of

patients. As most genomic studies to date have been conducted on primarily Northern European

populations, accuracy of the discovered predictors, measured as R-squared, is lower in other pop-

ulations, raising the possibility of inequities in care by the direct application of these PRSs [71].

Even if these concerns are mitigated by future large studies conducted in under-served populations,

recent work has shown that PRS accuracy further varies across other covariates such as age and sex

[72]. Therefore, methods to develop population-differentiated PRSs and detect de�ciencies in ex-

isting PRSs are urgently needed before predictive genomics can be widely integrated into precision

medicine.

To date there have been few strategies to identify subtypes in GWAS cohorts, largely due to

two challenges: the very small signals typically found in polygenic traits, and the presence of con-

founding sources of heterogeneity such as batch effects. One method [73] purports to discover

strong evidence of subtyping in schizophrenia by non-negative matrix factorization of the cohort

genotype data, interpreting the hidden factors as different subtypes. However, this work failed to

take into account alternative sources of heterogeneity, such as population strati�cation and linkage

disequilibrium, that might produce spurious results [74, 75]. Another method, reverse GWAS [76],

applies a Bayesian latent factor model to partition SNP effect sizes and individual membership into

a set of latent subtypes so that the likelihood of phenotype predictions within each subtype is max-

imized. The method is reported to detect subtypes that may be suggestive of clinical implications,

such as a possible differential effect of statins on blood glucose levels. However, this approach is

under-powered to detect heterogeneity in single phenotypes, and thus is intended for simultaneous

predictions across multiple observed phenotypes. Additionally, many of the reported phenotypes
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are quantitative, which allows for more accurate estimation of effect sizes, and thus more accurate

subtyping, than in case/control phenotypes. Therefore methods of this �avor may struggle to detect

subtypes among single case/control phenotypes, in which the quantitative liability score is hidden.

Within-phenotype heterogeneity has also surfaced as a possible confounding factor in the dis-

covery of pleiotropic associations between phenotypes [77]. Assuming a GWAS model of disease

risk, ideal pleiotropy would involve a single variant signi�cantly associated with two observed

phenotypes, producing a genomic correlation between those phenotypes. However, the presence

of distinct subtypes in one or both phenotypes may alter the conclusions derived from pleiotropic

analysis. For example, two additional subtypes of depression have been characterized by either

episodic or persistent experiences of low mood. Of the two, the persistent subtype is more closely

associated with childhood maltreatment, and only in persistent cases is an association found be-

tween childhood maltreatment and a particular variant of the serotonin transporter gene [78, 79].

Misclassi�cation is another possible source of heterogeneity leading to spurious pleiotropic rela-

tionships between phenotypes. For example, a signi�cant percentage of patients diagnosed with

either bipolar disorder or schizophrenia have their diagnoses later corrected to re�ect the other

disease [80]. As bipolar disease and schizophrenia are understood to be highly pleiotropic [57, 81,

82], these misclassi�cations have the potential to skew analyses of genetic correlation between the

two phenotypes.

Recent work by Han et al. [83] has sought to address the detection of heterogeneity speci�cally

in the context of pleiotropic phenotypes. The proposed method, BUHMBOX, operates on a matrix

comprising cases for one disease genotyped over the associated SNPs for a second disease. When

only a subset of cases are also cases for a second disease, individuals within that subset will exhibit

a slightly higher ascertainment for the risk alleles included in the matrix. In a non-heterogeneous

pleiotropic scenario, these risk alleles would instead be randomly distributed among all included

individuals rather than co-occurring in a subset. When multiple risk alleles are overrepresented

in a subset, they are positively correlated across all individuals in the matrix, and these positive

correlations serve as evidence of heterogeneity.
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We propose a generalized method called CLiP (Correlation of Liability Predictors) that lever-

ages these correlations more broadly to detect heterogeneity in single-trait GWAS, rather than

strictly in two labeled pleiotropic traits. In comparison to BUHMBOX, CLiP improves overall

power to detect heterogeneity while remaining robust to false positive confounding factors such

as ancestry. CLiP also detects heterogeneity arising from multiple subtypes with highly dissimi-

lar PRSs, which produce speci�c correlation patterns that attenuate positive heterogeneity signals.

These bene�ts, however, are contingent on the assumption that case/control GWAS behaves ac-

cording to a liability threshold model rather than a logistic model. Although these models are

commonly interpreted to be interchangeable [28], they produce differing SNP-SNP correlations

among cases, resulting in different heterogeneity scores.

The goals of this work are fourfold: First, we demonstrate that in a homogeneous (null) set of

cases in a case/control cohort, predictors with effect sizes of the same sign are not uncorrelated

as stated by Han et al. [83] but negatively correlated, and are expected to produce negative het-

erogeneity scores. However, the magnitude of the negative bias differs signi�cantly depending on

whether the logistic or liability threshold model is assumed for polygenic traits. Second, we eval-

uate the power of CLiP across realistic GWAS scenarios, and demonstrate its utility by identifying

heterogeneity in schizophrenia. Third, we develop an extension of CLiP to accommodate param-

eters that are not binomial genotypes, but rather continuous predictors such as expression data,

which we term CLiP-X. Finally, we further extend CLiP to identify heterogeneous subgroups in

quantitative phenotypes, where no clear delineation between cases and controls exists, by weight-

ing correlations according to polygenic risk scores, which we term CLiP-Y.

3.4 Methods

In a case-control GWAS, a heterogeneous cohort of cases can be interpreted as comprising a

mixture of hidden case subtypes, each exhibiting an elevated risks of disease according to a unique

polygenic risk score. These subtype-speci�c PRSs are unobserved and may confound discovery

of case-control associations. We de�ne two models for generating genotype matrices of heteroge-
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neous cohorts: First, misclassi�cation, where ideally a subset of individuals are not really cases,

but have been rather labeled as such despite being controls. This may occur due to erroneous phe-

notyping, but it may also suggest distinct disease etiologies, some of which are not ascertained for

the PRS of interest. Second, a mixture of multiple unobserved sub-phenotypes which are all cap-

tured to some degree by the PRS of interest. An idealized example would involve SNPs of a PRS

divided between sub-types such that each SNP was truly associated with only one subtype, and no

SNP shared associations with multiple subtypes. A case is observed if the individual passes the

liability threshold of at least one of these sub-phenotype PRSs. Figure 3.1 displays idealized geno-

type matrices and correlation matrices for each of these models along with the homogeneous null

scenario, in which all cases are selected according to the same PRS. The column set( comprises

associated SNPs reported in GWAS summary statistics, with the counted allele selected so that the

corresponding effect size is positive. As described in Results, associated SNPs participating in the

same PRS are negatively correlated over a set of cases selected according to that PRS (panel B).

When the cohort comprises both cases and misclassi�ed controls, the pattern of ascertainment of

risk-alleles is consistent for particular individuals across all SNPs, resulting in positive correlations

between SNPs (panel D). Panel E depicts a mixture scenario with two hidden disjoint PRSs. In-

dividuals labeled as cases of the observed phenotype may be in reality a case for sub-phenotype 1

only (blue), sub-phenotype 2 only (orange), or both, whereas controls are observed as such (grey).

The presence of cases for multiple hidden sub-phenotypes produces a mixture of positively and

negatively correlated SNPs depending on the membership of the compared SNPs (panel G).

The goal of CLiP is to distinguish a heterogeneous cohort from one that comprises only ho-

mogeneous cases and controls for a single PRS. In the following sections, we �rst describe a

correction (CLiP) to current applications of heterogeneity scores [83], where we account for neg-

ative correlations expected of case/control data sampled from a liability threshold model. Next we

present adaptations of this general method to studies with quantitative predictors such as expres-

sion measurements rather than SNPs (CLiP-X), and also with quantitative phenotypes for which

there is no strict de�nition of a “case” (CLiP-Y). Additionally, we describe the generative process
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for simulations of homogeneous and heterogeneous PRS data used to test the performance of these

methods.

3.4.1 Regression models for case-control data

Here we describe three models characterizing risks of disease based on odds ratios or effects of

SNPs. We will demonstrate in the Results section that only in the Risch method is independence

of PRS SNPs preserved among cases, whereas both the logistic and liability threshold models

introduce correlations between these SNPs after ascertaining for disease status.

Multiplicative (Risch) model

The Risch model describes disease risk as a prior disease prevalence multiplied by a product

of relative risks corresponding to each risk factor. For" SNPs in a PRS with relative risks'' <

and constant� , an individual with genotypesGhas the following disease risk:

%¹H= 1jGº = �
"Ö

< =1

' ' G<
< (3.1)

For our simulations with prevalence+ = 0•01, we substitute odds ratios for relative risks.

Additionally, we set the constant� = +

E
� Î "

< =1 $' G<
<

� so that cases are sampled at the correct preva-

lence. If we assume all" SNPs have a constant odds ratio$' and allele frequency?, then

� = +
exp¹�¹ " ? º2¸¹¹ " ? ¹1� ?ºº2¹log$' º¸ " ? º2º . This generates the correct prevalence among randomly

sampled controls, whereas simply mean-centering the genotypes or estimating the denominator as

$'
Í

E»G< ¼may produce in�ated prevalences depending on model parameters. Additional informa-

tion regarding estimation of� and appropriateness of substituting odds ratios for relative risks is

shown in the Supplementary Text.

Logistic regression

The logistic regression model describes the log odds of disease risk as a linear function over

" SNPs. Rearranging this function, the disease risk can be expressed as a sigmoid function over
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the log odds. The effectsV< are interpreted aslog$' < where$' < is the odds ratio of SNP<

with respect to diseaseH. To ensure the fraction of cases in a random sample equals the desired

prevalence+, the intercept termV0 is set to� log¹ 1
+ � 1º, and genotypes in- are mean-centered

to 0. For a particular individualG,

%¹H= 1jGº =
1

1 ¸ exp»�¹ V0 ¸
Í "

< =1 V< ¹G< � E»- < ¼º
º¼ (3.2)

Liability threshold model

The liability threshold model assumes that case/control labels are assigned according to a hid-

den continuous liability score. HereV< no longer corresponds to an odds ratio, but rather an effect

size on the standard normal liability scale. The fraction of variance explained by the PRS- ) V is

subtracted from the total variance1. Individuals are assigned to cases if their liability scores pass

a threshold) on the standard normal distribution. If� denotes the standard normal cumulative

distribution function, then) is placed such that1 � � ¹) º equals the prevalence of the disease.

Likewise, for any individualG, the disease risk is denoted by the probability of surpassing) given

that only the value of the PRSG) Vis known.

%¹H= 1jGº = �

 
¹G� E»- ¼º) V� )

p
1 � Var¹G) Vº

!

(3.3)

We evaluated the existing BUHMBOX method in homogeneous and heterogeneous cohorts sim-

ulated from each of these GWAS models, with heterogeneous cases comprising a mixture of true

cases and controls.

3.4.2 CLiP: Correcting for negative correlation bias

A central assumption of the hypothesis test in Han et al. [83] is that SNPs conferring risk for

a disease are uncorrelated among cases for the disease as well as controls. However, the authors
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prove this for only a multiplicative binary model, in which an individual's risk is the product of

odds ratios of probability of disease for associated SNPs. GWAS are commonly interpreted as

either a logistic or liability threshold model, both of which are generalized linear models with

similar S-shaped inverse link functions over a sum of SNP effects. Particularly in the liability

threshold model, the additive contribution of SNP effects to a thresholded score suggests that

among individuals ascertained on that thresholded score, there may be correlatedness between

those additive effects.

CLiP calculates the same heterogeneity score as previous work [83], but adjusts the null dis-

tribution to account for expected correlations between SNPs when the cohort is homogeneous and

generated from a liability threshold model. The test is performed over a genotype matrix- com-

prising # cases and" SNPs counting the number of risk-alleles, as well as a matrix of controls

- 0 with # 0 individuals. The SNPs included in- are typically those reported in summary statistics

at unique loci, and should be selected so that there is little LD between them and their correlation

among controls is near 0. Pairwise SNP correlations are calculated over cases and controls sepa-

rately and stored in' and' 0 respectively. These correlations are then compared against their null

expected values. If we interpret controls as population controls in that they are sampled from the

full liability distribution, then the expected correlation among controlsE»' 0
9 :¼is always0 as SNPs

are sampled independently. This modi�ed heterogeneity score is computed as follows:

( � !8% ¹-– - 0º =

Í "
9=1

Í "
: = 9̧ 1 F 9F : ¹ ' 9 : � ' 0

9 : � E»' 9 : � ' 0
9 :¼º

q
# ¸ # 0

## 0

q Í "
9=1

Í "
: = 9̧ 1 F2

9F
2
:

(3.4)

where if ?9 andW9 are the allele frequency and odds ratio, respectively, for SNP9,

F 9 =

p
?9¹1 � ?9º¹W9 � 1º

¹W9 � 1º?9 ¸ 1
(3.5)

The score( � !8% is a weighted sum of differences in correlation between cases and controls,

to account for prior sources of SNP-SNP correlation such as ancestry. A high score resulting
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from a bias towards positive correlations would suggest the presence of subtypes with differing

ascertainment for the included risk-alleles, and thus heterogeneity. The weights are intended to

adjust the score's sensitivity to certain SNPs based on their allele frequency? and odds ratioW,

with larger odds ratios and frequencies close to 0.5 producing greater weights. The BUHMBOX

score is shown by Han et al. [83] to be asymptotically standard normally distributed under the

null as sample sizes increase. CLiP modi�es the score by shifting the expected null score from

0 to a negative value expected of homogeneous cases under the liability threshold model. This

amounts to subtracting a constant from the score, which does not change the variance, ensuring

( � !8% remains a valid Z-score test.

The expected value of the correlationE»' 9 :¼between two SNPs- 9 and- : in homogeneous

cases can be calculated from the individual expectations comprising the correlation. We assume

the expected value among controls,E»' 0
9 :¼, is zero, provided that the SNPs comprising the PRS

are not in LD.

' 9 : =
E»- 9- : ¼ �E»- 9¼E»- : ¼

q
E»- 2

9¼ �E»- 9¼2
q

E»- 2
: ¼ �E»- : ¼2

(3.6)

We use Bayes theorem to calculate each of these expectations given the individuals are cases

¹. = 1º. This can be done ef�ciently over SNPs, which take on discrete values.

E»- 9jY=1¼=
Õ

92f0–1–2g

- 9?¹- 9jY=1º =

Í
92f0–1–2g - 9%¹Y=1j- 9º%¹- 9º

Í
92f0–1–2g %¹Y=1j- 9º%¹- 9º

E»- 2
9jY=1¼=

Õ

92f0–1–2g

- 2
9?¹- 9j. = 1º =

Í
92f0–1–2g - 2

9%¹Y=1j- 9º%¹- 9º
Í

92f0–1–2g %¹Y=1j- 9º%¹- 9º

E»- 9- : jY=1¼=
Õ

92f0–1–2g

Õ

: 2f 0–1–2g

- 9- : ?¹- 9– -: jY=1º

=

Í
92f0–1–2g

Í
: 2f 0–1–2g - 9- : %¹Y=1j- 9– -: º%¹- 9– -: º

Í
92f0–1–2g

Í
: 2f 0–1–2g %¹Y=1j- 9– -: º%¹- 9– -: º

(3.7)

The case probabilities conditioned on SNP values%¹Y=1j- 9º are calculated from the liability
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threshold model in equation 3.3. As SNP associations are typically reported as odds ratios cor-

responding to a logistic regression model, we convert these to effects on the liability scale using

equation 3.28 in the Methods section, based on Gillett et al. [59].

3.4.3 CLiP-X: Heterogeneity Detection with quantitative predictors

While heterogeneous subtypes may occur in transcriptome-wide association studies, the hetero-

geneity score cannot be computed directly over continuously distributed gene expression variables

rather than discrete SNPs. In CLiP, the weightsF are important for scaling the contributions of

individual SNPs to the �nal heterogeneity Z-score, and they are dependent on risk-allele frequen-

cies and odds ratios, quantities not strictly de�ned for continuous variables. In the case of binary

variables, higher weights are assigned to SNPs with more extreme risk-allele frequencies as well

as effect sizes, as these variables are more likely to generate highly positive correlations in the

presence of heterogeneity. Here we generalize this weighting scheme to accommodate arbitrarily

distributed continuous input variables, which may be applied in particular to expression analyses.

3.4.4 CLiP-X Simulation Procedure

To fully simulate expression variables as modeled in transcriptome-wide association, expres-

sion predictors are generated from a linear model of randomly sampled genotypes, rather than

directly sampling expression. Although the input into CLiP-X includes only the expression vari-

ables, explicitly modeling the genotype layer allows for inclusion of prior correlations resulting

from SNPs associated with multiple transcripts, rather than from ascertainment by the liability

threshold model.

For a single case/control phenotype, transcript effect sizesU are �xed to a single value so

that the variance explained of all modeled transcripts is a desired value. Likewise, genotype-

transcript effect sizesV are also �xed so that variance explained of each transcript by genomic

variants is a second speci�ed value. Although �xing effect sizes at the genotype-transcript layer

is admittedly unrealistic, the results are only simpli�ed when these interactions are removed, with
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no interactions reducing to expression sampled from the standard normal distribution. Cases are

determined according to the liability threshold model. For individuals in transcript matrix/ , a

hidden quantitative liability score. � is calculated, with the variance of errorn set so that. � has

a total variance of 1. The observed case/control label. is set according to whether. � passes the

liability scale threshold) , which is placed on the standard normal distribution so that affected

individuals constitute a prevalence of 0.01.

. � = / ) U¸ n

. =

8>>>><

>>>>
:

1 if . � � )

0 if . � Ÿ )
(3.8)

To generate cases and controls, we iteratively generate batches of transcripts by random sam-

pling, and compile those that pass or fail the threshold cutoff into case and control cohorts. We

generate heterogeneous cohorts by concatenating simulated cases and controls, with the fraction

of cases set to 0.5 for simplicity. A full description of the simulation procedure is provided in the

Supplementary Material in section B.1 and illustrated in Figure B.15. Note that the variance of

the random noisen in equation 3.8 is determined by the desired total variance explained by the

simulated expression variables+2
� :

+0A¹nº =
1 � +2

�

+2
�

+0A¹/ ) Uº (3.9)

Characterizing correlations between continuous variables

Given# � ! matrices of quantitative expression measurements/ among cases and/ 0 among

controls, we would like to determine whether/ comprises a homogeneous or heterogeneous set

of cases as generated in Algorithm B.1. When/ is heterogeneous, we assume the individuals
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in / can be assigned to one of two subtypes: one sampled according to the liability threshold

model for the simulated phenotype, and one sampled randomly as controls. For a given predictor

indexed by92 »1– • • • – !¼, assume/ 8 9is sampled according to a mean and variance speci�c to the

subtype of individual8, denoted by/ ¸
8� for the case subtype and/ �

8� for the control subtype. The

distribution of the variables need not be discrete or even normally distributed, as the heterogeneity

score is computed from correlations, which in turn rely only on the mean and variance of the input

variables. Therefore the score can be calculated assuming any probability distribution provided

that the mean and standard deviation are obtainable. For an arbitrary probability distributionD

parameterized by its mean and standard deviation, we have:

- ¸
� 9 � D¹ ` ¸

9– f ¸
9º

- �
� 9 � D¹ ` �

9– f �
9º

(3.10)

Assume that the proportion of individuals belonging to the group� is c. For a homogeneous

group of cases,c = 0, and our simulations assumec = 0•5 for heterogeneous cases, but in practice

this proportion is unknown. Incorporating this proportion allows the rede�nition of expectations

over the entire cohort as weighted sums of the expectations over the subgroups. The expected

correlation evaluated over the entire group can then be calculated according to within-group ex-

pectations:

A9 : =
E»/ 9/ : ¼ �E»/ 9¼E»/ : ¼
p

+0A¹/ 9º
p

+0A¹/ : º

=
Ac

�
E

h
/ �

9 / �
:

i
–E

h
/ ¸

9/ ¸
:

i �
� Ac

�
` �

9– `̧9

�
Ac

�
` �

: – `̧:
�

r

Ac

�
E

�
¹/ �

9º2
�
–E

�
¹/ ¸

9º2
� �

� Ac

�
` �

9– `̧9

� 2

�

r

Ac

�
E

�
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: º2
�
–E

�
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� �

� Ac

�
` �

: – `̧:

� 2

(3.11)

whereAc ¹G– Hº = cG¸ ¹ 1 � cºH.
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De�nition of weights for continuous variables

We would like to make use of these expectations over correlations by incorporating them as

weights in the heterogeneity score. As predictors with high mean differences between subgroups

and high effects are expected to contribute more signal to the score, weighting them higher than

other predictors will increase power to detect heterogeneity. Therefore, we would like to de�ne a

set of weightsF 9 : for each expectedA9 :.

We derive the weights for continuous variables in an analogous manner to Han et al. [83], by

taking the derivative of the expected sample correlation with respect toc at the null value,c = 0.

F 9 : =
m

mc
A9 :

�
�
�
�
c=0

(3.12)

To facilitate calculation ofE»/ ¸
9/ ¸

: ¼andE»/ �
9 / �

: ¼in equation 3.11, we assume as in [83] that

within a subgroup of cases or controls, the correlation between any two predictors, even those

associated with the phenotype, is approximately zero. This allows us to express expectations of

products as products of expectations. Note that this does not mean that correlations over the entire

cohortE»/ 9/ : ¼are zero: these correlations are calculated inclusive of all subgroups, and their

nonzero correlations are what determines the heterogeneity score. While we demonstrate in the

Results that theoretically and by simulation this assumption is violated in logistic and liability

threshold models, we found it to be nevertheless a convenient method to estimate the weightsF 9 :.

Given the assumption of no correlation within subgroups, the correlation between two variables

/ � 9 and/ �: can be expressed as the following. For further details on the derivation, please see the

Supplementary Material.

F 9 : =
` ¸

9` ¸
: � ` ¸

9` �
: � ` �

9` ¸
: ¸ ` �

9` �
:

f �
9 f �

:
(3.13)

=
¹` ¸

9 � ` �
9º¹` ¸

: � ` �
: º

f �
9 f �

:
(3.14)
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The same weights de�ned in Han et al. [83] for Bernoulli variables is a special case of this

general formulation. These weights can now be substituted into the heterogeneity score.

Additionally, in practice we do not know the value of` ¸
9 because the membership of individuals

in each of the subsets is unknown. However, we do know the mean values of the heterogeneous

case group as a whole which we denote as` 9. We can use this value as an approximation for` ¸
9,

and calculate an approximate weight:

F̂ 9 : =
¹` 9 � ` �

9º¹` : � ` �
: º

f �
9 f �

:
(3.15)

We can also quantify the errors we are making by this approximation. We have the following

relationship for any distribution of the genotype random variables:

` 9 = Ac

�
` �

9– `̧9

�
(3.16)

The approximation in Eq. 3.15 will attenuate the magnitude of` ¸
9 with respect to the true value

of the weight. However, we also see that:

F̂8 9

F8 9
=

�
Ac

�
` �

9– `̧9

�
� ` �

9

� �
Ac

�
` �

: – `̧:
�

� ` �
:

�

¹` ¸
9 � ` �

9º¹` ¸
: � ` �

: º
= c2 (3.17)

As each weight is scaled by a constant factor, their relative magnitudes are unchanged. Conse-

quently, the heterogeneity score for continuous input variables does not change after this approxi-

mation. Thus we can still achieve optimal estimates of heterogeneity despite lacking access to the

true mean for the underlying case subgroup.

3.4.5 CLiP-Y: Heterogeneity Detection in Quantitative Phenotypes

The basic CLiP test for heterogeneity relies on differential enrichment of SNP effect sizes

or odds ratios across subtypes, and thus requires ascertainment for cases. But one can presume

that heterogeneity exists in quantitative phenotypes as well; e.g., are there distinct genetic mecha-
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nisms predisposing individuals to being tall? But extending this method to quantitative phenotypes

presents a challenge as there is no dichotomous delineation between cases and controls. A naive

solution may be to pick an arbitrary z-score as a threshold and denote samples who score higher as

“cases” and those lower as “controls.” This introduces a trade-off between sample size and signal

speci�city, as lowering this threshold provides more samples for the correlation analysis but also

introduces more control-like samples which will attenuate SNP associations, and the correlations

themselves. A more principled method would allow for the inclusion of all continuous samples,

but give higher weight to those with large polygenic SNP scores. Thus we propose to score het-

erogeneity by a weighted correlation with phenotypes serving as a measure of the importance of a

sample in the case set. These weights determine the degree to which individuals count as a “case”,

and therefore their contribution to the total heterogeneity score of the genotype matrix. Arti�cially

creating the two groups by applying a hard threshold over the quantitative phenotype values is a

special case of this method with a step function as the weighting scheme, equally weighting all

individuals above the threshold “step.”

3.4.6 CLiP-Y Simulation Procedure

Here SNPs as input predictors are sampled directly from binomial distributions with �xed

minor allele frequency of 0.5. The quantitative phenotype. is calculated from the PRS score

with normally distributed noise added according to the desired PRS variance explained. As in

the CLiP-X simulation procedure, we generate heterogeneous cohorts by concatenating a subset

of cases and controls together into a single putative set of cases. For quantitative phenotypes,

the “control” subset is generated so that the quantitative phenotype value is simply sampled from

the normal distribution with zero PRS variance explained. A more detailed description of the

simulation procedure is provided in Algorithm B.2.
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De�nition of individual weights by phenotype values

We de�ne a weight over individuals based on phenotype such that those with higher weight

contribute more to the heterogeneity score. For a cohort of# individuals let - 8 9 2 f0–1–2g be

the number of risk alleles of SNP9 in individual 8, and let. = ¹H1– • • • – H# º be values of the

quantitative trait. We introduce a normalized weight vector across the# individuals de�ned as

5 2 R# such that88– q8 � 0 and
Í #

8 q8 = 1. For an arbitrary functionF , we de�ne 5 � 5¹F º,

where the weight values would re�ect normalized scaling of the traitq8 = F ¹H8ºÍ
9F ¹H9º

. Dichotomous,

case/control weighting is the special case of:

F 01¹H8º =

8>><

>>
:

1 20B4

0 2>=CA>;

Uniform weighting is obtained byF 1¹H8º � 1. To obtain the optimal weight function which most

clearly contrasts the scores of heterogeneous and homogeneous cohorts, we tested several possible

functions and also performed a local search over polynomials of degree 2, 4, and 6 by iteratively

updating and testing the performance of individual polynomial coef�cients. This local search is

described in detail in Algorithm B.3. First, a small number of homogeneous and heterogeneous

cohorts are generated as described before. These serve as the training data by which the weight

function is optimized. All weight functions are applied over the raw phenotype values directly, or

their conversion to percentiles in the sample distribution, in the range [0,1]. After initially random-

izing a set of coef�cients, at each iteration, a coef�cient is randomly selected and incremented by

a random quantity sampled from a normal distribution. The resulting polynomial is tested against

the training data, and the change to the coef�cient is kept if the difference in score between het-

erogeneous and homogeneous cohorts increases. After a set of high-performing weight functions

are selected, they are each evaluated against a larger sample of validation data comprising homo-

geneous and heterogeneous cohorts as before. Of these candidates, the polynomial that performs

best on the validation data is selected.
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De�nition of weighted correlations

To compute correlations we de�ne, for each SNP9, a random variableD5
9 with values in

f 0–1–2g by sampling from the genotypes of the sample cohort- � 9 with probability equal to the

weightq8 assigned to each individual8. Rather than calculate the correlations directly over SNPs

in - , we now calculate correlations over these random variables. We omit the superscript5 in Dq

when it is clear from context. For a single SNP9, we de�ne the weighted mean value across#

individuals as:

E»D9¼=
#Õ

8=1

q8- 8 9 (3.18)

Between two SNPs9and: , we de�ne the weighted covariance as:

Cov¹D9– D: º = E»¹D9 � E»D9¼º¹D: � E»D: ¼º¼

=
#Õ

8=1

q8¹G8 9� E»D9¼º¹G8: � E»D: ¼º
(3.19)

We de�ne the weighted correlation matrix' 5 for any weighting5 as:

' 5
9 : = Corr¹D5

9– D5: º

=
Cov¹D5

9– D5: º
q

Cov¹D5
9– D59ºCov¹D5

: – D5: º

(3.20)

The heterogeneity score tallies the entries of the upper-triangular correlation matrix for the

phenotype-weighted individuals' 5¹F º . As we now lack a held-out set of controls to cancel the

contribution of correlations unrelated to the phenotype, we instead calculate a conventional corre-

lation uniformly weighted across all individuals' 0 � ' 5¹F 1º. Additionally, we introduce a scaling

factor of
q

¹
Í #

8=1 q2
8º � 1

# to correct for the change in variance resulting from re-weighting the

correlation according to individual weightsq8. These changes produce the following preliminary
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heterogeneity score for quantitative phenotypes:

& =

Í "
9=1

Í "
: = 9̧ 1 ' 5

9 : � ' 0
9 :

q
¹
Í #

8=1 q2
8º � 1

#

(3.21)

Lastly, we incorporate into the test statistic& a weighting scheme over SNPs as described in

Han et al. [83]. This second set of weightsw 2 R" is introduced to correct for larger contributions

to the score by SNPs with large effect sizes or risk allele frequencies close to 0.5. These weights

apply to SNPs, and should not be confused with the weights5 over individuals. For each SNP9, we

de�ne ?5
9 �

E»D5
9¼

2 , the sample allele frequency weighted by the individual phenotype, as opposed

to the unweighted allele frequency?0
9 � ?5¹F 1º

9 . The contribution of SNP9to the heterogeneity

score is then scaled by

F5
9 =

q
?0

9¹1 � ?0
9º¹W5

9 � 1º

¹¹W5
9 � 1º?0

9 ¸ 1º
(3.22)

where

W5
9 =

?5
9¹1 � ?5

9º

?0
9¹1 � ?0

9º
(3.23)

is a weighted generalization of an odds ratio. These weights are analogous to those found in Han et

al. [83], where given case allele frequency?¸
9, control allele frequency?0

9, and sample odds ratio

W9 =
?¸

9¹1� ?¸
9º

?0
9¹1� ?0

9º
, the weight is

F 9 =

q
?0

9¹1 � ?0
9º¹W9 � 1º

¹¹W9 � 1º?0
9 ¸ 1º

(3.24)

.

Combining these intermediate calculations, the heterogeneity test statistic for continuous phe-

notypes is:

( � ! �% � . ¹-– Hº =

Í "
9=1

Í "
: = 9̧ 1 F5

9F5
: ¹ ' 5

9 : � ' 0
9 :º

q Í #
8=1 q2

8 � 1
#

q Í "
9=1

Í "
: = 9̧ 1¹F5

9º2¹F5
: º2

(3.25)

For high# , this test statistic approaches the standard normal distribution, and can be evaluated

as a z-score hypothesis test.
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Note that even when applying a dichotomous weighting scheme, dividing the cohort with quan-

titative phenotypes into arti�cial cases and controls, CLiP-Y still differs slightly from a direct ap-

plication of the case/control score. If a dichotomous weight function produces# q arti�cial cases,

the scaling factor 1q Í #
8=1 q2

8� 1
#

simpli�es to
q

# q #
# � # q instead of the slightly smaller

q
# q #

# ¸ # q in the

original case/control score. This corrects for the slight reduction in variance of' 5
9 : � ' 0

9 : because

these differently-weighted correlations are taken over a single cohort of individuals rather than

disjoint sets of cases and controls. In practice, we �nd this correction factor performs very well in

scaling the test statistic variance to 1.

3.4.7 Evaluating heterogeneity in SCZ

We applied CLiP to test for heterogeneity in case/control data for schizophrenia collected by

the Psychiatric Genomics Consortium (PGC). The data comprise in total roughly 23,000 cases

and 28,000 controls and was the subject of a 2014 meta-analysis reporting 108 schizophrenia-

associated loci [84]. These cohorts were collected largely from European populations in the United

Kingdom, Sweden, Finland, United States, Australia, and others, along with populations in Por-

tugal, Bulgaria, and Israel. Most cohorts were diagnosed with schizophrenia clinically according

to standards in DSM-IV. The average sex distribution of all cohorts is60•4% male, with a min-

imum of 39•4% (dubl) and maximum of91•8% (lacw). Sex information for the cohort s234 is

missing. Further information for each cohort can be found in Ripke et al. [84]. We would like to

test whether heterogeneity suggested from clinical observation is also detectable at the level of the

PRS comprising these loci. The PGC data is an aggregate of cohorts collected from many studies

conducted in different populations. Therefore a test for heterogeneity over the all cohorts is likely

to be confounded by ancestry strati�cation or batch effects between cohorts. We attempt to cir-

cumvent these confounding variables by applying GWAS meta-analysis methods to CLiP scores

evaluated over individual cohorts, as well as evaluating the p-value of the sum of all CLiP scores.

As the CLiP score of each cohort has a variance of1 under the null, the distribution of their sum

has a standard deviation of
p

# if # is the number of cohorts in the sum. The expectation of the
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sum is the sum of the calculated expected values of each cohort. To evaluate the signi�cance of

CLiP Z-scores across individual cohorts, we applied Fisher's method for summing p-values [85].

j 2 = � 2
 Õ

8=1

log ?8 (3.26)

where is the total number of cohorts and?8 is the p-value of the CLiP heterogeneity score for

cohort8. The p-value of this test statistic is evaluated on a chi-square distribution with2 degrees

of freedom. Additionally, we calculated the meta-analysis Z-score of the CLiP score in a manner

analogous to the conventional GWAS approach, but with a 1-tail test for highly positive scores

only. The meta-analysis Z score is calculated according to

/ 8 =sign¹/ � !8% º� � 1¹1 � ?8º

/ =

Í  
8=1 / 8=8

q Í  
8=1 =2

8

(3.27)

where/ � !8% is the CLiP Z-score evaluated against the expected score with a standard deviation

of 1, and=8 is the sample size of cohort8.

While hidden batch effects may still be present in single cohorts, these effects are not expected

to bias heterogeneity scores to the same extent as scoring cases and controls combined across

all cohorts. By calculating the difference in summed correlations between cases and controls of

a single cohort, CLiP cancels the effect of confounding heterogeneity present in both cases and

controls provided that this heterogeneity is near-equally represented in both sets. Combining all

cohorts from different populations introduces more confounding heterogeneity into the analysis by

virtue of the increased diversity of the combined populations. Additionally, the differing sizes of

the cohorts ensures that the representation of populations differs between the cases and controls.
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3.4.8 Application to Genomic Data Sets

We applied CLiP to GWAS data from the PGC, phased and imputed using SHAPEIT [86] and

IMPUTE2 [87], a pipeline with similar or better accuracy compared to other tools according to a

recent evaluation [88]. Imputation was performed using the 1000Genomes Phase 3 reference panel.

Roughly half of the PGC cohorts were mapped with assembly NCBI36, and the SNP coordinates

of these data sets were converted to GRCh37 using the LiftOver tool in the UCSC genome browser

database [89]. Individuals were excluded from further analysis if their percentage of missing data

was greater than 0.1 in the 1 Mb region �anking each SNP. Additionally, of the 108 associated

SNPs and indels reported in Ripke et al. [84], three SNPs located on the X chromosome were

excluded, three were excluded because they are not listed in the 1000Genomes Phase 3 reference

panel, one was excluded due to low variance in many individual study cohorts, and one was ex-

cluded due to mismatching alleles between reported summary statistics and the reference panel,

for a total of 100 variants included in the heterogeneity analysis.

To accurately estimate expected heterogeneity scores, the odds ratios reported in Ripke et al.

[84] must be converted to effect sizes on the liability scale. We apply an approximate method

reported by Gillett et al. [59] to convert for variant9an odds ratio$' 9 to the liability effectV9:

V9 ' � � 1¹� !>68BC82¹log
+

1 � +
¸ log$' 9ºº � � � 1¹+º (3.28)

where V is the disease prevalence (0.01 for schizophrenia), and� !>68BC82¹Gº = 1
1¸ exp¹� Gº .

We likewise ran SHAPEIT and IMPUTE2 with the 1000Genomes Phase 3 reference panel to

perform imputation of UK Biobank data. We obtained summary statistics for 119 associated SNPs

for the neuroticism sum-score from Nagel et al. [90], using a p-value cutoff of1 � 10� 8. Of these,

we were able to match 108 SNPs to the 1000 Genomes Phase 3 reference panel. We estimated the

variance explained of these SNPs with the sum-score to be0•1 as reported in Supplementary Figure

19 in Nagel et al. [90]. Lastly, to speed up computation time, we estimated the expected CLiP-Y

score for homogeneous cohorts by simulating 400 cohorts of equivalent size to the neuroticism
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cohort in lieu of calculating the expected correlation for all pairs of SNPs, which requires numeric

integration. In Figure B.10A and Figure B.11A, mean scores obtained by sampling �t closely the

calculated expected scores across all weight functions over only 20 simulated trials for each set of

parameters.

3.5 Results

While the Introduction described previous methods to partition heterogeneous SNP effects or

cohorts into distinct clusters, the highly polygenic nature of most phenotypes renders these meth-

ods largely under-powered for single trait GWAS even when data sizes are large. CLiP serves as a

compromise on this task by providing a well-powered method to detect potentially disease-relevant

heterogeneity, without further decomposing detected signals into clusters. In this regard CLiP can

serve as an initial test to �ag heterogeneous data sets for further study. CLiP increases power by ag-

gregating pairwise correlations between disease-associated SNPs from summary statistics. Figure

3.1 depicts genotype and SNP correlation matrices for cases in homogeneous and heterogeneous

scenarios. These scenarios are described further in the Methods section.
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Figure 3.1:Depictions of genotype matrices (A,C,F) and SNP correlation matrices (B,D,G)
expected of homogeneous and heterogeneous case cohorts.For homogeneous cases(A,B),
SNPs are uniformly ascertained, but negative correlations exist between any pair of associated
SNPs. For heterogeneous cases comprising a mixture of true cases and misclassi�ed controls
(C,D), SNPs are ascertained in a subset of individuals, creating positive correlations between SNPs.
For heterogeneous cases comprising disjoint sub-phenotypes(E,F,G), associated SNP subsets( 1
and( 2 pertain to two independent PRSs, and passing the threshold of at least one of these PRSs is
suf�cient to select a case(E). Genotypes sampled from this model produce a mixture of positive
and negative correlations.
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3.5.1 SNP-SNP correlations differ in logistic and liability threshold models

Both the logistic and liability threshold models are generalized linear models that transform a

linear predictor (the log-odds or the liability score) into a probability of assigning a binary label.

The models share highly similar inverse link functions (a sigmoid versus a normal CDF function),

and they are understood to produce regression coef�cients that can be directly transformed from

one model to another by an invertible function (see Methods). However, we found in practice

that case/control genotype data simulated from a logistic model and its conversion into a liability

threshold model do not produce identical correlation patterns. To demonstrate this, we simulated

10 associated SNPs with allele frequency �xed to0•5 and a disease prevalence of0•01. The re-

sults of these tests are shown in Figure 3.2 as a function of increasing odds ratio. At low odds

ratios expected of GWAS, genotypes generated from a logistic model produce a largely equivalent

ascertainment for risk alleles as its converted liability threshold model, as measured by the mean

difference in effect allele count between cases and controls (Figure 3.2A). Likewise, sample preva-

lences of randomly sampled population controls from both methods are largely equivalent at low

odds ratios (Supplementary Text and Figure B.2). But over the same simulations the heterogene-

ity scores, produced by summing pairwise correlations between associated SNPs (see Methods),

become signi�cantly more negative when simulating from a liability threshold model than from a

logistic model. The expected heterogeneity scores of homogeneous sets of cases generated from

logistic and liability threshold models are shown in Figure 3.2B. Expected scores in the logistic

model begin to deviate signi�cantly from zero at an odds ratio of1•3, larger than SNP effects

typically seen in polygenic traits. The sensitivity and speci�city of heterogeneity detection by

correlations is therefore dependent on the selection of regression model. To further understand

the difference between these two models, we compared the standard normal liability distribution

against its equivalent in the logistic model, the derivative of the sigmoid function. These distri-

butions are shown in Figure 3.2C, in which we observe that the sigmoid derivative has a larger

variance than the standard normal distribution.
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Figure 3.2:Diverging correlation behavior of homogeneous cases generated from logistic and
liability threshold models. In all panels, performance of cases generated from a logistic model are
shown in cyan, whereas cases generated from a liability threshold model with equivalent properties
and converted effect sizes is shown in blue.(A) The mean difference in allele count between
homogeneous cases and controls in simulated cohorts from logistic models and their conversions
to liability threshold models. For each odds ratio, the equivalent per-SNP variance explained on the
liability scale is shown in parentheses. Homogeneous cases were generated with a prior prevalence
of 0•01 and 10 SNPs with allele frequency0•5 and odds ratio speci�ed on the x-axis. The mean
and standard deviation of 10 trials is plotted for each parameter set. For most of the range of
odds ratios expected in GWAS, these models behave identically.(B) Heterogeneity scores of the
same simulated cohorts in Panel A, with blue denoting the liability threshold model and cyan the
logistic model. For each model, a black dotted line denotes the expected value of the score based
on effect sizes and allele frequencies. While both models produce negative scores due to negative
correlations between SNPs in cases, the bias is notably less negative in the logistic model, and
within the range of values typical of complex traits, can be assumed to be close to0. (C) The
liability (normal) distribution (blue) and the derivative of the sigmoid function (cyan).

To contrast the performance of the logistic model with the Risch model, in which SNPs are un-

correlated (see Methods), we simulated case/control cohorts from both models using the same odds

ratios, cohort sizes, and prevalence of0•01. Heterogeneity scores from these simulated cohorts are

shown in Figure B.3 under large odds ratios of1•2 (panel A) and smaller odds ratios of1•06(panel

B). Although both models are multiplicative over odds ratios, the resulting SNP-SNP correlations

among their respective cases differs. The Risch model guarantees independence between SNPs in

cases due to disease risk being a simple product of odds ratios, so homogeneous cases generated

from this model produce heterogeneity scores of0 regardless of odds ratio magnitude, and het-

erogeneous cases produce highly positive scores. When generated by a logistic model, however,

homogeneous cases become signi�cantly negative due to SNP-SNP anti-correlations, and positive

48



scores of heterogeneous cases are similarly attenuated. But this behavior only occurs when odds

ratios are large, and for the majority of highly polygenic traits, the behavior of heterogeneity scores

does not differ appreciably from the Risch model, as shown in Figure B.3B.

3.5.2 CLiP: correction for negative correlation bias in the liability threshold model

To demonstrate the effects of correlated predictors on heterogeneity detection in the liability

threshold model, we evaluated CLiP and BUHMBOX scores on simulated homogeneous and het-

erogeneous cohorts. Simulation parameters were set to approximate those reported for schizophre-

nia in Ripke et al. [84]: genotypes over 100 associated SNPs were sampled according to a �xed

risk-allele frequency of? = 0•2. Effect sizes were set to a �xed value to produce a desired vari-

ance explained of0•034 in a standard normal PRS distribution. SNPs of control cohorts were

sampled independently according to population allele frequencies. Homogeneous case sets were

generated by repeatedly sampling controls and selecting individuals whose PRSs pass a thresh-

old corresponding to a prevalence of 0.01. Heterogeneous cohorts were created by combining an

equal number of homogeneous cases and controls. The scores of these cohorts were evaluated over

a range of sample sizes keeping variance explained constant at 0.034 (Figure 3.3A), and a range

of total variance explained values keeping the sample size constant at 30,000 cases and 30,000

controls (Figure 3.3B). Regardless of both parameters, heterogeneity scores of control populations

with independently sampled SNPs (black) follow a standard normal distribution centered at0. Het-

erogeneous cohorts (green) exhibit ascertainment of PRS SNPs in one subset of individuals and

not the other, resulting in positive correlations between those SNPs taken over all individuals. The

weighted sum of these correlations then produces positive heterogeneity scores, which increase

when signals increase either by increasing the sample cohort size or the SNP variance explained.

Lastly, as these cohorts are simulated from a liability threshold model, homogeneous cases (red)

produce negative scores due to competing ascertainment between SNPs as described in the Sup-

plementary Material, and this negative bias likewise increases with increasing signal. Given only

knowledge of the SNP effect sizes, effect allele frequencies, and number of cases and controls, we
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can accurately predict the expected score of homogeneous cohorts (blue) at any cohort size and

variance explained.

Figure 3.3: CLiP performance on simulated control, homogeneous, and heterogeneous co-
horts generated with a liability threshold model. (A)Heterogeneity scores (y-axis) on simulated
case/control cohorts as a function of sample size (x-axis). Simulations are run with a PRS of 100
SNPs with total variance explained of 0.034. Heterogeneous cohorts (Green) are equal-proportion
mixtures of controls (Black) and homogeneous cases (Red). The expected homogeneous score
(Blue) is calculated from effect sizes and allele frequencies of PRS SNPs only, and should be used
as the true null score in CLiP.(B) Heterogeneity scores (y-axis) as a function of variance explained
(x-axis) with a �xed sample size of 30,000 cases and 30,000 controls. For each panel, the mean
and standard deviation of 20 trials is plotted.

Power calculations for these results are shown in B.1 Table. In Figure 3.3, we de�ne a positive

result to be a true heterogeneous cohort passing a one-sided standard normal con�dence interval

threshold of95% given the null CLiP score of a liability threshold homogeneous case set. We

compare p-values assuming the liability threshold null given by CLiP and assuming a null value of

zero in conventional BUHMBOX. It is clear that correcting for the liability threshold null improves

power: for a �xed variance explained of0•034, CLiP achieves a99%sensitivity among 20 trials

with only 10,000 cases, whereas BUHMBOX requires 30,000 cases to achieve a100%sensitivity.

Additionally, we tested the performance of CLiP with respect to the fraction of individuals in

the case mixture that are true cases, shown in Figure B.4 and Table B.2. Predictably, we found that

maximum power to detect heterogeneity was achieved with an even split between true and misclas-
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si�ed cases, maximizing the entropy. A high percentage representation of true cases decreases the

score to negative values, converging to that of homogeneous case sets, whereas a high percentage

representation of controls decreases the score to 0.

Lastly, CLiP is robust to confounding factors generating heterogeneity, provided that these

factors exhibit the same patterns in both cases and controls. In particular, ancestry is a source

of heterogeneity which must be accounted for in all cohorts. To demonstrate that CLiP is ro-

bust to background heterogeneity, we simulated case/control cohorts assuming that the population

comprises two ancestry subgroups. The set of simulated SNPs is subdivided so that within each

ancestry subgroup alternating halves of the SNPs are assigned effect allele frequencies of0•5 ¸ ?0

and0•5 � ?0, with the value of?0 set so that the� BCamong controls is a speci�ed value. Controls

are sampled equally from the two subgroups, but cases are selected by thresholding sampled sets

of these controls and so are not guaranteed to contain equal subgroup representation. Performance

of CLiP in these simulations is shown in Figure B.5. We �nd that increasing the value of� BCat-

tenuates the magnitudes of both homogeneous and heterogeneous case scores toward zero. While

power is largely unaffected, the greater concern is speci�city, as the presence of these two sub-

groups creates an alternate heterogeneity signal from disease-related subtyping. In Figure B.5B,

we �nd that speci�city over 20 trials remains at0•8 for an � BCof 0•05, with the performance of

trials with smaller� BCvalues not differing appreciably from the expected homogeneous score. An

� BCof 0•05 is double that observed between Finnish and Southern Italian populations, the largest

value among pair-wise comparisons of European populations [91]. We conclude that CLiP is ro-

bust for cohorts sampled within single well-de�ned populations, for which� BCis expected to be far

smaller.

3.5.3 Heterogeneity by distinct subtypes

In contrast to heterogeneity created by subsets of misclassi�ed cases, we also consider hetero-

geneity arising from multiple potentially independent sub-phenotypes, each with a distinct PRS,

such that an individual is considered to be a case when it is a case for one or more of these sub-
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phenotypes. Discovering heterogeneity in these cohorts is more challenging because correlations

between SNPs involved in different sub-phenotype PRSs may be negative as depicted in Figure

3.1G, reducing the heterogeneity score when summed. Additionally, while we depict misclassi�-

cation and subtyping as two distinct sources of heterogeneity, most phenotypes and case/control

cohorts will fall between these two extremes as PRSs exhibit different variances explained with

respect to different subtypes. We can interpret misclassi�cation as a particular form of subtyping

in which one subgroup exhibits a very small variance explained with respect to known SNP asso-

ciations, as can occur when transferring PRSs between different populations or age or sex cohorts

[72]. We have modeled the spectrum between misclassi�cation and subtyping in Figure 3.4A. As-

suming there exist two subtypes within a case set with associated SNP( 1 and( 2 and effect sizesV1

andV2 �xed across all SNPs, we keepV1 �xed to a positive value while varying the magnitude of

V2. WhenV2 is 0, the risk alleles of set( 2 are not ascertained for any subgroup of cases, resulting

in small weight factorsF and a negligible contribution to the CLiP score. The remaining SNPs

( 1 then reduce to the misclassi�cation scenario. As the magnitude ofV2 increases, the subtyping

pattern approaches that depicted in Figure 3.1F.

We �nd in Figure 3.4B that both subtyping and misclassi�cation produce score signi�cantly

larger than that expected of a homogeneous case set in a liability threshold model, but also that

the raw score prior to correcting by the null expectation differs between the misclassi�cation and

subtyping scenarios. Misclassi�cation¹V2 ! 0º tends to produce highly positive scores, as all

ascertained SNPs are ascertained among one subgroup, and not ascertained in the other, producing

identical correlation patterns between all SNP pairs. In the subtyping scenario¹V2 ! V1º, SNP

pairs within either( 1 or ( 2 are positively correlated, but SNP pairs with one( 1 SNP and one( 2

SNP are negatively correlated, signi�cantly attenuating the score. This pattern is also observed

in the logistic model in Figure 3.4C, but simulations approaching the subtyping extreme have

heterogeneity scores which converge to the null score near zero, indicating that under a logistic

model, subtyping is not detected as heterogeneity. The subtyping scores, however, do not converge

to zero in the liability threshold model but to a negative value. As SNPs in both( 1 and ( 2 are

52



slightly ascertained over the entire case set, a negative correlation bias in the liability model is still

observed in these SNPs, decreasing the score from zero.

Lastly, we tested the performance of CLiP in the subtyping scenario when associated SNPs are

subdivided amongst an increasing number of hidden subtypes. We tested the performance of CLiP

by �xing the number of cases and controls at 50,000 each, the total number of SNPs at 100, and the

total variance explained at 0.05, while varying the number of sub-phenotypes and the fraction of

SNPs that are shared across all sub-phenotypes. When this fraction is zero, the sub-phenotypes are

completely independent, and the SNPs are divided into mutually exclusive subsets associated with

each sub-phenotype. When the fraction is non-zero, that fraction of SNPs has the same effect size

across all sub-phenotypes. Results of these simulations are shown in Figure B.6 as well as Table

B.3. Note that by dividing associated SNPs into associations with particular sub-phenotypes, the

total variance explained for each sub-phenotype is reduced, and the observed variance explained

of the entire heterogeneous cohort will be lower in a simple linear regression.
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Figure 3.4:Performance of heterogeneous scores on case sets heterogeneous by misclassi�-
cation and by subtype.While misclassi�cation and subtyping represent two alternate etiologies
for observed heterogeneity, most real case sets likely fall between these two extremes.(A) Given
two subtypes( 1 and( 2 with �xed subtype-speci�c SNP effect sizesV1 and V2, as well as cases
belonging to each, a spectrum can be drawn over increasing variance explained of one of the sub-
types. WhenV2 is zero, the SNPs in( 2 do not contribute to the PRS of any subset of cases and
so the heterogeneity score is driven by the set( 1, mimicking the misclassi�cation scenario. As
V2 increases in magnitude, two distinct subtypes are formed.(B) Heterogeneity scores (green) of
cohorts simulated from a liability threshold model according to the subtype pattern depicted in A,
with equal proportion of cases generated from each subtype. The x-axis represents the liability
variance explained by SNPs in( 2 as a fraction of the variance explained by SNPs in( 1.
The blue line depicts the expected score of homogeneous cases under the liability threshold model,
absent distinct subtypes. All scores of the simulated heterogeneous cohorts are signi�cantly larger
than the null value, indicating heterogeneity is detectable at both extremes, but the raw value of the
score in cases is highly positive under the misclassi�cation scenario and slightly negative under
subtyping.(C) The same experiment in B but generated from a logistic model with( 1 odds ratio
set to1•06, and( 2 odds ratio set to a fraction of that value denoted on the x-axis. Without the high
negative correlation bias present in the liability threshold model, the subtyping scenario under the
logistic model produces heterogeneity scores near0 and so cannot be detected.
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3.5.4 CLiP-Y: Quantitative Phenotypes

To demonstrate heterogeneity detection in quantitative phenotypes, we simulated homogeneous

cohorts by sampling phenotypes from the true PRS-dependent distribution. � # ¹-V–1 � � 2
(#%º,

and we simulated heterogeneous cohorts by combining equal-sized samples from the true dis-

tribution and from a PRS-independent standard normal distribution. In lieu of scoring the differ-

ence between case and control correlations, CLiP-Y scores a weighted correlation with phenotype-

dependent functionq¹. º against a conventional unweighted correlation over the same individuals.

In practice, we found evaluating a given choice ofq over phenotypes converted to percentiles

improved performance for all learned weight functions, possibly because percentiles limit the do-

main of the phenotype over which the weight function must be positive, reducing the contribution

to the score calculation by extreme PRS values. In addition to testing pre-selected functions for

q, we performed a local search over polynomials of increasing degree (see Methods), �nding the

optimal polynomial functions shown in Figure 3.5A. All polynomial functions converged to highly

similar concave functions. This is due to the balancing effect of the normalization factor on the

sum of correlations: while correlations of PRSs at the high end of the distribution are more ex-

treme because these individuals more closely resemble “cases,” a high weight value at the higher

end of the PRS spectrum means that the normalization factor also shrinks the magnitude of the

score. To demonstrate that optimal weight functions are concave functions over the range of PRS

percentiles, we tested weight functions that sum up two indicator functions scanning across the

range of percentiles in»0–1¼, one increasing, for an interval ending at 1, and another decreasing,

for an interval ending at 0, and evaluated heterogeneity detection performance as shown in Figure

B.7. The best performing functions are those where the increasing function threshold is near but

not at 0, and the decreasing function threshold is near but not at 1, producing a function similar to

the concave polynomials found in Figure 3.5A.

In the absence of a method for scoring continuous phenotypes, a naive approach using con-

ventional case/control heterogeneity scoring would involve setting an arbitrary threshold in the

distribution of phenotypes by which to partition the cohort from a continuous phenotype into cases
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and controls. This is equivalent to applying a step weight function over the phenotypes. We com-

pare our continuous heterogeneity test to thresholds at various phenotype percentiles. CLiP-Y

scores using a step weight function are calculated on simulated data over varying sample sizes and

values of variance explained, shown in Figure B.8 and Figure B.9. Both the continuous hetero-

geneity test and the arbitrary threshold tests are standard normally distributed in the null scenario,

when no heterogeneity is present.

We evaluated the performance of our polynomial weight functions against the step function and

other weight functions by the difference between the CLiP-Y score of simulated heterogeneous co-

horts and the calculated expected homogeneous score. A derivation for the expected score is shown

in the Supplementary Text, and comparisons with randomly sampled cohorts are shown in Figure

B.10A and Figure B.11A. The mean scores over 20 trials conducted in 100,000 cases and 100,000

controls are shown in Figure 3.5B, as a function of variance of the quantitative trait explained by

SNPs. We observe that the sigmoid function, a smoothed step function, slightly outperforms the

step function, whereas a linear function and� log¹1 � Gº, intended to assign large weights to the

positive extreme of the phenotype distribution, both underperform. The three learned polynomial

functions perform similarly and signi�cantly outperform all manually selected functions.

The same relative performance of the weight functions is observed when tested against an

increasing cohort size with a �xed variance explained of0•1, shown in the left plot of Figure

3.5C. For comparison, the right plot shows CLiP-Y scores on the same scale for step functions

with thresholds set at different percentiles of the phenotype distribution and simulated in cohorts

of 100,000 cases and 100,000 controls. Note that as expected, the best performing percentile

threshold is some intermediate rather than extreme value.
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