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Abstract 

Smoothing splines are splines fit including a roughness penalty. They can be used 

across groups of variables in regression models to produce more parsimonious models 

with improved accuracy. For APC (age-period-cohort) models, the variables in each 

direction can be numbered sequentially 1:N, which simplifies spline fitting. Further 

simplification is proposed using a different roughness penalty. Some key calculations 

then become closed-form, and numeric optimization for the degree of smoothing is 

simpler. Further, this allows the entire estimation to be done simply in MCMC for 

Bayesian and random-effects models, improving the estimation of the smoothing 

parameter and providing distributions of the parameters (or random effects) and the 

selection of the spline knots. 
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APC spline regressions  

Regression parsimony usually removes less significant variables – those with small 

parameters that provide little improvement to the fit. Leaving those out is like making 

them zero. APC models estimate the effects of every age, period, and cohort, so these 

would have to be close to zero to leave out. Often, that is not possible. But what is 

feasible is reducing the differences between successive parameters, or maintaining a 

pattern of how parameters change – linear or cubic trends, for example. This is where 

splines come in. Another alternative is parametric curves across the parameters, but 

often these do not fit well. 

Cubic and linear splines have basis design matrices – matrices of dummy variables 



for a regression to fit splines in each direction. There are variables for each APC 

parameter, except for enough left out to make the design matrix non-singular. If there 

are no further constraints, the spline regression fit would be the same as from regular 

regression. The spline curves could be very bumpy to fit through all the original 

parameters. Smoothing splines constrain the regression by minimizing the negative 

loglikelihood (NLL) plus a roughness penalty, giving smoother curves.  

An early proposal for a roughness penalty on smoothing, from Whittaker (1922), is 

the sum of squares of the third differences of the smoothed values. Recently the integral 

over 1:N of the squared 2nd derivative of the spline curve has been a popular roughness 

measure. For cubic splines, this is a closed form but fairly complicated function of the 

parameters. For linear splines a comparable formula is the sum of the squared 2nd 

differences of the curve values at the points 1:N. With the right basis, this is the sum of 

the squared parameters. The 2nd derivative measure makes fitting each spline a 

numerical optimization, even when the regression can be done in closed form. The 

proposal here is to also penalize the sum of squared parameters for cubic splines. The 

smoothing is similar to using the 2nd derivative measure – fits with lower sums of 

squared parameters have lower 2nd derivative integrals, and vice versa. 

Formally, let b0, … bN be the coefficients of the spline fits, with constant b0, and let 

f(x) be a spline. Second-derivative fitting with smoothing constant l minimizes: 
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The proposed alternative is minimize: 
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This is actually the formula for ridge regression with shrinkage l, although 

sometimes the sum is taken starting at       j = 0. Hoerl and Kennard (1970) proved that 

there is always some l > 0 for which ridge regression has a lower predictive variance 



than MLE’s. This is similar to Stein 1956, who showed that when estimating three or 

more means, shrinking the estimates towards the overall mean to some degree will 

always improve the predictive variance. Both bias the estimates, usually towards the 

grand mean, but that is less important than improving the accuracy. Improved 

predictive accuracy is what you want from splines. 

Ridge regression has a closed-form estimation equation. For regression with design 

matrix x and observations y: 

𝛽 = (𝑥!𝑥)'$𝑥′𝑦 

Let J be the diagonal matrix with upper right value = 0, for the constant. Then the ridge 

regression estimate is: 

𝛽 = (𝑥!𝑥 + 𝜆𝐽)'$𝑥′𝑦 

This can be done in a spreadsheet. Fitting is done excluding one group at a time. NLLs 

are measured on the omitted groups, and the sum of those is the cross-validation NLL, 

which is minimized over l. This is a one-variable nonlinear minimization and can also 

be done in a spreadsheet. It is easier in popular programming languages like R and 

Python.  

The cross-validation NLL is an estimate of the NLL excluding sample bias, which is 

understatement of the NLL coming from measuring it on the sample used to estimate 

the parameters. Penalized likelihood measures like AIC, BIC, HQIC, etc. also try to 

eliminate the sample bias, and cross validation can be considered a penalized likelihood 

measure for shrinkage estimation. Shrunk parameters do not use up as many degrees of 

freedom, so penalizing NLL on parameter counts does not work for shrinkage. Such 

measures are estimates of sample bias, not exact measurements of it. Statisticians do not 

like estimating parameters by optimizing penalized likelihood because that risks just 

finding the parameters with the greatest under-estimation of sample bias. They are still 

good measures for comparing a few models, however.  

Markov chain Monte Carlo estimation (MCMC) gives a different way of estimating 



l. In Bayesian or random-effects estimation, the model would include distributions for 

the parameters or random effects b1, … bN, e.g., each b ~ normal(0,1/l). Call their 

combination p(b). Bayesians would also specify fairly non-constraining distributions for 

log(b0) and log(l). In random effects these are usually considered frequentist 

parameters, without distributions, but there appears to be little reason they could not be 

made into random effects themselves, with postulated distributions. In either case, the 

joint likelihood is p(b)*p(y|b,l) = p(b,l) = p(b,l|y)*p(y), by definition of conditional 

distribution.  Here p(y) is not known. MCMC is a way to generate samples from the 

product of two distributions known only up to an undetermined constant. Thus it can 

produce a sample of p(b,l|y). Frequentists usually estimate just the mode of this 

distribution, but it seems they could get the whole distribution MCMC by making b0 

and l random effects, and estimate the mean of l|y without cross validation as 

Bayesians do. 

Implementation example 

For a linear-spline design matrix, the variables estimated are the 2nd differences of 

the parameters in each direction. The 1st differences sum those up, and the A, P, or C 

parameters sum up the 1st differences. That ends up counting the 2nd difference 

parameters additional times for later observations. For an observation at age k, the age j 

variable ends up as (1+k-j)+, and the same for periods and cohorts k and j. Usually the 1st 

A, P and C variables are left out to avoid a singular matrix when there is a constant 

term. One more variable needs to be omitted if all three directions are included, as 

discussed below. 

For cubic splines the design matrix here takes the first variable as the constant, the 

second in each direction as the A, P, or C number k for that direction for each 

observation, and the 3rd to Nth as (2+k-j)+3 for j = 2, … N. Only one constant is used for 

the regression, so there are N–1 variables in each direction. This is a simplification of the 



basis given by Hastie, Tibshirani, and Friedman (2017), a derivation which is at 

https://stats.stackexchange.com/questions/172217/why-are-the-basis-functionsfor-

natural-cubic-splines-expressed-as-they-are-es . For interpolating the cubic splines, use 

this basis for any real k in the interval. A disadvantage of the simplification is that the 

interpolation does not work in the last interval [N–1, N] and the spline does not work 

for extrapolation. 

There is a linear relationship among the three directions. One more variable has to 

be eliminated to have a non-singular design matrix. This can be done by estimating the 

model using two directions only, then leaving out the variable with the lowest absolute 

value. This is at a point where the cubic or linear curve does not change shape much. 

Sometimes modelers leave out an entire direction because of the linear relationship, but 

that is like assuming there are no effects in that direction. This can be checked with 

residual analysis, and does not usually hold. 

As an example, splines are fit to the logs of insurance loss payment data using cross 

validation. Payments are by year of accident (cohort=row) and years since accident 

(age=column), with year of payment (period) on SE-NW diagonals. Payments decrease 

with age, and increase from inflation by year of payment. The cohort size is volume 

increased by inflation. This data is an incomplete square with fifteen years in each 

direction. Linear and cubic splines were fit, first to AC data, then the smallest variable 

eliminated, then the period variables were included. For linear splines, the last cohort 

was eliminated, and for cubic splines it was the 2nd-to-last cohort. Leave-one-out cross 

validation was used, where every observation is taken as a left-out subsample. The 

linear splines gave a slightly better cross-validation NLL. The splines at the best l’s are 

graphed below, with the cubic splines interpolated to show the curves. The linear 

splines are fairly smooth themselves. Curve shapes barely change at several points. 

Those parameters are close to zero and their knots are effectively eliminated. 

Optimizing knot choice can be an awkward additional calculation in typical spline 



models.  

The graphs look similar, but the scales are different, with the fits producing 

different estimated tradeoffs among the other directions. The parameters in each 

direction cannot be interpreted individually, which is not unusual. 
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