Academic Commons


Seasonal Climatology and Dynamical Mechanisms of Rainfall in the Caribbean

Martinez, Carlos Javier; Goddard, Lisa M.; Kushnir, Yochanan; Ting, Mingfang

The Caribbean is a complex region that heavily relies on its rainfall cycle for its economic and societal needs. This makes the Caribbean especially susceptible to hydro-meteorological disasters (i.e. droughts and floods). Previous studies have investigated the seasonal cycle of rainfall in the Caribbean with monthly or longer resolutions that often mask the seasonal transitions and regional differences of rainfall. This has resulted in inconsistent findings on the seasonal cycle. In addition, the mechanisms that shape the climatological rainfall cycle in the region are not fully understood. To address these problems, this study conducts: (i) a principal component analysis of the annual cycle of precipitation across 38 Caribbean stations using daily observed precipitation data; and, (ii) a moisture budget analysis for the Caribbean, using the ERA-Interim Reanalysis. This study finds that the seasonal cycle of rainfall in the Caribbean hinges on three main facilitators of moisture convergence: the Eastern Pacific ITCZ, the Atlantic ITCZ, and the western flank of the North Atlantic Subtropical High (NASH). The Atlantic Warm Pool and Caribbean Low-Level Jet modify the extent of moisture provided by these main facilitators. The expansion and contraction of the western flank of NASH generate the bimodal pattern of the precipitation annual cycle in the northwestern Caribbean, central Caribbean, and with the Eastern Pacific ITCZ the western Caribbean. This study identifies the Atlantic ITCZ as the major source of precipitation for the central and southern Lesser Antilles, which is responsible for their unimodal rainfall pattern. Convergence by sub-monthly transients contributes little to Caribbean rainfall.

Geographic Areas


  • thumnail for Martinez2019_Article_SeasonalClimatologyAndDynamica.pdf Martinez2019_Article_SeasonalClimatologyAndDynamica.pdf application/pdf 1.9 MB Download File

Also Published In

Climate Dynamics