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ABSTRACT

Statistical models have been used to provide operational seasonal forecasts of rainfall over southern Africa since 1992. The
Climatology Research Group has been using a quadratic discriminant analysis model since November 1994. The model relates
rainfall over different areas of South Africa to principal components of sea-surface temperatures in the Indian, South Atlantic
and Paci®c Oceans. Details of the model are described in this paper. High forecast-skill levels can be achieved for much of the
country throughout the year. The mostly successful performance of the model over a 15-year independent testing period
indicates that the model can be used successfully in an operational environment. # 1998 Royal Meteorological Society.

KEY WORDS: discriminant analysis; linear error in probability space; rainfall; sea-surface temperatures; seasonal forecasting; South Africa;
skill-score measures.

1. INTRODUCTION

Partly in response to the devastating effects of the 1991±1992 drought in southern Africa (Vogel and Drummond,

1993), the South African Weather Bureau and a number of research groups at some of the South African

universities have begun to release operational seasonal rainfall forecasts in the last few years (Mason et al.,

1996). In October 1994 the South African Weather Bureau founded the South African Long-lead Forecast Forum

(SALFF) with the aims of developing and co-ordinating the seasonal forecasting capabilities of the country. The

forecasts produced by the SALFF member organizations are based on statistical associations between sea-surface

temperatures, outgoing longwave radiation and atmospheric circulation indices in the tropics, subtropics and mid-

latitudes (Jury, 1996; Mason et al., 1996; Mason, 1997). Upper atmospheric circulation indices are used in

seasonal forecasting over southern Africa in addition to surface features and include the Quasi-Biennial

Oscillation (Jury et al., 1994; Mason et al., 1994) and the zonal component of upper tropospheric winds over the

equatorial Atlantic Ocean (Jury, 1996). The main source of predictability over southern Africa is from the

tropical atmospheric circulation, which responds directly to sea-surface temperature anomalies (Walker, 1990;

Jury and Pathack, 1993; Mason, 1995), including El NinÄo events (Lindesay, 1988; Jury et al., 1994). As a result,

highest forecast skills are obtainable during the period December±February (Barnston et al., 1996) when rainfall

amounts reach a maximum over most of the subcontinent (Tyson, 1986) and when tropical atmospheric

in¯uences on the region predominate (Harrison, 1984).

Although general circulation models do not appear to indicate high levels of forecastability of the atmosphere

on seasonal time-scales over southern Africa (Dix and Hunt, 1995; Stern and Miyakoda, 1995), theoretical

considerations suggest that there should be reasonable prospects for obtaining useful forecast skill and lead-times
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over most of the subcontinent (Mason et al., 1996; Mason, 1997). The predictability of the atmosphere is

probably underestimated by the general circulation models partly because of inadequate/incorrect simulated

responses to sea-surface temperature anomalies (Latif et al., 1994). Modelled tropical convection responses to

positive sea-surface temperature anomalies are generally too weak (Mo and Wang, 1995; Smith, 1995), including

in the southern African region (Joubert, 1997). Further, the importance of atmospheric chaos is exaggerated by

model systematic errors (Dix and Hunt, 1995), which again are responsible for underestimates of potential

predictability. The continued use of statistical methods in seasonal forecasting of rainfall over southern Africa

should therefore be encouraged at least until the dynamic models can respond more realistically to sea-surface

temperature anomalies (Mason, 1997).

Each member of the SALFF uses different sets of predictors and statistical techniques in producing the

operational long-range rainfall forecasts. The forecasts produced by the Research Group for Seasonal Climate

Studies (RGSCS) of the South African Weather Bureau are based on a canonical correlation model, which uses

sea-surface temperatures as predictors. The RGSCS, additionally produce one- and three-month forecasts using a

general circulation model. The Climate and Weather Research Laboratory of the University of Cape Town uses a

multiple regression model, relating rainfall variability to sea-surface temperatures, the Southern Oscillation

Index, various surface and upper atmospheric wind indices and outgoing longwave radiation (Jury, 1996). The

Climatology Research Group began to release Seasonal Rainfall Outlooks in September 1992, which were

originally based on multiple linear regression models relating sea-surface temperatures in the Indian and Atlantic

Oceans and the Southern Oscillation Index to rainfall over South Africa (Mason, 1995; Mason et al., 1996). Since

November 1994 the Seasonal Rainfall Outlooks have been based on the results of a discriminant analysis model.

In addition to the models used by the SALFF members, a neural network model has been developed for South

African rainfall and indicates useful forecast skills (Hastenrath et al., 1995). The discriminant analysis model

used by the Climatology Research Group is adapted from a method developed at the United Kingdom

Meteorological Of®ce for producing seasonal forecasts for the Sahel region of West Africa and north-east Brazil

(Ward and Folland, 1991). The forecasting model is described in this paper and the seasonal and spatial

dependence of skill scores are outlined. A description of the different skill-score measures used is included.

2. DATA AND METHODS

The Climatology Research Group's seasonal rainfall forecasting model is trained by relating principal

components of sea-surface temperature to rainfall for different areas of South Africa. The data and statistical

methods involved in the training of the model are outlined in the sections below.

2.1. Rainfall data and regionalization

Monthly station rainfall data for the 45-year period January 1951 to December 1995 were obtained from the

Computing Centre for Water Research, University of Natal. The stations were pre-selected on the basis of

completeness of records. Stations were only selected if rainfall recordings were kept over the entire 45-year

period and if there was a maximum of 10 per cent missing values. A total of 430 stations across South Africa

were obtained (Figure 1). Missing values were replaced by the respective monthly mean over the 45-year period.

The 430 stations were grouped into homogeneous rainfall regions based on the standardized monthly rainfall

totals over the full 45-year period using cluster analysis. The aim of the cluster analysis was to group the rainfall

stations into regions with similar interannual rainfall variability, within each of which the mechanisms

responsible for the rainfall variability should be similar. The data were ®rst standardized to eliminate problems of

non-linearity that arise if the variables (monthly rainfall) do not have equal variance (Everitt, 1980). Euclidean

distances are most commonly used when calculating the distance matrix for cluster analysis (Gong and Richman,

1995), but if the variables are correlated Mahalanobis distances should be calculated instead (Everitt, 1980). The

Mahalanobis distance, Dij between objects i and j can be calculated from

Dij �
������������������������������������������
�xi ÿ xj�T Rÿ1�xi ÿ xj�

q
�1�
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where xi is the ith sample point in p dimensional space and R is the p6 p correlation matrix. Because the number

of objects to be clustered (430 stations) was less than the number of variables (456 12 months), R would be

singular and so its inverse does not exist. The total number of months was therefore reduced by calculating

principal components from the correlation matrix: eight of the principal components each explain more than 5 per

cent of the total variance and were accordingly retained. These eight principal components together explain 65

per cent of the total variance. The components were not rotated because their physical interpretability was not

important: the analysis was performed purely to reduce the number of variables. The principal components are by

de®nition orthogonal so that R is an identity matrix, in which case the Mahalanobis distance is then equivalent to

the Euclidean distance. Once the distances were calculated, hierarchical clustering was performed using Ward's

minimum variance criterion (as recommended by Gong and Richman, 1995). The number of clusters was selected

by identifying a `signi®cant' jump in the distance between clusters merged at each step, which implies that two

relatively dissimilar clusters have been merged. A total of eight regions were de®ned (Figure 1), each of which

contains at least 20 stations.

For each station, running three- and six-month totals were calculated from the raw data, starting in March±May

and March±August 1951 and ending February±April and February±July 1995. Given n stations in region l, let xijkl

represent the three- or six-month rainfall at station k in year i and beginning in month j. The average January±

March rainfall over the 45-years, for example, can then be expressed by x1kl and the standard deviation s1kl. The

totals were standardized for each seasonal period separately and then averaged across all stations in each region,

using equation (2),

zijl � 1

m

Pm
l�1

xijkl ÿ xikl
sjkl

�2�

to give a regional index zijl. The procedure was repeated for all eight regions. For each region and starting month,

the three-month indices were then grouped into ®ve equi-probable rainfall categories. The driest 20 per cent of

the 45 years of three-month rainfall indices were thus classi®ed as `very dry', the next driest 20 per cent as `dry'

and so on for the `average', `wet' and `very wet' categories. By de®nition, the a priori probability of any three-

month period from the training period falling within one of the categories is 20 per cent, and each category

contains nine values. The six-month indices were similarly categorized, but using only three equi-probable

categories, with a priori probabilities of 33 per cent, and 15 cases in each category.

2.2. Sea-surface temperature data

Sea-surface temperature data for the Atlantic and Paci®c Oceans south of 20�N and the entire Indian Ocean

were extracted from the Meteorological Of®ce Historical Sea Surface Temperature version 6 (MOHSST6) data

set for the 46-year period January 1950 to December 1995. The data consists of quality controlled monthly sea-

surface temperature anomalies for 5� latitude by 5� longitude grids (Parker, 1987; Parker and Folland, 1988) and

the anomalies are calculated with respect to the 1961±1990 monthly means. The data were averaged into 10� by

10� grids, partly to reduce the number of missing values and partly to reduce the dimensionality of the data set.

Any remaining missing values were replaced with Gaussian noise (Mason, 1995) provided that at least one-third

of the observations were present.

Rotated principal components analysis was then performed on the sea-surface temperature data for each of the

three oceans separately. For the Atlantic and Paci®c Oceans only data south of 20�N were considered, whereas all

available data for the Indian Ocean were included. The analyses were based on the variance±covariance matrix

for each ocean and spatial loadings were rotated using the varimax criterion to generate robust and physically

interpretable components (Richman, 1986, 1987, 1993; Cheng et al., 1995). Only those components that explain

at least 5 per cent of the total variance were retained. Five components were retained for the Atlantic Ocean, four

for the Indian and two for the Paci®c Oceans. Their spatial loadings were divided by the square root of the

eigenvalue and the resultant spatial score coef®cients are illustrated in Figure 2±4. For the Atlantic Ocean,

components 1±4 and component 6 were retained: after rotation component ®ve explained approximately 3 per

cent of the total variance only, and the spatial scores pattern indicated high coef®cients in just a few grid areas
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where data quality is poor. The ®rst of the Paci®c Ocean principal components (Figure 4(a)) represents variability

in the NINÄ O3 region (5�N to 5�S, 90�W to 150�W). Sea-surface temperatures in this region are sometimes used

as a less noisy index of the El NinÄo±Southern Oscillation phenomenon than the Southern Oscillation Index (Cane

et al., 1994).

The ®rst components of each of the three oceans represent, to a large extent, equatorial sea-surface temperature

variability. An additional three predictors were de®ned by calculating the differences between the scores on these

®rst components to give indices of contrasts in equatorial sea temperatures between the three oceans. Differences

in equatorial sea-surface temperatures between the Atlantic and Paci®c Oceans are thought to have an important

in¯uence on rainfall over West Africa because of an effect on the Walker circulation (Janicot et al., 1996). Zonal

sea-surface temperature gradients may be similarly important for southern Africa (Mason and Jury, 1997) and

could account for the strong statistical association between upper tropospheric zonal winds over the central

equatorial Atlantic Ocean and rainfall over southern Africa (Jury, 1996).

2.3. The non-linear discriminant analysis model

The general problem addressed by discriminant analysis is to assign an individual to a category based on the

values of the vector of `independent' variables, x. It is assumed that each individual has to be assigned to one of

the categories and that no other categories are allowed. A classi®cation rule, or discriminant function, is de®ned

to make the assignment. Given a population P with a proportion pi in category Gi, the probability density function

of observations within Gi can be de®ned as fi(x). The assignment is made to the group for which the value fi(x)pi

is maximized. It is usually assumed that the underlying population is multivariate normal with mean vector m and

covariance matrix SS. Because the mathematics becomes exceptionally complicated if this assumption is relaxed,

multivariate normality was assumed throughout. In linear discriminant analysis the further assumption of equality

of variance between the different groups is adopted, but if this assumption is relaxed, the discriminant function

Figure 1. Location map of the 430 rainfall stations and the eight rainfall regions de®ned by clustering of the spatial loadings of the ®rst eight
non-seasonal principal components of monthly rainfall for the period 1951±1995
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Figure 2. Spatial core coef®cients of the ®rst four and the sixth (a±e) principal components of monthly sea-surface temperature anomalies in
the Atlantic Ocean south of 20�N for the period 1950±1995. The principal components were calculated from the variance±covariance matrix

and were rotated using the varimax method
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Figure 2 c±d
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becomes quadratic (Manly, 1994). The NAG routines G03DAF and G03DCF were used (Numerical Algorithms

Group, 1996).

There are two established methods of estimating the probability distribution function fi(x): an estimative and a

predictive approach. There are, therefore, four possible alternatives: an estimative approach that assumes equality

of variance (Ee) and one that does not assume equality of variance (Eu); a predictive approach that assumes

equality of variance (Pe) and one that does not (Pu). It has been shown that the estimates derived using Pu are

`far superior' when the assumption of equal variances is not valid, but that Pe is preferable when equality is

obtained (Aitchison et al., 1977; Moran and Murphy, 1979). Therefore, a predictive approach was used

throughout and tests for the equality of variance were conducted to decide between Pe and Pu.

The two-month mean sea-surface temperature principal component scores and seasonal total regionalized

rainfall indices were used as input into the non-linear discriminant analysis model. Two-month mean sea-surface

temperature values were used to reduce the effects of noise that result from sampling variability. The predictor

variables and rainfall indices were lagged so that the model was trained for potential operational use as a forecast

tool. All operational forecasts are produced for three- and six-month totals and in operational use the forecasts for

January±March and January±June, for example, can be made only with the latest available observed sea-surface

temperature data. Hence, the January±March rainfall is forecast using November±December sea-surface

temperature principal component scores. The model was trained with these operational restrictions in mind and,

consequently, was constructed to relate seasonal rainfall totals to sea-surface temperatures of the two months

prior to the ®rst month of the rainfall index.

As with multiple regression, not all the candidate predictors contribute to a signi®cant improvement in the

discriminant analysis model. Unfortunately, however, there is no established method for assessing which

predictors are useful when the assumption of equal variance is dropped. Typically, stepwise linear multiple

Figure 2e
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regression is used as a ®rst step to indicate which variables to input to the discriminant analysis model (e.g. Ward

and Folland, 1991), but since the model used here is non-linear, this procedure was considered inappropriate.

Instead, it was decided that the number of predictors would be kept to a maximum of three. Experience with using

four predictors suggested that the fourth variable over-parameterizes the model. All possible permutations of one,

two and three predictor variables were considered.

Figure 3. Spatial score coef®cients of the ®rst four (a±d) principal components of monthly sea-surface temperature anomalies in the Indian
Ocean for the period 1950±1995. The principal components were calculated from the variance±covariance matrix and were rotated using the

varimax method

154 S. J. MASON

# 1998 Royal Meteorological Society Int. J. Climatol. 18: 147±164 (1998)



2.4. Model validation

Validation is an important component of model construction, particularly with discriminant analysis, which

lacks an adequate measure of signi®cance akin to the R2 statistic used in regression procedures (Montgomery and

Peck, 1992; Manly, 1994). Two approaches to model validation were adopted. The most recommendable method

is to construct the model using a subset of the data available and to then test the model over the remaining periods

(Wilks, 1995). Unfortunately, this approach reduced the number of observations available to train the model. As

Figure 3c±d
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discriminant analysis (depending on the number of categories used) generally requires a longer training period

than regression-based methods, suf®ciently long independent testing periods could not be de®ned given ®ve

rainfall categories. Independent cross-validation has therefore been performed for the six-month three-category

hindcasts only. For the six-month hindcasts the models were trained over the period 1951±1980 and validated

over 1981±1995.

An alternative approach is to perform jack-knife validation, which involves the successive deletion of each

observation from the model (Michaelsen, 1987). The deleted observation is then hindcasted and compared with

the observed value. The discriminant functions are recalculated at each step so that the model used in the hindcast

is constructed without any information about the deleted observation. Recalculation of the discriminant functions

is important with small data sets, otherwise the forecast skill, especially of the most extreme values, is

exaggerated (van den Dool, 1987; Barnston and van den Dool, 1993). The constraint that only those variables in

the full model could be used in the jack-knife models was imposed to avoid year-to-year changes in predictors,

which can occur given a large pool of candidate predictors (Hastenrath, 1995). Hindcasts were produced using the

Figure 4. Spatial score coef®cients for the ®rst two (a and b) principal components of monthly sea-surface temperature anomalies in the Paci®c
Ocean south of 20�N for the period 1950±1995. The principal components were calculated from the variance±covariance matrix and were

rotated using the varimax method
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jack-knife method for each of the 45 years. Jack-knife hindcast skill scores were then calculated. The assessment

of the hindcast skill of discriminant analysis models is not as straightforward as it is of regression-based

techniques. A number of skill-score measures were used and are discussed below.

3. SKILL-SCORE MEASURES

Skill scores were used to express the accuracy of the model over the training period. A number of skill-score

measures were calculated and are detailed below.

3.1. Heidke score

The simplest skill measure is the Heidke, or `hits', score. The score measures the total number of correct

forecasts (H) and expresses this as a percentage of the total obtainable with a perfect forecast model (T ). The

number of hits (H) should be compared with the number expected by chance (E): with ®ve categories a score of

20 per cent should be obtained, with three the a priori probability is 33 per cent. The score is often rescaled so

that random guessing gives 0 per cent and hence the equation for the score is given as:

S � H ÿ E

T ÿ E
� 100 per cent �3�

The Heidke score is simple to calculate and interpret, but gives no credit for `near-misses'. For example, given

`very dry' conditions, it would have been better to have forecasted `dry' than `very wet', but the Heidke score

does not acknowledge this possibility. A more serious problem is that the score is very sensitive to the number of

categories used. With more categories, the score usually decreases because with a larger number of categories

greater accuracy is required to obtain a perfect hit rather than a near-miss.

3.2. Average distance score

In order to give credit for near-misses a simple extension of the Heidke score can be suggested. The skill of

each forecast is determined by the number of categories it differs from the observed forecast. For example, if the

forecast (F ) is for category 2 (`dry') while the observed category (O) was 3 (`average'), the forecast missed by

one. Clearly a perfect forecast has a score of zero and the worst possible score, given ®ve categories, is four. The

average score over the validation period can be calculated using

S �
Pn
i�1

jFi ÿ Oij
n

�4�

and can be compared with a perfect score of zero and to the expected score obtained by chance. It can be shown

that the expected score obtained by random guessing is 1�60 with ®ve categories and 0�89 with three categories.

However, with perpetual forecasts of average, the expected number of hits remains unchanged, but the worst

possible score for any individual forecast in a ®ve category system, for example, is 2�00. Consequently, perpetual

forecasts of average will give a better average distance score (expected values are 1�20 and 0�67 for ®ve and three

categories respectively) without any real improvement in forecast skill. Only models with an average distance

score of better than 1�20 should therefore be considered. Signi®cance levels for the average distance score were

calculated using 5000 simulations of 45 randomly selected pairs of observed and forecasted categories. The 45

simulated observed categories were constrained to be equi-probable, but the simulated forecasted categories were

unconstrained. The 99 per cent signi®cance levels were identi®ed after ranking the 5000 simulated average

distance scores and corresponded approximately with scores of 1�22 and 0�64. For the ®ve category system, the

99 per cent signi®cance level for random guessing is higher than the score achievable by perpetual forecasts of

average. The stricter score of 1�20 was used as a criterion for minimum acceptable forecast skill.

The absolute distance score is an improvement on the Heidke score and is relatively simple to interpret. It is

possible to convert the score to a percentage, but in the form of equation (3) it is probably easier to interpret and
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avoids some of the problems encountered by non-scienti®c readers in understanding skill scores expressed as

percentages. The ability to obtain an apparently signi®cant score through perpetual forecasts of average is a

limitation.

3.3. Average position

The average position score is calculated by taking the rank of the a posteriori probabilities of the categories for

which the actual rainfall was observed and averaging over the 45 years. In the event that the rainfall category with

the highest a posteriori probability was not observed, the score gives credit if the observed category corresponds

to the forecasted category with the second highest a posteriori probability. The score is of interest in the case of

bimodal probabilities, or in the case of a non-extreme forecast when the user wishes to know whether it is more

likely for the forthcoming rainfall to be on the wetter or drier side of the actual forecast.

3.4. Average con®dence

The average con®dence score is calculated by taking the a posteriori probabilities of the categories for which

the actual rainfall was observed and averaging over the 45 years. The skill score gives credit for correctly

forecasting a category with a high degree of con®dence and also does not penalize the forecaster heavily in the

case of a bimodal a posteriori rainfall probability. The a priori probability for each category is 0�20 and 0�33 for

®ve and three categories respectively and so a skillful forecast would have to have an average con®dence

exceeding this.

3.5. LEPS scores

A more sophisticated scoring system has been developed to cater for the shortcomings of the Heidke and

average distance scores. As with the average distance score, the LEPS (linear error in probability space) score of

the forecast de®nes error in terms of the `distance' between the observed value and the forecast (Ward and

Folland, 1991; Potts et al., 1996). However, instead of measuring the distance in terms of the number of

categories, it is measured in terms of the difference in the cumulative probabilities of the observed and forecast

categories. A table of skill coef®cients can be constructed and in the case of ®ve equi-probable categories, the

scores are presented in Table I. Corresponding scores for three categories are given in Table II. The rescaled

LEPS scores (Potts et al., 1996) are used because of the `bending back' effect that is observed with the standard

LEPS scores as de®ned by Ward and Folland (1991).

If the LEPS score for an individual forecast is de®ned as Si, then the score for a set of forecasts can then be

calculated using

S �
Pn
i�1

SiPn
i�1

Sp

� 100 per cent �5�

Table I. LEPS score coef®cients for ®ve equi-probable categories (from Potts et al., 1996)

Observed

Forecast 1 2 3 4 5

1 1�28 0�52 70�20 70�68 70�92
2 0�52 0�56 0�04 70�44 70�68
3 70�20 0�04 0�32 0�04 70�20
4 70�68 70�44 0�04 0�56 0�52
5 70�92 70�68 70�20 0�52 1�28
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where Sp is the score for a perfect forecast. It is evident from Table I that the coef®cients in any given row sum to

zero. The expected LEPS score for a single forecast is then 0 per cent. More importantly, the expected score for a

perpetual forecast of average will also be 0 per cent. Theoretical estimates of the signi®cance of LEPS scores are

not currently available (Potts et al., 1996), but given a total of n forecasts it is possible to calculate the empirical

distribution function of the scores, from which the signi®cance can be obtained. The signi®cance of the LEPS

score was calculated in the same way as that of the average distance score, using 5000 simulations. Given 45

independent forecasts, the 99 per cent signi®cance level for the LEPS score is about 30�0 per cent for three

categories and 26�7 per cent for ®ve categories.

3.6. Model selection

Ideally, although the atmosphere in the southern African region is known to be associated with sea-surface

temperature variability in areas highlighted by the principal components illustrated in Figures 2±4 (Mason and

Jury, 1997), the predictors should be selected by theoretical rather than statistical considerations. However,

further research into ocean±atmosphere interaction in the region is required before an a priori selection can be

made. Instead, the vigorous skill-score testing performed should hopefully minimize the probability of selecting a

model with high skill scores.

In identifying models with useful forecast skill, only the signi®cance of the LEPS and the average distance

score has been considered, although there is a high correlation between all the different skill scores calculated.

For a model to be selected both the LEPS and the average distance scores had to exceed the 99 per cent

signi®cance level. In practice, because of the similarity of the two scores, it is unusual for a model to achieve

signi®cance on only one of the scores. The signi®cance of the LEPS score was considered because of its

theoretical superiority, whereas the average distance score was considered because of the fact that the end-user

®nds it relatively easy to understand. In most cases, more than one skillful model can be de®ned, often with

totally independent predictors. The model with the highest LEPS score has usually been selected, although

consideration is also given to the consistency of the predictors of alternative models, to those of the models for

neighbouring regions and for adjacent periods. In addition, preference has been given to models with fewer

predictors, when the addition of a second or third predictor provides only a minimal improvement in the LEPS

score. It is insuf®cient to focus only on the signi®cance of the LEPS scores because models with high hindcast

variance will achieve a higher LEPS score without an improvement in forecast skill (Potts et al., 1996). The other

scores and the atypicality index (section 5) have been used only in helping to decide between alternative skillful

models with near-equal LEPS scores. When the operational forecasts are produced, all the alternative models are

considered and an indication of the level of agreement between the models is expressed. Occasionally, no skillful

model can be de®ned, in which case no forecast is offered.

4. MODEL PERFORMANCE

4.1. Three-month forecast skill

The seasonal variation of the jack-knife-validated LEPS scores for the three-month forecasts in each of the

eight regions is shown in Figure 5. For some months, insuf®cient forecast skill is obtainable to release an

Table II. LEPS score coef®cients for three equi-probable categories (from Potts et al., 1196)

Observed

Forecast 1 2 3

1 0�89 70�11 70�78
2 70�11 0�22 70�11
3 70�78 70�11 0�89
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operational forecast, but the highest skill levels obtainable are still shown. There is no obvious seasonal cycle in

forecast skill, although peaks are experienced in all regions except for the west coast (region G) during the

autumn season in about April or May, when forecasts for the coming boreal winter are released. The LEPS scores

never exceed 35 per cent for region G at any time of the year and skillful three-month forecasts can be provided

only in austral autumn. The assumption of normally distributed rainfall for this mostly arid area is least valid

(Dyer, 1974; Onesta and Verhoef, 1976) and may explain the poor performance of the model here. Over the

summer rainfall regions (regions A±E) high forecast skills are obtainable during the late spring or early summer

before the main rains and are an indication of the relatively high predictability of the tropical atmosphere (Mason

et al., 1996). In almost all cases, forecast skill is achieved by the correct forecasts of the `very dry' and `very wet'

categories.

The ®rst principal components of all three oceans (Figures 2(a), 3(a) and 4(a)) are the most frequently used

predictors. The Paci®c Ocean and northern Indian Ocean are important sources of predictability throughout the

austral summer season for all regions except the east and west coasts (E and G) and re¯ect an in¯uence on the

tropical atmospheric circulation (Mason and Jury, 1997). The ®rst principal component of the Atlantic Ocean is

an important predictor for rainfall over the eastern half of the country. The mechanisms of the association are not

well-understood, but probably involve an in¯uence on atmospheric convergence in the Zaire Air Boundary. The

general spatial and temporal patterns of forecast skill are consistent with the theoretical levels of higher

predictability during the summer and over the summer rainfall region of South Africa (Mason et al., 1996).

4.2. Six-month forecast skill

The seasonal variation of the jack-knife-validated LEPS scores for the six-month forecasts in each of the eight

regions is shown in Figure 6. Forecast skill levels are encouragingly high and are in general higher than for the

three-month forecasts, presumably because of the smaller number of categories. Over the summer rainfall regions

Figure 5. Seasonal variation of the LEPS score for the cross-validated three-month rainfall hindcasts over the training period 1951±1995 for
each of the eight rainfall regions
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(A±E), highest skill levels are achievable for the six months beginning in early- to mid-summer (November±

February), suggesting that the most reliable forecasts of the season's rainfall can be made only shortly after the

season has actually started. However, over the former Transvaal (region A) high skill levels are achievable as

early as July and August. The Paci®c Ocean is the main source of predictability. Along the south and east coasts

(regions E, F and H) forecast skill levels peak in April shortly before the winter rains begin. Regions E and H are

generally dry during April±September, but region F does receive signi®cant winter rains. Again, in almost all

cases, forecast skill is achieved by the correct forecasts of the two extreme categories `dry' and `wet'.

The independent validations for the period 1981±1995 are encouragingly high for many of the models (Figure

7), indicating that the identi®ed forecast skill is likely to be real and not a Type I error (a false rejection of the null

hypothesis that there is no forecast skill provided by the sea-surface temperatureÐWilks, 1995). (Note that the

LEPS score coef®cients given in Table II for simplicity have not been adjusted to account for the possibility that

the observed categories may not be equi-probable.) The distribution of skill scores shows a distinct seasonality in

the forecastability of the rainfall. Of greatest interest are high skill scores for the summer rainfall regions A±E

exceeding 40 per cent (with the exception of region C) during July and August, providing useful skill before the

beginning of the rains. Forecast skill levels for the summer rainfall region peak again in November, after the start

of the rains. For the south coast (region F) the winter rains can be forecast successfully from April and May and

the summer rains in November. Similarly, the winter rains of the west coast (region G) can be forecast from

March to May. Over region H, the forecasts have been consistently good throughout most of the year. The highest

Heidke score was for region A, hindcasting for the winter rains of May±October, when perfect scores were

achieved for 12 of the 15 years. However, at this time of the year rainfall is minimal and the distributional

assumptions are least valid and so the model may be problematic. In general, however, the performance of the

scheme over the 15-year independent validation period is encouraging and demonstrates the value of the model as

an operation tool.

Figure 6. Seasonal variation of the LEPS score for the cross-validated six-month rainfall hindcasts over the training period 1951±1995 for each
of the eight rainfall regions
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5. THE OPERATIONAL FORECASTS

Once the discriminant functions are de®ned from the data for the training period, a new vector of observations on

the independent variables can be submitted and the model will de®ne the a posteriori probabilities of each of the

categories. In practice, the model de®nes the probability of three- (six-) month rainfall totals falling within each

of the ®ve (three) categories, given the sea-surface temperature ®elds averaged over the last two months. The

model uses the information in the predictor variables to improve on the a priori probabilities of 20 per cent. In

calculating the a posteriori probabilities an atypicality index is also computed that de®nes the probability of

obtaining an observation vector that is more typical of group I than the observation vector (Aitchison et al.,

1977). The atypicality index provides an indication of the con®dence that can be placed in the forecast (Moran

and Murphy, 1979) and is a useful statistic in the selection of models when more than one model is available.

For the operational forecasts, near real-time estimates of the time scores on the sea-surface temperature

principal components are required. The time scores are calculated from the spatial loadings and the 1� by 1�

optimum interpolated (OI) data available from the Climate Prediction (Reynolds and Smith, 1995). The OI data

are ®rst averaged into 10� by 10� grids for compatibility with the data from the training period. Although some

inconsistencies may result from using a different data set to produce the operational forecasts from that used to

train the model, these are likely to be small and the problem is balanced by the fact that the OI data provides

global coverage. Once the OI data has been averaged into 10� by 10� grids, principal component scores are

calculated for the most recent two months and then averaged. These scores are then used as input into the

discriminant analysis model to give a posteriori probabilities for the following three- or six-month period. It is

these a posteriori probabilities that are published in the Seasonal Rainfall Outlooks.

Figure 7. Seasonal variation of the LEPS score for the independently validated six-month rainfall hindcasts for the period 1981±1995 for each
of the eight rainfall regions. Negative LEPS scores are indicated as zero, which is the expected score given random forecasts. Note that the

vertical scale differs from Figures 6 and 7
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7. CONCLUSIONS

A quadratic discriminant analysis model has been constructed to produce a three- and six-month rainfall

forecasting model for South Africa. It provides a useful supplement to the regression-based models used by other

seasonal forecasting groups within the South African Long-lead Forecast Forum. The model relates rainfall over

eight different areas of South Africa to principal components of sea-surface temperatures in the Indian, South

Atlantic and Paci®c Oceans. High forecast skill levels can be achieved for much of the country throughout the

year and there are indications of useful forecast skill shortly before or soon after the start of the summer rainfall

season, which could therefore have signi®cant operational value. Independent validation of the model over the

15-year period 1981±1995 con®rms that the model can be used successfully in an operational environment. The

independent validation indicates that there is seasonality in the forecastability of rainfall over South Africa,

re¯ecting, in part, the higher forecastability of the tropical atmosphere, which dominates the region during the

austral summer. It may be possible to improve on lead-times and skill levels by using forecast sea-surface

temperatures in a two-tiered approach. Plans to adapt the model to forecast rainfall in neighbouring countries are

being discussed with the respective national meteorological services.
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