Academic Commons

Theses Doctoral

Seismic studies of interactions between the accretionary, tectonic, fluid flow, and sedimentary processes that impact the evolution of oceanic lithosphere

Boulahanis, Bridgit

The oceanic lithosphere makes up approximately two-thirds of the surface of the earth. Oceanic crust, which is underlain by lithospheric mantle, is formed at mid-ocean ridges and is shaped by a combination of igneous accretionary processes at and near the ridge axis, and post-emplacement tectonic and hydrothermal processes as it evolves. Through time the crust is covered by sediments, sealing it from the overlying ocean, which influences hydrothermal circulation and cooling in the lithosphere below. Finally, oceanic lithosphere is subsumed at subduction zones. In this thesis I utilize seismic data to investigate the oceanic lithosphere from formation to near subduction using seismic datasets from the East Pacific Rise (EPR) and the Juan de Fuca (JdF) plate.

In my first chapter I investigate the hypothesis that eustatic sea level fluctuations induced by the glacial cycles of the Pleistocene influence mantle-melting at mid-ocean ridges (MORs) using a unique bathymetry and crustal thickness dataset derived from a 3D multi-channel seismic (MCS) investigation of the East Pacific Rise from 9°42’ to 57’N. The results of this study show variations in crustal thickness and bathymetry at timescales associated with Pleistocene glacial cycles, supporting the inference that mantle melt supply to MOR may be modulated by sea level variations.

Further investigations of the hypothesis that sea level variations may influence MOR dynamics are presented in appendices one and two. In appendix one I explore whether variations at the timescales of glacial cycles are apparent in MCS datasets from the intermediate spreading JdF ridge as well as bathymetry data from the fast spreading EPR. In appendix two I present a case study in which I re-examine the crustal thickness and bathymetry data from the northern EPR presented in chapter one in order to assess how fine-scale segmentation of the ridge axis appears in data, and compare different methodological approaches to describing MOR generated topography.

In my second chapter I present results from a wide-angle controlled source seismic experiment conducted along a transect crossing the JdF plate from ~20 km east of the axis at the Endeavour segment of the JdF ridge to the Cascadia margin off of Washington state. I utilize a joint refraction-reflection traveltime inversion to generate a two-dimensional tomographic Vp model of the sediments, crust and upper mantle. Analysis of this Vp model, along with characterization of the basement topography along the transect, reveals three intervals (spanning millions of years) of distinct crust and upper mantle properties indicating a spatially heterogeneous JdF plate which is interpreted as inherited from changes in the mode of accretion at the paleo-JdF ridge, differences in plate interior processes, and deformation near the subduction zone.
In my third chapter I present results of a MCS study of the sediment section conducted along a transect spanning ~350 km along the Cascadia margin from offshore southern Oregon to offshore Washington state. In this study I utilize prestack depth migrated MCS data to describe the reflectivity of the sediment section and invert for impedance and density. I also present results of amplitude variation with angle of incidence analysis conducted using pre-stack seismic gathers. Results indicate along margin variations in the characteristics of the sediments as well as complex changes in the stress state along the Cascadia margin. Synthesis of these analyses provides an in-depth assessment of patterns of sedimentation and properties of the sediment section as it experiences the effects of the onset of subduction.

Files

  • thumnail for Boulahanis_columbia_0054D_16287.pdf Boulahanis_columbia_0054D_16287.pdf application/pdf 13.1 MB Download File

More About This Work

Academic Units
Earth and Environmental Sciences
Thesis Advisors
Carbotte, Suzanne M.
Degree
Ph.D., Columbia University
Published Here
November 30, 2020