Academic Commons


Semiparametric Regression for Dual Population Mortality

Venter, Gary; Sahin, Sule

Parameter shrinkage applied optimally can always reduce error and projection variances from those of maximum likelihood estimation. Many variables that actuaries use are on numerical scales, like age or year, which require parameters at each point. Rather than shrinking these towards zero, nearby parameters are better shrunk towards each other. Semiparametric regression is a statistical discipline for building curves across parameter classes using shrinkage methodology. It is similar to but more parsimonious than cubic splines. We introduce it in the context of Bayesian shrinkage and apply it to joint mortality modeling for related populations, with Swedish and Danish mortality as an illustration. Bayesian shrinkage of slope changes of linear splines is an approach to semiparametric modeling that evolved in the actuarial literature. It has some theoretical and practical advantages, like closed-form curves, direct and transparent determination of degree of shrinkage and of placing knots for the splines, and quantifying goodness of fit. It is also relatively easy to apply to the many nonlinear models that arise in actuarial work.


  • thumnail for semi-double-mortality.pdf semi-double-mortality.pdf application/pdf 1.24 MB Download File

More About This Work

Academic Units
School of Professional Studies
Published Here
November 1, 2019


Keywords: Semiparametric regression, Joint mortality, Parameter shrinkage, Bayesian shrinkage, MCMC