2020 Articles
CCR5-Δ32 biology, gene editing, and warnings for the future of CRISPR-Cas9 as a human and humane gene editing tool
Background
Biomedical technologies have not just improved human health but also assisted in the creation of human life. Since the first birth of a healthy baby by in vitro fertilization (IVF) 40 years ago, IVF has been the mainstay treatment for couples struggling with infertility. This technology, in addition to increasingly accessible genetic testing, has made it possible for countless couples to have children. Since CRISPR-Cas9 gene editing was described in 2015, its potential for targeting genetic diseases has been much anticipated. However, the potential of using CRISPR-Cas9 for human germline modification has led to many fears of “designer babies” and widespread concerns for the impact of this technology on human evolution and its implications in Social Darwinism. In addition to these ethical/moral concerns, there remain many unknowns about CRISPR-Cas9 technology and endless unanticipated consequence to gene editing.
Methods
In this paper, we analyze the current progresses of CRISPR-Cas9 technology and discuss the theoretical advantages of certain allelic variances in the C-C chemokine receptor 5 gene (CCR5) in the setting of recent ethical/moral concerns regarding gene editing using the CRISPR-Cas9 system.
Results
These uncertainties have been highlighted recently by the birth of Chinese twins whose C-C chemokine receptor 5 (CCR5) gene had been inactivated via CRISPR-Cas9 to be theoretically protective against HIV infection. CCR5 signaling is critical for the successful infection of human immunodeficiency virus (HIV) and people with homozygous inactivating CCR5-Δ32 mutations have been shown to be protected against HIV infection. Those with the CCR5-Δ32/Δ32 mutation also have greater neuroplasticity, allowing for improved recovery from neurological trauma, and decreased Chagas cardiomyopathy. However, the CCR5-Δ32/Δ32 mutation has also been associated with earlier clinical manifestations for West Nile infection, ambiguous effects on osteoclast function, and a four-fold increased mortality from influenza infection. These detrimental health impacts, in addition to the confounding factor that these CRISPR babies do not carry this exact CCR5-Δ32/Δ32 mutation, lead to many questions regarding the children’s future health and the moral conundrum of their birth. The creation and birth of these babies was not completed with any scientific, ethical, or governmental oversight, which has spurned the acceleration of talks regarding global regulations for human genetic editing.
Conclusions
Although we can try to regulate for ethical, health-related only use of this technology, moral and governmental oversights need to be supplemented by technical regulations. For instance, whole genome sequencing needs to be used to eliminate off-target mutations that could affect the health and safety of infants born to this process. Like Pandora’s Box, we cannot pretend to forget CRISPR-Cas9 technology, all we can do is ensure a safe, moral, and equitable used of this technology.
Files
- 13578_2020_Article_410.pdf application/pdf 435 KB Download File
Also Published In
- Title
- Cell & Bioscience
- DOI
- https://doi.org/10.1186/s13578-020-00410-6
More About This Work
- Published Here
- September 22, 2023
Notes
CCR5
-Δ32
, Human genome editing, HIV infection, CRISPR-Cas