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ABSTRACT

Exploring Skill Condensation Rules for Cognitive Diagnostic Models in a
Bayesian Framework

Diego Armando Luna Bazaldu

Diagnostic paradigms are becoming an alternative to normative approaches in
educational assessment. One of the principal objectives of diagasstissment is to determine
skill proficiency for tasks that demand the use of specific cognitive processes. Ideally, diagnostic
assessments should include accurate information about the skills required to correctly answer
each item in a test, as well ag/auditional evidence about the interaction between those
cognitive constructs. Nevertheless, little research in the field has focused on the types of
interactions (i.e., the condensation rules) among skills in models for cognitive diagnosis.

The presenttady introduces a Bayesian approach to determine the underlying interaction
among the skills measured by a given item when comparing among models with conjunctive,
disjunctive, and compensatory condensation rules. Following the reparameterization framework
proposed by DeCarlo (2011), the present study includes transformations for disjunctive and
compensatory models. Next, a methodology that compares between pairs of models with
different condensation rules is presented; parameters in the model and thbirtais were
defined considering former Bayesian approaches proposed in the literature.

Simulation studieand empirical studies were performed to test the capacity of the model
to correctly identify the underlying condensation rule. Overall, results fhe simulation study
showed that the correct condensation rule is correctly identified across conditienssuls
showedhat the correct condensation rule identification depends on the item parameter values

used to generate the data and the usefofmative prior distributions for the model parameters.



Latent class sizes parameters for the skills and their respective hyperparameters also showed a
good recovery in the simulation study. The recovery of the item parameters presented
limitations, so sme guidelines to improve their estimation are presented in the results and
discussion sections.

The empirical studies highlighted the usefulness of this approach in determining the
interaction among skills using real items from a mathematics test anguadpntest. Despite the
differences in their area of knowledge anan@trix structure, results indicated that both tests are
composed in a higher proportion of conjunctive items that demand the mastery of all skills.

Keywords: Bayesian, Cognitive Diagn@asmodels, Condensation rule, Conjunctive

models, Compensatory models, Disjunctive models.
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Chapter |. Introduction

Standardize@ssessmeiiays acentral role irclinical diagnosispolicy making
educational refornrperformance predictiomnd new pedaggpcal practicegAu, 2007;0ECD,
201Q Turkstra et al., 20Q05Examples are provided buncel and Hezlett (2007), who present a
synthesis of the literature on standardized testing and graduate education, showing how test
scores are good predicsaf many areas of graduate school performance, such as graduate
school GaduatePoint Average degree completion, faculty ratings, qualification exams, and
gualification examinations.

Despite the prevalent use of standardized assessmdatational tesig practice has
been criticized because of its normative approatiich might havenegative effects on
students, teachers, and schools (Au, 26@pham, 1999%acks, 1997)This criticism has
promoted new assessment designs, measurement methods, awdoiresito connect
psychometrics with cognitive science (Embretson & Gorin, 2004levy et al., 2014; von
Davier, 2009; Yan, Mislevy& Almond, 2003.

Recentlythere has been growth of new diagnostic psychometric metiwhitsh either
expand Classical & Theory (CTY) or Iltem Response Theory (IRT) moder propose new
latentvariable model¢Embretson & Daniel, 200Embretson & Yang, 20313Magidson &
Vermunt, 2001Mislevy & Verhelst, 1990Rupp, Templin& Henson, 2010Wilson, 2008;
Yamamoto, 1989)Among these methods, models for cognitive diagnosis (CDM) stand out
because of their integration of a criter@ierenced assessment within a psychometric
framework linked to cognitie theory (Geisinger, 2012; Rupp, 2007; Rupp & Templin, 2008
CDMs are ariterionreferenced tool rather than a normatreéerenced ool si nce exami
performance is contrasted with respect to a predefined set of skills required to successfully
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answer the test (Rupp, Templ& Henson, 2010)Examinees obtain feedback bath mastered
and nosamastered skills, rather than a normative score with respect to a referencelgrioas
those provided from the prevalent models in psychological measuretogmttive theory is
embeddedwt hi n t he model andQnuatox(dk&aTara, 200%Pand speaiflee s
how the measured skills are related to each other to pradtmeect answer for each item.
Within theframework of models for cognitive diagnadise Qmatrix is anitem-by-skill
matrix that specifieshe skills that arerequired to correctly answer each itema test{Tatsuoka,
1990. Condensation rulesn turn,refer to theunderlyingtype ofinteractionamongskills which
specifiesthe number of mastered skillsquiredto increasehe probability ofobserving a correct
answelto a givenitem without guessingror instance, given a certain item measuring two skills,
a researcher might want to analyze whether only one or both skills are needed to correctly
answer the itenCondensation rules can be sesrtheequivalentof what is referredo as
compensatorandnoncompensatomnodels in the context @hodelswith continuous latent
variables (Bolt & Lall, 2003)in compensatory modeltheabsencef oneskill (e.g.,latent
variablesattribute3 can bemade upy the presence of other latent variabiesile in
noncompensatory models tlaek of askill is notcompensatetly thepresencef others.
Different authors have proposed diverse terms and classifications to define specific
condensationules, such asodels withconjunctive and disjunctiveiles(Rupp & Templin,
2008) modelswith additive rulegde la Torre & Lee, 2013as well asnoncompensatorywhich
includesboth conjunctive and disjunctive modedsid compensatoigpg-linearmodels for
cognitive diagnosigHenson, Templin& Willse, 2009) According toRupp and Templin (2008)
and Culpepper (2015¢onjunctive modelsequire allskills to be preserib produce a correct

answerwithout guessingwhich makegshemsimilarin defintion to noncompensatory models



Rupp and Templin (2008) indicate tlthsjunctive modelsllow for a correct responséthout
guessingvhen at least onskill is presentbut mastering of more than one skill does not result in
a higher probability of a coect answerModels with additive skill effects are considered
compensatory given that the presence of s&ithcontributes to an increase in the probability of
a correct answewithout guessing

The definition and analysis of condensation ridesomes relevant only in items that
measure more than one slall defined in the @natrix. As it will be shown in this study,
equivalent models withanjunctive, disjunctivegr compensatory condensation rules for the
skills would provide the same resulthen only one skill is measured by a given item.

Moreover, nodels with the three types of condensation rules described above are not
completely distinct in the case of items measuring two skills. In such situations, the mastery of
only one skill does ndully differentiatethe probability of a correct response duato
disjunctive modebr a compensatory modkhked to the item; similarly, the mastery of both
skills would not provide enough information to distinguish the probability of a correct respons

due to a compensatory model or a conjunctive model.

1.1 Research on cognitive diagnostic models

The use of CDMs in standardized assesssrentains low compared to more traditional
psychometrianodels despit being theoretically appealing; stithey are more prevalent in use
with respect to other psychometric methods for diagnosis. The @eMs is increasingly
being reported in the psychometric literature, mainly in the context of educational and clinical
research. Notable sources of data ttaate been analyzed from a CDM perspective are: the

National Assessment of Educational Progress (NAEP) test, the Trends in International



Mathematics and Science Study (TIMSS) test, the Examination for the Certificate of Proficiency
in English (ECPE) tesand checklists of symptoms for clinical diagnosis of gambling behavior
(Lee, Park& Taylan, 2011 Templin & Henson, 2006femplin & Hoffman, 2013; Xu & von
Davier, 2008).

Still, moreresearcthas to be done in order to make CDMs a stronger assessment
alternative with respect to psychometric models such aSTieand the IRT In terms of CDM
related research, many topics still require furthmalysis and discussion, suchths adequacy
of these methods for test linking and test equating, &idhang, 201} the specification ofhe
Q-Matrix (Chiu, Douglasé& Li, 2009; de la Torre, 2008eCarlo, 2012Liu, Xu, & Ying,

2012, modelreparameterizationslé la Torre, 2011DeCarlo, 2011Henson, Templin, &
Willse, 2009;von Davier, 2013 the rel@gionship of CDMsto othermodels in psychometrics
(Lee, de la Torre& Park, 2012; von Davier, 2002008, measuresf item fit and model fit (de
la Torre & Lee, 2018 measures of iterexaminee classificatiorHenson, Roussos, Dougld&s
He, 2008, and he modefoundations in cognitiveciencgLeighton, Gier] & Hunka, 2004;
Rupp, 2007).

Additionally, despitehe development of several models for cognitive diagnosis with
conjunctive, disjunctive, ancompensatoryelations among the lateskills, only a small amount
research hasxplored whetheall items in a testequirethe same condensation rule (de la Torre
& Lee, 2013 Tseng, 201P A review of the literature reveals thabststudies assume that all
items in a test follow a specifeondersationrule among the measured skills, despite the fact that
this assumption might not be encountered in-liahssessment3hus, theesearctyuestiornto
be explored in this project ighether it is possible to implement a Bayesian methodology to

explorethe condensation ruléor each item in a test.



The research here presentecludes a analytical elemerdis well as the development of
a new methodological framework and its applications to assessment data. The analytical section
describes how the rapameterization proposed by DeCarlo (2011) can be generalized to other
models for cognitive diagnosis. The methodological innovation defines the way in which these
reparametrizedhodels can be merged in a single complex model. Inguatdel, a
dichotomos latent variable is introduced to determine what type of model is more appropriate
for each item in a given data set. In this wiays assumed that sontemsrequire that the
examinee has mastered all skills, but others are more flexible, allowiag@rrect response
despite the examinee having mastered snme of the necessary skilgirther details are given
below.

The use and information gained from the mduak developedan have posite
outcomes in cognitive sciengasychometrics, and edationd policy. For cognitive sciengéhe
model can identify theondensatiomule among skills measuredantest and can examine
whether a cognitive theory about the skills matches empirical data. For psychometricians, the
model allows for a more flexible definition of the diagnostic models at the item level, allowing
for different compensatory and noncompensatory rules; thustea betdel fit for the items and
examinees can be gained. For educational policy, a deeper understanding of the cognitive
processes and psychometric propertiestofe st , as well as a better
skills, can help policy makers obtainditibnal information about the assessment and make

better decisions regarding interventions to improve educational processes.



1.2 Example

The use of arducational assessment can provide contexmderstand the
aforementionedoncepts. For instancegaven mathematics test aims to measure equation
problem solving skills such as the use of addiiadsubtraction, multiplicatiomnddivision,
and exponentandroots (Caldwell, Karp, & BayVilliams, 2011; Chapin & Johnson, 2006;

Otto, Caldwell, Lubinski& Hancock, 2011). Equation problems are developed to assess the
extent to which examinees have mastered those three skills; then, experts vel@nlifykills

are required to correctly answer each problem. Results of this process are exemplifi€@ in the
matrix shownin Table 1.

TABLE 1. Example of a-Qlatrix for Equation Problem Solving

Item Q-matrix
Ag‘,{i'f{&lﬁgf MU'UB:l\zgit(I)Onn and Exponents and Root
1 3+7=5+ 1 0 0
2 2XT 6 =X 1 1 0
3. 16 = 4¢ 0 1 1
4 15 = X 0 1 0
5. 2¢+8=4C 1 1 1

In this exampleitems1 and 4 are linked to just one skill, so nothing can be said about the
condensation rule for those itenftem 2 is related to two skillandan argument could be made
about whether the mastery of battills is required to answer it correctlhe simplest way to
answer thistemwould be torequire the examinee to subtragtf@®om bothsides of the equation
to reveal thexis equal ta' 6, requiring just the mastery tife additionsubtraction skill

however,amore complex solutigrthat also requires the mastery of the multiplicatiorision



skill, implies the subtraction ofx3rom both sides of the equation, then thdiadn of positive
six on both sidesand a multiplication of 1 on both sides. While the complex solution defines
the second row of the-@atrix, theitem exemplifies a case wherecampensatorgr

conjunctive relation among skills could produce a cormestiver.

Item 3 is justified by a conjunctive rule since the item can be solved in two ways that
necessarily require the use of multiplicatdimision and exponersots: in the first case, both
sides of the equation haveliedivided by four, then thequare root of four is calculated to
reach the answer; in the second case, the square root is applied to both sides of the equation, then
everything is divided by two.

Finally, item 5 requires the use of dhireeskills. The easiest solutiaequiresthesolver
to subtract & from both sides of the equation, multiply everything by 2, and finally obtain the
square root of 16. While a conjunctive condensation rule is assumed for this equation given that
all skills are needed, it could also be disputeddh@impensatory rule seems suitable since
mastering more skills could increase the chantessweing the item correctly.

These examples illustratiee difficulty o identifying the correct condensation rule for
theskills requiredby an itemIn this sense, ways of determining the condensation rule are
examined herd=urther, vhile the common approach in cognitive diagnostic research is to
assume that all items in a téstvethe same condensation rule for #idls, there are situations
in whichthere is uncertainty about tkill condensation rule. In such cases, suppfatsingle
condensation rulassumption could result in inaccurate classifications of the examinees and

flawed inferences about the items.



1.3 Outline

The dissertation isomposed of six chapters, in addition to references and appendices.
Chapter Zonsistf aliteraturereview on CDMSs, including a general revision of concepts
related to psychological measurement and latent variable analysis. In tehasCaiM
framewok, agenericdefinition of the modeldor cognitive diagnosis presented, the
characterization of thEDMs as constrainetaitent class modeis explained, a classification of
the differentmodels for cognitive diagnosisgiven, and issues regardimgodel estimation are
discussedFinally, a review on Bayesian estimation methods is presented, highlighting the
conjugateBetaBernoulliand Uniformdistributiors.

Chapter deginswith a description ofhe DINA model reparameterizatiqgogroposed by
DeCarlo(2011, 2019. Equivalentreparameterizatiorfer the DINOand NIDAmodek are
presentedNext, acompound model consisting of two differeeparametrize€DMs is
presented

Chapter 4 describes the methodology of the stliigparameters ardefined and the
estimationalgorithmis specified A simulation study withwenty fourdifferent conditionss
describedDatasets from two different educational assessnmienégthematics and English as
second language, respectiviebnd their corresponding-@atrices arexamined

Chapters summarizedn text, tables, and graphse results of the simulation study and
the empirical studies. Finally, Chap&corresponslto the dscussiorof the results, list of the

limitations ofthe study, as well as areas for future research in the field



Chapter Il . Literature Review

In this chapter, a review of concepts on psychological measurement and latent variable
models is presentedseneral discussioof the classification of different latent variable models
leads to the definition datent class models and cognitiviaghostic modelsThe final section

of the chapteprovides a background on Bayesian statistics.

2.1 Measurementin Psychology and Education

Research in psychological and educational sciences is based on thesgoestific
theory can be defined a@ system of statements concerning a set of concepts, which serves to
describe, explain, and predict some limited aspetthe behavioraldomain ( Lor d & Novi
1968).The central elementsf any theory ardhe constructsncluded in if which aredefinedas
abstracthypotheticalconcepts that attempt to expldiaman behaviofCrocker & Algina, 1986
Skrondal &RabeHesketh, 200 Giventhat constructs are abstract idda&t cannot be
absolutely confirmed in the real workbnstructhave to be inferred based on rules of
correspondencemployingtheir respective manifesnhdicators (Crocker & Algina, 1986)

A testing hypothesis process is a keytf theorybased researcin this process
scientistsanalyze the association between observed indicators and their corresponding
hypothetical constructas well aghe relationship among construcBo(len, 2003. In order to
empirically test suclh hypothesis, theules of correspondence between conssraict! indicators
shouldinvolve a measuremenbmponenthrough which the measure becomes an empirical
referent of the constru¢Messick, 197k In the contexof the psychological sciences,

measur ement i s t rthedassignmem aumbeygo abjectsiact@dingtas :

9



ruesd ( St e v eQorssiderirg ¢hig @efinitionthe measureare the observeout imperfect
indicators and the construct accaisrfor the relationship among indicatordoCutcheon, 1987;
Messick, 1975).

These terms produced within the context of the methodology for the social sciences can
be connected toorrespondingoncepts in the field of statistics. The theoretical construct
corresponds to the statistical concept of latent variable, whiobsslyd e f i n a ndans : A
variable that either in principleroin practice cannot be observedB4grtholomew 2006. The
concrete measured representations of the construct (i.e.dtbatars of the construct) are
analogoudo thestatisticalconcept ofanobserved variable. Finally, the testing hypothesis
process adabe understood as the latent variabtedeling process that is carried out to infer the
distribution of theunderlyinglatent variable (Henry, 2009, the estimated relationship between
construct and indicatorand thenomologicalrelationship among two or more latent variables

(Cronbach & Meehl, 1955)

2.2 Latent variable modeling

The termlatent structure analysiwas originally proposed by Lazarsfeld (Lazarsfeld &
Henry, 1968) to define the statistical models used to describe latent vargashdelimitation of
the original definiton Lazar sf el dbés framework of | atent
latent vaiables thapresentan underlyingcategoricaktructure Skrordal and RabeHesketh
(2004)extendthe definitionof what can be considered a latent variable by pointing out that this

term receives different names in the scientific literature dependirgeatidcipline and

10



statistical model usedhcluding but not limited tocommon factorsGrocker & Algina, 198K
latert classes (McCutcheon, 1987), aaddom effectsRartholomew, 2006

Bollen (1989,2002) states that there is not a standard definiti@latent variable that
includes its applications in the different scientific disciplines, hence the meaning that this term
receives is tied to specific statistical mod&slated to this idegkrondaland RabeHesketh
(2004) indicate that latent vabiles are commonly used to represginersephenomena in the
social sciencesucha®t rued6 vari ables measured with error
heterogeneity, missing data, counterfactuals or potential outcomes, and latent responses
underlyng categorical variablehus the termatent variablehasmovedoutside the area of
psychometricand irto other fields in the social sciencasd has been incorporated in the
statistical literaturen causal inference (Henry, 200&)dthe mixture malelingliterature
(Bartholomew, 2006).

Bartholomew (2006) provides the geisdramework of thdatent variable modddy
employingits basic elementsnanifest variables anehderlyinglatent variablesThe model
states that foy manifest (i.e., observed) variabMés= (Y1, Y2, €Y;) andk latent variablesf =
(ch, &b, € dk), whergj > kto maintain parsimony within the model, something about the joint
distributionf (Y, d) can be inferred from the observed distribution amb). For the
underlyingvariable modelthe specification oi(d) andf (Y |d) must be statedistributions so

the distributiorf (Y) can be expressed as
FO) =) f( Y (21)

wheref(Y), the only element in the model we can observe from the data, is the marginal

distribution of the observed variablés The modeldepictedn (2.1) can be further extended by

11



addingan assumption about the conditional probability ajivend; specifcally, by assuming

local independencamong the observed variables given the latent variéBtdken, 2002)
A
f(Y)=f(O (Y| 9d (22)
j=1

As presented in (2), theY are locally independent given tbgin other words,
dependence among observed variablesispletely explainetly their common association with
the latent variable and the association among the observed variabiesemovedf the latent
variablesd are held constant Hagenaars, 199&krondal & Rabdiesketh2004). However,
the mainobjectivehere is to say something abaigiven our dataysingBaye®formula we

have that

h(d]| Y):h(d)f( MY d_ hOH 1Y (23)
f(Y) ) f( Y

Different restricions in theelements of model (2), mainly in the form oh(d) and
f(Y|d), result in specific latent variable moddBartholomew (2006) extends the discussion
about the general latent variable molilaineworkto casesvheref(Y;|d) is a member of the
exponential family; for the purposes of this introductiothigenericlatent variable model,
Equations (21) to (2.3) are discussedlong withadditional references to the topic in
Bartholomew(2006, Bartholomew, Knottand Moust&i (2011), andEveritt (1984).

Given the development of latent variable modelgsychometrics and related fields,
different taxonomiesiave been proposédar the classification cfuchmodels(see McCutcheon,
1987 Skrondakk RabeHesketh, 2004 A commonly citecclassification is based dhe levels
of measurement of the manifest anmtlerlyingvariables; the relevance of this taxonomy relies
on the fact that different models have bderelopedasedn the assumptions about the latent

variablesd and the characteristics of the observed variabldsartholomew et al. (201 1efine
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four main types of model$actor analysis modelshatcorrespond to cases where btthes of
varialdes are defined as continuous; laterdfie models whenhe observe variables are
continuousbutthe latent variables amategoricgllatent tait modelsvhenthe manifest

variables are categorical but the latent variables continaods finally,latent ¢éass modelsire
considered for cases where bothes ofvariables are categoricdlhese fourclasse®f models

are not just differentvith respect taghe measuremetevel of the variables, they also come from
separatelata anaftic traditions (Masters, 1985) and produce different inferences about the latent
variables in the model, abaitle resulting relations between observed and latent var;jaiolés

about their interpretations.

As indicated by Bollen (2002) gpticular model€ommonly used in psychometrics can
be classified within these four types of madekploratory and confirmatory factor analysis are
grouped agactor analysis models; most prokiype and logistigype item response theory
modelscanbe situated within the laten&it models classificatiorsome types of mixtureodel
clustering techiques & grouped within the latentgfile model (Vermunt & Magidson, 2004);
andcognitive diagnostic models aggtensions of thiatent ¢ass mode({von Davier,2005)

Moreover, there have beespproaches that integrate two or more of theserfadel
categorie®f models into a singlene For instanceYamamoto(1989 proposeda framework to
uselRT models withlatent ¢ass models that providenore information about the cognitive
processesmployedby the examineeson Davier (20052009 integrate several item response
theory and latent class modelghin a more general framewokkiown as thé&eneral
Diagnostic ModelTakane and de Leeuw (198#)alyze the correspondence between the 2
parameteprobit item response theory model and the faat@lysis modevhen categorical data

areused;Bock and Aitkin (1981; see al®nck, Gibbons, & Muraki, 1988) developed a method
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to perform factor analysis based on item response tmeodglsi this methodaddresses the
limitations of the factor analysismodel when binargbservedlataareused tcestimatehe latent
factors Magidson and Vermunt (2001) hapeposed datent dass factor analysismodel| which
is particularly usefulvhenthe observed categorical variables measure more than one latent
congruct,
Finally, Bollen (2002) lists some propertiestioé latent variable thatmust beconsidered
in any specific model
1. A posteriorior a priori definition of the latent variable. Latent variables and their
relation with their corresponding observed variables are defimpetbri when they are
hypothesized prioto the data analysis; latent variables obtained as an output of the data
analysis are defeda posteriori Inthewo r d s o f B dhe lo@alnndgpén@efic2 ) : i
definition of | atent wvariables istelosely
latent variables are extracted from a set of variables until the partial associations
betwveen the observed variables goes to Zero
2. Model identificationand indeterminacyT his aspect is focused on finding unique
values for the parameters of the modeintire than one configuration of estimated
values for the parameters given the gatavide the same maximum values of the
likelihood function then the model is not uniquely identifieétis common to add

constraints to the model in orderdatisfy this property
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2.3 Latent class models

The term latent classalysis was coined by Larsfeld as an approachnodellatent
typologies using categorical data (Lazarsfeld, & Henry, 1968; Vermunt & Magidson,
2004).While the termatent classmalysis is commonly used in the social sciences, these models
are also referred astype offinite mixture models in the statistical literature (Vermunt &
Magidson, 2004).

Latent class models are a specific type of latent variable models in which both the
indicatorsand latent variables adiscrete categorical variabldseing thananifestvariables
influenced by the distributioof thar latentcounterpart¢Bartholomew et al., 2011; Bollen,
2002; Hagenaars, 19pAs stated byicCutcheon (1987), lanht class analysis is used to
determinea set of mutually exclusive latecaitegorieshatcould explan the distribution of cases
whenobserved discrete variablage cross tabulated.

McCutcheon (1987positsthat latent class analysis is preferred for the analysis of
typologies or as a wayp testempiricallyif a proposed typology effectively represetite data at
hand Vermunt and Magidson (2004) liatiditioral applications of the latent class mades a
density estimation approach of a complex density that can be approximated using a finite mixture
of simple densities, as a probabilistic cluster analysis, or as towandle unobserved
heterogeneity in linear models.

The latent class mode&n bedefined in a similar way to the general latent variable
model the main differencen the conceptualization of the latent class model is the consthint
discrete values that both latent and manifest variablesTakedefinitionpresentedhereis
similar to the onén Bollen (2002)or Vermunt and Magidson (2004pr simplicity, it is stated

only for the case abne latent variabldut the model can be extended to cases with two or more
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latent variable®y incorporating additional assumptions aboutjtiret distribution amonghem
Givena set of =1, é JobservediariablesY = (Y1, Yo, €Y;), whereeach variableY; cantake
onmore than oneiscrete value, andlatentvariableU that take discretevaluesk =1, éK

beingK > 1, the jointprobability distributioramongP(Y) is expressed as
X
P(Y=y) a Pl QRRAY yF @ (24)
k=1

whereP( U dJrepresents the propontiaf people within the class andP(Y =y | ) is
the conditional probability that the observed variaMdakespecific valusy given the latent

classdk. In addition, the local independence assumptiolalsif we requirethat
N A
P(Y=y) A P( QpOMY yi @ (2.5)
k=1 j=1

which means thawithin a latent clasdy, the responses to different observed variables are
assumed to be independent (Henry, 200mplin & Henson, 2006Additionally, the sum of

these conditional probabilities for the latent classes must add tdle@{cheon, 1987

aPQ=q) % (26)

k=1
By usingBaye®formula, the observed daté can be used tcalculate posterior

membership probabilitfor alatent class

P(Q =g)P(Y ¥| Q@ (2.7)
P(Y =y)

PQ =g 1Y ¥)
whereP( U dY =) is the conditional probability of being in clagsgiven the patterly =y
in the observed variablés

In terms ofmaximum likelihoodestimation McCutcheon (198)7define theestimated

pattern within the latent clask as
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p(E=p P BRORY v g (28)

This expressiois similarto the one presented in (2.butthe differerce between them
is that @.8) refers to the estimated probabilities within cldsavhile (2.5)is defined for all the
latent classes in the modé&herefore the maximum likelihood probability for the observed

variablesY at specificvaluesy belongng to classdk is expressed as

] P& =BOPY 35| BF
PE=p = 3=1

FEEE—— — (2.9)
aPE=HOPY ¥ RF

where thedenominator is the sum of (2.8ver allk latent classes.

Extensions of the latent class modsingalog-linearparameterizatiohave been
proposedo analyze categorical data in frequency tafiteberman, 1977; Hagenaars, 1993,
2010) For a loglinear latent class approach, ttenditioral response probability of two or more
observed variableg andYotaking values andyg respectively, given aategorical latent

variabled thattakesk different values, is expressed
YY'qg — Yy Yy Yg Y
pyy.f— /7/ y/ykq/y.k (2.10)
or, equivalently, in awsompensatorjorm when tle log function is included in (2.10

log (pyy7)=h + ) £ %1 "4 (2.11)
whered (and its transformatiqm ¥ is a constant parameteorresponding to average cell
probability and is directly related to the sample s#@nda’ arethewithin-categoriesverage
distribution ofthevariablesY andYd respectivelyanda® anda*™ describe the association

between the observed and the latertablesthat results from the partial odds ratio betw¥en

YG andd (Hagenaars, 2010As will be discussed ithe next chaptecognitive dagnostic
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models can beeparametrizeds loglinear models (Henson, Templi& Willse, 2009) and logit
models (DeCarlo, 2011, 2012).

Vermunt and Magidson (2004) point @méverakypical problemsthatarise in the
estimationof latent class modelssing a maximum likelihood approadhst, only nonzero
observed cell entries (i.e., pattemns that actuallyarein the sample of data) coritite to the
likelihood function; secondnodel @mrameters may be nedentified; thid, the obtained
estimates may be local maxima estimates within the parameter apdcénally,theremaybe
boundary solutions (i.e., there mhg estimated probabilities equal to zero or o8ejne of
these problems can laedressewhen a Bayesian appach is considered) the Bayesian
framework P( U d)ford=(d;, &), canbe thought of as setof hyperparameters ie
model(Gelman, Carlin, Stern, Dunson, Vehi&iRubin, 2013.

However,as indicated in Gelman et al. (2018)me issuesayalso arise when a
Bayesian approach is used to estintatient classnodels the estimation process can reach
degenerate points producing a cllsgth an undefined mean and variance, which can be fixed
by providing a more informative prior distributiéor the parameters; identifiability issues arise
when there is nothing in the likelihood to distinguish the dtassdifferent from clask ;cand
the use of improper noninformative prior distributions can lead to problems if all the latent
classeXK arenot actually present in the data

Recent advancements in psychometrics amate broadly, irfinite mixture models in
statistics haveesulted in the development ajgnitive diagnostic mdelsas a particular type of

latent dass modelsasdiscussed ithe next section.
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2.4 Cognitive diagnostic models

2.4.1Definition

&Cognitive diagnostic ndeldis a generic term used to referaset of gpychometric
modelsaimedat analyang response patterns to items in a teshgcategorical latent variables
with specificatiors of the particularlatent variablesequired to positively respond to each item
(Templin & Henson, 2006 The primarypurposeof cognitive diagnosis is to classify
examinees intdichotomous or polytomouatent dassebu s ual | yoasskifser r e d
knowledge stateskills,o r at t deterinined dogebtorsof binaryskill indicators(Chiu &
Douglas, 2013e la Torre & Douglas, 2004).

The main objective of CDMs is to determine whether an examinee has masteted a
skills. Ideally, a cognitive theory should be used as paatidfieprint during the item
development and test constructiontisatthe theory would define whakills are required by
given item and describe the process in whiclsttiks are Inked to produce the observed
respons€Henson, Templin& Willse, 2009. In addition the relationship among tis&ills to
produce a correct response to the itevillscharacterize the type of model: compensatory,
conjunctive, or disjunctive.

Rupp andremplin (2008) point oubtheralternativeterms for these models that appear
in the literaturesuch as diagnostic classification modeisiltiple classification latent class
models cognitive psychometric modelgtent response models, restricted labdeds models,
structured located latent class models, and structured IRT mbuakdpeneénty of theterm
coined bya given authoto refer to these modebhgon Davier (200®lists the common
characteristics shared by these modelset of =1, é JobservedtemsY associated with

response patterns madeibyl, €N examineesa set of discretef k=1, €K latent variables
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Uindicating examineskills measured by the iternisem parameters that differ depending on the
specific modeladefinition of the conditional independence relationship among the observed
variables given the discrete latent ones, and information regardifegehevariableshatare
required tacorrectly answer each iteim the form of a Qmatrix (Leighton, Gier] & Hunka,
2004;Tatsuoka, 1990

As defined by Templin and Henson (2006 Qmatrix of the items and lateskills can
be seen as constrainsthis type of models The inclusion of the @atrix results in a fixed
number of latent classes agdidesthe classification for the examinegisenideal response
patternsand deviations frorsuchideal patterngChiu & Douglas, 2013)For instance, if there
areK dichotomous latent variables in then@atrix to indicatemastery or nommasteryof specific

skills, then therare2® possible latent classes.

2.4.2CDM as a constrained Latent Class Model

The foundation of the CDMs can be expressed as a variation of the latent class model
described irEquation(2.5) (Rupp & Templin, 2008; Templi& Henson, 2006; von Davier,
2009) Rupp and Templin (200§)rovide a specific definition of th@measurement component
(i.e.,the conditional probability of the observed variables given the latent classes that satisfies
the conditional independence assummtiof the latent class model to represent it as a CDM,;

specifically,for thei™ examineethe model is
-1

2K
P(Y, =y) A

oA Ly
p(U)OpJqu @ B ) (2.12)
k=1 j=1
where the2® skill patterns ar@ow expressed aB(U) = P(U,, O,,  BL),to maintain the notation
used in theCDM literature for theatentskills U andis defined as thstructural componenf

the modelThe skillsUk are typically dichotomouut models that allow fasrderedcategorical
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skills have also been proposeleMmplin& Henson, 2006yon Davier, 20052009. The
measurement component takes thenfof Bernoulli random variables;, arethe response
probabilities for each one of thiems.

The ", also referredo as item responseihctions will take different forms depending
on thespecificmodelfor cognitive diagnosis-or instancein the case athe determnistic

i nput s, gate mad§g{DINAaJurtkér & Sijtsma, 2001 is expressed as

Oalk B £ 4
Py =P, 4ls, gU) e(1 g) Uge“ (2.13)

whereg; i the probability of answering the item correctly given that nofjalte preserit
corresponds to an item guessing parameatat it has also been referredas the probability of a
correct response giveskills not considered in the {natrix (Huo & de la Torre, 20143 1 the
probability of answering the item incorrectly given thatthire preserit is theitem slip
parameter(J, are the dichotomous lateskills of thei™ examinee, andy are the elements the
vector within theQ-matrix corresponding to th&" item. As pointed out by Huo and de la Torre
(2014), an item should presentt{ls) > g; in order to be considered diagnostically informative
of the probability ofa correct answefor capable examinees.

Similarly,thedet er mi ni st i ¢ i (DINOtTemplin&dieénson, 2a® r 6

model defines th#gem response functioss

(L &) o

L O o) @18
é . L (2.14)

Py =P(Y, 4dls, QU) &(1 5) 29

whereUx andgy have the same interpretation as in the DINA model, the tnggsarameteq is

@E‘(‘D
.‘TO)x

now defined as the probability of answering the item correctly given thskihdl, equalsone
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and the slip parametsris the probability of answering the item inceely given that at least
oneUy is present

Thenoi sy inputs, det erJuiker& Sijtsina; 20@raodeddiferg at e (|
from thetwo previous models by including mgparameterst the attribute level

LK 0
Pi=PCG 25, 9.U) Ogd sl (af* ¢ (2.15)

wheregy is theskill-level guessing parameter aggis theskill-level slip parametergy, andUyx
remain with the same interpretation as in the two previous models.

Other models have been proposed to define the mexasat component of CD$/1and
this wide variety of specific models has led to different classifications. The next section

discusses such taxonomies in terms ofntloelelassumptionsandthe characteristics of the

latent variables and thabserved variables

2.4.3Taxonomy

Rupp, Templinand Hensori2010 have classified the different models for cognitive
diagnosis based on their distinctive characteristitsdels withdichotomous observed variables
versus polytomous observed variablesdels withdichotomous latentariablesversus
polytomous latentariables and compensatory models versus noncompensatory models. A
summary of such taxonomy of models is presentdabie 2

The first criterion distinguishes between models that use dichotomousedbsariables
(e. g., items that show Acorrecto or #fAincorrec
Aabsent 0) and models that use polytomous mani
for partial credit scores). As described in Teab, some models have been developed to handle
dichotomous data, such as the reparametrized unified model (RUM; DiBello, Stout, & Roussos,
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TABLE 2. Taxonomy of Cognitive Diagnosis Modeiteed from Rupp, Templin & Henson, 2010)

Observed LatentPredictor Variables
Response
Variables Dichotomous Polytomous Model Type
Dichotomous AHM BIN Noncompensatory
BIN MCLCM
DINA Full NC-RUM
HO-DINA Reduced NERUM
MCLCM
MS-DINA
NIDA
NC-RUM
Full NC-RUM
Reduced NERUM
RERUM
RSM
BIN BIN Compensatory
C-RUM C-RUM
DINO GDM
GDM H-GDM
H-GDM LCDM
LCDM MCLCM
MCLCM
NIDO
Polytomous AHM BIN Noncompensatory
BIN MCLCM
MCLCM Full NC-RUM

Full NC-RUM Reduced NERUM
Reduced NERUM

RSM
BIN BIN Compensatory
C-RUM C-RUM
G-DINA GDM
GDM LCDM
H-GDM MCLCM
LCDM
MCLCM
Notes AHM =S ki | | hierarchy method. BI' N = Bayesian inference net wc

DINA = Higherorder DINA. GDINA = Generalized DINA. MCLCM = Multiple classification latent class model.-PISIA =

Multi-strategy DINA. NIDO = Noisy nput s, det er mi-RUMs=tNorecompensatbry RUva Fult and ReQuced

NC-RUM = NC-RUM with and without latent interaction term, respectively. RERUM = random effeptgametrizedinified

model . RSM = Rulspace method. - RUM = Compensatory B M. DI NO = Deterministic inputs,
General diagnostic model.-&DM = Hierarchical GDM. LCDM = Loglinear cognitive diagnosis model. NIDO = Noisy inputs,

det er mi ni st 4RUM mnoncdnpensatorg reparbiniztrized unified model
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1995; Hartz, 2002) and its extensions, the DINA model, and the DINO model. Other models are
general enough to analyze both dichotomous and polytomous data such as the generalized
diagnostic model (GDM; von Davier, 2005, 2008), and the loglinear cognitigaaias model
(LCDM; Henson, Templin, & Willse, 2009).

The latent variables of any CDM can also be assumed to be either dichotomous or
polytomous. As it is portrayed in Table 2, the vast majority of models reported in the literature
assume that the latereinvables (i.e., skills, knowledge, abilities) are dichotomous, including the
multiple classification latent class model (MCLCM; Maris, 1999), the DINA model and its
extensions, and the rugpace method (RSM; Tatsuoka, 1995). Additionally, there are models
that developed for polytomous latent variables, for instance: the Bayesian inference network
(BIN; Yan, Mislevy, & Almond, 1993), the GDM and its extensions, and the RUM and its
extensions.

As mentioned in the previous chapter, the psychometric literalswedistinguishes
between compensatory and noncompensatory multidimensional models to describe the way in
which latent variables interact to produce a specific observed outcome. Bolt and Lall (2003)
identify compensatory models as those in which theigeity of one latent variable can be
balanced by a high value of other latent variables, whereas noncompensatory models are
distinguished because the insufficiency in one latent variable cannot be offset by the surplus of
others.

In the context of multighensional IRT models, Reckase (2009) associates the definition
of compensatory models with cases in which th
other in a linear additive combination. Noncompensatory models are linked to multidimensional

modek for which probabilities are calculated separately for each ability, and after that, the total
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item probability is estimated as a nonlinear function using the product of the probabilities of each
ability.

In the context of models for cognitive diagnosing discrete latent variables are usually
dichotomous classes indicating the presence or absence of a skill or attribute (Rupp & Templin,
2008);this categorical characterization of tagent variablein turn, limits the way in which
compensatory and noampensatory models are defined (Henson, Templin, & Willse, 2009).
Rupp, Templin, and Henson (2010) consider conjunctive models, such as theBdNMDA
modek, which stipulate that all latentiriables have to be present to answer correctly to an item,
as noncompensatory models. In their definition, the disjunctive models, such as the DINO
model, are regarded as compensatory since the presence of at least one requivedddtient
necessary to obtain a correct answer. Models that define addfeetsedf each mastered latent
variable such as the GDM, are also considered compensatory.

Henson, Templipand Willse (2009) have developed the-logear cognitive diagnostic
model(LCDM) approach, which represents a reparameterization of several models listed in
Table 1. The LCDM allows for main effeind interactions among the latsktlls expressed in
linear combination. In this framework, compensatory models are defined only by the main
effects of theskills on the probability of a correct response. Noncompensatory models require
the inclusion of interaction terms amosiglls. As aresut, models with conjunctive and

disjunctive condensation rules are regarded as noncompensatory under the LCDM framework.

2.4.4 Estimation
Rupp and Templ iohCDHNI es{inzafiof dscussesnwodekidentifiability,

convergence, and parameterizatadrihe latent skill space. Model identification refers to the
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capacity to estimate each parameter in a model with a unique value. In this sense, while many
CDMs have been proposed in the literature, some of them cannot be identified. For instance,
Hartz (202) developed a reparameterization of the fusion model (RUM; DiBello, Stout, &
Roussos, 1995) since the original model parameters could not be uniquely identified.

Few authors have addressed in detail issfiparameter identification for models of
cogntive diagnosis. Among the authors that have discussed this topic, von Davier (2013)
reviewed criteria for local identifiability initially suggested for latent class models:dimstre
that the eigenvalues of the estimated information matrix are atiygsecond, analyze that the
rank of the information matrix is equal to the total number of parameters included in it; and
third, considering the sample size, inspect if the estuorsdtandard erroraresmaller than the
absolute value of the estimates.

As pointed out by Rupp and Templin (2008) simpledels with fewer itenparameters,
latentvariableparametersor with restrictions on such parametérg.,the DINA mode) tend to
converge eveif the sample size is not largehereascomplex modelshiat involve more
parameters (e.gtheFusion model) requireore itemsjarger sample sizer more complex
algorithmsin order to converge

Related to the model complexity, the estimation metheither a maximum likelihood
method ora Bayesian method alsohas an impac#lthough ExpectatiorMaximization (EM)
algorithrs havebeen implemented to obtdiast estimation of models such as the DibiAd G
DINAi n t he ¢ C DRdidgitzsphaKiefera@eerge( & Unlii, 2014 R (R Core Team,
(2012 and the ®M in the MDLTM softwae (von Davier, 20052008 von Davier &
Yamamoto, 200¢ most of thegublished workhas implementeBayesian estimation methods

because of thmmodelcomplexityand the capacity dhe Bayesiamethods to estimate adidnal
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parametes (e.g.,Culpepper, 2015)eCarlo, 2012Hartz, 2002; de la Torre & Douglas, 2004,
2008; Henson, Templin & Willse, 2009; Junker & Sijtsma, 300he Markov tain Monte
Carlo (MCMC) algorithm has been the preferred method to estimate pargrietarsin
disadvantages of MCMC are th&ie analysis can take several hoamsl convergence is often
difficult to establisnChiu & Douglas, 2013Rupp & Templin, 2008)As an alternativeChiu
and Douglas (2013) have proposed a nonparametric CDM method to estasatsmembership
using distance measures between the ideal response pattern and the observed response pattern of
a given examinee; this nonparametric method can be applied when both the observed responses
and the laterskills are dichotomous.

In terms ofparameterization of theint latentvariablespaceapproaches have been
proposedhat aredifferentfrom the saturated parameterizatimodel A saturated modemplies
the estimation 02 b 1 skill patternsP(U, U,, &) for each examinee, leavirme
proportion outbecause of the constréin

"

a P, a,..., g&=U,) = (2.16)

c=1
wherethe skill pattern®(U, U, €  Uk) = P(U) asdenotedn Equation(2.12). As a
consequece, the saturated modelingpractical because dfi¢ large number of parameters that
areestimatd for eachexaminee, especially as thember of latenvariablesincreasegRupp,
Templin & Henson, 201Q)

Maris (1999)suggeste@nindependence model, which reduces the numbpam@ameters
to estimate td by assuming that the elementsRgt)) are statistically independertiowever, as
indicated by de la Torre and Douglas (2004), the independence model might not be suitable for
CDMs where eachl should be part of a more generahstiuct that is being measurédstead,
these authors have proposed a higiider model of conditional independence amtbreg_k
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given a continuous latent varialdehat explains their relationship. Suahigher order model
has been also adaptedr@search on @natrix misspecification (DeCarlo, 2012)

Other authorsiave proposethodels that involvan underlying normal distribution for
all latentskills U, so the estimation concentrates on threshold parametetisegpatameters of
thetetrachoriccorrelationmatrix among theskills (Hartz, 2002; Templin & Henson, 200&s
Templin and Henson (2006) proposed, a common factor aodriesspondindactor loadings on
theskills may be estimated by using the tetrachoric correlation matrix.

Finally, interms offit statistics for CDMsRupp, Templinand Henson (2010)st some
of the formemeasureproposedn the literatureAk ai keds i nformation crit
Bayesian information criterion (BIC) for model ftndnormalized quared residualr
examineesAdditionally, de la Torre (2011) and de la Torre and Lee (2013) have explored the
use of the Wald statistic for item fit using an extension of the DINA médeahdicatedoy
Rupp and Templin (2008), item misfit could be caused by a vardactors,including
misspecifications in the loading structure of then@trix, flawed constraints on model
parameters, or an erroneous selectionrabdelthat do not match tde way latenskills relate
with each other to produce a correct ans(eey., the selection of a model with conjunctive,
disjunctive, ocompensatorgondensation rules)

Regardinghemodel selectiomnd its impact in item misfitittle researclon CDMs has
explored the possibility that a given test might be structured bg gems that allow for a
conjunctiverelation among the required lateskills, whereathers involve a disjunctive or a
compensatory relatiofde la Torre & Lee, 2013With few exceptions, i of the research in
this area assumes that all items in a test follow a speoifidensation ruledespite the fact that

this assumption might not be encountered in-ligatesting situationgsee de la Torre &
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Douglas, 2008; Huo & de la Torre, 2014ighton, Gierl & Hunka, 2004)hus in order to

explore new approaches to analyze thissaes, the next chapter will focus on extensionseof
disjunctivemodelanda compensatorgnodelby employing the reparameterization framework
proposed by DeCarlo @41, 2012), as well as a methodology to determine whether the items in a
given test involve a specifmonjunctive, disjunctive, or compensatory relation among their

skills. A general discussion on Bayesian inference is given in the next sectioter b

understand the methodological developments presented in the next.chapter

2.5 Bayesian computation

Referenceso the Bayesian approach in latent clasalysis and Bayesian estimation
methods for CDMs have beementioned in previous sections; hente,general framework of
Bayesian statistics and how it is linked to the specific thprepresenteds discussed in here

The key difference between the classical and the Bayesian perspectives in statistics is
centered on thevay in which the parameterseaconceived. The classical framework in statistics
defines the random variabl¥g Y., ¥ as independent and identically distributed (i.i.d.)
coming from a distribution withrector ofparametes d, whered aretreated as unknown and
fixed. On theother hand, the Bayesian framework assigns eorardistribution to the vector of
parametersl, denoting that! arerandom variablethemselve§DeGroot & Schervish, 2012)

Two core concepts are required to understand the Bayesian approach: the prior

distribution and the posterior distribution. As defined by DeGroot and Schervish (2012), the

! In this section, the greek lettér (theta) is used to denote a parameter or vector of parameters for any
distribution. In previous sections, where the main focus has been on models for latent variables, the ‘symbol
denoted a latent variable. Unfortunalig it is customary to use the symbofor two different purposes in the
statistical literature.
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prior distributionP(d) refers to the distribution of the vector of parametidnsfore observing
any data; the posterior distributi®d]Y) is a conditional distriltion ford given the dat¥ .
Because the posterior is itself a conditional distribution, through the use of Bayes theorem it can

be expressed as

p] y=—_F@OPCY X (2.17)
FPAOP( Y Xt

whereP(Y| d) is the likelihood function that contains the information about/édwtor of

parametersl in the dataY, and the denominator results in the marginal distribuRiof) by

integrating over the parameter space.ofhe marginal distribution can be solvethbytically

when the prior and posterior distributions belong to the same family (i.e., they are conjugate
distributions). In cases where the distributions are not conjugate, numerical methods can be used

to approximate a solution for the marginal disttibn (Gelman et al., 2013).

2.5.1 Conjugate distributions

The Bayesian framework has analytically proved the relation of prior and posterior
distributions as conjugate distributions. While the choice of the prior distribution can be
arbitrary, some choices produce conjugates that present the same distribtiteoprair
(DeGroot & Schervish, 2012). All distributions belonging to the exponential family have at least
one conjugate prior distribution depending on the vector of parameters that are assumed to be
random (Gelman et al., 2013; Gill, 2007).

In the cas®f the Bernoulli distribution witla singleparameted, the probability mass

function is defined as

P(ylg)= 4@ - )Y@’ (2.18)
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fory=[0, 1] (DeGroot &Schervish, 2012). The conjugate prior distribution for the parardeter

is Beta

P(g| a ){quﬁ. Sl i (2.19)

FVa-l(l' c),b-ld

0

where the integral in the denominator is the Beta functidh( The prior distribution is
proportional to
Plgl a ¥ “§1- )% (2.20)
Since the Beta distribution is a prior for the Bernoulli distribution, the posterior

distribution is also a Beta distribution

A & Ga-)%q
PRI 97d ¢

P(gly)= (2.21)

which includes the likelihood from the data, the distribution of the prior distribution, the
marginal distribution of the data, and the Beta function (Gelman et al., 2013). The expression in

(2.27) is propotional to

Plgly)” §**e- g? ™ (2.22)

which corresponds to a beta distribution with paramélersU+ 1, andd *= b+ (17 y). The
hyperparameted *s interpreted as an increase by-omé in Ugiven an observed succeygs=(
1), wherea$ *s defined as an increase in the parametgven a failure y = 0). In cases where

the data consist of a sequencetfialsY =y1,V¥,,  &.,the posterior hyperparameters are
a*= a4y (2.23)
i=1

and
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b*= bn vy (2.24)

i=1
indicating an update diandb given the number of successes and failures in the data,
respectively (Gelman et al., 2013).
The posterior mean of the conjugate distribution is defined as
a+ay

= 1= (2.25)
ar*+ b at+

The Bermulli-Beta conjugacyvill become relevant in defining the varialiledescribed
in the following chapterAs will be further discussedhe variablel canbe conceivedf as
takingvalues of zero and one, so that the posterior distribution provides ewidbaut the
underlying condensation rule of thkills associated with an iterAlternative definitions of} as

being Uniform distributed will also be presented.

2.5.2 MCMC algorithms: Gibbs sampling

Numerical and computational advancements in Bayesian statistics have relied on the
premises of MCMC simulations to approximate posterior distributgdly’). The concept of a
Markov chain is embedded in these algorithms since, in a sequence of itethgoradues of
any random variable at any given iteration depend only on its conditional distribution given all
the other random variables in the model and the data at the previous itdragiedea behind
MCMC algorithms is taterativelydraw values othe vector of parametedsfrom approximate

distributions, and then correcting those draws to approximate better the target posterior
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distribution.The approximate distributions are improved at each step in the simulation, in the
sense of converging todharget distribution (Gelman et al., 2013).

The two MCMC algorithms commonly implemented for Bayesian computation are the
Gibbs sampling (Geman & Geman, 1984) and the Metreptaitings random walk (Metropolis
et al., 1953; Hastings, 1970). In order s uhe Gibbs sampler, there must be an analytically
definable full conditional statement for each parametdr(igill, 2007). MetropolisHastings
algorithms are recommended when some distributions cannot be sampled direcBydpom
(Gelman et al., 2(8).

Casella and George (1992) highlight that the Gibbs sampling is a practical
implementation of Equation (2.18ince knowledge of conditional distriboris among a set of
variabless sufficient to determine, when it exists, a joint distributibime icea of the Gibbs
sampler is to generate a Markov chain of random variabldseguosterior distributioR(d]Y) is
approximated by iterative sequences involving each one ofthe 1 D garameters in the
vectord.

As indicated in the literature (see Gehret al., 2013, Gill, 2007), the steps of the Gibbs
sampler can be summarizedfakows:

1. Starting values are set for each element’ir= [0, b, &, & gy

2. A number ofT iterations,starting at = 1, will occur in which each parametdyis

sampled from the conditional distribution given all other elements in the \kataf the

dataY. In any given iteratiom, conditioning of a given elemedj in d happens on
elements already sampled in that itenat otherwise the values of the other elements

dq « jare taken from the immediate previous cyele For instance,
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G ~PUg S, B g )
9’ ~P(gl 19 ... 59" W)
A ~P(gl 5 Y g g )

i~ POgal 199 45 .97 )

qt[Jt] ~P(g, | ﬁ' [2t ' [3@ Q"’[dl-ly)
3.AsTY D, the distr i bduconvergedo ibsimargiraldistributiarr i a b | e
f(dy), so if the iterations are stopped at a large vililés more probable that eadhwill
be approximately distributed as its marginal. As indicated in Casella and George (1992),
the larger number of iteratiomsthe better the approximation to thtationary
distribution of interest
4. Stop to iterate once convergence is reached. As discussed in Gelman et al. (2013),
several actions can be implemented to assess convergence: first, discard early iterations
of the simulation runs; second, perform slation runs with at least two different starting
points dispersed throughout the parameter space; third, compare the variation within and
between simulated sequences; and fourth, calculate the scale reductioR faaefine

the number of iterations raged to achieve convergence.
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Chapter Il . CDM reparameterizations

A review of parameterizatioinamework proposed by DeCarlo (20Xaj) the DINA
model is presented, followed layeparameterization of the DIN@odel, and th&IDA model.
The threeeparametrizedhodels will be further used in the next chapters to compare
condensation rules in both simulated anapirical data. Anethodology to compare different

condensation rules istroducedn section 3.4

3.1The R-DINA model
DeCar | 00,2312 repar@rhelerizion of the DINA model, as expresseddquation
(2.13), involves a logit transformation of tlitem response functionn this framework, the item

guesng g; parameter is expressed as

exp(f,
__exp(f,) (3.1)
' 1+ exp(f;)
wheref; is thefalse alarm ratgparameterwhichoccurswhen an examinee answers an item
correctlydespitenot possessing the requirskills Uy. Similarly, (17 s) is expressed as

1.5 =P +d) (3.2)
' 1+exp(f, )

whered; is adetectionparametethat indicates how well the item discriminates between the
presence versus absence of the requkdtiset Although DINA models with similar item
parameter transformations have been proposed in the literature (e.g., Huang & Wango2014
Davier, 2013 DeCar |l o0b6s ( 2 Gtants outbdrduse of thieychalogeal o r k
definition of the parametersith respect to signal detection theory (Maltan & Creelman,

2005)
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The measurement component of the DINA mode¢parametrizesvhen the logit

function isemployed. The resuttg R-DINA model (DeCarlo, 201)lis definedas
. ~ K q;
logit P(Y, =1| f,,d;U) =f ¢4 (3.3)
k=1

In Equation (3.3)the RDINA modelincludesa conjunctivecondensation ruléor the
skills. As discussethter, a logit reparameterization of the DINO model will also maintain the
original disjunctive condensation rule for thlalls. However, reparametieationsof other
models for cognitive diagnosisuch as the NIDAnodel (Rupp, Templin& Henson, 2010)do
not necessarily maintain tlegiginal condensation rule after the transformation.

The RDINA model is further expandeay definingthe patternof the skills U as

conditionallyindependent givea higherorder continuous latent varialde

X
P, & | IFOP(.4 ) (34)

whered can beunderstoodis a generalbility in the studied domajnvhichis closely related to
the examinee ability in the IRT framewd(dte la Torre & Douglas, 2004). FrongHation 8.4),

the conditionaprobabilityfor any givenskill U in a higherorder model is defined as

__expl +ag)
P(ay | c)—l+exp@ ) (35)

where the higheorderskill parametersy, anday correspond to difficulty and discrimination
parametes, respectively (DeCarlo, 20111t is worthnotinghere that ithe discrimination
parametery equals zero for alkills U, the higheorder model simply results the
independencenodel The reparameterization framewqsroposed by DeCarlo (20L&an be

employed for other cognitive diagnostiodels, as well as for the purposegesiting wheter
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the response to atem follows a specificondensation rule’hen two plausible models are

compared.

3.2The R-DINO model

As mentioned in the previous chaptée DINO model(Templin & Henson 2006)
presents disjunctive propertyasexpressed in its condensation ridence, in the DINO model
having afleast one of the lateskills Uy is sufficientto answer an item correctiyemplin and
Henson (2006) consider the DINO model particularly useful for clinical and psychological
assesment, where the presence of at less& symptom might be relevant for diagnosis
purposes

As depictedn Equations (2.13) and (2. 14&heresponse functiofor the DINA model
and the DINO modedrevery similarwith the exception ofheir corresponding condensation

rules. The condensation rule of the DINO model is defined as

S
w=1-0e g™ (3.6)

k=1
From this definition, iis clear that having at least oskill will result in a value ofr
equal toone andyj; will be equal tazeroif and only f the examinee lacks all skillsked to the
™ item.
Another difference between the DINA and DINO models is relatéuk interpretation
of the item guessg g; and slips parameterg¢Templin & Henson, 2006)n the DINO model,
theg; is the probability of answering correctly given #izsencef all skills Uy, while s is the

probability of answering incorrectly given the presence of at least one regkiifed

37



Based orthe similarities between the BA and DINO models, guations (3.1) to (3)3

can be used to proposeeparametrize@®INO model (RDINO),

ogitP(Y, =11 1,40) =f d 51 O @ 4% ) (3.7)

DX~ (D/

which can be further expanded as
; a1 A Ak
logitP(Y, =1/ £,4:0) =f ¢ ¢O @ &™) (38)
k=1

where it is evident thdtunder the assumption afQmatrix correctly specifiedthe absencef
all skills Uk will ensure thathe probability of correct answsis determinedsolelyby the false
alarm rate parametgr while having at least orskill will ensurethe probabilityis affectedby
bothf; andd.

While Templin and Henson (2006) propose that the relstimamong theskills U can
be modetd by incorporating a constrath@igherorder onefactor modethat explainghe
tetrachoric corration matrix among the skillst is also true that thekills can be treated as
conditionally independent using the higloeder model depicted in guations (3.4) and (3)5
giving ahigherorderreparametrize®INO (HO-RDINO) model

Recently, Henson, Templin and Willse (2009) introduced ditegar reparameterization
of the DINO model with a latent factor determining the tetrachoric correlations amosiglkie
still, thelog-linear reparametrizedhodelapproactdiffer to some exterftom the oneproposed

here.

3.3 Additive CDM model

Similar to the reparameterization for the DINA and DINO modeteparametrized

compensatorynodelwith additive skill effectan be proposedoiased on the NIDA moderlhe

38



equivalency between the original DINA parameters as false alarm and detection parameters in
Equations (3.1) and (3.2) can be extended to the NdKi|level guessing and slip parameters.

Then a reparametrized NID@R-NIDA) model is defined as
. - X
logit P(Y, =1 s, g ;U) =f & q da (3.9)
k=1

The model in uaton (3.9)is defined as a compensatanpdelsincethe probability of
a correct answer to th8 item increases as the examinee masters more st} linked to
the item.Thef;x results from adding up the false alarm fatparametersor thek skills
measured by the item as defined in then@trix. Thed; are skilllevel detection parameters that
indicate how well the item discriminatestiveen the presence versus the absence of each
specific skill (k. When just ondatentskill U is associatgwith thej" item, Equation 8.9) is
equivalent to th&®-DINA modeldefinedin Equation (3.3)As previouslyproposedn Equations
(3.4) and (3.5), the mixing componef@)) of thecompensatorynodel can be represented
using a higheorder structure to explain the conditional independence in the distribution of each
skill.

De la Torre (2011) and de la Torre and Lee (20Ee proposed a similar additive
modelas a specific instance of teDINA model. Although similar in terms of the
measurement component, their maglebpresents differences compared to¢benpensatory
model presentedere More information comparinthe GDINA model and the set of
reparameterizatiorst hands discussed in the next section.

In a similar manneRupp and Templin (200&@ndRupp, Templin, and Henson (2010)
have proposed a transformation of the NIDA madabeled adNIDO model similar to the one

proposed in Equation (3.9); however, O modelparameters aneot defined in terms dhe
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signal detection theogndthere is no mention @& higherorder structural component for such
model.

Equations (3.3), (3.7and (3.9 indicatethat the differences among models for cognitive
diagnosis are subtknd mostly related to the wain which the condensation rsléor theskills
aredefined In the RDINA model,the conjunctive rule dictates thdt skills are required in
order to incease the probability of a correct respoisghe RDINO model,the disjunctive rule
determines thait least onekill is required to increase the probability, and presenting more than
oneskill doesnot modify this probability;on the other handh the Additive CDM mode| the
presence of eadkill increases the probability of a correct answer.

In addition,the model reparameterizatiomzke it clear that the elemeritst
characterize a specif€DM as compensatoryr noncompensatory are not wdgfinedin the
literatureascompared tanodels with continuous latent variablesq, Bolt & Lall, 2003) While
the DINA andR-DINA models arsnoncompensatorgccording to Rupp and Templin (2008),
thistaxonomydoes notorrespond tohe Additive CDM model in which cumulativeeffects of
each preserskill contribute to a higher probability observing acorrect answeiThe DINO
modelhas beemlefinedeitheras a compnsatorymodel(Rupp & Templin, 2008)as a
noncompensatory moddiénson, Templin& Wil Ise, 2009)pr as a disjunctive model (Templin

& Henson, 2006)wherebythe RDINO modelfalls somewhere in between these classifications

3.4 A methodto testthe item condensation rule

3.4.1Reviewof former research
As discussed before some casethere is uncertainty about the condensation rule for

the skills linked to an item. Hendiere is a neetb developnew methodso explore this
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uncertainty Further, mostesearch on CDM assumes that all itentcuded ina test present the
same measurement componaither @mpensatorpr noncompensatoryrhisassumption could
lead to item misfit when thiatentskills associated with a given item preserbadensation rule
differentfrom theone assumed by tmeodelsdectedto estimate the psychometric properties of
the tes{Rupp & Templin, 2008).
The selection of a model for cognitive diagnosis with a specific condensation rule might
be driven by several factorBhe decision of what model to employ candodt on atheory
based hypothesis about how the measured cognitive propesdeasea specificanswerpattern,
so the focus of the analysisas whether the data confirms or rejects this cognitive hypothesis.
As an exampleHuo and de la Torre (2014) considerttiteams for educational assessnsantay
follow aconjunctive rule for thekills, sinceideal performancen atest is assumed ttepend a
the mastery of alhssesseskills. In a similar manner, a disjunctive rule might be preferred for
purposes otlassification in the context of clinical psychological assessment, since presenting
only some symptoms (i.e., the latent attributes) is required to make a diagnosis for some
psychological disorder@emplin & Henson, 2006)
Another factor to choose amodggjunctive, conjunctive, or compensatongdels is
related to the structure of ther@atrix, since condensation rulegcome relevant only for the
rows in the @matrix where the sum of its elements is greater that one. @hang the test
constructionspecial emphasis has to be put on the development of multidimensional items and
the Qmatrix ifthe goal istoobtaimd di t i onal evi dence about the i
A review of the literature reveals that only a small portion of previous reskasch
analyzel the ways in which specific features and assumptions of the models for cognitive

diagnosis (e.g., the possibility bavingmultiple Q@ matrices item-level fit measures, the

41



hierarchy and condensation ruleglod skills) are linked to the pa#hility of having items with
differentskill condensation rules in the same test.

The principal methodologicainfluence for ths projectcomes from the researoi
DeCarlo (2012)In order to analyze natrix misspecificationdDeCarlo (2012proposed a
Bayesiarextension of the DINA model in whighe dichotomous elements in then@atrix are
definedas random variables with a conjugate BB&noulli distribution.Then, given the data at
hand and the prior distributions defined for the matthel ,posterior distribution of the uncertain
elements in the @natrixis analyzed to determine their correct specificatidre methodology
has proven to be effectiwe recovemg the true @matrix in simulated datahen there is
uncertainty about some ebents moreoverthis methodalso improves model fit whehis
compared to competing modelkiere the @matrix is assumed to be correctly specifiéddung
(2014) has extended DeCarl ob6s (-NMaGixa2theDBNAYy esi an
model anl thereducedeparametrizednified model (rRUM; Hartz, 2002) using a conjugate
Dirichlet-Multinomial distribution for thee x a mi ski# gagetns and a multinomial
distribution for each row in the-@atrix. As discussethterin this sectiorandChaper 4,
extensions of the methodologgvelopedy DeCarlo (2012) can hilized to explorethe
underlyingskill condensation rulby incorporating a dichotomous latent variable in a compound
probability model for each item in a test.

Othertheoretical and methodologicapproacheselevantbecause of their assumptions
about the condensation rules and the hierarchy asiahginclude the work by eighton, Gier)
and Hunka (2004and theirAttribute Hierarchy Method. In their framework, difent
hierarchical structures for attributes (e.g., linear, convergent, divergent, and unstructured) can be

exploredfor a set of itemsThese different hierarchies reflect the psychological ordering among
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skills required to solve a test problem, and bannmplemented within a measurement model by
defining alternative iterskill matrices.
De la Torre and Douglas (2008) and Huo and de la Torre (2014) have also introduced an
alternative method to the DINA model defined as Multiple Strategies DINA (MS Dihzgel.
The authors consider that different examinees might employ different strategies to solve an item
correctly In this sense, this multiple strategy model is mentioned because has a conceptual
relation to the models here discusdadMS DINA framework M different Qmatrices have to
be specifiedo reflectthe potentiakkills thatmaybe used to answer an item correctly, and a
given examinee will be identified as using a specific sekiis reflected in then™ Q-matrix
depending on the DINA condsation rule for which he obtains a value equal to one. Despite the
appeabf being able to detect examinees using diffestrategies to answére same item
correctly the standard DINA model showstter fitwhencompared to the MS DINA model
when readataareemployed; in addition, the authors remark thath®-matrices have to be
correctlyspecifiedin order to make the MS DINA model wofKuo & de la Torre, 2014)
Thepapers bye la Torre (2011) anloly de la TorreandLee (2013 havefocused on item
fit measuresising the Wald tesor thegeneralized deterministic inputs, nogndgatemodel
(G-DINA,; de la Torre, 2011)The GDINA model usesnidentity link function to predict the
probability of a correct answer to an item giwka specification of thiatentskills loading on
the item.By adding some constraints on the slope coefficients of tBéNA model, it is
possible tabtainparallel versions of the DINA arldINO models In addition, e la Torre
(2011) has proved thitis possible to test thig of each item to specific models derived from
the GDINA model using the Wald test statistiberebyproviding new information about the

specific condensation rule model underlying each item.
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However, the @INA model and itstem fit statisticshave some limitations that leave
room for improvement: first, the-GINA focuses only on the measurement componettief
model,soasaturated relation amorsgills in the structural componeritas to be assumed. This
assumption mightot hold in cases where a higleeder model isncludedto explain the
relationship amongkills (de la Torre & Douglas, 2004; DeCarlo, 2012). Second, HdNA
model focuses on intercept and slope parameters thabedaectly linked to the iteArevd or
skill-level guess and slip parameters initially proposed for models such as the DINA, NIDA or
DINO; this is not the case for other model reparameterizatigets & the FDINA (DeCarlo,

2011, or the LCDM (Henson, Templin & Willse, 20Q9¥hich havgoroducedmethodgo
recalculate the item guess and slip parametidrisd, the GDINA relies on the EM algorithm to
obtain the item and examinee parameter estimates, makimgassible to implement the Wald
testfor complex models that require an MCMC algorithm to estirttegenodel parameters.
Fourth, as the number skills loading on an item increases, the number of slope parameters of
the GDINA modelalsoincreasesln this respegtthe RDINA, R-DINO, andAdditive CDM

modek represerdinalternativeto the GDINA model able to identify the condensatiaoule of

each item in a test without adding more item parameters.

3.42 Assessingondensation rules

While theprior researcldevelopsalternative approaches tive traditionaframeworkon
CDMs, it fails to address the analysis of the item condensation andsloesotinclude the
possibility of incorporating higherorder model for the lateskills, thus increasing the chance

that the item shows misfit because of specificmodelselected
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Presentedere isamethodologythat could provide additional information regarding
whether an itenmasa specific condensation ruéhen o different response functions are
comparedFor a given item;;, assume it follows a particuldem response functioss
expressed in Guations (3.3), (3.7), an@.9) with a clearly defined vector of associated latent
skills U; moreover, suppose that the spedifien response functioof the item(e.g., RDINA,
R-DINO, or Additive CDM) is not known, but that there is a probability that it can be either of
one form (e.g.conjunctivg or another€.g.,disjunctive compensatory Then,it is possible to
formulate a compounchodelfor the item as

P(Y, =1/0,f :d h 0 Bexpigf, % . , dgh (f 8 ) . (1g9k(3.10)
whereexpitis the inverse of the logit functioandf; andd; are the transformed parameters
previously definedin whichthe numerical subscripts in the parameters are introduced to indicate
that they do not have to take the same values in the two different models that are compared. In
addition,; is a random variabléhatindicates what type afondensation rules more pobably
linked tothej™ item. The expression in (3.10) can be implemented in software for Bayesian
statisticsby adding specifications about the distribution of the structural and measurement

components of the CDM. For instandeiis conceived as dyntaking values zero or one, then

the distribution ofj; is expressed as
d, ~ Bernoulli( {) (3.11)
and, in turng-distributes’

/;,~Beta g Y (3.12)

9ljdzt GA2ZY 60®dMHU YR FdNIKSNI Sljdzt Azya NBfFGSR G2
denote a shape parameter of such distribution. F& NJ Slj dz- GA2ya NBEF 4GSR G2 /5aa dzaS

RSy2d4S I OFGiS32NAOFt 1 GSyd FOGGNROGdziSd Ly | &aAYAE I NI Y
fraSyd GFENRIofS 12 6KSNBIL & | Syazy SdofthdlominéanCDMdIhe dza S G K.
NBEFRSNJ Ada 6FNYSR (2 RAalGAy3IdziaK (GKS dzasS 2F GKS 3aINBS| f
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Similar to the framework proposed by DeCarlo (2012), the posteganof g can be
used to determine the condensation rule foskilés linked to thg™ item.

In this context, it can be argued that Equations (3.11) and (3.12) constrain the estimation
processecausej focuses only on one subset of the parameter space (e.g., in the estimftion of
andd, or f, andd,) at each iteration stefpo address thesanlitations,an alternative approach
definesti” as

d, ~Uniform[0,1] (3.13)

S0 it can take any value between zero and one at each iteratioRustepr discussion aife
Bayesian foundatiorendthe implanentation of the modgroposed heris explainedn the

next chapter.
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Chapter IV . Methodology

Thepsychometrianodek sketched in sections 3.1 to &rkdefined in detailn section
4.1. Thesimulation desigis explained in sectiof.2 andthe corresponding cod® simulate the
datain Ris includedin AppendixB. Finally, adescription of thenalysis okempirical datas

discussed at the end of this chapter.

4.1 Modelsto test condensatiorrules

Different models are introduced in this section aimed to evaduatéo comparenodeb
with conjunctive, disjunctive, and compensatory condensationfarlesich itemCode for the
i mpl ementation of each model |&bBtu@p2606)B UGS

included in Appendix A

4.1.1Conjunctive and disjunctive models
Given a data set with= 1 ,| examinees, and= 1 ,Jiteéns, letY; denote the
answer of" examinee to thg" item. Theitem responsey; are conditionally independent and

Bernoulli distributed
Y, ~ Bernoull( p) (4.1)

wherep; is defined as the probability of answering correctly to the item given the &kiéat

This probability takes the form

P =P 210,{.d.%.d4) (4.2)
¢ A g @ é = . 2}
expitegfy +d, O a @ +fg & d; O %) (1 )d
ce k=1 u e k4 u

a7
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Equation (4.2) is composed of two models that differ in their condensation rule for the
skills U, so the objective is texplorewhich condensation rule underlies to an item given the
observed data arttle definitions about the distribution of timeodelparametersn addition,f;
correspond to false alarm rafgarameterandd; to detection parameter€ondensation rulesf
thek=1, & latentskills U, differ accordingo theconjunctiveDINA model and the
disjunctiveDINO model, respectivelyin cases where a single skillis linked to thg™ item
based on the @nhatrix design, the result should be the same usitigdmndensation rules.

Finally, i is a latent variable that identifies the item response function more probably
linked to theg™ item. In the case of ftent variablai, with Uniform distribution as described in
Equation (3.13),valuesé&a 1 i ndicate that the item has a c
valuesoffid O denote an item with a disjunctive corl
dichotomous variablg with a Bernoulli distributiont; = 1 identifies an item with a conjunctive
rule, otherwisehe item possessdisjunctive rule.

Elements irEquation (4.2)yre assumed to hatleeir own distributions First, the latent
skill Uy takevalueszero and onéo indicatethe presencer absence of the" skill in thei™
examineeandits distribution across examinees repres#rg structural component of the
model.Here, each latergkill is assumed tbe Bernoullidistributed

a, | p,. ~ Bernoulli(R,) (4.3)

where the parameteji presents, in turrg Beta distribution

P ~ Beta( @, R) (4.4)
TheBetahyperparameteray andbi in Equation (44) can beset to beequal to ongso
the distributionbecomes equivalent tostandarduniform distributionU[0, 1] (DeGroot &

Schervish, 2012).
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The false alarm rate and detection parameateEsjuation (4.2are assumed to be

normallydistributedwith mean equal to zero andrianceequalto 10

f,; ~ Normal(0,10) (4.5)
d;; ~ Norma((0,10) (4.6)
f,; ~ Normal(0,10) (4.7)
d,; ~ Normal(0,10) (4.8)

To maintain the monotonicity constraint of the DINA and DINO models (Junker &
Sijtsma, 2001; Templin & Henson, 2006), the parametgedd,; (or dai in the case of the
compensatory modetan be truncated takeon only positive values

Additionally, if the random variablg is regarded to be dichotomous, theisit

distributed Bernoullias discussed ine8tion 3.4

d;| {~Bermoulli( ;) (4.9)

with parametes:
/, ~Beta¢, d) (4.10)

Again, the hyperparametersandd; can be set equal to one, making therifigtion
equivalent to a uniform distribution U[0, Nevertheless, as discussed in Sectiond#ning
as being Bernoulli distributed constraints the estimation to only a part of the parameteAspace.
alternativeto avoidthoseestimation problemis to define astandard Uniform distributed
variablelj,-* to reflect the identification of the item response funciioa weighted way

Assuming independence among examinees and local independence among items, the

joint likelihood functionL for all items and examinees is defined as
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Hence, lhe full conditional posterior distributions of tharameters in guation (4.2 is
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In the case of the higherder modelthe hyperparametgs from Equation (4.12) is
definedasin Equation (3.5). Then, each one of the dkillel hyper parameteeg, by, andd are
defined agpresentinga standard Normal distribution

a, ~ Normal(0,1)
b, ~ Normal(0,1) (4.18)
g ~ Normal(0,1)

4.1.2Conjunctive and compensatorymodels

A model aimed to contrastconjunctivecondenston rule with respect to the
compensatorgondensation rule s meets the specifications iquations (4.1) to (4.38with
theexception of the probability function for the itemEquation (4.2) and the joint likelihood

function inEquation (4.11). In tis case, the probability function is defined as

p=P(Y 410, £,d,5,d.4) (419)
8¢ K q. B, X
expitggh; +dy, Oa ff &l & gody 42 gl i)
ce k=1 u e k=1

where the condensation rule on the hefhdside corresponds tconjunctiveR-DINA model
and the one on the right acompensatonAdditive CDM model. Both condensation rules will
provide the same result when a single lagiit U loads on thg™" item; thus, the random
variabletj is introduced for items that require more than one attribute.

Assuming independence among examinees and locgdendence among items, the

likelihood function is defined as
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0 f, (4.20)
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4.13 Equation expansion
Equations (4.2) and (4.19) can be expanded to analyze the weighting efféichéisain
the model parametens the case of the Equation (4.2), the expansion can be expressed as
p, =P(Y 410, {.d,%t.dd)
; a K ik Qi
explt§2j+dj(flj 21) d'ael G(l éj')u J@d Olk a d, 1e O(l' 3 'U’
¢

k=1 ek =

resultingin a model with a general interceptthe form ofthe item parametds;, a weighted
intercept component for the difference betwieandf,;, amain effectssloped,; for the
disjunctive model, and weighted slopes for the difference between a conjunctive model and a
disjunctive model.
The expansion of Equation (4.19) isidel] as
P; =P(Y 1|0, {.d, .4 4)

eXp”aécz, (flj 'ij*) aC}k %O ‘a K&ﬁl dz]k ik
C k 4

2.

which also incorporatemtercept components similtr those inthe expansionf Equation (4.2).
Theexpansion also presents main effects for each\dkiih the form of a compensatory model,
as well as weighted slopes for the difference between a conjunctive model and a compensatory
model.

If G, is assumed to be Uniform distributeatt expansions make evident that as the value

of Uy approachegerqg the conjunctive effects have a smaller weight in the model. On the other
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side, as the value of approaches a value of one, the conjunctive model has a greater effect in

defining the item response function.

4.1.4 Initial values

The method defined in E@tions (4.1) to (4.20) can be estimated using the Gibbs
sampling algorithm in OpenBUGS (Thomas, OOHar
some or all model parameters can be determined before starting the estimation process. In this
study, inital values for the false alarm rate parameftare set equal tbl, detection parameters

d are set equal to +2, and th@arameters to +0.5.

4.2 Simulation Study

A simulationstudywascarried out in order to teftr the condensation rules usitige
models developed in the previous sectibime simulated datam R (R Core Team, 2012yas
based on theeparametrizethdependent anldigherorder models focognitive diagnosis
defined in Gapter 3.

Twenty-four conditionswereanalyzedwith four factors for the simulationlesign the
first factor involves two conditions fdhe higherorderassociation among the latesitlls Us; the
second factor includes two conditions foe condensation rules to compacenjunctive and
disjunctive condensatiomles, or conjunctive and compensatory condensation; thkeshird
factor consist®f five modebk used to generate the dasad the fourth factor involves definitig

as either Bet@Bernoulli or Uniform distributedrFifty data setsveregenerated per calition.
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Table 3 presents the intersection of the four factors that produce the-fagntpnditions
explored in this study.

In terms of the association among the lagkilts in the higheorder model, data with
independenskills weregeneratedvith the higherorder parameteay in Equation(3.5) set equal
to zerq otherwisethe skills wereallowed tohavesome degree of associatidtar the
condensation rules to contrastonjunctive modelvascontrastedn each conditioritherwith
a disjunctivemodel orwith thecompensatorynodel.

Finally, five different modelsvereused to generate the datathefirst three conditions,
dataweregenerated from aonjunctivemodel(i.e., RDINA), adisjunctivemodel(i.e., R
DINO), oracompensatorynodel(i.e., Additive CDM). Two additional mixed models to
generate the dataereincluded the first oneconsisedof half of the multipleskill itemsbeing
generated froma conjunctivemockl (i.e., items 5, 7, 9, 11, 13, and 15 in Tabladd the other
half froma disjunctivemodel(i.e., items 6, 8, 10, 12, and 14 in Tableth second mixed
model also gegratal half of the items fron aconjunctivemodel(i.e., items 5, 7, 9, 11, 13, and
15 in Table 4and the other half from@mpensairy model(i.e., items 6, 8, 10, 12, and 14 in
Table 4)

Some cells in Table 3 are left in blank, indicating that the intersection of the four factors
is not explored as a research condition in this study. Those unexplored conditions correspond to
casesn which data are generated from a specific model (e.g., a disjunctive condensation rule
model) but the contrasting would be based on the other two models (e.g., a comparison between
models with conjunctive and compensatory condensation rules), so thégboesults for
would not be directly related to its capacity to detect the correct underlying condensation rule.

TABLE 3 Conditions in the simulation study
Conditions with {; defined asUniform[0,1] distributed
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Independent model

Higherordermodel

Condensation rule
for data generation

Conjunctive vs.

Conjunctive vs.

Conjunctive vs.  Conjunctive vs.

disjunctive compensatory disjunctive compensatory
Conjunctive Condition 1 Condition 2 Condition 3 Condition 4
Disjunctive Condition 5 Condition 6
Compensatory Condition 7 Condition 8
Conjunctive/ Disjunctive Condition 9 Condition 10
Conjunctive/Compensatory Condition 11 Condition 12

Conditions with U; defined asBernoulli distributed with hyperparameter Beta(1,1)

Independent model Higherorder model

Condensation rule

for data generation Conjunctive vs.

Conjunctive vs.  Conjunctive vs. Conjunctive vs.

disjunctive compensatory disjunctive compensatory
Conjunctive Condition 13 Condition 14 Condition 15 Condition 16
Disjunctive Condition17 Condition 18
Compensatory Condition 19 Condition 20
Conjunctive/ Disjunctive Condition 21 Condition 22
Conjunctive /Compensatory Condition 23 Condition 24

Note The cells left in blank in th&bleare potential conditions thaterenot be explored in this study.

During the data generation process, some elements remained fixed across conditions: 15
items per data set, 4 latent skills a sample size of 1000 examinees, identical structure of the
Q-matrix and item parameter valustandardized normal distribution for the higher order latent
variabled (i.e.,d ~ N(0,1) across conditions), and values for the higher order difficulty
parameter® = {b; =11; b, =70.328; b3 = 0.3; b, = 0.678}. Table 4 describes the structure of
the QMatrix and the item parameter values utilized to generate the data. The arbitrary values for
the parameterandd; (or fi- anddj for the compensatory model) were chosen based on results
from prior applications of the RINA model, which found]; values ranging from 1.5 to 5.5,
andf; from14 to O (DeCarlo, 2012).

For the simulation conditions whedata withassociatedkills U, aregeneratedi.e.,

conditions where the higherder discrimination parametesigarenorzero), a common value of
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threewas used for the skill discrimination parameters{a; = a; = az = a4 = +3}. In results
from empirical data, DeCarlo (2011) found values for the paramatelsse to +3, indicating
that the latent skill§k were correlated.

TABLE 4. Qmatrix and item grameter values across conditions

Q-matrix Item parameters
ltem V) G G U, f di
1 1 0 0 0 -4 5
2 0 1 0 0 -3 4
3 0 0 1 0 -2 3
4 0 0 0 1 -1 2
5 1 1 0 0 0 1
6 1 0 1 0 -4 1
7 1 0 0 1 -3 2
8 0 1 1 0 -2 3
9 0 1 0 1 -1 4
10 0 0 1 1 0 5
11 1 1 1 0 -4 1
12 1 1 0 1 -3 5
13 1 0 1 1 -2 4
14 0 1 1 1 -1 2
15 1 1 1 1 0 3

Previous research using a similar methodology has shown that, in the context of the
Gibbs sampler, 40,000 iteratioappeared to bgufficient to reach convergence in the posterior
mean estimates. The present study foldthat observation40,000 iterationsvereprocessedh
each analyzed data sdiscarding the initial 20,000 of thei@ode in R for the data generation
and in OpenBIGS for the data estimation are included\jppendices A and Bespectively

Threeadditional conditiongi.e., conditions 2526, and 27 not included in Table 3yere
exploredin order toanalyze the impact aforrinformative priors in thedetection of thatem
condensation rulélhe simulation characteristics of thekeeeconditionsareequivalent tahose
of conditions2, 7, and 11, respectivelyescribed in Table 3: data generated fromither a

conjunctive or a compensatorynodel with independent skills. Thelata generated from a
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conjunctive modeln condition 25is compared with respect tocampensatorynodel, and the
data generated froma@mpensatory modéh condition 26is contrasted ta conjunctive model
Condition 27 include a mixtureitems generated from either a conjunctive or a compensatory
model The parameter values used to generate the data across replications are also equivalent to
thoseusedin conditions2, 7, and 11

Thedifferences with respect to condition® and 7are: first, the values for the variance of
the distribution in the estimation of model parameters; specifically, item pararfeteds); are
all defined as normally distributed with mean equal to zero and variance equal to 1000. Second,

the numbe of replicationgn conditions 25 and 2&as20 rather than 50.

4.2.1Measures of condensation rule detection and parameter recovery

The main objective of the present project iexaminethe capacity of the model to
detect the underlying item condetisa rules by analyzing the posterior mean values of the
unobservedariables. Additional analysewerecarried out to measure the recovery of the item
parameter§ andd;, as well as th&atent class sizes

In the conditions in which the random varialilevas defined as Uniforrdistributed the
posterior mean df; wasbe rounded toaues ofzero or onereflecting thecondensation rule
that most probablgeneratedhe vector of responses for tffsitem. Posterior mean values for
eacht; below 0.5wererounded to zero, while valugseater than or equal @5wererounded to
one.In those conditions wherg was defined as Betaernoulli distributed, the posterior mean
of its hyperparameteg was used to identify the underlying condensation tdésce forr = 1,
€ , Rreplications within eachondition,it is possible taletermine the efficacy of the

methodologyby calculating the proportion of correctly identified condensation rules.
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For other modelparametesd (e.g.,d = {f;, d;}) andtheir correspondingosterior mean
estimates, three measures of item recovery walilatedvariance piasand mean square error

(MSE). The variance of the estimatasross replicationsascalculated as

varf= =& (F (4.21)

Wherec}:— is the average parameter estimate value across replicatiomg athe parameter

estimate in the" replication(Rizzo, 2008)

Bias, defined as the average difference across replications between the parameder value

and its posterior meaafstimatef, wascalculated as
g 1R =
bias( =~ 8 ( 7~ ) (4.2)
r=1

Finally, the MSE defined as theneansquared difference between the estintgteand

thepopulationparameter valud, wascalculated as

vsEd= =4 ( g (4.3)

4.3 Empirical Study

The modelderedescribedvereused to assess publicly available data from standardized
tests. For this purposevo data setpreviouslyanalyzed in the literatungereconsideredfirst, a
group of items from ther&ctionsubtraction data sefatsuoka, 1990 and seconddatafrom the
examination for the Certificate of Proficiency in English (ECFEmplin & Bradshaw, 2014
Templin & Hoffman, 2013 Bothdata setand their respective-@atricesareavailablein the

6CDM6 package (RanRitzsch et al ., 2014)
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4.3.1 Fraction sibtraction data

Theoriginal fraction subtraction consists 040 mathematicgemsin two test versions of
20 items each (Tatsuoka, 1990ems inVersion Aarelinked to7 latentskills: convert a whole
number to a fraction, convert' inixed number to a fraction, conveff ixed number to
fraction, simplify before subtracting, find a common denominator, column borrow to subtract
numerator, and reduce answer to its simplest fttems inVersion B of the test are linked to
other 7 latenskills: convert a whole number taaction or mixed number, separate whole
number from fraction, simplify before getting final answer, find the common denominator,
borrow1 from whole number part, change numerators and whole, column borrow to subitract 2
numerator from ¥, and reduce answeo simplest form. The content and structure of the Q
matricesarenot equivalent in tesfersions A and B.

The version of the fraction subtraction dased hereonsists of 536 examinees, dlfsl
itemsof the original \ersion Athat measuré 5 latentskills: performing basic fraction
subtraction operati@ simplifying/reducing, separating whole numbers from fractions,
borrowing one from whole number to fraction, and converting whole numbers to fractions.
Although \ersion A ofthefractionsubtractiordatahas been widely analyzed in tHermer
researclon CDMs, different authors have used either just a part of the 20 original items (see de
la Torre & Lee, 2013; DeCarlo, 2011, 20H&nson, Templin & Willse, 20Q0%r a @matrix
differentfrom the one originally reported by Tatsuoka (see Chiu & Douglas, 2013; de la Torre &
Douglas, 2004)A common characteristic in those previous studiesasassumption that the
fractionsubtraction items present a conjunctive condensationTiéeQMatrix thatwasused

in this study is taken from DeCarlo (2012) and is summarizéalite5.
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The fraction subtraction dateasanalyzedo contrasmodels with conjunctive and
disjunctive condensation ruless well asnodels with conjunctive and compensatory
condensation rulesssuming independenoe a higheiorder relationshigmmong the latergkills
measured by the te®oth analysesveredone considering instances in whiglis defined as

being BetaBernoulli distributed or Uniform distributed.

4.3.1 BExamination for the Certificate of Proficiency in English (ECPE) data

The ECPE consists of 28 multiptdoice items measuring skills of English as a second
language. The items are associated to 3 latent skills: knowledge of morphosyntactic rules,
knowledgeof cohesive rules, and knowledge of lexical rules (Templin & Hoffman, 2013;
Templin & Bradshaw, 2014). The retrieved data set includes information about the answers of
2,922 examinees for the 28 items.

Table 6 illustrates the -@atrix of the ECPE test agfihed in Templin and Hoffman
(2013). A particularity of this @natrix is that no item in the test is associated to all three latent
skills, but rather to just one or two of them.

Prior research has analyzed the ECPE data using the LCDM model (Henspiin ®em
Willse, 2009; Templin & Hoffman, 2013). The LCDM model expresses additive main effects
and interactions among latent skills, and it can be constrained and reparametrized to obtain
results equivalent to those of the DINA and DINO models. Hencegipréssent study, the
ECPE was analyzed to contrast the models with conjunctive and disjunctive condensation rules
and models with conjunctive and compensatory condensation rules, considering situations in

which the skills are defined as independent or tmmally independent given a higher order
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latent variable. Once again, the analysis of the ECPE data was done considering instances in
which i is defined as being Beternoulli distributed or Uniform distributed.

TABLE 5. Qmatrix for the fraction sub#ction test

Q-matrix
Iltem U G G U G
1 3.3 1 0 0 0 0
4 8
2 3£—2§ 1 1 1 1 0
2 2
3 6.4 1 0 0 0 0
7 7
1
4 3- 2= 1 1 1 1 1
5
7
5 35-2 1 0 1 0 0
6 i—Zl 1 1 1 1 0
12 12
7 4}-2fr 1 1 1 1 0
3 3
8 ni 1 1 0 0 0
8 8
9 311-32 1 0 1 0 0
5 5
1
10 2-= 1 0 1 1 1
3
11 4§-1il 1 0 1 0 0
7 7
12 7§—il 1 0 1 1 0
5 5
13 4i-2E 1 1 1 1 0
10 10
4
14 4—15 1 1 1 1 1
15 4}-1£3 1 1 1 1 0
3 3

Note ; =performing basic fractios u bt r act i o,& e p enp &t f g ipspdaratinglwhalé nonbers fiom
fracts=ob®yrrowing one fr om ;wdomvértang wholembinbers to foactibns.act i on,
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TABLE 6 Q-matrix for theECPEtest

ltem U,

15
16
17
18
19
20
21
22
23
24
25
26
27
28

0

P O B O O O Fr B O O O Bk

0

v
0
0
1
0
0
0
0
0
1
1
0
0
0

0

O B O O O F F P P P PP P P&

1

tem U U U
1 1 1 0
2 0O 1 0O
3 1 0 1
4 0O 0 1
5 0O 0 1
6 0O 0 1
7 1 0 1
8 0O 1 O
9 0O 0 1
10 1 0 O
11 1 0 1
12 1 0 1
13 1 0 O
14 1 0 O

pho

Note ;U mor

Sy ni=a ctoih@ sri 4¥iesiclwie s ,
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Chapter V. Results

Results of the simulation study and empirical studies are presented in this chapter. With
regard to the simulation study, the results are summarized featiabled, thelatent class
sizes the item false rate alarm and detection parametierd, the empiricadata results for the
fractionsubtraction data set and ECPE data set are pres@pigehdix C includes
complementaryables corresponding amditionalresults ofboth the simulation study and

empirical study
5.1 Results of simulation study

5.1.1 Random variablet;

In order to asseshé performance of thatentvariables ij in the identification of the
item condensation rulés posteriomeanvaluesin each replicationvereroundedo zeroif they
wereless tharor equal to 0.50therwise theywereroundedup to one Subsequentlythe
proportion of correctly identified condensation rules fortthelve simulationconditionswas
calculated

Table 7summarizes the results for the proportion of correctly identified condensation
rules in the simulation study; results are listed for each varipi®#¢ated to items fivéhrough
fifteenand for the overalbimulation conditionltems one to fouare not included in Table 7
because those items measure only one gkillable 7 each conditioms identified by the type of
model used to generate the data the independence or higloeder relationship among skills.
Equivalent conditions witli defined as either Uniform distributed or B&arnoulli distributed

are stacked one above the other.
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TABLE 7 Proportion of correctly identified item condensation rules across conditions

Data Conj Conj Conj Conj Disj Disj Comp Comp Mixed Mixed Mix ed Mixed
Comparedwith Disj Comp Disj Comp Conj Conj Conj Conj Conj/Disj Conj/Disj Conj/Comp Conj/Comp
Skills Idep Indep HO HO Indep HO Indep HO Indep HO Indep HO
Conditions with U; defined as Uniform distributed

Condition 1 2 3 4 5 6 7 8 9 10 11 12
Parameter Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop.
Us 096 098 088 096 096 096 074 0.78 0.98 0.94 1 1
Us 074 094 064 0.96 0.8 0.64 0.18 0.4 0.82 0.9 0.28 0.22
th 1 0.9 1 0.9 1 1 0.82 0.88 1 1 0.96 0.94
Ug 1 1 1 1 1 1 1 1 1 1 1 1
Uo 1 1 1 1 1 1 1 1 1 1 1 1
tho 1 1 1 1 1 1 1 1 1 1 1 1
Uh1 0.66 1 0.82 1 076 0.84 034 0.38 0.76 0.82 1 1
Uho 1 1 1 1 1 1 1 1 1 1 1 1
Uis 1 1 1 1 1 1 1 1 1 1 1 1
Ua 1 1 0.98 1 1 1 1 1 1 1 1 1
Uis 1 1 1 1 1 1 1 1 0.98 1 1 1
Mean 0.942 0.984 0938 0.983 0.956 0.949 0.835 0.858 0.958 0.969 0.931 0.923
Conditions with U; defined as BetaBernoulli distributed
Condition 13 14 15 16 17 18 19 20 21 22 23 24
Us 1 0.98 1 096 062 064 096 0.96 1 1 0.98 0.98
Us 068 088 077 088 066 0.58 0.6 0.64 0.88 0.86 0.46 0.52
t 1 0.86 0.98 0.84 0.7 079 094 0.88 1 1 0.86 0.96
Us 098 092 079 092 068 044 098 0.98 0.98 0.84 0.98 0.94
Uo 1 1 051 0.68 0.38 0.6 0.96 1 1 1 1 0.96
tho 072 032 042 046 094 0.96 1 1 0.98 0.9 1 1
Uha 078 098 075 098 0.72 0.7 0.88 0.76 0.76 0.86 0.98 §
Uiz 1 1 1 1 0.38 021 0.96 1 1 1 1 1
Uhs 1 0.76 098 0.92 0.7 1 1 1 1 1 0.94 1
Uha 1 1 0.85 0.84 0.9 1 0.98 1 1 1 1 1
Uis 1 1 1 1 0.74 1 1 1 1 1 1 1
Mean 0.924 0.882 0.823 0.862 0.675 0.72 0.933 0.929 0.964 0.951 0.927 0.942

Note: Pop. is the proportion of correctly identified item condensation ri@esj refers to conjunctive models, Disj to disjunctive models, Comp to compensatory models,

Conj/Disj corresponds to models with some items having a conjunctive rule and others having a disjunctive rule, Conjl€popdmto models with some items hava

conjunctive rule and bers having a compensatory ruledep refers to models with independent skills and HO to instances with skills in adiideemodel40,000 iterations
conditions,

and 20,000 burms were used with OpenBUGS andiRmixed condensation u | e

of the asterisk indicates the items are either disjunctive or compensatory.

conditions

t he

asteri sk

mar k
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Results across conditions show that, on averageable to correctly identify the
condensation rule 93.55% of the time when defined as Uniform distributed and 87.77% of the
time when characterized as B&arnoulli distributed. Condition 2, which compares between
conjunctive and disjunctiveondensatio rules when the data are generated from a conjunctive
model, showed the best performance with 98.4% of the condensation rules correctly identified.
On the other side, conditions 17 and 18, in whidunctiveitemsare analyzed in a model that
comparesonjunctiveand disjunctivemodels, detedhe correctcondensation rule onk7.5%
and72.0% of the time respectivelySince both conditions 17 and 18 involve the generation of
disjunctive data (i.e., data in which the presence of only ondkkitbduces] equal to 1), and
then its comparison with respect of a conjunctive model, it is plausible to observe those low rates
of correctly identified condensation rules since both conjunctive and disjunctive models are not
mutually exclusive from eachtleer.

Overall the identification of the underlying condensation rsleetterwhent is defined
as Uniform distributed rather than Bddarnoulli distributedAmong those conditions with
Uniform distributed, the higher proportions of correct condditarule identification occuin
conditions with data generated based on conjunctive and disjunctive madet®(ditions 1 to
6, 9 and 10ascompared taata generatedith a compensatory relationship among skills.,(
conditions 8, 9, 11, and 1Regardingconditions with BetaBernoulli distributedi, the highest
rates of correct condensation rule identification were obsevheth some column vectors of the
data were generated using a conjunctive model and others using a disjunctive model (i.e.,
conditions 21 and 22)t is worth to notice that items 6 and 11 showed a particularly low
proportion of correctly identified conderga rulesacross several conditiortbe role of those

two items will be further discusséua the next paragraphs
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A hypothesis based on these result¥able 7may suggest that condensation rule
identification becomes more complicated for compensatagets because those models are
less restrictive in the skill combinations that produce a correct item response, whereas
conjunctive models restrain the correct response production to those observations that have
mastered all skills linked to a specificnteThus, in the comparison between compensatory and
conjunctive modelsa Uniform distributed} weighs the probability that the observed data come
from one model or the other, and tends to favor a simpler conjunctive model especiallyaghen
discussed ithe next paragrafitthe number of skills measured by the item is small.

As presenteth Table 7 condensation rule identification tends to improve as the number
of skills measured by a given item increases (see items 1) &sddmpared to items measogi
only two skills (see items 5 to 10)hese resultsmaysuggest thatondensation rule
identificationis morecomplicatedn thoseitems measuring only two skillsecause the
production of a correct responsdieson relativelyfew possibleskill profile combinations (e.g.,
U={00, 01,10,11}) ; hencethe distinction among conjunctive, disjunctive, and compensatory
itemsis basednly on the inclusion or exclusion of one of those skill profildge number of
skill profilesincreaseso thefactor2® as the number of skills measured by the item increases,
and such increase skill profilesconsequently improves the identificatiohtiee underlying
condensation rule that produces a correct answer to a given item.

There are no differences ing identification performance Gfamong conditions with
independent and correlated skills; the average proportion of correctly identified condensation
rules is90.92% in conditions with independent skills a8d.3%%6 in conditions with skills being

part d a higherorder model. A comparison between every pair of equivalent conditions with
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data generated from a model with independent skills or a hogler model reveals a similar
performance of.

At the item level, items 6 and Hteconsistently the most difficult to identify in terms of
their correspondingondensation rule; both items have digtinctionof being generated using
the lowesfalse alarnparameteanddetectionparameter valus(i.e.,fj =14 andd; = 1 in both
caseyamong all items in the testhe correct identification of the condensation rule of gém
and 1lwas particularly problematic in conditions with data generated from a logther model
with correlated skillsas well as in conditions with data genedafrom a compensatory model
(e.g., conditions 7, 8, 123, and 2 While it is not a central topic of researfcin the present

study,thecondensation rule identificatios affected by the item parameter values

5.1.2Latent class sizes

Results for théatent class sizestimates are presentedTables8 and 9 Table 8
summarizes the results for conditions with data generated from an independent skills model
since thdatent class sizparameters are the same for those conditibaisle9 presents the
results for conditiongith data generated frohligherorder moded with correlated skills.

Latent class size estimators can be compared among conditions in terms of their average
estimator variance, bias, and MSE, with respect tpdpaiationparameter value. As shown in
Table 8the recovery of the latent class size parameters is very good in most conditilons,
exception of condition 17 in which three out of the four latent class size parameter estimates
wereincorrectlyestimated aass replications. Mangf the laent class size estimates shaw
negative but small bias with respect to plopulationparameter value, indicating a tendency to

calculate slightly smaller latent class sizes estimates for each skill across replicatiates! e
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the estimate bias, average MSE values for the latent class size estireagryg small across
conditions, indicating a good parameter recovery for latent class sizes across conditions in which
dataaregenerated from a model with independent skills.

The negative bias result is also confirmed by observing the average posterior mean values
for eachlatent class size, which tetal be smaller than their respective parameter across
conditions. The estimatmariancei the third criterion to assess the performance of each
posterior mean estimate with respect to the average posterior mean among repliedsons
exhibitsvery small values across conditiofifie smallest variance, absolute bias, and MSE
repoted in Table 8 is observed in Condition 1, in which models with conjunctive and disjunctive
condensation rules are contrasted in data generated from a conjunctive model.

Table 9 presents the latent class size estimates for the conditions in which data is
generated and analyzed using the higher order model. The very small values of bias and MSE for
the estimates across most of the conditions indicate that parameter recovery is very good in most
cases. This result is supported by the average posterior rakes ¥or the latent class sizes
reported in Table 9, which are very close to the real parameter vales.

On average, the smallest absolute bias is observed in conditions with data generated based on a
conjunctive model (i.e., conditions 3 and 4) and inditions with data produced from a mixture

of conjunctive and disjunctive or compensatory models (i.e., conditions 10, 12, 22, and 24).
Similar to the results for condition 17 in Table 8, condition 18 also showed the poorest
performance in terms of parametecovery for the latent class sizes. Both conditions 17 and 18

also showed the lowest proportion of correctly identified condensation rules.
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TABLE 8. Latent class size estimates for conditions with independent skills

Par Value

APM Var Bias MSE

APM Var Bias MSE

Conditions with U; defined as Uniform distributed

Condition 1: Conjunctive data.
Comparison with disjunctive model

Condition 2: Conjunctive data.
Comparison with disjunctive model

p()U 0.269 0.263 0.0006 -0.0061 0.0006 0.254  0.0006 -0.0146 0.0008
p (U 0419 0.411 0.0006 -0.0074 0.0006 0.407  0.0007 -0.0121 0.0008
p (U 0.574 0569 0.0008 -0.0051 0.0009 0.562  0.0011 -0.012 0.0013
p (U 0.663 0.671 0.0012 0.008 0.0012 0.67 0.001 0.0066 0.0010
Condition 5: Disjunctive data. Condition 7: Compensatory data
Comparison with conjunctive model Comparison with conjunctive model
p (U 0.269 0.257 0.0013 -0.0122 0.0015 0.26 0.0008 -0.0091 0.0009
p (kU 0419 0.414 0.001 -0.005 0.001 0.412 0.0011 -0.0064 0.0011
p (U 0.574 0.57 0.0011 -0.0042 0.0011 0.571 0.001 -0.0033 0.0009
p (U 0663 0.658 0.0006 -0.0051 0.0006 0.66 0.0008 -0.0027 0.0008
Condition 9: Conjunctive/disjunctive Condition 11:
data. Conjunctive/compensatory data
Comparison between both model Comparison between both model
p (DU 0.269 0.245 0.0008 -0.0242 0.0014 0.239  0.0008 -0.0299 0.0017
p (U 0.419 0.405 0.0009 -0.0133 0.001 0.408 0.0007 -0.0108 0.0008
p (U 0574 0.576 0.0016 0.0019 0.0016 0.577 0.0009 0.0023 0.0009
p (U 0663 0.656 0.0008 -0.0074 0.0008 0.655 0.0008 -0.0086 0.0008
Conditions with ; defined as BetaBernoulli distributed
Condition 13: Conjunctive data Condition 14: Conjunctive data
Comparison with disjunctive model Comparison with disjunctive model
p (DU 0.269 0.27 0.0007 0.001 0.0007 0.272  0.0004 0.0028 0.0004
p (kU 0.419 0.424 0.0005 0.005 0.0005 0.405 0.0008 -0.0133 0.000
p (3U 0.574 0.57 0.0021 -0.0043 0.0021 0.582 0.002 0.0081 0.00D
p (U 0663 0.653 0.0018 -0.01 0.0019 0.696  0.0023 0.0332 0.0033
Condition 17: Disjunctive data. Condition 19: Compensatory data
Comparison with conjunctive model Comparison with conjunctive model
p()U 0.269 0.585 0.0813 0.3161 0.1796 0.297 0.0181 0.028 0.0185
p (kU 0419 0.647 0.0353 0.228 0.0865 0.438 0.0085 0.0189 0.0087
p (U 0574 0.583 0.0147 0.0082 0.0145 0.585 0.0013 0.0108 0.0014
p (U 0663 0.727 0.0069 0.0641 0.0109 0.66 0.0019 -0.0029 0.0019
Condition 21: Conjunctive/disjunctive Condition 23:
data. Conjunctive/compensatory data
Comparison between both models Comparison between both models
p ()U 0.269 0.258 0.0008 -0.0107 0.0009 0.252  0.0007 -0.0166 0.0010
p (U 0419 0.401 0.0011 -0.0173 0.0014 0.409 0.0012 -0.0101 0.0012
p (U 0574 0.581 0.0023 0.007 0.0023 0.58 0.0011 0.0056 0.0011
p ()U 0663 0.662 0.0008 -0.0016 0.0008 0.656 0.001 -0.0068 0.0011

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is
the estimatobias across replications, MSE is the estimator mean squared error. 40,000 iterations and 23,000 burn
ins were used with OpenBUGS and R.
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TABLE 9. Latent class size estimateshigher order models

Par Value  APM Var Bias MSE APM Var Bias MSE
Conditionsw i t ;llefined as Uniform distributed
Condition 3: Conjunctive data. Condition 4: Conjunctive data.
Comparlso;(\;\gtgll disjunctive Comparison with disjunctive model
p (U 0.387 0.390 0.0004 0.0029 0.0004 0.384 0.0005 -0.0026 0.0005
p (kU 0.462 0.466 0.0004 0.0045 0.0004 0.461 0.0003 -0.001 0.0003
p (U 0.534 0.546 0.0005 0.0122 0.0006 0.541 0.0008 0.0068 0.0009
p (U 0577 0593 0.0009 0.0162 0.0011 0.605 0.0013 0.028 0.0021
Condition 6: Disjunctive data. Condition 8: Compensatorydata.
Comparison with conjunctive c . . . .
model omparison with conjunctive model
p (DU 0.387 0.376 0.0011 -0.0108 0.0012 0.400 0.0005 0.0132 0.0007
p (U 0.462 0.453 0.0009 -0.0081 0.0009 0.462 0.0006 0.0008 0.0006
p (U 0.534 0515 0.0008 -0.0181 0.0011 0.528 0.0004 -0.0054 0.0004
p (U 0577 0566 0.0006 -0.0107 0.0007 0.575 0.0004 -0.0018 0.0004
Condition 10: Condition 12:
Conjunctive/disjunctive data. Conjunctive/compensatory data
Comparison between both models Comparison betweerboth models
p (U 0.387 0.384 0.0005 -0.00D 0.0005 0.380 0.0003 -0.0065 0.0003
p (kU 0.462 0.461 0.0003 -0.0001 0.0003 0.454 0.0003 -0.0078 0.0003
p (U 0.534 0531 0.0006 -0.00 0.0006 0.534 0.0005 0.0003 0.0005
p (U 0577 0574 0.0004 -0.0027 0.0004 0.568 0.0003 -0.0083 0.0004
Conditions with U; defined as BetaBernoulli distributed
Condition 15: Conjunctive data Condition 16: Conjunctive data
Compar|sorr:1c\;\gt§|.d|51unctlve Comparison with disjunctive model
p ()U 0.387 0.386 0.0005 -0.0011 0.0005 0.389 0.0004 0.0021 0.0004
p (U 0.462 0.436 0.000 -0.0249 0.0016 0.455 0.0005 -0.000 0.0006
p (U 0.534 0.485 0.0037 -0.0481 0.0059 0.515 0.0019 -0.0188 0.0022
p (U 0.577 0.494 0.0055 -0.08D 0.0121 0.621 0.0052 0.0442 0.000
Condition 18: Disjunctive data Condition 20: Compensatory data
Comparison with conjunctive C . . . .
model. omparison with conjunctive model
p (YU 0.387 0576 0.0118 0.1897 0.0476 0.396 0.0013 0.009 0.0014
p (U 0.462 0.619 0.0049 0.1578 0.0297 0.458 0.0008 -0.0036 0.0008
p (U 0.534 0.539 0.0036 0.0051 0.0036 0.523 0.0006 -0.0106 0.0007
p (U 0.577 0.608 0.0016 0.0313 0.0026 0.568 0.0005 -0.0089 0.0006
Condition 22: Condition 24:
Conjunctive/disjunctive data. Conjunctive/compensatory data
Comparison between both models Comparison between both models
p (U 0.387 0.389 0.0004 0.0024 0.0004 0.391 0.0004 0.0045 0.0004
p (kU 0.462 0.47 0.0005 0.0082 0.0005 0.467 0.0004 0.00® 0.0004
p (U 0.534 0546 0.00D 0.0121 0.0021 0.539 0.0004 0.0052 0.0005
p (U 0.577 0.576 0.0004 -0.0007 0.0003 0.578 0.0005 0.0015 0.0004

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is
the estimator biaacross replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn

ins were used with OpenBUGS and R.
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Table 10 presentssummaryof the parameter recovefgr theskill-level hyperparameter
by parameter in conditions with independent skiesults show a satisfactory parameter
recovery among most conditions; most average posterior means are very clogmputhion
parameter value and show very small estimate varidmgeneral, condiins with Uniform
distributed variableg show smaller bias and MSE compared to the equivalent conditions in
which istj is defined as BetBernoulli distributed.Again, condition 17 had the worst parameter
recovery performance showing the high valuekia$ and MSE reported for the
hyperparametets;, by, andb,.

Parameter recovery statistics for the higher order paranagtansib, are provided for
those conditions with data generated from a higher order model. Tables 11 and 12 describe the
measures of parameter recovery for conditions with Uniform andB=tzoulli distributed,
respectively.

Consistently, an average negatbias is obtained for all slope paramet&racross the
six conditions presented in Table 11, indicating that the true correlation among thé s&itids
to be undervalued by the model. In general, the smallest values for estimate bias and MSE for the
ax are observed in condition 8, in which data are generated using a compensatory model, while
the largest bias and MSE are found when the data are generated using a disjunctive model (i.e.,
in condition 6). Average estimate variance fordhparameters arvery similar across

conditions.
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TABLE 10. Higher order parameter estimates for models with independent skills.

Par Value APM Var Bias MSE APM Var Bias MSE
Conditions with U defined as Uniform distributed
Cond. 1: Conjunctive data. Cond.2: Conjunctive data.
Comparison with disjunctive model. Comparison with disjunctive model.
b, -1 -1.039 0.0162 -0.0395 0.0174 -1.084 0.0174 -0.0843 0.0242
b, -0.328 -0.361 0.0103 -0.0325 0.0111 -0.380 0.0122 -0.0524 0.0147
bs 0.3 0.281 0.0142 -0.0186 0.0143 0.254 0.0193 -0.0463 0.0211
b, 0.678 0.723 0.0238 0.0446 0.0253 0.717 0.0222 0.0386 0.0232
Cond.5: Disjunctive data. Cond.7: Compensatory data.
Comparison with conjunctive model. Comparison with conjunctive model.
b, -1 -1.082 0.0367 -0.0816 0.0426 -1.058 0.0215 -0.0585 0.0245
b, -0.328 -0.352 0.0167 -0.0241 0.0169 -0.357 0.0193 -0.0293 0.0198
bs 0.3 0.285 0.0182 -0.0149 0.0181 0.288 0.0162 -0.0115 0.0160
b, 0.678 0.659 0.0121 -0.0189 0.0123 0.670 0.0156 -0.0081 0.0154
Cond.9: Conjunctive/disjunctive data. Cond.11: Conjunctive/compensatory data
Comparison between both models. Comparison between both models.
b, -1 -1.141  0.0232 -0.1411 0.0427 -1.172 0.0257 -0.1716 0.0546
b, -0.328 -0.386 0.0151 -0.0581 0.0182 -0.375 0.0124 -0.0472 0.0144
bs 0.3 0.311 0.0271 0.0115 0.0267 0.312 0.0159 0.0120 0.0157
b, 0.678 0.650 0.0158 -0.0280 0.0163 0.645 0.0151 -0.0330 0.0159
Conditions with U; defined as BetaBernoulli distributed
Cond.13: Conjunctive data. Cond.14: Conjunctive data.
Comparison with disjunctive model. Comparison with disjunctive model.
b, -1 -1.003 0.0185 -0.0031 0.0182 -0.993 0.0104 0.0075 0.0103
b, -0.328 -0.309 0.0086 0.0189 0.0088 -0.385 0.0145 -0.0575 0.0176
bs 0.3 0.287 0.0370 -0.0135 0.0365 0.338 0.0353 0.0382 0.0361
b, 0.678 0.643 0.0375 -0.0349 0.0380 0.849 0.0554 0.1707 0.0835
Cond.17: Disjunctive data. Cond.19: Compensatory data.
Comparison with conjunctive model. Comparison with conjunctive model.
b, -1 0.335 0.8470 1.1646 1.4080 -0.861 0.5429 0.1393 0.5515
b, -0.328 0.724 0.8279 1.0522 1.9186 -0.241 0.1859 0.0875 0.1899
bs 0.3 0.373 0.3369 0.0733 0.3355 0.347 0.0221 0.0475 0.0239
b, 0.678 1.054 0.3005 0.3760 0.4358 0.677 0.0511 -0.0014 0.0501
Cond.21: Conjunctive/disjunctive data. Cond.23: Conjunctive/compensatory data
Comparison between both models. Comparison between both models.
b, -1 -1.068 0.0236 -0.0679 0.0277 -1.098 0.0218 -0.0981 0.0310
b, -0.328 -0.403 0.0192 -0.0752 0.0244 -0.373 0.0201 -0.0448 0.0217
bs 0.3 0.334 0.0410 0.0337 0.0413 0.326 0.0182 0.0260 0.0186
b, 0.678 0.676 0.0167 -0.0023 0.0164 0.654 0.0205 -0.0243 0.0207

Note: Par is the parameter in the model, APM is the average posterior mean across conditiotise \atimator

variance across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error.

40,000 iterations and 20,000 btins were used with OpenBUGS and R.
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TABLE11 Hypemparameter estimates fbigher ordermodelswith Uniform distributed},.

Par Value APM Var Bias MSE APM Var Bias MSE
Conditions with U; defined as Uniform distributed
Cond.3: Conjunctive data Cond.4: Conjunctive data
Comparison with disjunctive model Comparison with disjunctive model
=Y 3 2786 0.066 -0.2137 0.1103 2.813 0.0624  -0.1864  0.0959
a 3 2.707 0.0729 -0.2924 0.1569 2.72 0.0904  -0.2798  0.1669
a3 3 2.62 0.0717 -0.38 0.2147 2.615 0.1058 -0.3842  0.2512
N 3 2.44 0.097 -0.5599 0.4085 2.457 0.0999 -0.543 0.3927
b, -1 -0.936 0.0366 0.0638 0.04 -0.988  0.0404 0.0114 0.0397
b, -0.328 -0.279 0.031  0.0488 0.0328 -0.32 0.0205 0.0079 0.0202
b3 0.3 0.363 0.03 0.0634 0.0334 0.313 0.0457 0.0135 0.0449
by, 0678 0.695 0.0403 0.0176 0.0398 0.791 0.0631 0.113 0.0746
Cond.6: Disjunctive data Cond.8: Compensatory data
Comparison with conjunctive model Comparison with conjunctive model
a 3 2.64 0.0621 -0.3594 0.19 2.815 0.1025 -0.1843 0.1344
a 3 2.66 0.0892 -0.3399 0.2029 2.801 0.0661  -0.1986  0.1043
a3 3 2539 0.1142 -0.4603 0.3238 2.701 0.0642  -0.2988  0.1522
y 3 2.547 0.0749 -0.4521 0.2778 2.814 0.096 -0.1852  0.1284
b, -1 -0.991 0.0681  0.009 0.0668 -0.845  0.0347 0.1541 0.0578
b, -0.328 -0.347 0.0506 -0.019 0.0499 -0.306  0.0386 0.022 0.0384
bz 0.3 0.148 0.0426 -0.1514 0.0647 0.244 0.028 -0.0559  0.0305
by, 0.678 0541 0.0381 -0.1365 0.056 0.651 0.0342  -0.0263  0.0342
Cond.10: Conjunctive/disjunctive data Cond.12: Conjunctive/compensatory data
Comparison between both models Comparison between both models
a 3 2.7 0.0639 -0.2996 0.1524 2.629 0.0635 -0.3706  0.1995
a 3 2.706 0.1028 -0.2934 0.1869 2.792 0.0906  -0.2072  0.1318
ag 3 2.699 0.0715 -0.3008 0.1605 2.803 0.0966  -0.1963  0.1332
ay 3 2.581 0.101 -0.4186 0.2742 2.703 0.0749 -0.297 0.1616
b, -1 -0.963 0.0434 0.0362 0.0438 -0.977  0.0258 0.0221 0.0257
b, -0.328 -0.305 0.0196 0.0225 0.0197 -0.384 0.0185 -0.0561  0.0213
b3 0.3 0.258 0.0395 -0.0411 0.0404 0.291 0.0346  -0.0089  0.0339
b, 0678 0599 0.0281 -0.0785 0.0337 0.57 0.0241  -0.1075 0.0352

Note:Par is the parameter in the mod&PM is the average posterior mean across conditions, Var is the estimator
variance across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error.
40,000 iterations and 20,000 btins were used with OpenBUGHd R.

Conversely, in the case of the intercept paramétetbe smallest values for estimate
bias are observed in condition @@vhich includes a mixture of conjunctive and disjunctive
itemsi and the largest in condition 6, mainly due to the highly biased estimates for the
parameterds; andb,. In the case ofdble 11, no condition exhibited particularly high values for

estimate variance or MSE.
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Parameter recovery results in Table 12, corresponding to higher order models with Beta

Bernoulli distributed variables, are similar to those in Table 11, with exception of condition 18

in which thepopulationparameter values were poorly recovered.

TABLE12. Hypemparameter estimates for higher order modeith BetaBer noul | i .di
Par Value APM Var Bias MSE APM Var Bias MSE
Conditions with U; defined as BetaBernoulli distributed
Cond.15: Conjunctive data Cond.16: Conjunctive data
Comparison with disjunctive model Comparison with disjunctive model
& 3 2.6439 0.0689 -0.338 0.1814 27651  0.0827 -0.2349 0.1362
a 3 3.2552 0.3854 0.2552 0.4428 29141 0.1505 -0.0859 0.1548
a3 3 3.1537 0.4304 0.148 0.4437 29203 0.1377 -0.0797 0.1414
ay 3 3.6965 0.7971 0.6887 1.2554 24556  0.3856 -0.5444  0.6742
b, -1 -0.9202 0.0353 0.0751 0.0402 -0.9398 0.0501 0.0602  0.0527
b, -0.328 -0.6104 0.1235 -0.2736 0.1958 -0.3962 0.0505 -0.0682 0.0541
bs 0.3 -0.1845 0.3557 -0.4746 0.5738 0.1119 0.1352 -0.1881 0.1679
b, 0.678 -0.1573 0.4995 -0.8357 1.1879 0.8928 0.1648 0.2148 0.2076
Cond.18: Disjunctive data. Cond.20: Compensatory data
Comparison with conjunctive model Comparison with conjunctive model
a 3 43593 0.6639 1.3593 2.4983 2.8649 0.1103 -0.1351 0.1263
a 3 44352 0.351 1.4352 2.4038 2.8206  0.0953 -0.1794 0.1256
a3 3 2.727 0.3636 -0.273 0.4309 2.776 0.061 -0.224 0.11
y 3 42596 0.8965 1.2596 2.4651 27166  0.1125 -0.2834  0.1906
b, -1 1.018 1.1594 2.018 5.2084 -0.882 0.0818 0.118 0.094
b, -0.328 1.4976 0.7093 1.8256 4.0281 -0.3356  0.0518 -0.0076  0.0509
bs 0.3 0.3236 0.2363 0.0236 0.2321 0.2083 0.0421 -0.0917 0.0497
b, 0678 12673 0.3137 0.5893 0.6547 0.5823  0.0448 -0.0957 0.053
Cond.22: Conjunctive/disjunctive data Cond.24: Conjunctive/compensatory data
Comparison between both models Comparison between both models
a 3 2.6825 0.0729 -0.3175 0.1723 2.6608 0.0667 -0.3392 0.1804
a 3 2.8292 0.1202 -0.1708 0.1469 29437 0.0965 -0.0563 0.0977
ag 3 2.817 0.1088 -0.183 0.1401 27668  0.0559 -0.2332 0.1092
ay 3 2.7528 0.0958 -0.2472 0.155 27133 0.0942 -0.2867 0.1746
b, -1 -0.9145 0.0241 0.0855 0.0309 -0.8908 0.0284  0.1092  0.0398
b, -0.328 -0.2485 0.032 0.0795 0.0377 -0.2845 0.0303 0.0435 0.0316
bs 0.3 0.4064 0.1662 0.1064 0.1742 0.3325 0.034 0.0325 0.0344
b, 0.678 0.6445 0.0004 -0.0335 0.0305 0.6543 0.035 -0.0237  0.0349

stri

Note: Par is the parameter in the model, APM is the average posterior mean across conditions, Var is the estimator

variance across replications, Bias is the estimator bias across replications, MSE is the estimatguanedrrror.

40,000 iterations and 20,000 btins were used with OpenBUGS and R.
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5.1.3 Item parameter estimates

Results for the item detectiahand the item false alarfpestimates are presented in
Table 13 for those conditions with simulated conjunctive items and independent skills,
contrasting conjunctive versus disjunctive item condensation rules. Detailed results for the other
twentytwo conditions are included in Appdix C.

It is important to point out that for both conditions with BB&rnoulli distributed and
Uniform distributed variableg, the fitted model is not the same as the model used to generate
the data because the fitted model is a mixture. Titera,parameter recoverng not exactWith
respect to the detection parametegstimatesthe conditiorwith BetaBernoulli distributed
variabletj shows smaller average values for tabsolutebias and MSE compared tioe
conditionwith Uniform distributed. In the latter casej actsasaweightof the two item
response functions that are being contrasted in the condensation rule identification poocess,
the item parameter estimates obtained are biased because of these weighting cenijpoisent
it can be concluded that the detection parantetecovery is better whefj is restricted to only
take values of zero or one.

Estimate variance, bias, and MSE consistently increase as the item measures more skills
(e.g., items 11 to 15) in the conditiaith the BetaBernoulli distributedi. Thisresult is
explainedoy the fact thatunlike the false alarm paramefgithe detectioparameted, interacts
with the skillsU in the reparametrized models; thus, an accurate estimatipdepends on how
well the skl profile is estimated for each examinee.

Regarding theecovery of thdalse alarm parametgr Table13 shows that smaller
average variance, absolute bias, and MSE are found in the condition witBdésataulli

distributed variablgtl;. Once againthe Uniform distributedj produces more biaséalse alarm
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estimates because its weighting noléheitem response functionk contrast to the results
found for the detection parametgestimates, the bias and MSE of the false afaparameter
estimates do not increase or decrease as the number of skills measured by the item increases.

As discussed in the results corresponding to Table 7, items six and eleven show the most
flaws in their condensation rule identification across conditiohhese two items also showed
the largest average values of bias and MSE for the false fipanameter in the condition with
the BetaBernoulli distributed. Based on these results, it can be concluded that the Beta
Bernoulli distributed} yields less biased item parameter estimates in general, and flaws in the
recovery of item parameters are especially noticeable when the condensation rule is not correctly
identified.

The results for the two conditions presented in Table 13 are consistent witbfrtiasse
summarized in Appendix C. However, some exceptions were observed as indicated in Table 14
corresponding to conditions 5 and 17, where item parameter recovery shows a different trend
when data are generated from a disjunctive model. In thos&ioosdthe model with Uniform
distributedd; produce false alarm rate and detection parameters with smaller absolute bias and
MSE compared to the equivalent model with BB&noulli distributed}. Furthermore, those
conditions with disjunctive generatddta did not show a pattern of increasing or decreasing bias

and MSE as the number of skills linked to a given item increased.

5.2 Additional results on the model parameter estimation

5.2.1 Impact of nonrinformative priors in condensation rule detection
Results for the condensation rule identification in the three conditions with non

informative priors are presented in Table 15. In these three conditions, Normal prior distributions
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TABLE13. Item detection and false alarm parameté&snditions with simlated conjunctive
items and independent skills, contrasting conjunctive versus disjunctive item condensation rules

Condition 1. Uniform distributed U; Condition 13. Beta-Bernoulli distributed U
Par Value APM Var Bias MSE APM Var Bias MSE
d 5 5.626 0.249 0.626 0.636 4.989 0.329 -0.011  0.322
d 4 5011 0.251 1.011 1.268 4.197 0.299 0.197 0.332
ds 3 4323 0178 1.323 1.925 3.037 0.300 0.037 0.295
ds 2 3.731 0103 1.731 3.099 1.945 0.144 -0.055  0.144
ds 1 1.756 0.183 0.756 0.752 1.058 0.080 0.058 0.082
ds 1 1.639 0.142 0.639 0.547 1.663 0.143 0.663 0.580
d; 2 2,762 0.173 0.762 0.751 2.102 0.129 0.102 0.137
ds 3 4.075 0.203 1.075 1.355 2.988 0.071 -0.012  0.070
do 4 5.050 0.469  1.050 1.562 4.273 0.447 0.273 0.513
dio S 5437 0.342 0.437 0.526 4.235 1.700 -0.765  2.251
s 1 1.675 0.120 0.675 0.573 1.689 0.091 0.689 0.563
di 5 6.178 0.373 1178  1.753 5.371 0.659 0.371  0.783
dhs 4 5273 0476 1.273 2.088 4.296 0.559 0.296 0.636
o 2 3.089 0.195 1.089 1.378 2.046 0.111 0.046 0.111
tis 3 4276 0519 1.276 2.138 3.477 1.060 0.477 1.266
f1 -4 -4450 0.180 -0.450 0.379 -4.019 0.314 -0.019  0.308
fa -3 -3.717  0.220 -0.717  0.730 -3.204 0.268 -0.204  0.304
f3 -2 -2.886 0.159 -0.886  0.942 -2.053 0.269 -0.053  0.267
fs -1 -1.905 0.107 -0.905 0.924 -0.959 0.099 0.041 0.099
fs 0 0.176 1.720 0.176 1.716 0.011 0.005 0.011 0.005
fe -4 -3.560 0.498 0.440 0.682 -2.437 1.399 1.563 3.815
f7 -3 -3.439 0.364 -0.439 0.549 -3.087 0.045 -0.087  0.052
fg -2 -2500 0.557 -0.500 0.795 -1.995 0.102 0.005 0.100
fo -1 -1.339 0.222 -0.339 0.333 -1.012 0.014 -0.012  0.013
fio 0 -0.238 0.201 -0.238 0.254 0.029 0.012 0.029 0.012
f1a -4 -3.572 0.325 0.428 0.502 -2.770 1.150 1.230 2.639
fi2 -3 -3.657 0.058 -0.657  0.488 -2.995 0.042 0.005 0.041
fis -2 -2.537  0.201 -0.537 0.485 -1.993 0.018 0.007 0.017
fi4 -1 -1.520 1501 -0.520 1.742 -0.999 0.007 0.001 0.007
fis 0 -0.411 1.046 -0.411  1.195 0.008 0.004 0.008 0.004

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is
the estimator biagcross replications, MSE is the estimator mean squared 40r0600 iterations and 20,000 burn
ins were used with OpenBUGS and R.
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TABLE 14. Item detection and false alarm paramet@onditions with simulated disjunctive
items and independent skiltyntrasting conjunctive versus disjunctive item condensation rules

Condition 5. Uniform distributed U; Condition 17. Beta-Bernoulli distributed U
Par  Value  APM Var Bias MSE APM Var Bias MSE
ds 5 5662 0.390 0.662 0.820 3.176 2.602 -1.824 5.879
d 4 4929 0222 0929 1.081 3.669 0.544  -0.331 0.643
ds 3 4403 0.109 1.403 2.074 3.184 0.780  0.184 0.799
da 2 3.679 0.079 1679 2.896 2.105 0.335  0.105 0.339
ds 1 1.855 0.087 0.855 0.817 1.749 0.566  1.749 3.615
d 1 1602 0.220 0.602 0.579 1.800 0.199  0.800 0.835
d; 2 2.635 0.302 0.635 0.699 2.508 1.133  0.508 1.368
ds 3 3.746 0.221 0.746 0.774 3.159 0.754  0.159 0.764
do 4 5174 0114 1174 1.490 3.134 0.682  -0.866 1.418
dio S 6.376  0.446 1.376  2.330 5.437 1.330 0.437 1.494
di1 1 1.730 0.238 0.730 0.765 1.754 0.129  0.754 0.695
dio 5 5940 0.317 0940 1.195 3.475 1.740 -1.525 4.032
tis 4 5.048 0.228 1.048 1.323 4.036 1.403  0.036 1.376
dig 2 2943 0.196 0943 1.081 2.720 1.166  0.720 1.660
ths 3 4345 0123 1.345 1.930 3.624 1.382  0.624 1.743
fy -4 -4.237 0.230 -0.237 0.281 -3.383 0.679  0.617 1.046
fa -3 -3.634 0.126 -0.634 0.526 -3.469 0.529  -0.469 0.738
fs -2 -2.957 0.103 -0.957 1.017 -1.999 0.346  0.001 0.339
fa -1 -1.836  0.043 -0.836 0.740 -1.271 0.452 -0.271 0.516
fs 0 -0.031 0.970 -0.031 0.952 -0.271 0.324 -0.271 0.391
fe -4 -3.401 0550 0.599 0.898 -2.659 1.747  1.341 3.510
fz -3 -3.252 0.725 -0.252 0.774 -2.355  3.738  0.645 4.080
fg -2 -2.152  0.312 -0.152  0.329 -1.785  2.243  0.215 2.244
fo -1 -1.116 0.163 -0.116 0.173 -0.381 0.259  0.619 0.637
fio 0 0.049 0.085 0.049 0.086 -0.518 1.120 -0.518 1.367
f11 -4 -3.463 0916 0537 1.186 -2.573 1.279  1.427 3.290
fio -3 -3.143  0.486 -0.143  0.497 -1.125 2364  1.875 5.835
fis -2 -2.250 0.435 -0.250 0.489 -1.930 2.065  0.070 2.029
fia -1 -0.884 1324 0.116 1311 -1.616 1.443  -0.616 1.793
fis 0 0.108 0.280 0.108  0.286 -0.768 1.305 -0.768 1.869

Note: APM is the average posterior mean across conditions, Var is the estimator varianaeplicatens, Bias is
the estimator bias across replications, MSE is the estimator mean square4Dedil.iterations and 20,000 burn
ins were used with OpenBUGS and R.

N(O, 1000) for the item parametdysandd; are included in the model; contrary to the results
obtained in Table 7in which the item parametefsandd; had prior distributions N(O, 10)the
noninformative priors had a negative impact in the condensation rule identification and model

parameterecovery The average proportion of correctly identified condensation rule$\945s
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in condition 250.186 in condition 26and 0.668 in condition 27 h€results ofcondition 25are
deceiving without the information about the item parameter recoverghwlasinconsistent
with the results presented in the previous sectibhgs, when notinformative priors are
included in the modet]; tends to estimate valuésked to conjunctie models regardless of the
dataweregenerated from a compensatory modelditional results on the parameter recovery

for the item parameters and latent class sizethése threeonditions are included the

Appendix C.
TABLE 15. Proportion of correctly identified item condensation rulemditions with nofinformative
riors
Data Conjunctive : Compensatory Mixed conjunctive
Comparison with vs Compensatory vs Conjunctive and compensatory
Skills Independent Independent Independent
Condition 25 26 27
Parameter Prop. Prop. Prop.

Us 0.90 0.05 1.00
Us 0.85 0.05 0.00
Uiy 0.85 0.15 1.00
Ug 0.85 0.20 0.05
U 1.00 0.15 0.95
tho 0.95 0.75 0.75
Uiy 1.00 0.00 1.00
Uho 1.00 0.30 0.6
Uss 1.00 0.15 1.00
Uha 1.00 0.10 0.00
Uizs 1.00 0.15 1.00

Mean 0.945 0.186 0.668

Note: Prop. is the proportion of correctly identified iteandensation rules; 40,000 iterations and 20,000-imsrwere used

with OpenBUGS and RConditions 2526, and 27are equivalent to conditions 2, and 11in Table 7, respectivelyn mixed
condensation rule conditions conditions, the asteerisksk mark 0
indicates the items are either disjunctive or compensatory.

These results show the importance of the prior tistion in the model estimation.
Informative prior distributions, obtained either from definitions of the domain of the random

variables in the model or additional information based on prior data, produced an effective
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identification of the condensation euland a good recovery of the model parameters.- Non
informative priors generated aberrant results for the model parameter estimates, including the

values forti used for the condensation rule identification.

5.2.2 Item parameter estimates conditional o

Results for conditions 1 to 24 indicatiétt some items (e.g., items six and eleven) were
prone to be incorrectly identified with their corresponding condensation rule regardless of the
distribution defined fotj, the type of model used to generate the data, the relationship among
skills, or the contrasted models in the condensation rule identification. Furthermore, it was
observed that item parameters tended to show a better recovery in conditiofslefitiedas
BetaBernoulli distributed. Thus, additional plots were generated for two items within the same
data set, one item correctly identified with its condensation rule while the other item was
incorrectly identified, in order to further recognize the impmdche BetaBernoulli distributed
variabletj in the estimation of the item parameters.

Figures 1 and 2 includeace and density plofer items five and eleven, respectively.
Both itemsbelong to the sam@ata set generated from a conjunctive medth independent
skills; hencefj has to be equal to one in both cases in order to identify the conjunctive
relationship among the skillBoth figures include five trace plots and five density plots that
correspond to the iterative estimationlipff,, ds, f,, andd,; 40,000 iterations were done and
20,000 burrins were discarded before creating the trace and density dleestical line is
included in the density plots to indicate fhagulationparameter value for the false alarm and

detection paramets.
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In the case of Figurerklated to item fivet; consistentlytook a value of one throughout
the iterations, indicating that the item was correctly identified after theibufiie trace plots of
f, andds, the correct item parameters of the conjurectnodel, display a pattern linked to a
correct estimation rather than aberrant outcomes. The density ptonadil; show that the
estimated values tend to concentrated in the neighborhood pdpléationparameter values.
Conversely, the trace plots f, andd, show an erratic pattern, resulting in bimodal density plots
with estimated values not close to their real parameter values.

Figure 2 corresponds to item eleven. The trace platsffows several shifts from zero to
one and vice versa; as a result, the histograinref/eals that this variable tended to take values
of zero in a higher frequency. This incorrect identification of the condensation rule has an impact
in the item paramets, as shown in the subsequent plots presented in Figure 2. The trace plots of
the correct and incorrect item parameferds, f,, andd, show an irregular pattern that depends
on the value taken by. The density plots for both false alarm paramedeadsfor detection
parameted; seem to be bimodal, and the four density plots show estimated values close to their

respective real parameter value.
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Figure 2 Trace plo$ and density plots for an item incorrectly identified with its
condensation rule.

Theanalyss of bothfiguresindicatethatmore effectiveestimation of the parameter

values for the corred¢tandd can be based on thgiosterior means conditional on the value
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taken byt;. Figure 3 shows again the trace plot for fth@ndd, parametersorresponding to

item eleven, as well as density plots with values condition&] being equal to one. Compared

to the equivalent dertgiplots in Figure 2, the conditional density plots in Figure 3 show more

exact estimate values in theinity of thepopulationparameter valuéAppendix Ccontains

additional tables on the item parameter recovery conditiongbdmes oft linked to tre correct

underlying condensation rufer conditions 130 24 as shown in Appendix C, item parameter

recovery forf; andd; improves for the multidimensional items when the additional information of

U is taken into account.
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5.3 Results of studies with empirical data

5.31 Fraction subtraction data

The fraction subtraction data set was analyzed by contrasting models with conjunctive
versus disjunctive condensation rules, as well as models with conjunctive versus compensatory
condensation rules. Both analyses were performed twice to analyze thenpaderof the latent
variablet; when the skills are assumed to be independent or conditionally independent given a
higher order continuous varialdeResults corresponding to models with Uniform distributed
are included in this section; those for madeith BetaBernoulli distributed can be found in
Appendix C.

Table16 presents the posterior mean estimates of the latent vatijaRlesults are
summarized for comparing the four models among different types of condensation rules
assuming independea or correlation among the skills. Posterior means higher than 0.5 indicate
the variablaj identifies an item with a conjunctive condensation rule, otheryisentifies
items with disjunctive or compensatory condensation rule. In the case of the models comparing
between conjunctive and disjunctive condensation rules, all items are identified as being
conjunctive when skills are assumed to be independent; leowtams 5, 8, 9, and 11 are
classified as disjunctive when skills are modeled as part of a higher order model.

On the other side, men modelsn which conjunctive and compensatory condensation
rules are contrastedems 5, 9, 11, and 13 are recognizedampensatory ithe analysiswith
independent skilldn the case of a higherder modelmost items are identified as
compensatory.

While the four analyses in Tabl® provide results that, to some extent, identify different

condensation rules for theaction subtraction data séfireepatternamerit specific attentian
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first, models with independent skills tend to identify more items with conjunctive condensation
rulesascompared to models with higherder latent variables; second, thoes of the four
models deteatore conjunctive items than eithgisjunctiveor compensatory items; ayttiird,
items 2, 4, and 14dreconsistently categorized as conjunctive items in the four analyses.
Tablel17 presents the results concerning the latent clasestarates for the different
models analyzed using the fraction subtraction data set. Models assuming independence among
skills show similar latent class sizes with very small variance for the five skills measured by the
test.The values for the latent gasizes in the models with independent skills described in Table
17 are consistent with those reported in DeCarlo (20%#)g a conjunctive model. Higher order
models consistently showed latent class sizes smaller than those reported in the models with
independent skills.

TABLE16.P o st er i o rfor tivesfraction subtradiion data.

Conjunctive versusdisjunctive Conjunctive versuscompensatory

Independent Higher order Independent Higher order

PM PSD PM PSD PM PSD PM PSD
U, 0.727 0.156 0.878 0.117 0.792 0.167 0.802 0.178
Uy 0.792 0.144 0.603 0.106 0.596 0.082 0.529 0.089
Us 0.636 0.207 0.333 0.183 0.494 0.254 0.381 0.237
Us 0.842 0.132 0.810 0.134 0.841 0.141 0.367 0.240
Uy 0.851 0.112 0.810 0.119 0.872 0.099 0.480 0.196
Ug 0.799 0.130 0.408 0.144 0.623 0.243 0.133 0.111
Ug 0.833 0.121 0.408 0.116 0.257 0.161 0.192 0.136
Us0 0.809 0.137 0.570 0.1095 0.393 0.177 0.453 0.180
U1 0.804 0.128 0.374 0.123 0.274 0.175 0.203 0.149
U2 0.857 0.113 0.818 0.1249 0.784 0.130 0.184 0.135
Us3 0.779 0.148 0.541 0.1216 0.398 0.183 0.217 0.179
Uyq 0.863 0.104 0.796 0.1301 0.840 0.112 0.631 0.142
Uss 0.886 0.097 0.854 0.1064 0.894 0.091 0.187 0.147

Note: PM is the posterior mean, and PSD igpihsterior standard deviation; 40,000 iterations and 20,000ibsirn
were used with OpenBUG8old posterior means correspond to items identified as having a conjunctive
condensation rule.
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The higher order parameter estimaigandby for the fraction subtraction data are
reported in Tabld8. As presented in TablEs, the five skills measured by the fraction
subtraction test also showed a high correlation amongsillgasbased onlteir estimated higher
orderparametersCombining realts from both Table$7 and18 shows that skills with show the
highest loadingy on their higher order latent variatddi.e., O, U;, andl,) also had the highest
reduction in their latent class size estimate compared to equivalent estimates inwitbdels
independent skills.

TABLE17. Latent class size estimates for the fraction subtraction data.

Conjunctive versus disjunctive Conjunctive versus compensatory

Independent Higher order Independent Higher order

PM PSD PM PSD PM PSD PM PSD
P()U 0.783 0.021 0.727 0.024 0.739 0.025 0.623 0.019
P(U 0.957 0.018 0.679 0.031 0.971 0.016 0.744 0.019
P(3U0 0.929 0.019 0.622 0.035 0.836 0.043 0.760 0.018
P(,)U 0.661 0.027 0.574 0.034 0.764 0.038 0.479 0.021
P(s)J 0.776 0.032 0.475 0.035 0.754 0.034 0.568 0.096

Note: PM is the posterior mean, aR8D is the posterior standard deviation; 40,000 iterations and 20,00hburn
were used with OpenBUGS.

The five slope parameteag show very similar values in both the models comparing
between conjunctive and disjunctive condensation rules and thelsremhtrasting evaluating
between conjunctive and compensatory condensation rules.

Theestimates of thentercept parametets are different between the two models
presented in Tabl&8; neverthelesseach set of intercept parametarss consistent with its own
latent class size estimate reported in Tdlla~or instancehs presents a negative estimate in the
model contrasting conjunctive and disjunctive condensation mlesserespective latent class
U reports a class smaller than 0.5T@ble17; a similar pattern isbservedor by in the model
that compares conjunctive and compensatory condensation rules, whose latent class size was

equal to 0.479 iTablel7.
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Results for the false alarm and detectastimates reported in the next tables correspond
to models with a Uniform distribution for thipvariables, assuming independence among their
latent skills. Additional analyses with BeBrnoulli distributed variableg and using the
higherorder modeare included in Appendix C.

TABLE18. Higher order parameter estimates for the fraction subtraction data

Conjunctive versus disjunctive Conjunctive versus compensatory

PM PSD PM PSD
a 2.584 0.447 2.787 0.402
a 3.464 0.510 3.272 0.428
ag 3.157 0.523 3.199 0.438
=V 3.116 0.558 3.424 0.577
as 2.265 0.503 1.343 0.717
by 1.874 0.366 0.929 0.216
b, 1.753 0.381 2.397 0.357
b3 1.047 0.400 2.558 0.375
by, 0.554 0.357 -0.396 0.257
bs -0.303 0.311 0.249 0.518

Note: PM is the posterianean, and PSD is the posterior standard deviation; 40,000 iterations and 20,003 burn
were used with OpenBUGS.

Table 19 presents the results of the item parameter estimates for conditions in which
conjunctive and disjunctive models were contrasted assuming independence among the latent
skills. Consistent with the CDM reparameterization paradigm, all false alagrastainates
showed negative values, indicating low guessing for the items in this test. The item parameter
estimates produced by this model are also consistent with those reported in DeCarlo (2012).
However, some item parameter estimates reported in T@lde&l not presented low variance,
suggesting there may be some issues in the item parameter estimation.

From the fifteen items in the fraction subtraction data, only item 5 presented false alarm
and detection estimates that indicate the item is eithieg la@swered correctly because of

guessing ds = 0.230) or incorrectly due to slipping; & 0.146).
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Finally, Table 20 includes the results for the item parameter estimates when models with
conjunctive and compensatory condensation rules are comgiradar to the results in Table
16, all false alarm rate estimates were negative and all detection estimates positive.

TABLE19. Iltem detectiomnd false alarmestimates fothe fraction subtraction data.

ICR Parameter PM PSD Parameter PM PSD

d; 5.650 0.988 fi -4.646 0.988
Conjunctive d> 4.802 1.188 f, -2.869 1.899
ds 4.801 0.451 fa -1.525 0.363
Conjunctive d, 4.998 1.150 fa -2.642 1.404
Conjunctive ds 2.975 1.211 fs -1.207 1.706
Conjunctive de 5.515 1.127 fe -4.101 1.175
Conjunctive d; 5.996 0.981 f7 -3.242 0.952
Conjunctive dg 5.181 1.007 fg -2.464 1.502
Conjunctive do 5.955 1.060 fq -2.625 1.008
Conjunctive dio 5.328 1.162 fio -2.137 1.319
Conjunctive di1 5.225 1.003 fi1 -2.814 1.382
Conjunctive dio 6.225 1.055 fio -4.053 1.009
Conjunctive di3 4.717 1.118 fi3 -2.800 1.186
Conjunctive disg 5.999 0.912 f1a -4.459 1.011
Conjunctive dis 6.449 0.954 fis -4.779 1.035

Note: The table includefalse alarm and detection item parameter estimates for a modehdeéipendent skills that
compares item response functions with conjunctive versus disjunctive condensatioiCRIlisshe identified
condensation rule, PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and
20,000 bun-ins were used with OpenBUGS.

Items identified as conjunctive in Tal##®tended to show detection and false alarm rate
estimates within the range of values suggested as suitable in DeCarlo (2011). Many of the items
detected as being compensatory presented extremely small false alarm estimates with high
variance but acceptablédetection estimates.

5.3.2 Examination for the certificate of proficiency in English data

The Examination for the Certification of Proficiency in English (ECPE) was analyzed
using four models considering the relationship among the latent$Kilks.,independent or as
part of a higher order model) and the contrasting condensation rules (conjunctive versus
disjunctive condensation rules, and conjunctive versus compensatory condensation rules). As

presented in the case of the fraction subtraction degalts using Uniform distributed variables
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U are reported here; results for models with B&¢anoulli distributed variable are included

in Appendix C.
TABLEZ20. Item detection and false alarm estimates for the fraction subtraction data.
ICR Parameter PM PSD Parameter PM PSD
(o 3.754 0.421 f1 -2.628 0.403
Conjunctive d> 3.633 0.750 fo -2.265 1.172
ds 3.991 0.366 f3 -0.767 0.252
Conjunctive ds 8.215 1.481 fa -0.963 1.410
Compensatory Os.1 2.646 1.426 fg -0.269 1.816
ds.3 1.233 1.031
Conjunctive ds 4.945 0.829 fe -4.390 1.288
Conjunctive d; 5.480 0.636 f7 -3.581 1.046
Conjunctive ds 4.162 1.456 fg -2.319 2.001
Compensatory do1 5.653 1.179 fq -2.960 1.251
do.3 1.336 0.771
Compensatory dig1 6.032 1.508 fio -6.198 3.150
digs 0.449 0.676
diga 3.959 1.415
digs 1.781 0.889
Compensatory dig1 4,781 1.178 fi1 -2.751 1.330
di13 1.368 0.741
Conjunctive dio 5.768 0.845 fio -4.990 1.425
Compensatory Oi31 6.059 1.464 fi3 -6.437 2.616
diss 1.172 0.967
dias 0.991 0.901
Oiz4 2.684 1.141
Conjunctive disg 5.460 0.706 fia -5.342 1.507
Conjunctive dis 6.119 0.752 fis -5.242 1.159

Note: The table includes false alarm and detection item parameter estimates for a maddepéghdent skills that
compares item response functions with conjunctive versus compensatory condensation rules. ICR is the identified
condensation rule, PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and
20,000 lurrrins were used with OpenBUGS.

Table21includes the posterior mean estimates of the variabfesthe
multidimensional items included in the ECPE test. Equivalent to the case of the fraction
subtraction data, posterior means higher than 0.5 indicate the varidetects an item with a
conjunctive condensation rule, otherwise an item with didjue or compensatory condensation
rules is identified. Four items were consistently identified as conjunctive (i.e., items 3, 11, 16,

and 20) in the fouanalysegresented in Tabl21.
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When models with conjunctive and disjunctive condensation rule®aneaced, the
model with independent skills identifies the most items as having a conjunctive condensation
rule among their skills, with the exception of items 12, 17, and 2hthaategorized as
disjunctive When a higher ordenodel is used to identifghe underlying item condensation
rules, only items 17 and 21 are detectedigisinctiveitems.

In the analyses comparing between conjunctive and compensatory condensatioh rules, a
multidimensional itemsareidentified as being conjunctiva the modelvith independent skills
Only items 1, 7, and 21 adetectedas compensatory in the case of the higher order model.

TABLE21. Post er ijforthe BGPE datao f 0

Conjunctive versus disjunctive Conjunctive versus compensatory

Independent Higher order Independent Higher order

PM PSD PM PSD PM PSD PM PSD
Uy 0.621 0.186 0.609 0.225 0.623 0.199 0.410 0.339
Us 0.715 0.161 0.681 0.101 0.543 0.333 0.599 0.303
Uy 0.546 0.149 0.503 0.115 0.578 0.254 0.397 0.170
Uyy 0.636 0.139 0.587 0.142 0.597 0.304 0.526 0.189
Uso 0.461 0.130 0.577 0.149 0.631 0.304 0.524 0.302
Ui 0.577 0.163 0.507 0.184 0.626 0.193 0.549 0.229
Us7 0.464 0.173 0.374 0.204 0.570 0.207 0.614 0.174
U0 0.609 0.125 0.612 0.166 0.564 0.231 0.561 0.281
Upy 0.499 0.166 0.458 0.201 0.504 0.284 0.489 0.285

Note: PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 26i@90 burn
were used with OpenBUG8old posterior means correspond to items identified as having a conjunctive
condensation rule.

As shown in Table 22, estimates for the latent class sizes show different values for first
skill U, among the independent and higher order models comparing conjunctive and disjunctive
condensation rules, on one side, and models contrasting conjunctive and compensatory
condensation rules, on the other. Yet consistency in the results is observedesfivsegkill is
repeatedly estimated as the one with the smallest latent class size, and the second and third skills

show very similar latent class sizes across the four models. Analogous to the results observed for

91



the fraction subtraction data, higleeder models show latent class sizes smaller than those
estimated in the models with independent skills.

TABLE22. Latent class size estimates for the ECPE data.

Conjunctive versus disjunctive Conjunctive versus compensatory
Independent Higher order Independent Higher order
PM PSD PM PSD PM PSD PM PSD
P()U 0400 0.021 0.391  0.018 0.603 0.018 0.511 0.014
P(xU0 0.611 0.076 0.545 0.032 0.715 0.059 0.569 0.025
P(sU 0695 0.016 0.662  0.014 0.692 0.015 0.635 0.012

Note: PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 26890 burn
were used with OpenBUGS.

Table23includes the estimates of the higher order skill paramatensdby for models
comparing between conjunctive and disjunctive condensation rules, and models contrasting
conjunctive and compensatory condensation rules. In both analyses, trekillseeeasured by
the testarehighly correlated based on thestimates of therespectivdoadings ax with the
higher order variabld. In the case ofhe intercept parameteis showsparticularlydifferent
estimatesn the two models presented in Tal#8. On the other siddy, andbs; showmore
correspondence in both models.

Consistent with the approach used in the fraction subtraction data, results for the ECPE
item parameter estimates reported in the next tables corregporatiels with a Uniform
distribution for thelj variables assuming independence among their latent skills. Additional
analyses can be found in the section corresponding to Appendix C.

Table 24 summarizes the results of the item parameter estimateaddrars
comparing conjunctive and disjunctive models. As show in Table 24, detection parameter
estimates are within the range of values observed by DeCarlo (2011) using empirical data. The
detection estimates show in general small variance with excegittbose items linked to more

than one latent skill (i.e., the items that were tested in terms of their underlying condensation
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rule). Results for the false alarm rate estimates show that many items (e.g., items 1, 2, 5, and so
on) present values substatliyy above zero, indicating that many of them are being responded to
by guessing rather than through mastery of the latent skills.

TABLE23. Higher order parameter estimates for the ECPE data

Conjunctive versus disjunctive Conjunctive versus compensatory

PM PSD PM PSD
a 2.832 0.384 3.759 0.454
& 3.795 0.487 3.642 0.468
ag 3.404 0.423 4.088 0.464
by -0.939 0.201 0.093 0.173
b, 0.470 0.355 0.698 0.283
bs 1.612 0.234 1.537 0.201

Note: PM is the posterior mean, and PSD is the post&dodard deviation; 40,000 iterations and 20,000-nsn
were used with OpenBUGS.

Table 25 describes the item parameter estimates for models comparing between
conjunctive and compensatory condensation rules. Similar to the results reported in Table 24,
several ECPE items present positive values in their false alarrfy estenate, confirming the
prevalence of guessing in answering the test. Once again, detection parameter estimates are
located within the range of values proposed for the reparametrizéelsn(DeCarlo, 2012).

Some items show high variance in their detection and false alarm rate estimates.

5.3.3 Model fit comparison

Independent and higher order reparameterized DINA models were compared in terms of
model fit with respect to models in which some items were specified as conjunctive and others as
compensatory; the results from Tables 16 and 21 for the fraction subt@datzoand the ECPE
data, respectively, were used to define the conjunctive and compensatory items in the mixed

models. Additionally, a unidimensional twarameter logistic item response theorP2IRT)

93



model was also estimated in both data sets in dodsympare its fit with respect to the
reparameterized models.

TABLEZ24. ltem detectiomnd false alarnestimates for the ECPE data.

ICR Parameter PM PSD Parameter PM PSD
Conjunctive d; 4.142 1.602 i 0.431 1.178
— d, 1.533 0.248 f, 0.840 0.152
Conjunctive ds 2.030 0.836 fs -0.022 0.592
--- d, 1.656 0.109 fy -0.174 0.081
--- ds 2.117 0.165 fs 0.986 0.088
— ds 1.620 0.134 fo 0.844 0.085
Conjunctive d; 4.146 1.320 f, 0.086 1.190
--- dg 2.543 0.893 fg 1.260 0.172
--- do 1.171 0.104 fy 0.098 0.079
--- dio 2.143 0.164 f10 0.003 0.063
Conjunctive di; 3.030 1.012 f1q 0.099 0.765
Disjunctive A 2944  1.105 f1, 0554  1.081
--- dis 1.567 0.157 fi3 0.649 0.058
--- di4 1.258 0.121 f14 0.186 0.057
--- dis 2.144 0.159 fis 0.921 0.088
Conjunctive dis 3.204 1.147 f16 -0.036 0.815
Disjunctive dy; 2.291 0.958 f1o 2.929 1.192
--- dig 1.451 0.128 fis 0.853 0.085
--- dio 1.865 0.113 fio -0.268 0.086
Conjunctive dao 3.272 0.810 fa0 -3.414 1.099
Disjunctive doy 2.993 1.209 for 0.460 0.807
oo 2252 0124 fry -0.952  0.107
--- s 1.637 0.260 fos 0.665 0.153
--- g 1.348 0.194 fos -0.683 0.195
--- ps 1.154 0.115 fos 0.069 0.055
--- s 1.124 0.105 fos 0.128 0.080
--- dypr 1.665 0.113 for -0.898 0.068
--- g 1.794 0.127 fog 0.488 0.084

Note: The table includes false alarm and detection item parameter estimates for a model with independent skills that
compares item response functions with conjunctive versus disjunctive condensatioiCRilisstheidentified

condensation rule, PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and
20,000 burrins were used with OpenBUGS.
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TABLEZ25. Item detectiomnd false alarnestimates for the ECPE data.

ICR Parameter PM PSD Parameter PM PSD
Conjunctive di 2.110 1.223 fi -0.682 1.181
d, 1.532 0.211 f, 0.652 0.160
Conjunctive ds 1.665 1.357 fa -0.500 1.420
ds 1.651 0.112 fa -0.165 0.083
ds 2.119 0.165 fs 0.991 0.088
ds 1.671 0.138 fs 0.826 0.085
Conjunctive d; 2.270 1.282 f7 -0.484 1.205
ds 2.093 0.330 fg 1.074 0.183
do 1.230 0.103 fo 0.065 0.076
dig 1.834 0.121 fi0 -0.334 0.079
Conjunctive di1 2.096 1.318 fi1 0.567 1.019
Conjunctive di, 2.127 1.364 f1o -1.294 1.198
di3 1.366 0.126 fi3 0.414 0.074
disg 1.185 0.108 fia -0.042 0.071
dis 2.117 0.163 fis 0.937 0.086
Conjunctive dis 1.873 1.043 f16 -0.954 0.893
Conjunctive di7 1.766 1.106 fi7 3.261 1.556
dig 1.419 0.127 fig 0.873 0.084
dig 1.906 0.113 f1g -0.282 0.085
Conjunctive do 1.888 1.242 fo0 -0.978 2.303
Conjunctive (o )91 1.742 1.500 fo1 -0.287 1.177
(o 2.276 0.121 fos -0.963 0.100
Oos 1.534 0.210 fos 0.516 0.171
0oy 1.454 0.208 fou -0.912 0.217
Oos 0.969 0.105 fos5 -0.074 0.070
e 1.120 0.103 fog 0.133 0.077
dyy 1.656 0.124 fo7 -1.267 0.099
dog 1.808 0.125 fog 0.490 0.082

Note: The table includes false alarm and detection item parameter estimates for a model with independent skills that
compares item response functions with conjunctive versus compensatory condensatit@Rutethe identified
condensation rule, PM is the pesor mean, and PSD is the posterior standard deviation; 40,000 iterations and
20,000 burrns were used with OpenBUGS.

All the models weraisingLatent Gold V.5.1 (Vermunt, 8agidson, 2005) using
posterior mode estimation in a latent class regression framework. Bayes constants were set equal
to unity in order to obtain comparable maximum likelihood estimates among models. Table 26
summarizes the model fit measures in termsushber of parameters estimated,-ldglihood,
Akaike information criterion (AIC), and Bayesian information criterion (BIC).

In the case of the fraction subtraction data set, a higher order model including conjunctive

and additive items showed the bftsin terms of loglikelihood and AIC, and the-BPL IRT
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model presented the best fit in terms of BIC. The reparametrized DINA model with independent
skills showed the highest values for AIC and BIC among the five models estimatedPThe 2
model shows thbest fit in the case of the ECPE data set, followed by the higher order model
with reparametrized conjunctive and compensatory items.

TABLE 26. Model fit with empirical data

Skills Model Number of parameters LL AIC BIC
Fraction subtraction data
Independent R-DINA 30 -3890.61 7841.211 7969.735
Independent  R-DINA / Additive 39 -3799.88 7677.769 7844.85
Higher Order R-DINA 40 -3460.35 7000.695 7172.06
Higher Order  R-DINA / Additive 61 -3412.37 6946.732 7208.064
2-PL IRT 30 -3451.0 6963.41  7091.93
ECPE data
Independent DINA 56 -43360.4 86832.88 87167.76
Higher Order DINA 62 -42851.3 85826.62 86197.39
Higher Order  R-DINA / Additive 65 -42823.2 85776.49 86165.19
2-PL IRT 56 -42546.7 85205.33 85540.21

Note:LL stands for loglikelihood, AIC for Akaike information criterion, and BIC for Bayesian information
criterion.In the case of the ECPE data, the results fouthdimensionaR-parameter logistic item response theory
model(2-PL IRT) were taken from Templin and Bradshaw (20RIDINA refers to the reparametrized DINA
model (DeCarlo, 2011) with conjunctive condensation rules; Additive refers to the Additive model introduced in
Chapter 3.
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Chapter VI. Discussion and conclusions

6.1 Summary

In summary, results frortihe simulation studghowed thait is possibleto correctly
identify the underlying item condensation rullgsextending thenethodologyproposed by
DeCarlo (2011, 2013pr Q-Matrix exploration In this regard, @rrect condensatin rule
identificationconsistentlywas observed most of thatems in theconditionsexplored in this
study In sum, he studyhereproposednhanceshe researchvithin psychometrics aimed to
developguantitative methodologies tmalyzethe cognitive processes linked to performance in
standardized tests.

A detailed analysis of the results draw attentiooeidain factors have to be taken into
accounto enhance the condensation rule identificatind the recovery of model parameters
distributionassumed fothe latent variablé in the modelcondensation rule of the modeded
to produce the datas well as the independencecorrelaton among the categorical skills
measured by the test.

Moreover, it was found that additional tésatures, which were not fully addressed as
factors in the study, also had an impact in the condensation rule identification: number of skills
linked to each item, and values for the item parameters (i.e., false alarm and detection
parameters) used to geate the data. In terms of number of skills, the results seem to indicate
that better condensation rule identification is achieved for items measuring more skills.

It was also found that items generated using low false alarm and low detection parameters
values (i.e., low guess and high slip parameters values, respectively) tended to be erroneously

identified with a different condensation rule; items with such psychometric parameter values
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would undermine the model capacity to correctly identify the masfahe skills measured by
the item in real life testing situationde(la Torre, 2007; Huo & de la Torre, 2Q01Burther
research can address the impact of both factors in the item condensation rule identification.

In terms of the condensation rule idénation, the best approach is to use a model with
Uniform distributed latent variable since this methodology tended to perform better across
conditionscompared to latent variabléswith a BetaBernoulli conjugate distributiarin
generaldata sets produced usiognjunctive and disjunctivigpes of condensation rulesere
better identified using a model in whighwas allowed to randomly vary between zero and one.
Correct identification of the item condensation rule was more problemiag¢ic the data was
generated from a compensatory model. No differences were found in the proportion of correctly
identified condensation rules between models with independent skills and higher order models.

In addition, it was found thahe useof noninformative prioran the estimatiorof the
model parameters resultgdless accuratelentification of the condensation rule.this regard
one of the begtracticesn Bayesian statistics the inclusion of informative prior distributions
in order to redtgood parameter recoverne presence of implausible prior distributioms
some or all model parametaran lead to aberrant results, as observed in this dtudier
research should focus ¢ime impact ofidditionalnon-informative prior distributioa (e.g.,non
informative prior distributions fothe latent class size hyperparamegg@ndby) in the
condensation rule identification and model parameter recovery.

While the main objective of the study was the condensation rule identificatidiioral
analysis were focused on the recovery of model parameters (i.e., latent class sizes, item false
alarm parameters, and item detection parameters). Results of the simulation study showed that

parameter recoveryas also impacted by factors considerechandtudythe estimation of the
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latent variablaj as being dichotomous or allowed to vary within a given interval, the generation
of data with independent or correlated categorical skills, and the item condensation rule used to
produce the data.

The use bmodek with Uniform distributed variable§ also results effectivia
estimatingatent class sizef®r models with independent skilsd higher order models. In fact,
parameter recoveiiywhich was measured using averages of estimate posterior regarate
bias, and estimate mean squared érnoas very good in both types of moddtscontrast, the
use of a BetdBernoulli distributed for the estimation ofatent class sizdsas some limitations,
especially when the data is generated from a mwidleldisjunctive condensation rules

Neverthelessnixed results were encountered in the estimation of the item parameters.
The framework with Bet@ernoulli distributed} provided better estimates the item detection
parameters for data generated viittiependent skillsespecially when thosestimated values
are conditionabn j, taking a value linked to the correct underlying condensation Take
approach with Uniform distributej showed a good performanaeestimating the false alarm
parametem models with disjunctive andbmpensatory condensation rules.

The results from the studies using empirical data complemented the simulation study with
two assessments from the real worltleTraction sbtractiondata and thexamination for the
certificate of proficiency in English datavhichmeasuréwo very different sets of constructs
using Qmatrices with a vergistinctstructure.

The results for th&action sibtractiondata seshowedhatits items follow eithera
conjunctive or a compensatory condensation rule. These resultstimmptpmplexrelations
happeramong the skillsneasuredn this testbutthe mastery of all skills isot necessaryor all

the items in ordeto answer them correctlyinking these raglts with previous researctle la
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Torre and Lee (2013) found thepecificitemsfrom the faction subtraction data $ited modes
with conjunctiveand compensatorgondensation rulesheir results are consistent withose
usingthe item condensatiauile identification methodologgroposed hete

In addition, thdatent class sizesnd item parameter estimates obtained when the model
compared between conjunctive and disjunctive condensation ruleglavalentto those
reported in DeCarlo (2012), whestimated model parameters for the fraction subtraction data
using a conjunctive moderhe reparameterizatidrameworkproposed in DeCarlo (2011, 2012)
wasextended to models with disjunctive and compensatory mod#iss study, so no
comparison with por results can be made for the itementified as compensatorstill, the
estimates of thiatent class sizéeund for the models comparing between conjunctive and
compensatory condensation rules are also similar to those found by DeCarlo (2012).

While the ECPE data set is composed by 28 items, only nine of them measure two skills
and no item in the test measure the three skills accorditg@ematrix (see Table 6)Results of
the condensation rule identification were not as clear in the caseCH#Ie data as they were
for the fraction subtraction datthe reasoffor this relies orthe model comparing between
conjunctve and disjunctive condensatiovhich identifiedsome items witla conjunctive
condensatioypwhile the analysis comparing betwemmjunctive and compensatory models
identified all items as conjunctiv&till, it can be stated that most of the multidimensional items
in the ECPE data shavea conjunctive condensation ruta their categorical skills.

The analysis of the ECPE test consistently showed that some items hold high values for
their false alarm parameter, which detriments their capacity to correctly classify people
according to their skill masterfrevious analyseof the ECPE data have bedone usinghe

log-linear cognitive diagnosis model (Templin & Hoffman, 20&By the hierarchical diagnostic
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classification modelHDCM, Templin & Bradshaw, 2014). The item parameter estimates from
those models, which are based on coefficients for tha effects and interactions among
categorical skills, cannot be directly compared with the false alarm and detection estimates here
reported.

Considering the results here found, the mastery of the three skills measured&Bythe
test is highly prevalenh the sample of examinees. In terms of comparison with previous
researchboth Templin and Hoffman (2013) and Templin and Bradshaw (26&4ided
analysis of skill mastery profile for specific examinees, but estimates ftatém class sizemre
not reported.

For practitioners, the methodology and results here reported are usetpldce the
plausibility of cognitiverelatedhypothese aboutthe skills measured by a teBbr instance, the
content ofeach item, the @natrix structure of the testhd psychological theory underlying the
assessment are different components that may drive plausible hypotheses about the interactions
among the latent skillAs shownin the analyses using empirical datee tnethodologgan be
used to detect items withfférent condensation rules within the same;teste thecondensation
rules are detected for each item in a test, diffenegpirametrizedhodels can be compared in
terms oftheir fit. Afterward, the practitionewill be able toconfirm or reject the hypotheses

based on thdetecteadcondensation rules and the models that show the best fit to the data.

6.2 Limitations and future research

The study here presentegdtended theeparameterizatioframework proposed by
DeCarlo (2011, 2012) to other models for cognitive diagnasihie same time it also proposed a

methodology for the identification of item condensation rules. While this methodology showed
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to be effective in the identification obndensation rules, important limitationistbe study have
to be addressead further research.

It was found that certain factors, which were not considered in the design of the
simulation studyhadan impact in the capacity of the model to correctly idygthe underlying
condensation ruleshenumber of skills measured by eatdm andtheitem parameter values
used to generate the dakature research usingetimethodology here presented tmanalyze
the role of both factors in the identificatiohamndensation rules and estimation of model
parameters. An additional factor to consider in prospective research is saaflee results
here presented were based on dataadlegenerated wh a sample size equal 1®00
observationsthere is not garantee that similar outcomes would be obtaindxigger or smaller
sample sizes.

Furthermore, the results showed that models with Uniform distributed varipblese
effective in the identification of condensation rules and in the estimatiateotclass sizesbut
not in the estimation of item parameters. Thius/ould be interesting ttestif item parameter
recovery improves using a twgtep estimation methodologiyrst, correct item condensation
rules are identified for each item in the test using the methodology here described; second, item
parameters anladtent class sizesre estimated for a model in which each item response function
is expressed based onidentified condensation rula thefirst step An alternativeestimation
processmply the calculation oitem parameter estimates conditional on the value takep by
whichin this studyproved to ben effective approach whehis defined as Bet&erroulli
distributed.

While the fraction subtraction data set has been widely analyzed before (see Chiu &

Douglas, 2013; de la Torre & Douglas, 2004; de la Torre & Lee, 2013; DeCarlo, 2011, 2012;
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Henson, Templin & Willse, 20Q09the ECPE data set is a relaly new source for the analysis

of models for cognitive diagnosi8dditional researclising the ECPE data s&buld focus on
calculatingand repoting its item and examinee parameter estimates using some of the traditional
models for cognitive diagnos{e.g., the DINA model; Junker & Sijtsma, 200ih)determining
whether the elements in itsiQatrix are correctly specified or not (DeCarlo, 2011, 2062
comparingts psychometric properties and model fit using diffesggroachess it has been

done in Lee, de la Torre, and Park (2012).

Furthermore, th&ramework andesults here presented opgée doors to new areas of
research. For instance, similar to thdRA model with covariates proposed by Park and Lee
(2014), the RDINO and theAdditive CDM models can be extended to include models with
covariates at the skill and item levdlssuccess is found in the parameterizatbdbthese models,
then they couldomplement new trends of research using process data in the form of covariates
and product data (e.g., scores in items and tEstgamebased assessments (Mislevy et al.,
2014).Related to this idea, the reparameterization framework proposed by DeCarlo (2011) could
also be extended to models for adaptative learning in educati@taanininghat presena
response function similar to the one of the DINA model.

The methodology to compare among models with different condensation rules using an
underlying latent variablg can be extendedor instanceto compare amongnodels tharliffer
in the number of skills maeared by the itemgs well as in the case wfodels with different
hierarchical structures their skills €.g.,Leighton et al., 2004; Templin & Bradshaw, 2014
Further esearch will prove if thpotential applicationsf this methodologwrein fact

successful
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It would be worth talevelopan extension of the modetoposed hert concurrently
compare among three or more potential condensation rules (esignuitaneouslyontrast
among conjunctive, disjunctive, andmpensatory condensation rules). This wouléebsibleif
U is defined using a conjugate @inlet-Multinomial distribution.

In a similar mannemewresearch could extend the idgassented heneithin a
maximum likelihood framework. For instandeg¢ould be interesting tdevelop an Expectatien
Maximization algorithm to estimate the compound ma@dsuming independence among latent
skills; it would also be wortthio definea methodology to compare among models with different

condensation rules ugrthe Wald statisti¢de la Torre & Lee, 2013
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Appendix A. OpenBUGS code

|. Model to compare conjunctive and disjunctive condensation rules

{

#Priors for

item parameters fandd

for (jin 1:3) {

d1[j] ~ dnorm(0, 0.1)I(0,) # For
f1[] ~
d2[j] ~ dnorm(0, 0.1)I(0,) # For

dnorm(0, 0.1)

f2[j] ~ dnorm(0, 0.1)
u[j] ~ dbeta(1,1)

z[j] ~
}

dbern(u[j])

#Priors for skill class sizes
pl ~ dbeta(1,1)

# Models to compare

for (i in 1:N){

x1[i] ~ dbern(pl)
x2[i] ~ dbern(p2)
x3[i] ~ dbern(p3)
x4[i] ~ dbern(p4)

pali,1] < -
(1 - x1[ip)*a

pali,2] < -
(1 -x2[i))*

pali,3] <
(1 -x3[))*1

pali4]< -
(1 - x4

pali,5] <
d2[5]*(1

pali,6] <
d2[6]*(1

pali,7] <
d2[7]*(1

pali,8] <
d2[8]*(1

pali,9] <
d2[9]*(1

pa[i,10] <
- d2[10]*(1

1/(1+exp(((
-Z[1])) )

1/(1+exp(((
-2[2]))))

1/(1+exp(((
-2[3])) )

1/(1+exp(((
-2[4]))))

1/(1+exp(((

- (@-x1[) 1

1/(1+exp(((

- @ -xfiQa

1/(1+exp(((

C @ -xfQa

1/(1+exp(((

C (w2l

1/(1+exp(((

C (@ -xeli

- Li(1+exp(((
- (1-x3[])*2

p2 ~ dbeta(1,1)

DINA

DINA

DINO

# For DINO

# Prior bet a

# Z random variable

# For

p3 ~ dbeta(1,1)

-fia] - dIfar(xAiD)z[a]) + (

-fi2] - dif2]r(x2fi)*z[2]) + ((

-fi[8] - d1[3]*(x3[i])*z (3D +((

-fi4] - d1[4]r(x4liD)*z[4]) + ((

-fi[s] - di[S]*((x1[i)*(x2[i)))*z[5]) + ((

- x2[))*(1 -2[5]) )

-fi[6] - di[e]((x1[iD)*(x3[i])))*z[6]) + ((

- x3[i))* - 2[6])) )

-faf7] - dA[7Ie((xLD)*(xAli)))*z7]) + ((

-xali D@ -z[7]))

-f1[8] - di[8]*((x2[il)*(x3[i])))*z[8]) + ((

- x3[)*(1 -Z[8])) )

-f19] - di[9lr((x2[il)*(x4[iD)))*z[9]) + ((

- x4[l))*(1 -2[9]) )

-f1[10] - d1[10]*((x3[i])*(x4(i])))*z[10]) + ((
- x4[l))*(1 - 2[10])) ))
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p4 ~ dbeta(1,1)

- f2[1]

- 12[2]

- 12[3]

- 2[4]

- d2[1]*

- d2[2]*1

- d2[3

- d2[4*(1

- 2[5]

- 12[6]

- 12[7]

- 12[8]

- £2[9]

- 12[10]



pafi,11] < - U(L+exp((( - -f121] - dIALPF(XLLD*C2[iD*(x3[])))*z[11]) +
((-f2[11] - d2f11]@ - @-x1[D*@  -x2fip*@  -x3[))*a -Z[11]))))
pali,12] < - U(L+exp((( - -f122] - di[22]*((XL[ID*x2[iD*(x4[i])))*z[12]) +
((-f2[12] - d2[12]*@ - (@ -x1[D*@  -x2iD*@ - x4[]))*a -2[12]))))
pa[i,13] < - U(l+exp((( -f123] - dI[A3]*((XLLD*(x3[ID)*(x4 [i(D)*z[13]) +
((-f2[13] - d2[13]*@ - (@ -x1[D)*@  -x3[D*@ - x4{]))H*a -Z[13]))))
pali,14] < - U(L+exp((( - -f1[24] - dL[24]*((x2[iD*(x3[ID*(x4[i])))*z[14]) +
(( -f2[14] - d2[14]*2@ - @ -x2[)*@  -x3[D*@ - x4[]))*1 - Z[14]))))
pa[i,15] < - 1/(A+exp ((( -f1i[15]
d1[15]*((x1[i])*(x2[i])*_(x3[i])*(x4[i])))*z[15])+(( . -f2[15] - d2[15]*(1
(L -x1p*@  -x2fip*@  -x3[D*A - x4[]))*(L - [15])) ))

}
for (i in 1:N){

for (jin 1:J) {

i/[i,j] ~ dbern(pali,j])
}

} #END OF THE CODE
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II. Model to compare conjunctive and compensatorycondensation rules

{

#priors for parameters f and d
for (jin 1:3) {

d1[j] ~ dnorm(0, 0.1)%_%I(0,) # For conjunctive

f1[j] ~ dnorm(0, 0.1) # For conjunctive

f2[j] ~ dnorm(0, 0. 1) # For compensatory

z[j] ~ dunif(0, 1) # Uniform indicator
}

# 28 d parameters for compensatory model

d251 ~ dnorm(0, 0.1)%_%lI(0,) # For compensatory
d252 ~dnorm(0, 0.1)%_%I(0,) # For compensatory
d261 ~ dnorm(0, 0.1) % _%lI(0,) # For compensatory
d263 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d271 ~dnorm(0, 0.1)%_%I(0,) # For compensatory
d274 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d282 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d283 ~ dnorm(0, 0.1)%_%l(0,) # For compensatory
d292 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d294 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2103 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2104 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2111 ~dnorm(0, 0.1)%_%I(0,) # For compensatory
d2112 ~dnorm(0, 0.1)%_%I(0,) # For compensatory
d2113 ~dnorm(0, 0.1)%_%I(0,) # For compensatory
d2121 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2122 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2124 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2131 ~dnorm(0, 0.1)%_%I(0,) # For compensatory
d2133 ~dnorm(0, 0.1)%_%I(0,) # For compensatory
d2134 ~dnorm(  0,0.1)% %I(0,) # For compensatory
d2142 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2143 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2144 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2151 ~dnorm(0, 0.1)%_%I(0,) # For compensator
d2152 ~dnorm(0, 0.1)%_%I(0,) # For compensatory
d2153 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
d2154 ~ dnorm(0, 0.1)%_%I(0,) # For compensatory
#priors for skill class sizes

pl ~ dbeta(1,1)

p2 ~ dbeta(1,1)

p3 ~ dbeta(1,1 )

p4 ~ dbeta(1,1)

for (i in 1:N){

x1[i] ~ dbern(p1)
x2[i] ~ dbern(p2)
x3[i] ~ dbern(p3)
x4[i] ~ dbern(p4)
pafi,l] < - L/(1+exp((( - f1[1]

pali,2] < - U(L+exp((( - f1[2]

- d1[1](x1[i]))*z[1]) )
- d1[2]*(x2[i]))*z[2]) )

119



pali,3] < 1(1+exp((( - f1[3]

pali,4] < /(1+exp((( - f1[4]

pali,5] < /(A+exp((( - f1[5]
- ((d251*x1[i])+(d252*x2[i])))*(1

pali,6] <-  1U(1+exp(((  -f1[6]
- ((d261*x1][i])+(d263*x3[i])))*(1

pali,7] < L/(A+exp((( - f1[7]
- ((d2721*x1[i])+(d274*x4[i])))*(1

pa[i,8 ]< - 1/(1+exp((( - f1[8]
- ((d282*x2[i])+(d283*x3[i])))*(1

pali,9] < /(Q+exp((( - f1[9]
- ((d292*x2[i])+(d294*x4[i])))*(1

pa[i,10 ] < -
f2[10]

1/(L+exp(((

pafi,11] <
(( -f2[11]

1/(1+exp(((  -f1[11]

pali,12] <
(( -f2[12]

/(1+exp(((  -f1[12]

pafi,13] <
(( -f2[13]

/(Q+exp((( - f1[13]

pali,14] <
(( -f2[14]

1/(1+exp(((  -f1[14]

pali,15]< - 1/(1+exp(((
*Z[15])+(( - f2[15]
(d2154*x4[iN))*(1

- f1[15]

}
for (i in 1:N){
for (jin 1:J) {
y[i.jl ~ dbern(pali,j])

- f1[10]
- ((d2103*x3][i])+(d2104*x4[i])))*(1

- d1[3]*(x3[i))*z[3]) )
- d1f4]¥(

x4[i]))*z[4]) )

- A5l (x2[i]))*z[5]) + ((

-2[3]))))

- dL6](OcLi])*(x3[i]))*2[6]) + ((
-2[6])) )

- A7) (xall)*2[7]) + ((
-2[7]))))

- d18((x2[i)*(x3[i]))*2([8]) + ((

-2[8]))))

- dI[9((x2[i))*(x4{i])))*z[9]) + ((

-2[9])))

d1[101*((x3[i])*(x4[i])))*z[10])+ ((

-Z[10])) )

- dI[II]((xL[i))*(x2[)*(x3[i])))*z[11])+
- ((d2111*x1[i])+(d2112*x2[i])+(d2113*x3]i] M*L

- d1[22]((XL[])*(x2[i))*(x4[i]))*z[12])+
- ((d2121*x1[i])+(d2122*x2i]) +(d2124*x4[i])))*(1

- dA[L3]((XL[i)*(x3[i])*(x4[i])))*z[13])+
- ((d2131*x1[i])+(d2133*x3[i])+(d2134*x4[i])))*(1

- d1[24]((x2[])*(x3[i))*(x4[i])))*z[14])+
- ((d2142*x2[i])+(d2143*x3]i

D+(d2144*xA4[i])))*(1

- d1[15]*((x1[i))*(x2[i])*(x3[i])*(x4[i])))
- ((d2151*x1[i])+(d2152*x2]i]) +(d2153*x3][i])+

-Z[13])) )
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- f2[5]

- 12[6]

- f2[7]

- 2[8]

- 12[9]

-Z[11]))))

-2[12])) )

-2[13])) )

-2[14]))))



Appendix B. R code for data generation

|. HO-RDINA data generation code

n.sims < - 2 # number of simulated data sets

for (ka in 1:n.sims)

{

N = 1000; # Sample Size

n = 15; # Number of items

k = 4; # Number of attributes

# Item parameter values

fl=-4;f2= -3;f3= -2;f4= -1, {5=0; f6= -4;f7= -3;

f8=-2;f9= -1, f10=0; fl1= -4;f12= -3;f13= -2;fl4= -1, f15=0;

d1=5; d2=4; d3=3; d4=2; d5=1; d6=1,; d7=2; d8=3; d9=4;

d10=5; d11=1; d12=5; d13=4; d14=2; d15=3;

# Higher - order structural parameter values

bl=-1; b2= -0.328; b3=0.3; b4=0.678;

al=0; a2=0; a3=0; a4=0

# Loop to get the dichotomized latent classes

Theta< - rnorm(N, mean =0, sd =1)

a pars< - c(al, a2, a3, a4)

b pars< - c(bl, b2, b3, b4)

# Function that calculates P(skill | Higher Order Vars)

ProbFunc < - function(Par.Theta, Par.a, Par.b) {1/ (1 + (exp(( - )*(Par.b +
(Par.a*Par.Theta)))))}

# Storage for P(skill)
LClass.Mat < - matrix(data = NA, nrow = N, nc ol = k)

#Loop to get a matrix of P(skill) for the k skills in the N examinees
for (jin 1:N) {
for (I'in 1:k){
LClass.Mat]j,l] < - ProbFunc(Theta[j], a_pars[l], b_pars][l])

}

#AN -Dby- k matrix of ~U(0,1)
ZMat< - matrix(NA, nrow = N, ncol = k)

for (I'in 1:k) {
Z.Mat[,l] < - runif(N,0,1)

}
Z.Mat

# Storage for x (dichotomized P(skill))
X.Mat < - matrix(data = NA, nrow = N, ncol = k)

#Loop to get a matrix of P(skill) for the k skills in the N examinees
for (j in 1:N) {
for (1in 1:k){
X.Matfj,l] < - ifelse(LClass.Mat[j,I] >= Z.Mat[j,1], 1, 0)
}
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}

# Storage for the probabilities of each item
py < - matrix(data = NA, nrow = N, ncol = n)

for(it in 1:N){

pylit,1] = 1 /(1 + exp ( - 1*(f1+(d1*X.Matlit,11))))

pylit,2] = 1 /(1 + exp ( - 1*(f2+(d2*X.Mat]it,2]))))

pylit,3] = 1 /(1 + exp ( - 1*(f3+(d3*X.Mat]it,3]))))

pylit,4] = 1 /(1 + exp ( - 1*(f4+(d4*X.Mat]it,41))))

pylit,5] = 1 /(1 + exp ( - 1*(f5+(d5*X.Matit,1]*X.Mat[it,2]))))

pylit,6] = 1 /(1 + exp ( - 1*(f6+(d6*X.Mat[it,1]*X.Mat]it,31))))

pylit,7]1 =1 /(1 + exp ( - 1*(f7+(d7*X.Mat]it,1]*X.Mat]it,41))))

py[it,8] = 1 /(1 + exp ( - 1*(f8+(d8*X.Mat]it,2]*X.Mat[it,3]))))

pylit,9] = 1 /(1 + exp ( - 1*(f9+(d9*X.Mat]it,2]*X.Mat[it,41))))

py[it,10] = 1 /(1 + exp( - 1*(f10+(d10*X.Mat[it,3]*X.Mat][it,4]))))

py[it,11] =1 /(1 + exp( - 1*(f11+(d11*X.Matit,1]*
X.Mat[ it,2]*X.Mat[it,3]))))

pylit,12] = 1 /(1 + exp( - 1*(f12+(d12*X.Mat][it,1]*
X.Mat[it,2]*X.Mat[it,4]))))

py[it,13] =1 /(1 + exp( - 1*(f13+(d13*X.Mat]it,1]*
X.Mat[it,3]*X.Mat[it,4]))))

pylit,14] = 1 /(1 + exp( - 1*(f14+(d14  *X.Mat[it,2]*
X.Matit,3]*X.Mat]it,4]))))

py[it,15] = 1 /(1 + exp( - 1*(f15+(d15*X.Mat]it,1]*

X Mat[it,2]*X.Mat[it, 3]*X.Mat[it, 41))))
}

#AN - by- n matrix of ~U(0,1)
Z2.Mat< - matrix(NA, nrow = N, ncol = n)
for (Iin 1:n) {
Z2Mat][ ,l]< - runif(N,0,1)
}
Z2.Mat

# Storage for x (dichotomized P(skill))
Data.Mat < - matrix(NA, nrow = N, ncol = n)

#Loop to get a matrix of 0 or 1 for the n items answered by the N examinees
for (jin 1:N) {
for (I'in 1:n){
Data.Mat[j,l] < - ifelse( py]j,l] >= Z2.Mat[j,l], 1, 0)
}

}
Data.Mat

save(Data.Mat, file=paste("DINAdata",ka,".RData",sep=
row.names=F)

}

), col.names=F,
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. HO-RDINO data generation code

n.sims < - 2 # number of simul ated data sets
for (ka in 1:n.sims)
{

N = 1000; # Sample Size

n = 15; # Number of items

k = 4; # Number of attributes

# Item parameter values

fl=-4;f2= -3;f3= -2;f4= -1;15=0; f6= -4 f7r= -3;
f8= -2;f9= -1, f10=0; fl1= -4;f12= -3;f13= -2;fl4= -1; f15=0;
d1=5; d2=4; d3=3; d4=2; d5=1; d6=1; d7=2; d8=3; d9=4;
d10=5; d11=1; d12=5; d13=4; d14=2; d15=3;

# Higher - order structural parameter values

bl=-1; b2= -0.328; b3=0.3; b4=0.678;

al=0; a2=0; a3=0; a4=0

# Loop to get the dichotomized latent classes
Theta< - rnorm(N, mean =0, sd =1)

a pars< - c(al, a2, a3, a4)

b pars< - c(bl, b2, b3, b4)

# Function that calculates P(skill | Higher Order Vars)
ProbFunc < - function(Par.Theta, Par.a, Par.b) {171+ (exp(( - )*(Par.b +
(Par.a*Par.Theta)))))}

# Storage for P(skill)
LClass.Mat < - matrix(data = NA, nrow = N, ncol = k)

#Loop to get a matrix of P(skill) for the k skills in the N examinees
for (j in 1:N) {
for (I'in 1:k){
LClass.Mat]j,l] < - ProbFunc(Theta[j], a_pars[l], b_pars][l])
}

}

#AN - Dby- k matrix of ~U(0,1)

ZMat< - matrix(NA, nrow = N, ncol = k)
for (I'in 1:k) {
Z.Mat[,l] < - runif(N,0,1)

}

Z.Mat

# Storage for x (dichotomized P(skill))
X.Mat < - matrix(data = NA, nrow = N, ncol = k)

#Loop to get a matrix of P(skill) for the k skills in the N examinees
for (j in 1:N) {
for (1in 1:k){
X.Matfj,l] < - ifelse(LClass.Mat[j,]] >= Z.Ma tfj,1], 1, 0)
}

}

# Storage for the probabilities of each item
dy < - matrix(data = NA, nrow = N, ncol = n)
py < - matrix(data = NA, nrow = N, ncol = n)
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for(it in 1:N){
dylit,1] <
dylit,2] <
dy[it,3] <
dy[it,4] <
dy[it,5] <
dy[it,6] <
dylit,7] <
dy[it,8] <
dy[it,9] <
dy[it,10] <
dyJit,11] <
dyJit,12] <
dyl[it,13] <
dy[it,14] <
dyl[it,15] <

X.Mat[it,4]))

}

#AN - by-n matrix of ~U(0,1)
matrix(NA, nrow = N, ncol = n)

Z2 Mat< -
for (Iin 1:n) {
Z2.Mat[,l] <

}
Z2.Mat

RPRRPRRPRPRPRRRRREPRERRRPR

(e
(e
- (@
- (@
- (@
(e
(e
- (@
- (@
- (@
(e
(e
- (@
- (@
- (@

pylit,1] = 1 /(1 + exp(
py[it,2] = 1 /(1 + exp(
py[it,3] = 1 /(1 + exp(
py[it,4] = 1 /(1 + exp(
pylit,5] = 1 /(1 + exp(
pylit,6] = 1 /(1 + exp(
py[it,7] = 1 /(1 + exp(
py[it,8] = 1 /(1 + exp(
py[it,9] = 1 /(1 + exp(
py[it,10] = 1 /(1 + exp(
pylit,11] = 1 /(1 + exp(
py[it,12] = 1 /(1 + exp(
py[it,13] = 1 /(1 + exp(
py[it,14] = 1 /(1 + exp(
pyl[ it,15] =1 /(1 + exp(

- X.Mat[it,1]))
- X.Mat[it,2]))

- X.Mat[it,3]))

- X.Mat[it,4]))

- X.Mat[it, 1])*(1
- X.Mat[it, 1])*(1
- X.Mat[it, 1])*(1
- X.Mat[it, 2])*(1
- X.Mat[it, 2])*(1
- X.Mat[it,3])*(1
- X.Mat[it, 1])*(1
- X.Mat[it, 1])*(1
- X.Mat[it, ])*(1
- X.Mat[it, 2])*(1
- X.Mat[it, 1])*(1

- X.Mat[it,2]))
- X.Mat]it,3]))

- X.Mat[it,4]))

- X.Mat[it,3]))

- X.Mat[it,4]))

- X.Mat[it,4]))

- X.Mat[it, 2])*(1
- X.Mat[it, 2])*(1
- X.Mat[it,3])*(1
- X.Mat[it,3])*(1
- X.Mat[it, 2])*(

- 1*(fL+(d1*dy(it, 1]))))

S1x(F 2+(d2*dy[it,2]))))

- 1%(f3+(d3*dy(it, 3]))))

- 1%(f4+(d4*dy(it,4]))))

- 1%(f5+(d5*dy[it, 5]))))

- 1*(f6+(d6*dy[it,

- 1*(7+(d7*dy(it, 7]))))

- 1%(f8+(d8*dy[it,8]))))

- 1%(f9+(d9*dy[it,9]))))
- 1%(f10+(d10*dy[it, 10]))))
- 1¥(FL1+(d11*dy[it, 11]))))
- 1%(f12+(d12*dy[it, 12]))))
- 1%(f13+(d13*dy[it, 13]))))
- 1%(f14+(d14*dy[it, 14]))))
- 1%(f15+(d15*dy[it, 15]))))

- runif(N,0,1)

# Storage for x (dichotomized P(skill))

Data.Mat <

- matrix(NA, nrow = N, ncol = n)

6D)))

- X.Mat]it,3]))
- X.Mat]it,4]))
- X.Mat[it,4]))
- X.Mat[it,4]))

1_

X.Mat]it,3])*(1

#Loop to get a matrix of O or 1 for the n items answered by the N examinees

for (j in 1:N) {
for (I'in 1:n){

}

}
Data.Mat

Data.Mat]j,l] <

row.names=F)

}

- ifelse( pylj,l] >= Z2.Mat[j,l], 1, 0)
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II'l. Additive model generation code

n.sims < - 2 # number of simulated data sets

for (ka in 1:n.sims)
{
N = 1000; # Sample Size
n = 15; # Number of items
k =4; # Number of attributes
# Item parameter values

fl=-4;f2= -3;f3= -2;f4= -1, f5=0; f6= -4;fr= -3;

f8= -2;f9= -1;f10=0; f11= -4:f12= -3;f13= -2;fl4= -1;f15=0;
d1=5; d2=4; d3=3; d4=2; d5=1; d6=1; d7=2; d8=3; d9=4;

d10=5; d11=1; d12=5; d13=4; d14 =2; d15=3;

# Higher - order structural parameter values
bl=-1; b2= -0.328; b3=0.3; b4=0.678;
al=0; a2=0; a3=0; a4=0

# Loop to get the dichotomized latent classes
Theta< - rnorm(N, mean =0, sd =1)

a pars< - c(al, a2, a3, a4)

b pars< - c(bl, b2, b3, b4)

# Function that calculates P(skill | Higher Order Vars)
ProbFunc < - function(Par.Theta, Par.a, Par.b) {1/ (1 + (exp(( - )*(Par.b +
(Par.a*Par.Theta)))))}

# Storage for P(skill)
LClass.Mat < - matrix(data = NA, nrow = N, nc ol =k)

#Loop to get a matrix of P(skill) for the k skills in the N examinees
for (j in 1:N) {
for (I'in 1:k){
LClass.Mat[j,I] < - ProbFunc(Theta[j], a_pars[l], b_pars]l])
}

}

#AN - Dby- k matrix of ~U(0,1)
ZMat< - matrix(NA,n  row =N, ncol = k)

for (Iin 1:k) {
Z.Mat[,l] < - runif(N,0,1)

}
Z.Mat

# Storage for x (dichotomized P(skill))
X.Mat < - matrix(data = NA, nrow = N, ncol = k)

#Loop to get a matrix of P(skill) for the k skills in the N examinees
for (jin 1:N) {
for (I'in 1:k){
X.Mat[j,l] < - ifelse(LClass.Mat[j,I] >= Z.Mat[j,I], 1, 0)
}

}

# Storage for the probabilities of each item
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py < - matrix(data = NA, nrow = N, ncol = n)

for(it in 1:N){

pylit,1] = 1 /(L1 + exp ( - TX(FL+(d1*(X.Mat]it, 1])))))

pylit,2] = 1 /(1 + exp ( - 1¥(f2+(d2*(X.Mat]it, 2])))))

pylit,3] = 1 /(L + exp ( - 1*(f3+(d3*(X.Mat]it, 3])))))

pylit.4] = 1 /(L + exp ( - 1%(f4+(d4*(X.Mat]it, 4])))))

py[it,5] = 1 /(1 + exp ( - 1X(B+(d5H(X.Mat[  it,1]+X.Mat]it,2])))))

pylit,6] = 1 /(1 + exp ( - 1%(f6-+(d6*(X.Mat[it, 1]+X.Mat[it,3])))))

pylit,7] = 1 /(1 + exp ( - IX(F7+(d7*(X.Mat[it, 1]+X.Mat[it, 4])))))

pylit,8] = 1 /(1 + exp ( - 1¥(f8+(d8*(X.Matit,2]+X.Mat[it,3])))))

py[it,9] = 1 /(1 + exp ( - 1*(f9+(d9*(X.Mat]it, 2]+X.Mat[it,4])))))

pylit,10] = 1 /(1 + exp( - 1*(f10-+(d10*(X.Mat]it, 3]+ X.Mat[it,4])))))

pylit,11] = 1 /(1 + exp( - 1¥(F11+(d11*(X.Matfit, 1]+
X.Mat]it,2]+X.Mat[it,3])))))

pylit,12] = 1 /(1 + exp( - 1¥(F12+(d12*(X.Mat]it, 1]+X.Mat[it, 2]+
X.Mat]it, 4])))))

pylit,13] = 1 /(1 + exp( - 1¥(F13+(d13*(X.Mat]it, 1]+X.Mat[it, 3]+
X.Mat[it,4])))))

pylit,14] = 1 /(1 + exp( - 1¥(FL4+(d14*(X.Mat]it, 2]+X.Mat[it, 3]+
X.Mat]it, 4])))))

pylit,15] = 1 /(1 + exp( - 1¥(F15+(d15*(X.Mat]it, 1]+X.Mat[it, 2]+

X.Mat[it,3]+X.Mat[it,4])))))

}
#AN - Dby- n matrix of ~U(0,1 )
Z2.Mat< - matrix(NA, nrow = N, ncol = n)
for (Iin 1:n) {

Z2 Mat[,l] < - runif(N,0,1)
}
Z2.Mat

# Storage for x (dichotomized P(skill))

Data.Mat < - matrix(NA, nrow = N, ncol = n)
#Loop to get a matrix of 0 or 1 for the n items answered by the N examinees
for (jin 1:N) {

for (I'in 1:n){

Data.Mat[j,l] < - ifelse( py]j,l] >= Z2.Mat[j,l], 1, 0)

}
}
Data.Mat

row.names=F)

}
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Appendix C. Additional analysis of the simulation and empirical
studies

TABLE . Item detection and false alarm parameters. Conditions with simuatgdnctive items and
independent skills, contrasting conjunctive versus compensatory item condensation rules

Condition 14. Beta-Bernoulli distributed U Condition 2. Uniform distributed U;

Par Value APM Var Bias MSE APM Var Bias MSE
ch 5 4748 0.642  -0.252 0.693 5793 0.255 0.793 0.879
dy 4 3.809 0.249 -0.191 0.280 5076 0.171 1.076 1.326
ds 3 2.923 0.338  -0.077 0.337 4346 0.202 1.346 2.009
ds 2 2.050 0.225 0.050 0.223 3.669 0.100 1.669 2.885
ds 1 1.172  0.125 0.172 0.152 1.130 0.115 0.130 0.130
ds 1 1.357  0.198 0.357 0.321 1.128 0.131 0.128 0.145
dy 2 2.124  0.092 0.124 0.105 2.114 0.114 0.114 0.124
dg 3 2985 0.131  -0.015 0.128 3.405 0.173 0.405 0.334
do 4 4.322  0.529 0.322 0.622 4832 0481 0.832 1.164
dio 5 3.272 1265 -1.728 4.225 5249 0.345 0.249  0.400
di1 1 1.274  0.183 0.274 0.255 1.015 0.122 0.015 0.120
dio 5 5219 0.521 0.219 0.558 5675 0.497 0.675 0.942
i3 4 4.025  1.206 0.025 1.182 4813 0661 0.813 1.308
s 2 2.056 0.084  0.056 0.086 2.065 0.124 0.065 0.125
dis 3 3.387  0.837 0.387 0.970 3.380 0.798 0.380 0.927
f1 -4 -3.847  0.367 0.153 0.383 -4.422 0.129 -0.422 0.305
f, -3 -2.814  0.203 0.186 0.234 -3.746  0.129 -0.746 0.683
f3 -2 -2.035 0.296  -0.035 0.291 -2.848 0.183 -0.848 0.898
fs -1 -1.147  0.183  -0.147 0.201 -1.851 0.130 -0.851 0.851
fs 0 0.002  0.005 0.002 0.005 -0.047 0.694 -0.047 0.682
fe -4 -3.084 0.571 0.916 1.399 -3.905 0.153 0.095 0.159
f7 -3 -2.471  0.708 0.529 0.973 -3.086 0.471 -0.086 0.469
fg -2 -1.778 0.314  0.222 0.357 -2.536 0.544 -0.536 0.820
f -1 -1.020  0.009  -0.020 0.009 -1.267 0.342 -0.267 0.407
f1o 0 0.014  0.006 0.014 0.006 -0.343 0.397 -0.343 0.507
f11 -4 -3.754  0.351 0.246 0.404 -4.441 0.061 -0.441 0.254
f12 -3 -3.008 0.047  -0.008 0.046 -3.597 0.141 -0.597 0.494
f13 -2 -1.521  0.762 0.479 0.976 -2.350 0.120 -0.350 0.240
f14 -1 -1.023  0.008  -0.023 0.008 -1.320 0.370 -0.320 0.465
fis 0 -0.015 0.005 -0.015 0.005 -0.160 0.010 -0.160 0.035

Note: APM is the average posterior mean across conditions, Yfer éstimator variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean squarefOedadr.iterations and 20,000 burn
ins were used with OpenBUGS and R.
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TABLE Q. Item detection and false alanparameters. Conditions with simulated conjunctive
items and correlated skills, contrasting conjunctive versus disjunctive item condensation rules

Condition 15. Beta-Bernoulli distributed U Condition 3. Uniform distributed U;

Par Value APM Var Bias MSE APM Var Bias MSE
dy 5 5.3962 0.2903 0.3431  0.3994 6.0246 0.2532 1.0246 1.2978
d; 4 3.7247  0.4437 -0.2711  0.5083 5.1465 0.1607 1.1465 1.4721
ds 3 27766  0.3341 -0.2412  0.3853 4.4197 0.1189 1.4197 2.1320
ds 2 1.7064 0.1493 -0.2860  0.2281 3.7033 0.0788 1.7033 2.9784
ds 1 1.0619 0.0206 0.0657 0.0245 1.6568 0.1215 0.6568 0.5505
ds 1 15900 0.1502 0.5955  0.5018 1.5791 0.1185 0.5791 0.4515
d, 2 1.9702 0.0624 -0.0219 0.0616 2.9099 0.1276 0.9099 0.9530
ds 3 2.8991 0.0593 -0.0974  0.0675 3.8897 0.2017 0.8897 0.9892
do 4 3.3062 0.6772 -0.7141 1.1732 5.0365 0.1468 1.0365 1.2181
dio 5 3.7113 2.2481 -1.2704  3.8168 5.9344 0.4790 0.9344 1.3426
dhs 1 1.4957 0.0873 0.4919  0.3274 1.6627 0.1142 0.6627 0.5510
dio 5 5.0781 0.1147 0.0762 0.1182 5.9244 0.0916 0.9244 0.9442
s 4 40364 0.1362 0.0355 0.1348 4.9976 0.1152 0.9976 1.1082
dis 2 2.0982 0.0493 0.1025 0.0588 29353 0.1076 0.9353 0.9803
dis 3 3.2271  0.2417 0.2370  0.2930 4.0032 0.2190 1.0032 1.2210
fy -4 -4.3843  0.3066 -0.3387  0.4131 -4.8573 0.2490 -0.8573 0.9790
2 -3 -2.7354 0.4559 0.2674  0.5183 -3.9126 0.1521 -0.9126 0.9819
f3 -2 -1.7432 0.3165 0.2753  0.3857 -3.0597 0.1093 -1.0597 1.2300
fa -1 -0.7119  0.1282 0.2839  0.2062 -1.9423 0.0523 -0.9423 0.9391
fs 0 -0.0067 0.0065 -0.0030 0.0063 0.0447 2.4480 0.0447 2.4011
fo -4 -2.7021 1.1456 1.3216  2.8688 -3.3337 0.3946 0.6663 0.8306
f; -3 -2.8538 0.2390 0.1509 0.2570 -3.4033 0.5409 -0.4033 0.6927
fg -2 -1.5315 0.6177 0.4516  0.8091 -2.2887 0.5327 -0.2887 0.6054
fo -1 -0.4758 0.2434 0.5341  0.5237 -1.2335 0.1433 -0.2335 0.1950
fio 0 0.0280 0.0101 0.0300  0.0108 -0.1267 0.1962 -0.1267 0.2083
fi1 -4 -2.8377 098383 11100 2.1984 -3.5602 0.3701 0.4398 0.5561
fi -3 -29027 0.0409 0.0951  0.0492 -3.4396 0.1935 -0.4396 0.3829
f13 -2 -1.8775 0.1272 0.1279  0.1410 -2.4916 0.2822 -0.4916 0.5183
f14 -1 -0.8311 0.1136 0.1561  0.1355 -1.1543 1.0342 -0.1543 1.0373
fis 0 0.0188 0.0058 0.0130  0.0058 -0.1481 1.1154 -0.1481 1.1150

Note: APM is the average posterior mean accosslitions, Var is the estimator variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean square4Dedil.iterations and 20,000 burn
ins were used with OpenBUGS and R.
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TABLE C3 Item detection anthlse alarm parameters. Conditions with simulated conjunctive
items and correlated skills, contrasting conjunctive versus compensatory item condensation rules

Condition 16. Beta-Bernoulli distributed U Condition 4. Uniform distributed U;
Par Value APM Var Bias MSE APM Var Bias MSE

th 5 5.2283 0.5630 0.2283 0.6039 59917 0.2068 0.9917 1.1862
dx 4 3.9203 0.3463 -0.0797  0.3457 5.0882 0.2213 1.0882 1.4011
ds 3 2.9138 0.2859 -0.0862  0.2876 45437 0.2312 1.5437 2.6096
ds 2 2.3187 0.5039 0.3187 0.5954 3.7867 0.1561 1.7867 3.3453
ds 1 1.0656 0.0999 0.0656 0.1022 1.0867 0.0880 0.0867 0.0937
ds 1 1.4177 0.2327 0.4177 0.4026 1.0532 0.1004 0.0532 0.1012
d7 2 2.0897 0.0624 0.0897 0.0692 1.8781 0.0775 -0.1219 0.0908
ds 3 2.9391 0.0544 -0.0609 0.0570 3.1989 0.0908 0.1989 0.1285
do 4 3.6005 0.5969 -0.3995 0.7446 44820 0.0929 0.4820 0.3234
tho 5 3.7610 2.1103 -1.2390 3.6033 56781 0.4810 0.6781 0.9312
s 1 1.1158 0.2119 0.1158 0.2210 0.8227 0.0732 -0.1773 0.1032
iz 3) 5.0600 0.1512 0.0600 0.1518 5.2135 0.0753 0.2135 0.1194
ths 4 3.9320 0.2496 -0.0680 0.2492 41645 0.1114 0.1645 0.1362
tha 2 2.1323 0.0483 0.1323 0.0648 1.9351 0.0500 -0.0649 0.0532
ths 3 3.1750 0.1487 0.1750 0.1764 3.1206 0.1999 0.1206 0.2104
fy -4 -4.2731 05176 -0.2731  0.5818 -4.7751 0.1692 -0.7751 0.7666
fa -3 -2.9678 0.3349 0.0322 0.3292 -3.8194 0.1831 -0.8194 0.8508
fa -2 -1.9218 0.2883 0.0782 0.2886 -3.0906 0.2147 -1.0906 1.3998
fa -1 -1.3699 0.5025 -0.3699  0.6292 -2.0776 0.1530 -1.0776 1.3112
fs 0 0.0123 0.0064 0.0123 0.0064 -0.0116 1.6971 -0.0116 1.6633
fe -4 -3.0856 0.4137 0.9144 1.2416 -3.9024 0.1954 0.0976 0.2010
f7 -3 -2.3960 0.4438 0.6040 0.7997 -3.0992 0.7743 -0.0992 0.7686
fg -2 -1.7937 0.2820 0.2063 0.3189 -2.5029 0.4061 -0.5029 0.6509
fo -1 -0.7255 0.2417 0.2745 0.3122 -1.2357 0.0854 -0.2357 0.1392
f10 0 -0.0072 0.0052 -0.0072  0.0051 -0.0952 0.0888 -0.0952 0.0961
f11 -4 -3.7339 0.2649 0.2661 0.3304 -4.4533 0.1116 -0.4533 0.3149
f12 -3 -2.9857 0.0730 0.0143 0.0718 -3.5471 0.2156 -0.5471 0.5107
fi3 -2 -1.8590 0.3199 0.1410 0.3334 -2.3889 0.0851 -0.3889 0.2346
f14 -1 -0.8599 0.1378 0.1401 0.1546 -1.1711 0.1184 -0.1711 0.1453
fis 0 -0.0094 0.0043 -0.0094  0.0043 -0.1146 0.0080 -0.1146 0.0210

Note: APM is the averagaosterior mean across conditions, Var is the estimator variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean squaretdedair.iterations and 20,000 burn
ins were used with OpenBUGS and R.
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TABLE C4 Item detection and false alarm parameters. Conditions with simulated disjunctive
items and correlated skills, contrasting conjunctive versus disjunctive item condensation rules

Condition 18. Beta-Bernoulli distributed U Condition 6. Uniform distributed U;
Par Value APM Var Bias MSE APM Var Bias MSE

th 5 43255 0.7781 -0.6745  1.2175 6.1977 0.4129 1.1977 1.8391
dx 4 3.6817 0.3692 -0.3183 0.4631 5.1966 0.0948 1.1966 1.5249
ds 3 3.2162 0.4864 0.2162 0.5234 4.4547 0.1505 1.4547 2.2635
ds 2 1.9167 0.0367 -0.0833 0.0429 3.6966 0.0482 1.6966 2.9257
ds 1 1.4709 0.3039 0.4709 0.5195 1.6420 0.0593 0.6420 0.4703
ds 1 1.6332 0.1709 0.6332 0.5685 1.5395 0.1506 0.5395 0.4387
d; 2 2.2430 0.1366 0.2430 0.1929 2.5457 0.0771 0.5457 0.3733
ds 3 2.6481 0.0588 -0.3519 0.1815 3.7680 0.1016 0.7680 0.6894
do 4 3.3677 0.5778 -0.6323 0.9661 49865 0.1473 0.9865 1.1174
tho 5 47533 0.8644 -0.2467  0.9079 6.3570 0.5213 1.3570 2.3522
s 1 1.7289 0.2646 0.7289 0.7907 1.7250 0.1930 0.7250 0.7147
iz 5 29824 1.0294 -2.0176 5.0796 5.9264 0.2168 0.9264 1.0707
ths 4 42006 0.0846 0.2006 0.1232 4.8927 0.1081 0.8927 0.9029
tha 2 2.0810 0.0306 0.0810 0.0365 27726 0.0989 0.7726 0.6938
ths 3 3.1156  0.0507 0.1156 0.0630 4.0778 0.1243 1.0778 1.2834
fy -4 -4.1501 0.3137 -0.1501  0.3299 -4.6382 0.1543 -0.6382 0.5586
fa -3 -3.3961 0.3739 -0.3961  0.5233 -3.7638 0.0662 -0.7638 0.6484
fa -2 -2.0445 0.0533 -0.0445 0.0542 -2.8305 0.0674 -0.8305 0.7558
fa -1 -1.0003 0.0231 -0.0003  0.0226 -1.7930 0.0383 -0.7930 0.6664
fs 0 -0.0253 0.0112 -0.0253  0.0116 0.0250 1.3771 0.0250 1.3501
fe -4 -2.5364 1.3665 1.4636 3.4811 -3.2653 0.5666 0.7347 1.0950
f7 -3 -2.5499 1.7141 0.4501 1.8824 -3.2150 0.4037 -0.2150 0.4418
fg -2 -0.8497 1.0686 1.1503 2.3704 -2.0036 0.4987 -0.0036 0.4888
fo -1 -0.6876 0.3611 0.3124 0.4515 -1.0936 0.1547 -0.0936 0.1604
f10 0 -0.0250 0.0136 -0.0250 0.0140 0.0430 0.1565 0.0430 0.1552
f11 -4 -2.6744 1.9854 1.3256 3.7029 -3.6156 0.7423 0.3844 0.8752
f12 -3 -0.5700 1.4921 2.4300 7.3671 -3.4534 0.2146 -0.4534 0.4158
fi3 -2 -2.2964 0.0776 -0.2964  0.1639 -2.2962 0.1276 -0.2962 0.2128
f14 -1 -1.1039 0.0259 -0.1039  0.0362 -1.0429 0.4742 -0.0429 0.4666
fis 0 -0.1576  0.0198 -0.1576  0.0442 0.0608 0.2770 0.0608 0.2751

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean squaretdedair.iterations and 20,000 burn
ins were used with Op8UGS and R.
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TABLE C5 Item detection and false alarm parameters. Conditions with simulated compensatory items and
independent skills, contrasting conjunctive versus compensatory item condensation rules

Condition 19. Beta-Bernoulli distributed Condition 7. Uniform distributed 0

Par Value APM Var Bias MSE APM Var Bias MSE
d; 5 4842  0.734  -0.158 0.744 6.123  0.320 1.123 1.575

d, 4 4.059  0.232 0.059 0.231 5.137 0.186 1.137 1.476

ds 3 3.023 0.074 0.023 0.073 4411 0.118 1411 2.107

ds 2 1.999 0.058 -0.001 0.057 3.613  0.060 1.613 2.660

ds 1 1 1.120  0.152 0.120 0.163 2.071 0.238 1.071 1.381
ds > 1 1.085  0.106 0.085 0.111 2.157 0.124 1.157 1.460
ds 1 1 1.651  0.242 0.651 0.661 1.623 0.152 0.623 0.537
ds 3 1 1.810 0.197 0.810 0.850 1.924 0.223 0.924 1.072
d7 1 2 2.125  0.095 0.125 0.109 2.596  0.208 0.596 0.559
d; 4 2 2.066  0.134 0.066 0.136 2877 0.175 0.877 0.941
ds » 3 2990 0.195 -0.010 0.192 3.922 0.134 0.922 0.982
ds 3 3 3.050 0.111 0.050 0.111 3.968 0.140 0.968 1.074
do> 4 4.096  0.655 0.096 0.651 4.877 0.368 0.877 1.130
dg 4 4 4.041  0.277 0.041 0.273 5.044 0.162 1.044 1.248
dios 5 5293 0.510 0.293 0.585 5645 0511 0.645 0.917
dio4 5 5.157  0.675 0.157 0.686 5.729  0.387 0.729 0.912
di11 1 1.256  0.294 0.256 0.353 1.986 0.296 0.986 1.263
di1 o 1 1.375 0.324 0.375 0.458 2.116  0.380 1.116 1.617
di1s 1 1.323  0.353 0.323 0.450 2.026  0.548 1.026 1.591
diz1 5 4760 0.585  -0.240 0.631 5459  0.737 0.459 0.933
diz> 5 4729 0586  -0.271 0.648 5431 0.315 0.431 0.494
di24 5 4593 0.379  -0.407 0.537 5265 0.194 0.265 0.261
diz1 4 4.290 1.013 0.290 1.077 4.859  0.589 0.859 1.314
diz3 4 4.039  0.262 0.039 0.258 4.700 0.347 0.700 0.830
di34 4 3.991 0.245  -0.009 0.240 4725 0.334 0.725 0.853
Oia> 2 2116  0.135 0.116 0.146 3.274 0.163 1.274 1.784
Oiss 2 2.105 0.101 0.105 0.110 3.160  0.069 1.160 1.414
Ois4 2 2.051  0.075 0.051 0.076 3.181  0.155 1.181 1.546
Ois1 3 3.548 1.068 0.548 1.348 3.876  0.737 0.876 1.490
s 3 3.635 0.737 0.635 1.125 4.033 0.782 1.033 1.833
dis3 3 3.354  0.745 0.354 0.856 3.894  0.356 0.894 1.148
Ois4 3 3.063  0.492 0.063 0.486 3.751 0.314 0.751 0.871
fy -4 -3.835  0.259 0.165 0.281 -4.636 0.258 -0.636  0.658

f -3 -3.104 0.254  -0.104 0.260 -3.786 0.163 -0.786  0.778

f3 -2 -2.032  0.047  -0.032 0.047 -2.939 0.121  -0.939  1.000

fy -1 -1.004 0.060  -0.004 0.059 -1.796 0.051 -0.796 0.684

f5 0 -0.010 0.024  -0.010 0.023 0.038  1.002 0.038 0.983

f -4 -2.524  1.940 1.476 4.078 -2.582  0.946 1.418 2.939

f; -3 -2.899  0.408 0.101 0.410 -2.627  1.468 0.373 1.578

fg -2 -2.047  0.183  -0.047 0.181 -2.129 0.538 -0.129  0.544

fo -1 -0.909  0.075 0.091 0.082 -1.109 0.075 -0.109  0.086

f10 0 0.032  0.062 0.032 0.062 0.117  0.058 0.117 0.070
f11 -4 -3.582  2.075 0.418 2.208 -2.749  1.961 1.251 3.486
f12 -3 -2.526  0.440 0.474 0.656 -2.779  0.172 0.221 0.217
fi3 -2 -2.012 0.406  -0.012 0.398 -1.996 0.128 0.004 0.125
f1a -1 -1.014 0.085 -0.014 0.083 -0.959 0.564 0.041 0.555
fis 0 -0.037  0.638  -0.037 0.627 0.122  0.129 0.122 0.141

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean squarefOedadr.iterations and 20,000 burn
ins were used with OpenBUGS and R.
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TABLE C6 Item detection and false alarm parameters. Conditions with simulated compensatory items and
correlated skills, contrasting conjunctive versus compensatory item condensd¢i®on ru

Condition 20. Beta-Bernoulli Condition 8. ; défined as
distributed U, Uniform distributed
Par Value APM Var Bias MSE APM Var Bias MSE
d; 5 5.0567 0.2178 0.0567 0.2167 5.7826 0.1434 0.7826 0.7530
d, 4 4.0719 0.0799 0.0719 0.0834 5.0990 0.0648 1.0990 1.2713
d; 3 3.0329 0.0429 0.0329 0.0431 42733 0.0929 1.2733 1.7123
ds 2 2.0438 0.0380 0.0438 0.0392 3.6512 0.0483 1.6512 2.7739
ds 1 1 1.0868 0.1600 0.0868 0.1644 1.6967 0.1814 0.6967 0.6632
ds » 1 1.0677 0.1351 0.0677 0.1370 1.9673 0.1518 0.9673 1.0843
ds 1 1 1.6663 0.2596 0.6663 0.6984 1.6300 0.2400 0.6300 0.6321
ds 3 1 1.7668 0.1325 0.7668 0.7179 1.8623 0.2717 0.8623 1.0098
d; 1 2 2.1042 0.0834 0.1042 0.0926 2.4602 0.2597 0.4602 0.4663
d7 4 2 2.1071 0.0713 0.1071 0.0814 2.9897 0.3001 0.9897 1.2736
dg» 3 3.0183 0.1042 0.0183 0.1025 3.9562 0.1845 0.9562 1.0952
dgs 3 2.9656 0.1011 -0.0344 0.1003 4.0456 0.1559 1.0456 1.2461
dg 4 43202 0.7225 0.3202 0.8105 5.1068 0.6068 1.1068 1.8198
dg 4 4 42534 0.3453 0.2534 0.4026 5.1115 0.3060 1.1115 1.5353
dios 5 49791 0.4762 -0.0209 0.4671 5.4418 0.3255 0.4418 0.5141
104 5 5.2225 0.5606 0.2225 0.5989 5.6538 0.3283 0.6538 0.7491
111 1 1.4440 0.3982 0.4440 0.5873 1.8660 0.3151 0.8660 1.0587
di1o 1 1.4277 0.4107 0.4277 0.5854 1.9582 0.4269 0.9582 1.3364
dirs 1 1.4922 0.4808 0.4922 0.7134 2.1739 0.2432 11739 1.6164
dizs 5 5.0389 1.0500 0.0389 1.0305 5.4685 0.6707 0.4685 0.8768
dizo 5 49661 0.6817 -0.0339 0.6692 5.4657 0.4990 0.4657 0.7058
dioa 5 49903 0.3086 -0.0097 0.3025 5.4985 0.2645 0.4985 0.5077
diz1 4 3.9651 0.5666 -0.0349 0.5565 4.8214 0.9466 0.8214 1.6023
dizs 4 42279 0.2878 0.2279 0.3339 47244 0.6796 0.7244 1.1907
di34 4 4.1665 0.2358 0.1665 0.2588 48505 0.4080 0.8505 1.1232
dis2 2 2.1078 0.1526 0.1078 0.1611 3.0879 0.3677 1.0879 1.5438
dias 2 2.0697 0.1329 0.0697 0.1351 3.1749 0.2115 1.1749 1.5877
diga 2 2.1193 0.0874 0.1193 0.0998 3.1255 0.2525 1.1255 1.5142
dis 1 3 3.1576 0.9830 0.1576 0.9882 3.6183 0.8357 0.6183 1.2013
dis» 3 3.6146 0.8696 0.6146 1.2299 4.0680 0.7036 1.0680 1.8302
dis3 3 3.5334 0.6788 0.5334 0.9498 3.9278 0.8012 0.9278 1.6460
dis4 3 3.6278 0.8657 0.6278 1.2426 3.9662 0.5162 0.9662 1.4395
fy -4 -4.0866 0.1569 -0.0866 0.1612 -4.7007 0.1316 -0.7007 0.6200
f, -3 -3.0662 0.0680 -0.0662 0.0710 -3.8234 0.0710 -0.8234 0.7476
fa -2 -1.9945 0.0318 0.0055 0.0312 -2.8150 0.0577 -0.8150 0.7208
f4 -1 -1.0353 0.0169 -0.0353 0.0178 -1.8300 0.0350 -0.8300 0.7233
fs 0 -0.0134 0.0107 -0.0134 0.0106 0.1502 1.9839 0.1502 1.9668
fe -4 -2.3972 14312 1.6028 3.9716 -3.0707 0.8126 0.9293 1.6600
fs -3 -2.6472 0.9795 0.3528 1.0844 -2.8524 14081 0.1476 1.4017
fg -2 -1.8808 0.0957 0.1192 0.1080 -2.2937 0.2033 -0.2937 0.2855
fg -1 -0.9908 0.0185 0.0092 0.0182 -1.1099 0.1358 -0.1099 0.1451
fio 0 0.0235 0.0159 0.0235 0.0162 0.0180 0.0447 0.0180 0.0441
f11 -4 -3.1112 2.8497 0.8888 3.5827 -2.9209 1.4192 1.0791 2.5553
fio -3 -2.9485 0.0993 0.0515 0.0999 -3.1990 0.0563 -0.1990 0.0948
fi3 -2 -1.9931 0.0297 0.0069 0.0291 -2.2431 0.0817 -0.2431 0.1392
f1a -1 -1.0101 0.0163 -0.0101 0.0161 -0.9508 0.4207 0.0492 0.4147
fis 0 -0.0156 0.0144 -0.0156 0.0144 0.0880 0.0833 0.0880 0.0894

Note: APM is the average posterior mean across conditions, Vardstihetor variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean squarefOedady.iterations and 20,000 burn
ins were used with OpenBUGS and R.
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TABLE C7 Item detection and false alarm paramet&senditions with simulated mixed
conjunctive and disjunctive items and independent skills.

Condition 21. ; défined as Condition 9. Uniform
Beta-Bernoulli distributed distributed U;
Par Value APM Var Bias MSE APM Var Bias MSE
d; 5 4936 0502 -0.064 0.496 5.838 0.441 0.838 1.135
dz 4 4354 0.349 0.354 0.467 5.397 0.278 1.397 2.223
ds 3 3.190 0.273 0.190 0.304 4420 0.230 1.420 2.243
ds 2 2.087  0.056 0.087 0.063 3.700 0.086 1.700 2.975
ds 1 1214 0.154 0.214 0.197 1.727 0.230 0.727 0.754
ds 1 1.604 0.076 0.604 0.440 1.624 0.150 0.624 0.536
d; 2 1961 0.077 -0.039 0.077 2.835 0.189 0.835 0.883
ds 3 3.041 0454 0.041 0.447 3.744  0.228 0.744 0.777
dy 4 4605 0.685 0.605 1.037 4950 0.336 0.950 1.232
dio 5 5.192 0.646 0.192 0.670 6.216 0.475 1.216 1.944
s 1 1.633 0.072 0.633 0.472 1.841 0.248 0.841 0.951
di2 5 4547 0450 -0.453 0.646 5.357 0.295 0.357 0.417
Chs 4 4695 0.657 0.695 1.127 5.390 0.530 1.390 2.451
s 2 2.204 0.238 0.204 0.275 2.903 0.188 0.903 1.000
dis 3 3.543 0.719 0.543 0.999 4.013 0.589 1.013 1.604
f1 -4 -3.780  0.158 0.220 0.204 -4.303 0.135 -0.303 0.224
f2 -3 -3.159 0.280 -0.159  0.300 -3.935 0.166 -0.935 1.038
f3 -2 -2.180 0.287 -0.180 0.314 -2.962 0145 -0.962 1.067
fa -1 -1.047 0.039 -0.047 0.041 -1.869 0.075 -0.869 0.829
fs 0 0.005  0.005 0.005 0.005 0.145 1.020 0.145 1.020
fe -4 -3.102 1.014  0.898 1.799 -3.311 0.517 0.689 0.981
f7 -3 -2.956  0.039 0.044 0.040 -3.454 0311 -0.454 0.510
fg -2 -2.003 0.546 -0.003 0.535 -2.102 0.767 -0.102 0.762
fo -1 -0.959 0.016 0.041 0.017 -1.115 0.369 -0.115 0.375
f10 0 0.032 0.081 0.032 0.080 0.018 0.205 0.018 0.201
f11 -4 -2.895 0.948 1.105 2.151 -3.803 0.609 0.197 0.636
f12 -3 -2.585  0.413 0.415 0.577 -2.470 0.541 0.530 0.811
f13 -2 -1.999  0.022 0.001 0.022 -2.388 0.126 -0.388 0.275
f1a -1 -1.193 0.232 -0.193 0.265 -1.218 0.748 -0.218 0.781
fis 0 0.016  0.003 0.016 0.003 -0.182 0.806 -0.182 0.822

Note: APM is the average posterior mean across conditions, Var is the estimator \aiagseeplications, Bias is
the estimator bias across replications, MSE is the estimator mean squaretdedir.iterations and 20,000 burn
ins were used with OpenBUGS and R.
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TABLE C8 Item detection and false alarm parameters. Conditions simtlulated mixed
conjunctive and disjunctive items and correlated skills.

Condition 22. BetaBernoulli Condition 10. Uniform
distributed U distributed U

Par Value APM Var Bias MSE APM Var Bias MSE

d; 5 5.2252 0.3342 0.2252 0.3782 6.0314 0.1653 1.0314 1.2258
do 4 4.0980 0.1307 0.0980 0.1377 5.1280 0.1197 1.1280 1.3897
ds 3 3.1258 0.1284 0.1258 0.1417 43790 0.0830 1.3790 1.9830
ds 2 2.0639 0.0185 0.0639 0.0222 3.6596 0.0598 1.6596 2.8128
ds 1 1.0315 0.0290 0.0315 0.0294 1.6586 0.0904 0.6586 0.5223
ds 1 1.4643 0.1141 0.4643 0.3274 1.4918 0.1639 0.4918 0.4025
d7 2 2.0469 0.0734 0.0469 0.0741 2.7044 0.1189 0.7044 0.6128
dg 3 2.9015 0.0765 -0.0985 0.0847 3.7823 0.1442 0.7823 0.7533
do 4 41608 0.2441 0.1608 0.2650 5.0537 0.2246 1.0537 1.3303
dio 5 5.0922 1.2618 0.0922 1.2451 6.0413 0.3263 1.0413 1.4041
di1 1 1.4305 0.1716 0.4305 0.3535 1.6940 0.1805 0.6940 0.6585
di2 5 5.2577 0.1790 0.2577 0.2418 5.7808 0.2439 0.7808 0.8488
iz 4 41056 0.0983 0.1056 0.1075 49197 0.1276 0.9197 0.9709
di4 2 2.0649 0.0447 0.0649 0.0480 2.8225 0.0980 0.8225 0.7725
dis 3 3.1012 0.3221 0.1012 0.3259 41939 0.2459 1.1939 1.6664
f, -4 -4.2319 0.3187 -0.2319 0.3661 -4,7975 0.1888 -0.7975 0.8211
f, -3 -3.1211 0.0979 -0.1211 0.1106 -3.8112 0.0828 -0.8112 0.7393
fa -2 -2.1237 0.1522 -0.1237 0.1644 -2.9053 0.0523 -0.9053 0.8709
fs -1 -1.0237 0.0081 -0.0237 0.0085 -1.8236 0.0320 -0.8236 0.7097
fs 0 -0.0059 0.0067 -0.0059 0.0066 -0.2511 1.9530 -0.2511 1.9770
fs -4 -3.1361 1.0898 0.8639 1.8143 -3.4779 0.6573 0.5221 0.9168
f; -3 -3.0569 0.0449 -0.0569 0.0472 -3.2993 0.4277 -0.2993 0.5087
fg -2 -1.6592 0.5767 0.3408 0.6814 -2.2752 0.5945 -0.2752 0.6583
fq -1 -0.9956 0.0130 0.0044 0.0127 -1.1285 0.0828 -0.1285 0.0976
fi0 0 -0.0238 0.0131 -0.0238 0.0135 0.0941 0.2195 0.0941 0.2240
f11 -4 -3.0295 1.2009 0.9705 2.1187 -3.6049 0.4840 0.3951 0.6305
fio -3 -3.2800 0.1857 -0.2800 0.2604 -3.4234 0.3197 -0.4234 0.4926
fi3 -2 -1.9999 0.0152 0.0001 0.0149 -2.3362 0.2146 -0.3362 0.3233
fia -1 -1.0690 0.0325 -0.0690 0.0367 -1.2493 1.1154 -0.2493 1.1553
fis5 0 0.0339 0.0053 0.0339 0.0064 0.0572 0.3120 0.0572 0.3090

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is
theestimator bias across replications, MSE is the estimator mean squared@®@0. iterations and 20,000 burn
ins were used with OpenBUGS and R.
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TABLE C9 Item detection and false alarm parameters. Conditions with simulated mixed
conjunctive anadompensatory items and independent skills.

Condition 23. BetaBernoulli Condition 11. Uniform
distributed U distributed U;
Par Value APM Var Bias MSE APM Var Bias MSE
dy 5 5.039 0.496 0.039 0.487 5.974 0.24 0.974 1.183
d, 4 4,129 0.354 0.129 0.364 5.226 0.168 1.226 1.666
ds 3 3.172 0.194 0.172 0.22 4.409 0.121 1.409 2.104
da 2 2.047 0.053 0.047 0.054 3.747 0.062 1.747 3.113
ds 1 1.216 0.152 0.216 0.196 1.269 0.33 0.269 0.396
ds 1 1 1.802 0.228 0.802 0.866 1.728 0.153 0.728 0.68
ds 3 1 1.87 0.174 0.87 0.927 1.827 0.301 0.827 0.98
d; 2 2.144 0.078 0.144 0.097 2.111 0.129 0.111 0.139
ds> 3 3.079 0.224 0.079 0.226 4.031 0.206 1.031 1.265
ds 3 3 3.059 0.226 0.059 0.225 3.995 0.282 0.995 1.267
do 4 4.619 0.383 0.619 0.758 4.703 0.49 0.703 0.975
dios 5 4.94 0.498 -0.06 0.491 5.529 0.396 0.529 0.668
diga 5 5.13 0.395 0.13 0.404 5.579 0.404 0.579 0.732
diq 1 1.093 0.193 0.093 0.198 0.985 0.117 -0.015 0.114
dis 1 5 4,989 0.415 -0.011 0.407 5.205 0.47 0.205 0.503
diso 5 4,388 0.487 -0.612 0.851 4.904 0.49 -0.096 0.489
dis s 5 4,213 0.275 -0.787 0.89 4.76 0.318 -0.24 0.37
dis 4 4.325 0.761 0.325 0.852 4.753 0.542 0.753 1.098
dis o 2 2.072 0.173 0.072 0.174 3.196 0.211 1.196 1.638
disz 2 2.113 0.078 0.113 0.09 3.194 0.206 1.194 1.627
diga 2 2.125 0.093 0.125 0.106 3.117 0.103 1.117 1.347
dis 3 3.558 0.608 0.558 0.907 3.727 0.465 0.727 0.984
f1 -4 -3.762 0.215 0.238 0.267 -4.265 0.184 -0.265 0.25
f, -3 -3.083 0.426 -0.083 0.424 -3.825 0.111 -0.825 0.789
fs -2 -2.147 0.141 -0.147 0.16 -2.955 0.11 -0.955 1.02
fa -1 -1.022 0.029 -0.022 0.029 -1.847 0.075 -0.847 0.791
fs 0 0.015 0.004 0.015 0.004 -0.24 0.365 -0.24 0.415
fg -4 -2.103 1.827 1.897 5.389 -2.758 1.087 1.242 2.608
f; -3 -2.51 0.641 0.49 0.869 -3.162 0.387 -0.162 0.406
fg -2 -2.014 0.31 -0.014 0.304 -2.227 0.811 -0.227 0.846
fq -1 -1 0.012 0 0.012 -1.282 0.106 -0.282 0.183
f10 0 0.019 0.069 0.019 0.068 0.119 0.095 0.119 0.107
f11 -4 -3.815 0.213 0.185 0.242 -4.473 0.121 -0.473 0.342
fio -3 -2.093 0.168 0.907 0.988 -2.121 0.198 0.879 0.967
fi3 -2 -1.834 0.208 0.166 0.231 -2.449 0.104 -0.449 0.303
f1a -1 -1.072 0.074 -0.072 0.077 -0.954 1.172 0.046 1.151
fis 0 0.007 0.007 0.007 0.007 -0.151 0.016 -0.151 0.039

Note: APMis the average posterior mean across conditions, Var is the estimator variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean squarefOedadr.iterations and 20,000 burn
ins were used with OpenBUGS and R

135



TABLE C10Item detection and false alarm parameters. Conditions with simulated mixed
conjunctive and compensatory items and correlated skills.

Condition 24. Beta-Bernoulli Condition 12. Uniform
distributed U distributed U
Par Value APM Var Bias MSE APM Var Bias MSE
ds 5 5.4303 0.2059 0.4303 0.3870 6.2123 0.2143 1.2123 1.6797
d, 4 4.0632 0.0858 0.0632 0.0880 5.1219 0.0646 1.1219 1.3221
ds 3 3.0803 0.0582 0.0803 0.0635 42863 0.0652 1.2863 1.7184
ds 2 2.0346 0.0273 0.0346 0.0280 3.6721 0.0522 1.6721 2.8470
ds 1 1.0717 0.0685 0.0717 0.0722 1.0482 0.0511 0.0482 0.0524
ds 1 1 1.7543 0.2232 0.7543 0.7877 1.7792 0.1435 0.7792 0.7477
ds 3 1 1.8019 0.1859 0.8019 0.8252 1.8654 0.1761 0.8654 0.9214
d; 2 2.0532 0.0493 0.0532 0.0511 1.9567 0.0972 -0.0433 0.0971
ds > 3 3.1351 0.1199 0.1351 0.1357 4,0811 0.2745 1.0811 1.4378
dss 3 3.0159 0.0896 0.0159 0.0880 3.9808 0.2220 0.9808 1.1797
do 4 4.0006 0.2594 0.0006 0.2542 45880 0.2670 0.5880 0.6074
digs 5 44814 0.4903 -0.5186 0.7495 49890 0.5032 -0.0110 0.4933
dio4 5 4.8347 0.4945 -0.1653 0.5120 5.6547 0.2322 0.6547 0.6562
diq 1 1.0440 0.1321 0.0440 0.1314 0.9100 0.1201 -0.0900 0.1258
dio 5 47177 0.5034 -0.2823 0.5730 5.2369 0.4970 0.2369 0.5432
dis o 5 5.0059 0.6839 0.0059 0.6702 5.6552 0.5813 0.6552 0.9990
dis4 5 5.2080 0.4606 0.2080 0.4946 5.7206 0.4685 0.7206 0.9785
dis 4 41238 0.0795 0.1238 0.0932 4.0024 0.1117 0.0024 0.1095
dia> 2 2.0898 0.2797 0.0898 0.2822 3.1463 0.4436 1.1463 1.7487
Oias 2 2.0896 0.2037 0.0896 0.2077 3.0993 0.4833 1.0993 1.6820
dis4 2 2.2054 0.1041 0.2054 0.1443 3.2747 0.3096 1.2747 1.9282
dis 3 3.2677 0.3319 0.2677 0.3970 3.2628 0.3869 0.2628 0.4482
fy -4 -4.4294 0.2026 -0.4294 0.3829 -4.9479 0.1588 -0.9479 1.0542
fy -3 -3.0857 0.0882 -0.0857 0.0938 -3.7836 0.0558 -0.7836 0.6687
f3 -2 -2.0697 0.0510 -0.0697 0.0548 -2.8470 0.0651 -0.8470 0.7812
fa -1 -0.9992 0.0199 0.0008 0.0195 -1.8029 0.0350 -0.8029 0.6789
fs 0 0.0068 0.0053 0.0068 0.0052 -0.3537 1.3859 -0.3537 1.4833
fs -4 -2.2090 1.3303 1.7910 4.5115 -2.6470 0.6878 1.3530 2.5046
f7 -3 -2.7692 0.3236 0.2308 0.3704 -3.0315 0.6947 -0.0315 0.6818
fg -2 -1.9757 0.2615 0.0243 0.2568 -2.2302 0.1669 -0.2302 0.2166
f -1 -0.9437 0.0340 0.0563 0.0365 -1.2096 0.2857 -0.2096 0.3240
fio 0 0.0179 0.0177 0.0179 0.0176 0.0784 0.0551 0.0784 0.0601
f11 -4 -3.8870 0.1693 0.1130 0.1787 -4,5007 0.1583 -0.5007 0.4058
f12 -3 -2.9511 0.0925 0.0489 0.0930 -3.1138 0.0963 -0.1138 0.1073
f13 -2 -1.9928 0.0114 0.0072 0.0112 -2.2685 0.1339 -0.2685 0.2033
f1a -1 -1.0607 0.0281 -0.0607 0.0312 -1.0189 0.5955 -0.0189 0.5840
fis 0 0.0359 0.0066 0.0359 0.0077 -0.0655 0.0101 -0.0655 0.0142

Note: APM is the average posterior mean across conditions, Vardstih@tor variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean squaretdedir.iterations and 20,000 burn
ins were used with OpenBUGS and R.
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Model parameter recovery for conditions 2526, and 27

TABLE C11. Latent class size parameter estimfatesonditions 2526, and 27

Par Value APM Var Bias MSE APM Var Bias MSE
Condition 25: Condition 26:
Conjunctive data. Compensatory data.
p (DU 0.269 0.261 0.0007 -0.0014 0.0006 0.265 0.0007 -0.0015 0.0006
p (U 0.419 0.408 0.0005 -0.0014 0.0005 0.415 0.0005 -0.0013 0.0005
p (U 0574 0.551 0.0002 -0.0055 0.0002 0.562 0.0002 -0.0050 0.0002
p (U 0.663 0.645 0.0002 -0.0046 0.0003 0.652 0.0002 -0.0045 0.0003
Condition 27:

Compensatory data.
p (DU 0.269 0.228 0.0007 -0.0405 0.0033

p (U 0419 0.396 0.0002 -0.0227 0.0010
p (U 0574 0568 0.0010 -0.0068 0.0024
p (U 0663 0.634 0.0019 -0.0292 0.0055

Note: Par is the latent class size paramétei is the average posterior mean across conditions, Var is the
estimator variance across replications, Bias is the estimator bias across replications, MSE is the estimator mean
squared error. 40,000 iterations and 20,000 {nsmwere used with OpenBUG8&R.
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TABLEC12 Item detection and false alarm parameter estimates for condition 25

Par Value APM Var Bias MSE Par Value APM Var Bias MSE
d; 5 28.89 6140 21.76 505.20 f -4 -23.54 52.79 -16.78 309.62
d, 4 29.32 109.58 26.07 718.11 f, -3 -22.28 66.93 -19.33 400.28
ds 3 2755 86.05 25.43 653.71 f3 -2 -17.51 41.73 -16.68 287.91
ds 2 21.97 6242 24.36 596.00 f4 -1 -9.82 20.62 -11.78 143.68
ds 1 255 5953 6.58 75.15 fs 0 219 1261 -0.21 8.63
ds 1 1.86 1.18 0.37 1.08 fe -4 -5.86 94.05 0.62 88.26
d; 2 260 20.38 213 2231 fz -3 -440 65.11 015 62.36
ds 3 493 386.97 2250 466.30 fg -2 -1.30 108.35 6.09 116.18
dg 4 15.78 89.43 22.29 450.99 fg -1 3.75 6356 6.70 96.17
dio 5 26.37 139 21.21 408.09 fi0 0 -1.48 336.01 -13.96 372.20
dip 1 0.98 0.13 -0.27 0.14 f11 -4 -4.56 9.70 -0.17 9.66
di» 5 18.81 40.28 21.17 406.41 1o -3 -4.40 23144 -1.08 230.45
dis 4 17.61 57.86 22.27 450.14 fi3 -2 -2.26  162.71 147 162.04
dig 2 1.89 541.87 24.33 536.79 fia -1 -1.24 4743 0.23 47.25
dis 3 2219 9.42 23.36 495.40 fis5 0 -0.21 169.12 255 168.71

Note: Par is the item parameter, APM is the average posterior mean across conditions, Var is the estimator variance
across replications, Bias is the estimator bias aceggiations, MSE is the estimator mean squared et€3000
iterations and 20,000 buins were used with OpenBUGS and R.
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TABLE C13Item detection and false alarm parameter estimates for condition 26

Par Value APM Var Bias MSE Par Value APM Var Bias MSE
dy 5 26.23 5436 21.23 505.20 f1 -4 -20.34 4257 -16.34 309.62
dy 4 28.68 109.17 24.68 718.11 f, -3 -21.28 65.94 -18.28 400.28
ds 3 26.84 85.53 23.84 653.71 fa -2 -17.69 41.70 -15.69 287.91
da 2 25.34 51.05 23.34 596.00 fa -1 -12.39 14.04 -11.39 143.68
ds 1 1 17.72 39.05 16.72 318.71 fs 0 -1.23 63453 -1.23 636.03
ds > 1 19.96 65.30 18.96 424.63
ds 1 1 11.65 4435 10.65 157.78 fe -4 -8.52 431.92 -452 452.34
ds 3 1 1268 63.00 11.68 199.37
d; 1 2 16.75 82.65 14.75 300.25 f; -3 225 451.43 525 478.95
d; 4 2 1767 9152 15.67 336.98
ds 2 3 1873 74.80 15.73 322.29 fg -2 -7.90 496.32 -590 531.18
ds 3 3 1991 89.29 16.91 375.34
(o 4 22.08 46.23 18.08 373.00 fq -1 -14.94 245.79 -13.94 440.00
do 4 4 19.86 56.99 15.86 308.49
dios 5 2755 42.41 22.55 550.76 fio 0 9.62 97.66 9.62 190.20
diga 5 29.68 13.81 24.68 622.95
di11 1 19.92 73.03 18.92 431.14 f11 -4 -0.64 516.59 3.36 527.90
di1o 1 19.69 53.83 18.69 403.24
di13 1 21.73 66.90 20.73 496.59
dis 1 5 28.09 50.44 23.09 583.49 fio -3 -7.71 47488 -4.71 497.03
diso 5 2156 61.80 16.56 336.08
dis 4 5 20.73 83.59 15.73 330.92
diz1 4 26.05 72.31 22.05 558.68 fi3 -2 0.23 587.25 223 592.22
diss 4 19.13 63.17 15.13 292.10
diz 4 4 18.73 58.31 14.73 275.33
diao 2 21.11 57.11 19.11 422.24 f1a -1 -10.49 873.27 -9.49 963.38
dias 2 20.37 53.32 18.37 390.72
dig4 2 20.92 46.10 18.92 404.17
dis1 3 25.99 66.79 22.99 595.30 fis 0 -451 631.34 -451 651.69
dis o 3 24.61 103.07 21.61 570.21
dis 3 3 1758 66.95 14.58 279.48
dis 4 3 20.11 73.68 17.11 366.27

Note: Par is the item parameter, APM is the average posterior mean across conditions, Var is the estimator variance
across replication®ias is the estimator bias across replications, MSE is the estimator mean squared error. 40,000
iterations and 20,000 buins were used with OpenBUGS and R.

139



TABLE C14Item detection and false alarm parameter estimates for condition 27
Par Value APM Var Bias MSE Par Value APM Var Bias MSE

d; 5 25.92 24.69 20.92 498.24 f -4 -16.10 18.31 -12.10 191.25
d; 4 25.34 32.58 21.34 535.15 f, -3 -18.03 17.34 -15.03 268.45
ds 3 23.95 33.93 20.95 521.90 fa -2 -15.75 16.39 -13.75 229.12
ds 2 23.88 10.74 21.88 504.93 f4 -1 -11.02 3.53 -10.02 109.15
ds 1 261 415 161 1274 fs 0 -0.08 0.07 -0.08 0.17
ds 1 1 12.13 13.35 11.13 156.50 fs -4 -6.10 222.36 -2.10 549.21
ds 3 1 15.15 15.94 14.15 239.31
d; 2 205 056 0.05 1.38 f7 -3 -211 8.02 089 2043
ds» 3 22.06 13.80 19.06 397.07 fg -2 -6.23 23791 -4.23 600.75
dgs 3 23.26 19.94 20.26 459.23
do 4 2529 10.41 21.29 478.83 fo -1 443 65.75 543 190.58
dios 5 28.46 3.09 23.46 558.08 f10 0 272 5433 272 14054
di04 5 29.64 13.10 24.64 639.31
dis 1 0.88 0.02 -0.12 0.08 f11 -4 -3.98 3.02 0.02 7.40
diz1 5 32.02 10.57 27.02 755.79 f12 -3 -12.24 136.68 -9.24 420.32
diz 2 5 24.48 27.65 19.48 447.32
di24 5 2594 17.19 20.94 480.66
dis 4 2492 12.17 20.92 467.54 f13 -2 -234 004 -034 0.22
dis2 2 20.63 11.31 18.63 374.68 f1q -1 -12.41 387.44 -11.41 1079.41
digs 2 2245 7.49 2045 436.43

di44 2 21.04 9.27 19.04 385.28

dis 3 26.36 0.29 23.36 546.18 f1s 0 -0.28 0.21 -0.28 0.59

Note: Par is the item parameter, APM is the average posterior mean across conditions, Var is the estimator variance
across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error. 40,000
iterationsand 20,000 burns were used with OpenBUGS and R.
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Item parameter recovery conditional ong; for conditions 13 to 24

TABLEC15 | tem detection and fal se ajlCondtionp ar ame-t
with simulated conjunctive items and independent skills

Condition 13 Condition 14
Par Value APM Var Bias MSE APM Var Bias MSE
dy 5 4989 0.3287 -0.0106 0.3222 4,748 0.6417 -0.2523 0.6926
d; 4 4,197 0.2989 0.1970 0.3318 3.809 0.2487 -0.1913 0.2803
ds 3 3.037 0.3004 0.0374 0.2958 2.924 0.3382 -0.0760 0.3373
d, 2 1.945 0.1444 -0.0547 0.1445 2.051 0.2255 0.0506 0.2235
ds 1 1.058 0.0798 0.0584 0.0816 1.172 0.1254 0.1725 0.1526
ds 1 1.642 0.1307 0.6417 0.5398 1.353 0.2027 0.3526 0.3230
d; 2 2.102 0.1293 0.1015 0.1370 2.110 0.2657 0.0259 0.2540
dg 3 2.998 0.2496 -0.0622 0.2449 3.025 1.2336 -0.3380 1.1914
do 4 4273 0.4468 0.2733 0.5125 4.322 0.5292 0.3215 0.6220
dio 5 4649 6.5936 -1.3737 7.3027 4,351 10.2412 -2.6503 13.0545
dig 1 1.700 0.1032 0.7000 0.5912 1.273 0.1803 0.2730 0.2513
diz 5 5.371 0.6594 0.3706 0.7836 5.126 0.7712 0.1257 0.7716
di3 4 4,297 05605 0.2969 0.6374 4,532 6.7746  -0.8273 5.4746
dig 2 2.046 0.1111 0.0459 0.1110 2.056 0.0843 0.0559 0.0857
dis 3 3.477 1.0592 0.4771 1.2656 3.404 1.0573 0.3361 1.1444
fy -4 -4.019 0.3142 -0.0186 0.3082 -3.847  0.3668 0.1528 0.3828
f -3 -3.204 0.2684 -0.2037 0.3046 -2.814  0.2032 0.1860 0.2337
f3 -2 -2.053 0.2696 -0.0532 0.2670 -2.036  0.2970 -0.0358 0.2923
fa -1 -0.959 0.0992 0.0413 0.0989 -1.147 0.1836  -0.1471 0.2016
fs 0 0.011 0.0051 0.0111 0.0051 0.002 0.0051 0.0020 0.0050
fs -4 -2.487 1.2107 15127 3.4748 -3.089 0.5797 0.9111 1.3983
f7 -3 -3.086 0.0452 -0.0865 0.0518 -2.536  0.9202 0.5657 1.2116
fg -2 -2.036 0.1030 0.0047 0.0993 -1.954  0.4965 0.2805 0.5102
fy -1 -1.012 0.0135 -0.0117 0.0134 -1.020 0.0090 -0.0204 0.0092
f1o 0 -0.120 0.3152 -0.0933 0.3169 -0.289 2.1238 -0.1561 2.0880
f1g -4 -2.737 1.2837 1.2625 2.8519 -3.759 0.3381 0.2414 0.3897
f1o -3 -2.995 0.0415 0.0055 0.0407 -2.871 0.6174 0.1295 0.6218
f13 -2 -1.993 0.0177 0.0075 0.0174 -2.043  1.2855 0.5698 1.2087
f14 -1 -0.999 0.0067 0.0009 0.0066 -1.023 0.0076 -0.0232 0.0080
f1s 0 0.008 0.0040 0.0079 0.0039 -0.014 0.0051 -0.0140 0.0052

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is
the estimator bias across replications, MSE is the estimator mean squarededir.iterations and 20,000 burn
ins were used with OpenBUGS and R.

141






