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ABSTRACT 

Exploring Skill Condensation Rules for Cognitive Diagnostic Models in a 

Bayesian Framework 

 
Diego Armando Luna Bazaldúa 

Diagnostic paradigms are becoming an alternative to normative approaches in 

educational assessment. One of the principal objectives of diagnostic assessment is to determine 

skill proficiency for tasks that demand the use of specific cognitive processes. Ideally, diagnostic 

assessments should include accurate information about the skills required to correctly answer 

each item in a test, as well as any additional evidence about the interaction between those 

cognitive constructs. Nevertheless, little research in the field has focused on the types of 

interactions (i.e., the condensation rules) among skills in models for cognitive diagnosis. 

The present study introduces a Bayesian approach to determine the underlying interaction 

among the skills measured by a given item when comparing among models with conjunctive, 

disjunctive, and compensatory condensation rules. Following the reparameterization framework 

proposed by DeCarlo (2011), the present study includes transformations for disjunctive and 

compensatory models. Next, a methodology that compares between pairs of models with 

different condensation rules is presented; parameters in the model and their distribution were 

defined considering former Bayesian approaches proposed in the literature. 

Simulation studies and empirical studies were performed to test the capacity of the model 

to correctly identify the underlying condensation rule. Overall, results from the simulation study 

showed that the correct condensation rule is correctly identified across conditions. The results 

showed that the correct condensation rule identification depends on the item parameter values 

used to generate the data and the use of informative prior distributions for the model parameters. 



 
 

     
 

Latent class sizes parameters for the skills and their respective hyperparameters also showed a 

good recovery in the simulation study. The recovery of the item parameters presented 

limitations, so some guidelines to improve their estimation are presented in the results and 

discussion sections. 

The empirical studies highlighted the usefulness of this approach in determining the 

interaction among skills using real items from a mathematics test and a language test. Despite the 

differences in their area of knowledge and Q-matrix structure, results indicated that both tests are 

composed in a higher proportion of conjunctive items that demand the mastery of all skills.  

Keywords: Bayesian, Cognitive Diagnosis models, Condensation rule, Conjunctive 

models, Compensatory models, Disjunctive models. 
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Chapter I . Introduction  

Standardized assessment plays a central role in clinical diagnosis, policy making, 

educational reform, performance prediction, and new pedagogical practices (Au, 2007; OECD, 

2010; Turkstra et al., 2005). Examples are provided by Kuncel and Hezlett (2007), who present a 

synthesis of the literature on standardized testing and graduate education, showing how test 

scores are good predictors of many areas of graduate school performance, such as graduate 

school Graduate Point Average, degree completion, faculty ratings, qualification exams, and 

qualification examinations. 

Despite the prevalent use of standardized assessments, educational testing practice has 

been criticized because of its normative approach, which might have negative effects on 

students, teachers, and schools (Au, 2007; Popham, 1999; Sacks, 1997). This criticism has 

promoted new assessment designs, measurement methods, and frameworks to connect 

psychometrics with cognitive science (Embretson & Gorin, 2001; Mislevy et al., 2014; von 

Davier, 2009; Yan, Mislevy, & Almond, 2003). 

Recently, there has been growth of new diagnostic psychometric methods, which either 

expand Classical Test Theory (CTT) or Item Response Theory (IRT) models or propose new 

latent variable models (Embretson & Daniel, 2008; Embretson & Yang, 2013; Magidson & 

Vermunt, 2001; Mislevy & Verhelst, 1990; Rupp, Templin, & Henson, 2010; Wilson, 2008; 

Yamamoto, 1989). Among these methods, models for cognitive diagnosis (CDM) stand out 

because of their integration of a criterion-referenced assessment within a psychometric 

framework linked to cognitive theory (Geisinger, 2012; Rupp, 2007; Rupp & Templin, 2008). 

CDMs are a criterion-referenced tool rather than a normative-referenced tool since examineesô 

performance is contrasted with respect to a predefined set of skills required to successfully 
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answer the test (Rupp, Templin, & Henson, 2010). Examinees obtain feedback on both mastered 

and non-mastered skills, rather than a normative score with respect to a reference group such as 

those provided from the prevalent models in psychological measurement. Cognitive theory is 

embedded within the modelsô condensation rules and Q-matrix (de la Torre, 2009), and specifies 

how the measured skills are related to each other to produce a correct answer for each item. 

Within the framework of models for cognitive diagnosis, the Q-matrix is an item-by-skill 

matrix that specifies the skills that are required to correctly answer each item in a test (Tatsuoka, 

1990). Condensation rules, in turn, refer to the underlying type of interaction among skills which 

specifies the number of mastered skills required to increase the probability of observing a correct 

answer to a given item without guessing. For instance, given a certain item measuring two skills, 

a researcher might want to analyze whether only one or both skills are needed to correctly 

answer the item. Condensation rules can be seen as the equivalent of what is referred to as 

compensatory and noncompensatory models in the context of models with continuous latent 

variables (Bolt & Lall, 2003); in compensatory models, the absence of one skill (e.g., latent 

variables, attributes) can be made up by the presence of other latent variables, while in 

noncompensatory models the lack of a skill is not compensated by the presence of others. 

Different authors have proposed diverse terms and classifications to define specific 

condensation rules, such as models with conjunctive and disjunctive rules (Rupp, & Templin, 

2008); models with additive rules (de la Torre & Lee, 2013); as well as noncompensatory, which 

includes both conjunctive and disjunctive models, and compensatory log-linear models for 

cognitive diagnosis (Henson, Templin, & Willse, 2009). According to Rupp and Templin (2008) 

and Culpepper (2015), conjunctive models require all skills to be present to produce a correct 

answer without guessing, which makes them similar in definition to noncompensatory models. 
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Rupp and Templin (2008) indicate that disjunctive models allow for a correct response without 

guessing when at least one skill is present, but mastering of more than one skill does not result in 

a higher probability of a correct answer. Models with additive skill effects are considered 

compensatory given that the presence of each skill contributes to an increase in the probability of 

a correct answer without guessing.  

The definition and analysis of condensation rules becomes relevant only in items that 

measure more than one skill as defined in the Q-matrix. As it will be shown in this study, 

equivalent models with conjunctive, disjunctive, or compensatory condensation rules for the 

skills would provide the same results when only one skill is measured by a given item.  

Moreover, models with the three types of condensation rules described above are not 

completely distinct in the case of items measuring two skills. In such situations, the mastery of 

only one skill does not fully differentiate the probability of a correct response due to a 

disjunctive model or a compensatory model linked to the item; similarly, the mastery of both 

skills would not provide enough information to distinguish the probability of a correct response 

due to a compensatory model or a conjunctive model. 

1.1 Research on cognitive diagnostic models  

The use of CDMs in standardized assessments remains low compared to more traditional 

psychometric models, despite being theoretically appealing; still, they are more prevalent in use 

with respect to other psychometric methods for diagnosis. The use of CDMs is increasingly 

being reported in the psychometric literature, mainly in the context of educational and clinical 

research. Notable sources of data that have been analyzed from a CDM perspective are: the 

National Assessment of Educational Progress (NAEP) test, the Trends in International 
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Mathematics and Science Study (TIMSS) test, the Examination for the Certificate of Proficiency 

in English (ECPE) test, and checklists of symptoms for clinical diagnosis of gambling behavior 

(Lee, Park, & Taylan, 2011; Templin & Henson, 2006; Templin & Hoffman, 2013; Xu & von 

Davier, 2008).  

Still, more research has to be done in order to make CDMs a stronger assessment 

alternative with respect to psychometric models such as the CTT and the IRT. In terms of CDM-

related research, many topics still require further analysis and discussion, such as the adequacy 

of these methods for test linking and test equating (Xin, & Zhang, 2014), the specification of the 

Q-Matrix (Chiu, Douglas, & Li, 2009; de la Torre, 2008; DeCarlo, 2012; Liu, Xu, & Ying, 

2012), model reparameterizations (de la Torre, 2011; DeCarlo, 2011; Henson, Templin, & 

Willse, 2009; von Davier, 2013), the relationship of CDMs to other models in psychometrics 

(Lee, de la Torre, & Park, 2012; von Davier, 2005, 2008), measures of item fit and model fit (de 

la Torre & Lee, 2013), measures of item-examinee classification (Henson, Roussos, Douglas, & 

He, 2008), and the model foundations in cognitive science (Leighton, Gierl, & Hunka, 2004; 

Rupp, 2007).  

Additionally, despite the development of several models for cognitive diagnosis with 

conjunctive, disjunctive, and compensatory relations among the latent skills, only a small amount 

research has explored whether all items in a test require the same condensation rule (de la Torre 

& Lee, 2013; Tseng, 2010). A review of the literature reveals that most studies assume that all 

items in a test follow a specific condensation rule among the measured skills, despite the fact that 

this assumption might not be encountered in real-life assessments. Thus, the research question to 

be explored in this project is whether it is possible to implement a Bayesian methodology to 

explore the condensation rule for each item in a test. 
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The research here presented includes an analytical element as well as the development of 

a new methodological framework and its applications to assessment data. The analytical section 

describes how the reparameterization proposed by DeCarlo (2011) can be generalized to other 

models for cognitive diagnosis. The methodological innovation defines the way in which these 

reparametrized models can be merged in a single complex model. In such a model, a 

dichotomous latent variable is introduced to determine what type of model is more appropriate 

for each item in a given data set. In this way, it is assumed that some items require that the 

examinee has mastered all skills, but others are more flexible, allowing for a correct response 

despite the examinee having mastered only some of the necessary skills. Further details are given 

below. 

The use and information gained from the model here developed can have positive 

outcomes in cognitive science, psychometrics, and educational policy. For cognitive science, the 

model can identify the condensation rule among skills measured in a test and can examine 

whether a cognitive theory about the skills matches empirical data. For psychometricians, the 

model allows for a more flexible definition of the diagnostic models at the item level, allowing 

for different compensatory and noncompensatory rules; thus, a better model fit for the items and 

examinees can be gained. For educational policy, a deeper understanding of the cognitive 

processes and psychometric properties of a test, as well as a better measurement of examineesô 

skills, can help policy makers obtain additional information about the assessment and make 

better decisions regarding interventions to improve educational processes. 
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1.2 Example  

The use of an educational assessment can provide context to understand the 

aforementioned concepts. For instance, a given mathematics test aims to measure equation 

problem solving skills such as the use of addition and subtraction, multiplication and division, 

and exponents and roots (Caldwell, Karp, & Bay-Williams, 2011; Chapin & Johnson, 2006; 

Otto, Caldwell, Lubinski, & Hancock, 2011). Equation problems are developed to assess the 

extent to which examinees have mastered those three skills; then, experts identify which skills 

are required to correctly answer each problem. Results of this process are exemplified in the Q-

matrix shown in Table 1. 

TABLE 1. Example of a Q-Matrix for Equation Problem Solving. 

Item Q-matrix 

  
Addition and 

Subtraction 

Multiplication and 

Division 
Exponents and Roots 

1. 3 + 7 = 5 + x 1 0 0 

2. 2x ï 6 = 3x 1 1 0 

3. 16 = 4x
2
 0 1 1 

4. 15 = 5x 0 1 0 

5. 2x
2
 + 8 = 4x

2
 1 1 1 

 

In this example, items 1 and 4 are linked to just one skill, so nothing can be said about the 

condensation rule for those items. Item 2 is related to two skills, and an argument could be made 

about whether the mastery of both skills is required to answer it correctly. The simplest way to 

answer this item would be to require the examinee to subtract 2x from both sides of the equation 

to reveal the x is equal to ï6, requiring just the mastery of the addition-subtraction skill; 

however, a more complex solution, that also requires the mastery of the multiplication-division 
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skill, implies the subtraction of 3x from both sides of the equation, then the addition of positive 

six on both sides, and a multiplication of ï1 on both sides. While the complex solution defines 

the second row of the Q-matrix, the item exemplifies a case where a compensatory or 

conjunctive relation among skills could produce a correct answer. 

Item 3 is justified by a conjunctive rule since the item can be solved in two ways that 

necessarily require the use of multiplication-division and exponents-roots: in the first case, both 

sides of the equation have to be divided by four, then the square root of four is calculated to 

reach the answer; in the second case, the square root is applied to both sides of the equation, then 

everything is divided by two. 

Finally, item 5 requires the use of all three skills. The easiest solution requires the solver 

to subtract 2x
2
 from both sides of the equation, multiply everything by 2, and finally obtain the 

square root of 16. While a conjunctive condensation rule is assumed for this equation given that 

all skills are needed, it could also be disputed that a compensatory rule seems suitable since 

mastering more skills could increase the chances of answering the item correctly. 

These examples illustrate the difficulty of identifying the correct condensation rule for 

the skills required by an item. In this sense, ways of determining the condensation rule are 

examined here. Further, while the common approach in cognitive diagnostic research is to 

assume that all items in a test have the same condensation rule for the skills, there are situations 

in which there is uncertainty about the skill condensation rule. In such cases, support of a single 

condensation rule assumption could result in inaccurate classifications of the examinees and 

flawed inferences about the items. 
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1.3 Outline 

The dissertation is composed of six chapters, in addition to references and appendices. 

Chapter 2 consists of a literature review on CDMs, including a general revision of concepts 

related to psychological measurement and latent variable analysis. In terms of the CDM 

framework, a generic definition of the models for cognitive diagnosis is presented, the 

characterization of the CDMs as constrained latent class models is explained, a classification of 

the different models for cognitive diagnosis is given, and issues regarding model estimation are 

discussed. Finally, a review on Bayesian estimation methods is presented, highlighting the 

conjugate Beta-Bernoulli and Uniform distributions. 

Chapter 3 begins with a description of the DINA model reparameterization proposed by 

DeCarlo (2011, 2012). Equivalent reparameterizations for the DINO and NIDA models are 

presented. Next, a compound model consisting of two different reparametrized CDMs is 

presented.  

Chapter 4 describes the methodology of the study. The parameters are defined and the 

estimation algorithm is specified. A simulation study with twenty four different conditions is 

described. Datasets from two different educational assessments ïmathematics and English as 

second language, respectivelyï and their corresponding Q-matrices are examined.  

Chapter 5 summarizes in text, tables, and graphs, the results of the simulation study and 

the empirical studies. Finally, Chapter 6 corresponds to the discussion of the results, list of the 

limitations of the study, as well as areas for future research in the field. 
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Chapter II . Literature Review 

In this chapter, a review of concepts on psychological measurement and latent variable 

models is presented.  General discussion of the classification of different latent variable models 

leads to the definition of latent class models and cognitive diagnostic models. The final section 

of the chapter provides a background on Bayesian statistics. 

 

2.1 Measurement in Psychology and Education 

Research in psychological and educational sciences is based on theories. A scientific 

theory can be defined as: ña system of statements concerning a set of concepts, which serves to 

describe, explain, and predict some limited aspects of the behavioral domainò (Lord & Novick, 

1968). The central elements of any theory are the constructs included in it, which are defined as 

abstract hypothetical concepts that attempt to explain human behavior (Crocker & Algina, 1986; 

Skrondal & Rabe-Hesketh, 2004). Given that constructs are abstract ideas that cannot be 

absolutely confirmed in the real world, constructs have to be inferred based on rules of 

correspondence employing their respective manifest indicators (Crocker & Algina, 1986). 

A testing hypothesis process is a key part of theory-based research; in this process, 

scientists analyze the association between observed indicators and their corresponding 

hypothetical constructs, as well as the relationship among constructs (Bollen, 2002). In order to 

empirically test such a hypothesis, the rules of correspondence between constructs and indicators 

should involve a measurement component through which the measure becomes an empirical 

referent of the construct (Messick, 1975). In the context of the psychological sciences, 

measurement is traditionally defined as: ñthe assignment of numbers to objects according to 
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rulesò (Stevens, 1946). Considering this definition, the measures are the observed but imperfect 

indicators, and the construct accounts for the relationship among indicators (McCutcheon, 1987; 

Messick, 1975). 

These terms produced within the context of the methodology for the social sciences can 

be connected to corresponding concepts in the field of statistics. The theoretical construct 

corresponds to the statistical concept of latent variable, which is loosely defined as: ña random 

variable that either in principle or in practice cannot be observedò (Bartholomew, 2006). The 

concrete measured representations of the construct (i.e., the indicators of the construct) are 

analogous to the statistical concept of an observed variable. Finally, the testing hypothesis 

process can be understood as the latent variable modeling process that is carried out to infer the 

distribution of the underlying latent variables (Henry, 2006), the estimated relationship between 

construct and indicators, and the nomological relationship among two or more latent variables 

(Cronbach & Meehl, 1955). 

 

2.2 Latent variable modeling  

The term latent structure analysis was originally proposed by Lazarsfeld (Lazarsfeld & 

Henry, 1968) to define the statistical models used to describe latent variables; as a limitation of 

the original definition, Lazarsfeldôs framework of latent variables is focused on those types of 

latent variables that present an underlying categorical structure. Skrondal and Rabe-Hesketh 

(2004) extend the definition of what can be considered a latent variable by pointing out that this 

term receives different names in the scientific literature depending on the discipline and 
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statistical model used, including but not limited to: common factors (Crocker & Algina, 1986), 

latent classes (McCutcheon, 1987), and random effects (Bartholomew, 2006).  

Bollen (1989, 2002) states that there is not a standard definition of a latent variable that 

includes its applications in the different scientific disciplines, hence the meaning that this term 

receives is tied to specific statistical models. Related to this idea, Skrondal and Rabe-Hesketh 

(2004) indicate that latent variables are commonly used to represent diverse phenomena in the 

social sciences, such as ótrueô variables measured with error, hypothetical constructs, unobserved 

heterogeneity, missing data, counterfactuals or potential outcomes, and latent responses 

underlying categorical variables. Thus, the term latent variable has moved outside the area of 

psychometrics and into other fields in the social sciences, and has been incorporated in the 

statistical literature on causal inference (Henry, 2006) and the mixture modeling literature 

(Bartholomew, 2006).  

Bartholomew (2006) provides the generic framework of the latent variable model by 

employing its basic elements: manifest variables and underlying latent variables. The model 

states that for j manifest (i.e., observed) variables Y = (Y1, Y2,é, Yj) and k latent variables ɗ = 

(ɗ1, ɗ2,é, ɗk), where j > k to maintain parsimony within the model, something about the joint 

distribution f (Y, ɗ) can be inferred from the observed distribution among  f (Y). For the 

underlying variable model, the specification of h(ɗ) and f (Y|ɗ) must be stated distributions; so 

the distribution f (Y) can be expressed as 

( ) ( ) ( | )f h f d=ñY ɗ Y ɗ ɗ                                                      ( 2.1 ) 

where f (Y), the only element in the model we can observe from the data, is the marginal 

distribution of the observed variables Y. The model depicted in (2.1) can be further extended by 
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adding an assumption about the conditional probability of Y given ɗ; specifically, by assuming 

local independence among the observed variables given the latent variables (Bollen, 2002). 

1

( ) ( ) ( | )
J

j

j

f h f Y d
=

= ÔñY ɗ ɗ ɗ                                                  ( 2.2 ) 

As presented in (2.2), the Y are locally independent given the ɗ; in other words, 

dependence among observed variables is completely explained by their common association with 

the latent variables, and the association among the observed variables Y is removed if the latent 

variables ɗ are held constant   (Hagenaars, 1993; Skrondal  & Rabe-Hesketh, 2004). However, 

the main objective here is to say something about ɗ given our data; using Bayesô formula, we 

have that  

( ) ( | ) ( ) ( | )
( | )

( ) ( ) ( | )

h f h f
h

f h f d
= =

ñ

ɗ Y ɗ ɗ Y ɗ
ɗ Y

Y ɗ Y ɗ ɗ
                                      ( 2.3 ) 

Different restrictions in the elements of model (2.3), mainly in the form of h(ɗ) and 

f (Y|ɗ), result in specific latent variable models. Bartholomew (2006) extends the discussion 

about the general latent variable model framework to cases where f (Y j|ɗ) is a member of the 

exponential family; for the purposes of this introduction to the generic latent variable model, 

Equations (2.1) to  (2.3) are discussed along with additional references to the topic in 

Bartholomew (2006), Bartholomew, Knott, and Moustaki (2011), and Everitt (1984). 

Given the development of latent variable models in psychometrics and related fields, 

different taxonomies have been proposed for the classification of such models (see McCutcheon, 

1987; Skrondal & Rabe-Hesketh, 2004). A commonly cited classification is based on the levels 

of measurement of the manifest and underlying variables; the relevance of this taxonomy relies 

on the fact that different models have been developed based on the assumptions about the latent 

variables ɗ and the characteristics of the observed variables Y. Bartholomew et al. (2011) define 
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four main types of models: factor analysis models that correspond to cases where both types of 

variables are defined as continuous; latent profile models when the observed variables are 

continuous but the latent variables are categorical; latent trait models when the manifest 

variables are categorical but the latent variables continuous; and, finally, latent class models are 

considered for cases where both types of variables are categorical. These four classes of models 

are not just different with respect to the measurement level of the variables, they also come from 

separate data analytic traditions (Masters, 1985) and produce different inferences about the latent 

variables in the model, about the resulting relations between observed and latent variables, and 

about their interpretations. 

As indicated by Bollen (2002), particular models commonly used in psychometrics can 

be classified within these four types of models: exploratory and confirmatory factor analysis are 

grouped as factor analysis models; most probit-type and logistic-type item response theory 

models can be situated within the latent trait models classification; some types of mixture model 

clustering techniques are grouped within the latent profile model (Vermunt & Magidson, 2004); 

and cognitive diagnostic models are extensions of the latent class model (von Davier, 2005).  

Moreover, there have been approaches that integrate two or more of these four model 

categories of models into a single one. For instance, Yamamoto (1989) proposed a framework to 

use IRT models with latent class models that provides more information about the cognitive 

processes employed by the examinees; von Davier (2005, 2008) integrates several item response 

theory and latent class models within a more general framework known as the General 

Diagnostic Model; Takane and de Leeuw (1987) analyze the correspondence between the 2-

parameter probit item response theory model and the factor analysis model when categorical data 

are used; Bock and Aitkin (1981; see also Bock, Gibbons, & Muraki, 1988) developed a method 
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to perform factor analysis based on item response theory models ï this method  addresses the 

limitations of the factor analysis model when binary observed data are used to estimate the latent 

factors; Magidson and Vermunt (2001) have proposed a latent class factor analysis model, which 

is particularly useful when the observed categorical variables measure more than one latent 

construct.  

Finally, Bollen (2002) lists some properties of the latent variables that must be considered 

in any specific model: 

1. A posteriori or a priori definition of the latent variable. Latent variables and their 

relation with their corresponding observed variables are defined a priori when they are 

hypothesized prior to the data analysis; latent variables obtained as an output of the data 

analysis are defined a posteriori. In the words of Bollen (2002): ñthe local independence 

definition of latent variables is closely tied to óa posterioriô latent variables in that the 

latent variables are extracted from a set of variables until the partial associations 

between the observed variables goes to zero.ò 

2. Model identification and indeterminacy. This aspect is focused on finding unique 

values for the parameters of the model. If more than one configuration of estimated 

values for the parameters given the data provide the same maximum values of the 

likelihood function, then the model is not uniquely identified. It is common to add 

constraints to the model in order to satisfy this property. 
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2.3 Latent class models 

The term latent class analysis was coined by Lazarsfeld as an approach to model latent 

typologies using categorical data (Lazarsfeld, & Henry, 1968; Vermunt & Magidson, 

2004). While the term latent class analysis is commonly used in the social sciences, these models 

are also referred as a type of finite mixture models in the statistical literature (Vermunt & 

Magidson, 2004). 

Latent class models are a specific type of latent variable models in which both the 

indicators and latent variables are discrete categorical variables, being the manifest variables 

influenced by the distribution of their latent counterparts (Bartholomew et al., 2011; Bollen, 

2002; Hagenaars, 1993). As stated by McCutcheon (1987), latent class analysis is used to 

determine a set of mutually exclusive latent categories that could explain the distribution of cases 

when observed discrete variables are cross tabulated. 

McCutcheon (1987) posits that latent class analysis is preferred for the analysis of 

typologies or as a way to test empirically if a proposed typology effectively represents the data at 

hand.  Vermunt and Magidson (2004) list additional applications of the latent class model: as a 

density estimation approach of a complex density that can be approximated using a finite mixture 

of simple densities, as a probabilistic cluster analysis, or as a way to handle unobserved 

heterogeneity in linear models. 

The latent class model can be defined in a similar way to the general latent variable 

model; the main difference in the conceptualization of the latent class model is the constraint of 

discrete values that both latent and manifest variables take. The definition presented here is 

similar to the one in Bollen (2002) or Vermunt and Magidson (2004); for simplicity, it is stated 

only for the case of one latent variable, but the model can be extended to cases with two or more 
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latent variables by incorporating additional assumptions about the joint distribution among them. 

Given a set of j = 1,é, J observed variables Y = (Y1, Y2,é, Yj), where each variable Yj can take 

on more than one discrete value, and a latent variable Ū that takes discrete values k = 1,é, K 

being K > 1, the joint probability distribution among P(Y) is expressed as 

1

( ) ( ) ( | )
K

k k

k

P P Pq q
=

= = Q= = Q=äY y Y y                                      ( 2.4 ) 

where P(Ū = ɗk) represents the proportion of people within the class k, and P(Y = y | Ū = ɗk) is 

the conditional probability that the observed variables Y take specific values y given the latent 

class ɗk. In addition, the local independence assumption holds if we require that 

1 1

( ) ( ) ( | )
JK

k j j k

k j

P P P Y yq q
= =

= = Q= = Q=ä ÔY y                                   ( 2.5 ) 

which means that within a latent class ɗk, the responses to different observed variables are 

assumed to be independent (Henry, 2006; Templin & Henson, 2006). Additionally, the sum of 

these conditional probabilities for the latent classes must add to one (McCutcheon, 1987) 
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By using Bayesô formula, the observed data Y can be used to calculate posterior 

membership probability for a latent class 
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where P(Ū = ɗk|Y = y) is the conditional probability of being in class ɗk given the pattern Y = y 

in the observed variables Y. 

In terms of maximum likelihood estimation, McCutcheon (1987) define the estimated 

pattern within the latent class ɗk as 
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1
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This expression is similar to the one presented in (2.5), but the difference between them 

is that (2.8) refers to the estimated probabilities within class ɗk, while (2.5) is defined for all the 

latent classes in the model. Therefore, the maximum likelihood probability for the observed 

variables Y at specific values y belonging to class ɗk is expressed as  
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where the denominator is the sum of (2.8) over all k latent classes. 

Extensions of the latent class model using a log-linear parameterization have been 

proposed to analyze categorical data in frequency tables (Haberman, 1977; Hagenaars, 1993, 

2010). For a log-linear latent class approach, the conditional response probability of two or more 

observed variables Y and Yô taking values y and yô, respectively, given a categorical latent 

variable ɗ that takes k different values, is expressed  

' ' '

' ' '

YY Y Y Y Y

yy k y y yk y k

q q qp hl l l l=                                                       ( 2.10 ) 

or, equivalently, in an compensatory form when the log function is included in (2.10) 

' * * * ' * * '

' ' 'log ( )YY Y Y Y Y

yy k y y yk y k

q q qp h l l l l= + + + +                                      ( 2.11 ) 

where ɖ (and its transformation, ɖ*) is a constant parameter corresponding to average cell 

probability and is directly related to the sample size; ɚ
Y
 and ɚ

Yô
 are the within-categories average 

distribution of the variables Y and Yô, respectively; and ɚ
Yɗ

 and ɚ
Yôɗ

 describe the association 

between the observed and the latent variables that results from the partial odds ratio between Y, 

Yô, and ɗ (Hagenaars, 2010). As will be discussed in the next chapter, cognitive diagnostic 
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models can be reparametrized as log-linear models (Henson, Templin, & Willse, 2009) and logit 

models (DeCarlo, 2011, 2012). 

Vermunt and Magidson (2004) point out several typical problems that arise in the 

estimation of latent class models using a maximum likelihood approach: first, only non-zero 

observed cell entries (i.e., patterns in Y that actually are in the sample of data) contribute to the 

likelihood function; second, model parameters may be non-identified; third, the obtained 

estimates may be local maxima estimates within the parameter space; and, finally, there may be 

boundary solutions (i.e., there may be estimated probabilities equal to zero or one). Some of 

these problems can be addressed when a Bayesian approach is considered; in the Bayesian 

framework, P(Ū = ɗ) for ɗ = (ɗ1, é, ɗk) can be thought of as a set of hyperparameters in the 

model (Gelman, Carlin, Stern, Dunson, Vehtari, & Rubin, 2013). 

However, as indicated in Gelman et al. (2013), some issues may also arise when a 

Bayesian approach is used to estimate latent class models: the estimation process can reach 

degenerate points producing a class k with an undefined mean and variance, which can be fixed 

by providing a more informative prior distribution for the parameters; identifiability issues arise 

when there is nothing in the likelihood to distinguish the class k as different from class kô; and 

the use of improper noninformative prior distributions can lead to problems if all the latent 

classes K are not actually present in the data Y. 

Recent advancements in psychometrics and, more broadly, in finite mixture models in 

statistics have resulted in the development of cognitive diagnostic models as a particular type of 

latent class models, as discussed in the next section. 
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2.4 Cognitive diagnostic models 

2.4.1 Definition 

óCognitive diagnostic modelsô is a generic term used to refer to a set of psychometric 

models aimed at analyzing response patterns to items in a test using categorical latent variables 

with specifications of the particular latent variables required to positively respond to each item 

(Templin & Henson, 2006). The primary  purpose  of cognitive  diagnosis  is  to  classify  

examinees  into dichotomous or polytomous latent  classes Ƅusually referred to as skills, 

knowledge states, skills, or attributesƄ determined  by vectors of binary skill indicators (Chiu & 

Douglas, 2013; de la Torre & Douglas,  2004).  

The main objective of CDMs is to determine whether an examinee has mastered a set of 

skills. Ideally, a cognitive theory should be used as part of a blueprint during the item 

development and test construction, so that the theory would define what skills are required by a 

given item and describe the process in which the skills are linked to produce the observed 

response (Henson, Templin, & Willse, 2009). In addition, the relationship among the skills to 

produce a correct response to the items will characterize the type of model: compensatory, 

conjunctive, or disjunctive. 

Rupp and Templin (2008) point out other alternative terms for these models that appear 

in the literature, such as diagnostic classification models, multiple classification latent class 

models, cognitive psychometric models, latent response models, restricted latent class models, 

structured located latent class models, and structured IRT models. Independently of the term 

coined by a given author to refer to these models, von Davier (2009) lists the common 

characteristics shared by these models: a set of j = 1,é, J observed items Y associated with 

response patterns made by i = 1,é, N examinees, a set of discrete of k = 1,é, K latent variables 
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Ŭ indicating examinee skills measured by the items, item parameters that differ depending on the 

specific model, a definition of the conditional independence relationship among the observed 

variables given the discrete latent ones, and information regarding the latent variables that are 

required to correctly answer each item in the form of a Q-matrix (Leighton, Gierl, & Hunka, 

2004; Tatsuoka, 1990). 

As defined by Templin and Henson (2006), the Q-matrix of the items and latent skills can 

be seen as constraints in this type of models. The inclusion of the Q-Matrix results in a fixed 

number of latent classes and guides the classification for the examinees given ideal response 

patterns and deviations from such ideal patterns (Chiu & Douglas, 2013). For instance, if there 

are K dichotomous latent variables in the Q-matrix to indicate mastery or non-mastery of specific 

skills, then there are 2
K
 possible latent classes.  

 

2.4.2 CDM as a constrained Latent Class Model 

The foundation of the CDMs can be expressed as a variation of the latent class model 

described in Equation (2.5) (Rupp & Templin, 2008; Templin & Henson, 2006; von Davier, 

2009). Rupp and Templin (2008) provide a specific definition of the measurement component 

(i.e., the conditional probability of the observed variables given the latent classes that satisfies 

the conditional independence assumption) of the latent class model to represent it as a CDM; 

specifically, for the i
th
 examinee, the model is 
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where the 2
K
 skill patterns are now expressed as P(Ŭ) = P(Ŭ1, Ŭ2, é, Ŭk) to maintain the notation 

used in the CDM literature for the latent skills Ŭk and is defined as the structural component of 

the model. The skills Ŭk are typically dichotomous but models that allow for ordered categorical 
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skills have also been proposed (Templin & Henson, 2006; von Davier, 2005, 2008).  The 

measurement component takes the form of Bernoulli random variables; j́k are the response 

probabilities for each one of the items. 

The ́ jk, also referred to as item response functions, will take different forms depending 

on the specific model for cognitive diagnosis. For instance, in the case of the deterministic 

inputs, noisy óandô gate model (DINA; Junker & Sijtsma, 2001), ́ jk is expressed as  
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where gj ï the probability of answering the item correctly given that not all Ŭi are present ï 

corresponds to an item guessing parameter; and it has also been referred to as the probability of a 

correct response given skills not considered in the Q-matrix (Huo & de la Torre, 2014), sj ï the 

probability of answering the item incorrectly given that all Ŭi are present ï is the item slip 

parameter, Ŭik are the dichotomous latent skills of the i
th
 examinee, and qjk are the elements in the 

vector within the Q-matrix corresponding to the j
th
 item. As pointed out by Huo and de la Torre 

(2014), an item should present (1 Ƅ sj) > gj in order to be considered diagnostically informative 

of the probability of a correct answer for capable examinees. 

Similarly, the deterministic inputs, noisy óorô gate (DINO; Templin & Henson, 2006) 

model defines the item response function as  
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where Ŭik and qjk have the same interpretation as in the DINA model, the guessing parameter gj is 

now defined as the probability of answering the item correctly given that no skill Ŭik equals one, 
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and the slip parameter sj is the probability of answering the item incorrectly given that at least 

one Ŭik is present.  

The noisy inputs, deterministic ñandò gate (NIDA; Junker & Sijtsma, 2001) model differs 

from the two previous models by including more parameters at the attribute level 

1
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where gjk is the skill-level guessing parameter and sjk is the skill-level slip parameter; qjk  and Ŭik 

remain with the same interpretation as in the two previous models. 

Other models have been proposed to define the measurement component of CDMs, and 

this wide variety of specific models has led to different classifications. The next section 

discusses such taxonomies in terms of the model assumptions, and the characteristics of the 

latent variables and the observed variables. 

 

2.4.3 Taxonomy 

Rupp, Templin, and Henson (2010) have classified the different models for cognitive 

diagnosis based on their distinctive characteristics: models with dichotomous observed variables 

versus polytomous observed variables, models with dichotomous latent variables versus 

polytomous latent variables, and compensatory models versus noncompensatory models. A 

summary of such taxonomy of models is presented in Table 2. 

The first criterion distinguishes between models that use dichotomous observed variables 

(e.g., items that show ñcorrectò or ñincorrectò scores, checklists of symptoms as ñpresentò or 

ñabsentò) and models that use polytomous manifest variables (e.g., Likert scales, items that allow 

for partial credit scores). As described in Table 2, some models have been developed to handle 

dichotomous data, such as the reparametrized unified model (RUM; DiBello, Stout, & Roussos,  
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TABLE 2. Taxonomy of Cognitive Diagnosis Models (cited from Rupp, Templin & Henson, 2010) 

Observed 

Response 

Latent Predictor Variables  

Variables Dichotomous Polytomous Model Type 

Dichotomous AHM 

BIN 

DINA 

HO-DINA 

MCLCM 

MS-DINA 

NIDA 

NC-RUM 

Full NC-RUM 

Reduced NC-RUM 

RERUM 

RSM 

BIN 

MCLCM 

Full NC-RUM 

Reduced NC-RUM 

Noncompensatory 

 BIN 

C-RUM 

DINO 

GDM 

H-GDM 

LCDM 

MCLCM 

NIDO 

BIN 

C-RUM 

GDM 

H-GDM 

LCDM 

MCLCM 

Compensatory 

Polytomous AHM 

BIN 

MCLCM 

Full NC-RUM 

Reduced NC-RUM 

RSM 

BIN 

MCLCM 

Full NC-RUM 

Reduced NC-RUM 

 

Noncompensatory 

 BIN 

C-RUM 

G-DINA 

GDM 

H-GDM 

LCDM 

MCLCM 

BIN 

C-RUM 

GDM 

LCDM 

MCLCM 

Compensatory 

Notes. AHM = Skill hierarchy method. BIN = Bayesian inference network. DINA = Deterministic inputs, noisy óandô gate. HO-

DINA = Higher order DINA. G-DINA = Generalized DINA. MCLCM = Multiple classification latent class model. MS-DINA = 

Multi -strategy DINA. NIDO = Noisy inputs, deterministic óandô gate. NC-RUM = Non-compensatory RUM. Full and Reduced 

NC-RUM = NC-RUM with and without latent interaction term, respectively. RERUM = random effects reparametrized unified 

model . RSM = Rule-space method. C-RUM = Compensatory RUM. DINO = Deterministic inputs, noisy óorô gate. GDM = 

General diagnostic model. H-GDM = Hierarchical GDM. LCDM = Loglinear cognitive diagnosis model. NIDO = Noisy inputs, 

deterministic óorô gate. NC-RUM = noncompensatory reparametrized unified model 
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1995; Hartz, 2002) and its extensions, the DINA model, and the DINO model. Other models are 

general enough to analyze both dichotomous and polytomous data such as the generalized 

diagnostic model (GDM; von Davier, 2005, 2008), and the loglinear cognitive diagnosis model 

(LCDM; Henson, Templin, & Willse, 2009). 

The latent variables of any CDM can also be assumed to be either dichotomous or 

polytomous. As it is portrayed in Table 2, the vast majority of models reported in the literature 

assume that the latent variables (i.e., skills, knowledge, abilities) are dichotomous, including the 

multiple classification latent class model (MCLCM; Maris, 1999), the DINA model and its 

extensions, and the rule-space method (RSM; Tatsuoka, 1995). Additionally, there are models 

that developed for polytomous latent variables, for instance: the Bayesian inference network 

(BIN; Yan, Mislevy, & Almond, 1993), the GDM and its extensions, and the RUM and its 

extensions. 

As mentioned in the previous chapter, the psychometric literature also distinguishes 

between compensatory and noncompensatory multidimensional models to describe the way in 

which latent variables interact to produce a specific observed outcome. Bolt and Lall (2003) 

identify compensatory models as those in which the deficiency of one latent variable can be 

balanced by a high value of other latent variables, whereas noncompensatory models are 

distinguished because the insufficiency in one latent variable cannot be offset by the surplus of 

others.  

In the context of multidimensional IRT models, Reckase (2009) associates the definition 

of compensatory models with cases in which the examineesô continuous abilities relate to each 

other in a linear additive combination. Noncompensatory models are linked to multidimensional 

models for which probabilities are calculated separately for each ability, and after that, the total 
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item probability is estimated as a nonlinear function using the product of the probabilities of each 

ability. 

In the context of models for cognitive diagnosis, the discrete latent variables are usually 

dichotomous classes indicating the presence or absence of a skill or attribute (Rupp & Templin, 

2008); this categorical characterization of the latent variable, in turn, limits the way in which 

compensatory and noncompensatory models are defined (Henson, Templin, & Willse, 2009). 

Rupp, Templin, and Henson (2010) consider conjunctive models, such as the DINA and NIDA 

models, which stipulate that all latent variables have to be present to answer correctly to an item, 

as noncompensatory models. In their definition, the disjunctive models, such as the DINO 

model, are regarded as compensatory since the presence of at least one required latent variable is 

necessary to obtain a correct answer. Models that define additive effects of each mastered latent 

variable, such as the GDM, are also considered compensatory. 

Henson, Templin, and Willse (2009) have developed the log-linear cognitive diagnostic 

model (LCDM) approach, which represents a reparameterization of several models listed in 

Table 1. The LCDM allows for main effects and interactions among the latent skills expressed in 

linear combination. In this framework, compensatory models are defined only by the main 

effects of the skills on the probability of a correct response. Noncompensatory models require 

the inclusion of interaction terms among skills. As a result, models with conjunctive and 

disjunctive condensation rules are regarded as noncompensatory under the LCDM framework. 

 

2.4.4 Estimation 

Rupp and Templinôs (2008) review of CDM estimation discusses model identifiability, 

convergence, and parameterization of the latent skill space. Model identification refers to the 
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capacity to estimate each parameter in a model with a unique value. In this sense, while many 

CDMs have been proposed in the literature, some of them cannot be identified. For instance, 

Hartz (2002) developed a reparameterization of the fusion model (RUM; DiBello, Stout, & 

Roussos, 1995) since the original model parameters could not be uniquely identified. 

Few authors have addressed in detail issues of parameter identification for models of 

cognitive diagnosis. Among the authors that have discussed this topic, von Davier (2013) 

reviewed criteria for local identifiability initially suggested for latent class models: first, ensure 

that the eigenvalues of the estimated information matrix are all positive; second, analyze that the 

rank of the information matrix is equal to the total number of parameters included in it; and, 

third, considering the sample size, inspect if the estimated standard errors are smaller than the 

absolute value of the estimates. 

As pointed out by Rupp and Templin (2008) simpler models with fewer item parameters, 

latent variable parameters, or with restrictions on such parameters (e.g., the DINA model) tend to 

converge even if  the sample size is not large, whereas complex models that involve more 

parameters (e.g., the Fusion model) require more items, larger sample size, or more complex 

algorithms in order to converge.  

Related to the model complexity, the estimation method ï either a maximum likelihood 

method or a Bayesian method ï also has an impact. Although Expectation-Maximization (EM) 

algorithms have been implemented to obtain fast estimation of models such as the DINA and G-

DINA in the óCDMô package (Robitzsch, Kiefer, George, & Ünlü, 2014) in R (R Core Team, 

(2012) and the GDM in the MDLTM software (von Davier, 2005, 2008; von Davier & 

Yamamoto, 2004), most of the published work has implemented Bayesian estimation methods 

because of the model complexity and the capacity of the Bayesian methods to estimate additional 
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parameters (e.g., Culpepper, 2015; DeCarlo, 2012; Hartz, 2002; de la Torre & Douglas, 2004, 

2008; Henson, Templin & Willse, 2009; Junker & Sijtsma, 2001). The Markov chain Monte 

Carlo (MCMC) algorithm has been the preferred method to estimate parameters; the main 

disadvantages of MCMC are that the analysis can take several hours and convergence is often 

difficult to establish (Chiu & Douglas, 2013; Rupp & Templin, 2008).  As an alternative, Chiu 

and Douglas (2013) have proposed a nonparametric CDM method to estimate class membership 

using distance measures between the ideal response pattern and the observed response pattern of 

a given examinee; this nonparametric method can be applied when both the observed responses 

and the latent skills are dichotomous. 

In terms of parameterization of the joint latent variable space, approaches have been 

proposed that are different from the saturated parameterization model. A saturated model implies 

the estimation of 2
K
 Ƅ 1 skill patterns P(Ŭ1, Ŭ2, é , Ŭk) for each examinee, leaving one 

proportion out because of the constraint  
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where the skill patterns P(Ŭ1, Ŭ2, é , Ŭk) = P(Ŭ) as denoted in Equation (2.12). As a 

consequence, the saturated model is impractical because of the large number of parameters that 

are estimated for each examinee, especially as the number of latent variables increases (Rupp, 

Templin, & Henson, 2010). 

Maris (1999) suggested an independence model, which reduces the number of parameters 

to estimate to K by assuming that the elements of P(Ŭ) are statistically independent. However, as 

indicated by de la Torre and Douglas (2004), the independence model might not be suitable for 

CDMs where each Ŭk should be part of a more general construct that is being measured; instead, 

these authors have proposed a higher order model of conditional independence among the Ŭk 
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given a continuous latent variable ɗ that explains their relationship. Such a higher order model 

has been also adapted in research on Q-matrix misspecification (DeCarlo, 2012). 

Other authors have proposed models that involve an underlying normal distribution for 

all latent skills Ŭk, so the estimation concentrates on threshold parameters and the parameters of 

the tetrachoric correlation matrix among the skills (Hartz, 2002; Templin & Henson, 2006). As 

Templin and Henson (2006) proposed, a common factor and its corresponding factor loadings on 

the skills may be estimated by using the tetrachoric correlation matrix. 

Finally, in terms of fit  statistics for CDMs, Rupp, Templin, and Henson (2010) list some 

of the former measures proposed in the literature: Akaikeôs information criterion (AIC) and 

Bayesian information criterion (BIC) for model fit, and normalized squared residuals for 

examinees. Additionally, de la Torre (2011) and de la Torre and Lee (2013) have explored the 

use of the Wald statistic for item fit using an extension of the DINA model. As indicated by 

Rupp and Templin (2008), item misfit could be caused by a variety of factors, including 

misspecifications in the loading structure of the Q-matrix, flawed constraints on model 

parameters, or an erroneous selection of a model that do not match to the way latent skills relate 

with each other to produce a correct answer (e.g., the selection of a model with conjunctive, 

disjunctive, or compensatory condensation rules).  

Regarding the model selection and its impact in item misfit, little research on CDMs has 

explored the possibility that a given test might be structured by some items that allow for a 

conjunctive relation among the required latent skills, whereas others involve a disjunctive or a 

compensatory relation (de la Torre & Lee, 2013). With few exceptions, most of the research in 

this area assumes that all items in a test follow a specific condensation rule, despite the fact that 

this assumption might not be encountered in real-life testing situations (see de la Torre & 
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Douglas, 2008; Huo & de la Torre, 2014; Leighton, Gierl & Hunka, 2004). Thus, in order to 

explore new approaches to analyze these issues, the next chapter will focus on extensions of a 

disjunctive model and a compensatory model by employing the reparameterization framework 

proposed by DeCarlo (2011, 2012), as well as a methodology to determine whether the items in a 

given test involve a specific conjunctive, disjunctive, or compensatory relation among their 

skills. A general discussion on Bayesian inference is given in the next section in order to 

understand the methodological developments presented in the next chapter. 

 

2.5 Bayesian computation 

References to the Bayesian approach in latent class analysis and Bayesian estimation 

methods for CDMs have been mentioned in previous sections; hence, the general framework of 

Bayesian statistics and how it is linked to the specific topic here presented is discussed in here.  

The key difference between the classical and the Bayesian perspectives in statistics is 

centered on the way in which the parameters are conceived. The classical framework in statistics 

defines the random variables Y1, Y2, é, Yj as independent and identically distributed (i.i.d.) 

coming from a distribution with vector of parameters ɗ, where ɗ are treated as unknown and 

fixed. On the other hand, the Bayesian framework assigns a random distribution to the vector of 

parameters ɗ, denoting that ɗ are random variables themselves (DeGroot & Schervish, 2012)
1
. 

Two core concepts are required to understand the Bayesian approach: the prior 

distribution and the posterior distribution. As defined by DeGroot and Schervish (2012), the 

                                                 
1
 In this section, the greek letter ̒ (theta) is used to denote a parameter or vector of parameters for any 

distribution. In previous sections, where the main focus has been on models for latent variables, the symbol  ̒
denoted a latent variable. Unfortunately, it is customary to use the symbol  ̒for two different purposes in the 
statistical literature. 
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prior distribution P(ɗ) refers to the distribution of the vector of parameters ɗ before observing 

any data; the posterior distribution P(ɗ|Y)  is a conditional distribution for ɗ given the data Y. 

Because the posterior is itself a conditional distribution, through the use of Bayes theorem it can 

be expressed as  

( ) ( | )
( | )

( ) ( | )

P P
P

P P d
=

ñ

ɗ Y ɗ
ɗ Y

ɗ Y ɗ ɗ
                                                 ( 2.17 ) 

where P(Y| ɗ) is the likelihood function that contains the information about the vector of 

parameters ɗ in the data Y, and the denominator results in the marginal distribution P(Y) by 

integrating over the parameter space of ɗ. The marginal distribution can be solved analytically 

when the prior and posterior distributions belong to the same family (i.e., they are conjugate 

distributions). In cases where the distributions are not conjugate, numerical methods can be used 

to approximate a solution for the marginal distribution (Gelman et al., 2013). 

 

2.5.1 Conjugate distributions 

The Bayesian framework has analytically proved the relation of prior and posterior 

distributions as conjugate distributions. While the choice of the prior distribution can be 

arbitrary, some choices produce conjugates that present the same distribution of the prior 

(DeGroot & Schervish, 2012). All distributions belonging to the exponential family have at least 

one conjugate prior distribution depending on the vector of parameters that are assumed to be 

random (Gelman et al., 2013; Gill, 2007).  

In the case of the Bernoulli distribution with a single parameter ɗ, the probability mass 

function is defined as  

     1( | ) (1 )y yP y q q q-= -                                                        ( 2.18 ) 
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for y = [0, 1] (DeGroot & Schervish, 2012). The conjugate prior distribution for the parameter ɗ 

is Beta  

1 1

1

1 1

0

(1 )
( | , )

(1 )

P

d

a b

a b

q q
q a b

q q q

- -

- -

-
=

-ñ

                                              ( 2.19 ) 

where the integral in the denominator is the Beta function B(Ŭ, ɓ). The prior distribution is 

proportional to 

1 1( | , ) (1 )P a bq a b q q- -´ -                                                   ( 2.20 ) 

Since the Beta distribution is a prior for the Bernoulli distribution, the posterior 

distribution is also a Beta distribution 

1 1 1

1

1 1

0

(1 ) (1 )
( | )

( ) (1 )

y y

P y
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q q q q
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                                           ( 2.21 ) 

which includes the likelihood from the data, the distribution of the prior distribution, the 

marginal distribution of the data, and the Beta function (Gelman et al., 2013). The expression in 

(2.21) is proportional to  

1 (1 ) 1( | ) (1 )y yP y a bq q q+ - - + -´ -                                               ( 2.22 ) 

which corresponds to a beta distribution with parameters Ŭ* = Ŭ + 1, and ɓ* = ɓ + (1 ï y). The 

hyperparameter Ŭ* is interpreted as an increase by one-unit in Ŭ given an observed success (y = 

1), whereas ɓ* is defined as an increase in the parameter ɓ given a failure (y = 0). In cases where 

the data consist of a sequence of n trials Y = y1, y2, é, yn, the posterior hyperparameters are 

1

*
n

i

i

ya a
=

= +ä                                                              ( 2.23 ) 

and  
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1

*
n

i

i

n yb b
=

= + -ä                                                          ( 2.24 ) 

indicating an update of Ŭ and ɓ given the number of successes and failures in the data, 

respectively (Gelman et al., 2013).  

The posterior mean of the conjugate distribution is defined as  

1*

* *

n

i

i

y

n

a
a

a b a b
=

+

=
+ + +

ä
                                                      ( 2.25 ) 

 

The Bernoulli-Beta conjugacy will become relevant in defining the variable ŭj described 

in the following chapter. As will be further discussed, the variable ŭj can be conceived of as 

taking values of zero and one, so that the posterior distribution provides evidence about the 

underlying condensation rule of the skills associated with an item. Alternative definitions of ŭj as 

being Uniform distributed will also be presented. 

 

2.5.2 MCMC algorithms: Gibbs sampling 

Numerical and computational advancements in Bayesian statistics have relied on the 

premises of MCMC simulations to approximate posterior distributions P(ɗ|Y). The concept of a 

Markov chain is embedded in these algorithms since, in a sequence of iterations, the values of 

any random variable at any given iteration depend only on its conditional distribution given all 

the other random variables in the model and the data at the previous iteration. The idea behind 

MCMC algorithms is to iteratively draw values of the vector of parameters ɗ from approximate 

distributions, and then correcting those draws to approximate better the target posterior 
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distribution. The approximate distributions are improved at each step in the simulation, in the 

sense of converging to the target distribution (Gelman et al., 2013). 

The two MCMC algorithms commonly implemented for Bayesian computation are the 

Gibbs sampling (Geman & Geman, 1984) and the Metropolis-Hastings random walk (Metropolis 

et al., 1953; Hastings, 1970). In order to use the Gibbs sampler, there must be an analytically 

definable full conditional statement for each parameter in ɗ (Gill, 2007). Metropolis-Hastings 

algorithms are recommended when some distributions cannot be sampled directly from P(ɗ|Y) 

(Gelman et al., 2013).  

Casella and George (1992) highlight that the Gibbs sampling is a practical 

implementation of Equation (2.17) since knowledge of conditional distributions among a set of 

variables is sufficient to determine, when it exists, a joint distribution. The idea of the Gibbs 

sampler is to generate a Markov chain of random variables so the posterior distribution P(ɗ|Y) is 

approximated by iterative sequences involving each one of the d = 1,é,D parameters in the 

vector ɗ.  

As indicated in the literature (see Gelman et al., 2013, Gill, 2007), the steps of the Gibbs 

sampler can be summarized as follows: 

1. Starting values are set for each element in ɗ
[0]

 = [ɗ1
[0]

, ɗ2
[0]

, ɗ3
[0]
,é, ɗd

[0]
] 

2. A number of T iterations, starting at t = 1, will occur in which each parameter ɗd is 

sampled from the conditional distribution given all other elements in the vector ɗ and the 

data Y. In any given iteration t, conditioning of a given element ɗd in ɗ happens on 

elements already sampled in that iteration, otherwise the values of the other elements 

ɗd*Íd are taken from the immediate previous cycle t-1. For instance, 



 

34 
 

[ ] [ 1] [ 1] [ 1] [ 1]

1 1 2 3 1

[ ] [ ] [ 1] [ 1] [ 1]

2 2 1 3 1

[ ] [ ] [ ] [ 1] [ 1]

3 3 1 2 1

[ ] [ ] [ ] [ ] [ 1]

1 1 1 2 3

[ ]

~ ( | , ,..., , , )

~ ( | , ,..., , , )

~ ( | , ,..., , , )

~ ( | , , ,..., , )

t t t t t

d d

t t t t t

d d

t t t t t

d d

t t t t t

d d d

t

d

P Y

P Y

P Y

P Y

q q q q q q

q q q q q q

q q q q q q

q q q q q q

q

- - - -

-

- - -

-

- -

-

-

- -

[ ] [ ] [ ] [ ]

1 2 3 1~ ( | , , ,..., , )t t t t

d dP Yq q q q q-

 

3. As T Ÿ Ð, the distribution of each variable ɗd converges to its marginal distribution 

f(ɗd), so if the iterations are stopped at a large value t, it is more probable that each ɗd will 

be approximately distributed as its marginal. As indicated in Casella and George (1992), 

the larger number of iterations t, the better the approximation to the stationary 

distribution of interest.  

4. Stop to iterate once convergence is reached. As discussed in Gelman et al. (2013), 

several actions can be implemented to assess convergence: first, discard early iterations 

of the simulation runs; second, perform simulation runs with at least two different starting 

points dispersed throughout the parameter space; third, compare the variation within and 

between simulated sequences; and fourth, calculate the scale reduction factor R to define 

the number of iterations required to achieve convergence. 
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Chapter III . CDM r eparameterizations 

A review of parameterization framework proposed by DeCarlo (2011) for the DINA 

model is presented, followed by a reparameterization of the DINO model, and the NIDA model. 

The three reparametrized models will be further used in the next chapters to compare 

condensation rules in both simulated and empirical data. A methodology to compare different 

condensation rules is introduced in section 3.4. 

 

3.1 The R-DINA model 

DeCarloôs (2011, 2012) reparameterization of the DINA model, as expressed in Equation 

(2.13), involves a logit transformation of the item response function. In this framework, the item 

guessing gj parameter is expressed as  

exp( )

1 exp( )

j

j

j

f
g

f
=
+

                                                            ( 3.1 ) 

where fj is the false alarm rate parameter, which occurs when an examinee answers an item 

correctly despite not possessing the required skills Ŭik. Similarly, (1 ï sj) is expressed as 

exp( )
1

1 exp( )

j j

j

j j

f d
s

f d

+
- =

+ +
                                                      ( 3.2 ) 

where dj is a detection parameter that indicates how well the item discriminates between the 

presence versus absence of the required skill set. Although DINA models with similar item 

parameter transformations have been proposed in the literature (e.g., Huang & Wang, 2014; von 

Davier, 2013), DeCarloôs (2011, 2012) framework stands out because of the psychological 

definition of the parameters with respect to signal detection theory (Macmillan & Creelman, 

2005). 
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 The measurement component of the DINA model is reparametrized when the logit 

function is employed. The resulting R-DINA model (DeCarlo, 2011) is defined as  

1

logit (Y 1| , ; ) jk

K

ij j j j j ik

k

q
P f d f d a

=

= = +ÔŬ                                       ( 3.3 ) 

 In Equation (3.3), the R-DINA model includes a conjunctive condensation rule for the 

skills. As discussed later, a logit reparameterization of the DINO model will also maintain the 

original disjunctive condensation rule for the skills. However, reparameterizations of other 

models for cognitive diagnosis, such as the NIDA model (Rupp, Templin, & Henson, 2010), do 

not necessarily maintain the original condensation rule after the transformation. 

The R-DINA model is further expanded by defining the pattern of the skills Ŭk as 

conditionally independent given a higher order continuous latent variable ɗ 

  1

1

( ,..., | ) ( | )
K

K K

k

P Pa a q a q
=

=Ô                                                 ( 3.4 ) 

where ɗ can be understood as a general ability in the studied domain, which is closely related to 

the examinee ability in the IRT framework (de la Torre & Douglas, 2004). From Equation (3.4), 

the conditional probability for any given skill Ŭk in a higher order model is defined as 

exp( )
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a q
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=
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                                                  ( 3.5 ) 

where the higher order skill parameters bk and ak correspond to difficulty and discrimination 

parameters, respectively (DeCarlo, 2011). It is worth noting here that if the discrimination 

parameter ak equals zero for all skills Ŭk, the higher order model simply results in the 

independence model. The reparameterization framework proposed by DeCarlo (2011) can be 

employed for other cognitive diagnostic models, as well as for the purposes of testing whether 
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the response to an item follows a specific condensation rule when two plausible models are 

compared. 

 

3.2 The R-DINO model 

As mentioned in the previous chapter, the DINO model (Templin & Henson, 2006) 

presents a disjunctive property, as expressed in its condensation rule. Hence, in the DINO model 

having at least one of the latent skills Ŭik is sufficient to answer an item correctly. Templin and 

Henson (2006) consider the DINO model particularly useful for clinical and psychological 

assessment, where the presence of at least one symptom might be relevant for diagnosis 

purposes. 

As depicted in Equations (2.13) and (2.14), the response function for the DINA model 

and the DINO model are very similar with the exception of their corresponding condensation 

rules. The condensation rule of the DINO model is defined as 

1

1 (1 ) jk

K
q

ij ik

k

w a
=

= - -Ô                                                         ( 3.6 ) 

From this definition, it is clear that having at least one skill will result in a value of ɤij 

equal to one, and ɤij will be equal to zero if and only if the examinee lacks all skills linked to the 

j
th
 item.  

Another difference between the DINA and DINO models is related to the interpretation 

of the item guessing gj and slip sj parameters (Templin & Henson, 2006). In the DINO model, 

the gj is the probability of answering correctly given the absence of all skills Ŭik, while sj is the 

probability of answering incorrectly given the presence of at least one required skill. 
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Based on the similarities between the DINA and DINO models, Equations (3.1) to (3.3) 

can be used to propose a reparametrized DINO model (R-DINO), 

  
1
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ij j j j j ik

k

q
P Y f d f d a

=

è ø
= = + - -é ù

ê ú
ÔŬ                               ( 3.7 ) 

which can be further expanded as 
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where it is evident that ïunder the assumption of a Q-matrix correctly specifiedï the absence of 

all skills Ŭik will ensure that the probability of correct answers is determined solely by the false 

alarm rate parameter fj, while having at least one skill will ensure the probability is affected by 

both fj and dj. 

While Templin and Henson (2006) propose that the relationship among the skills Ŭk can 

be modeled by incorporating a constrained higher order one-factor model that explains the 

tetrachoric correlation matrix among the skills, it is also true that the skills can be treated as 

conditionally independent using the higher order model depicted in Equations (3.4) and (3.5), 

giving a higher order reparametrized DINO (HO-RDINO) model.  

Recently, Henson, Templin and Willse (2009) introduced a log-linear reparameterization 

of the DINO model with a latent factor determining the tetrachoric correlations among the skills; 

still, the log-linear reparametrized model approach differ to some extent from the one proposed 

here. 

 

3.3 Additive CDM  model  

Similar to the reparameterization for the DINA and DINO models, a reparametrized 

compensatory model with additive skill effects can be proposed based on the NIDA model. The 



 

39 
 

equivalency between the original DINA parameters as false alarm and detection parameters in 

Equations (3.1) and (3.2) can be extended to the NIDA skill-level guessing and slip parameters. 

Then a reparametrized NIDA (R-NIDA) model is defined as 

*

1

logit ( 1| , ; )
K

ij jk jk j jk jk ik

k

P Y s g f q da
=

= = +äŬ                                    ( 3.9 ) 

The model in Equation (3.9) is defined as a compensatory model since the probability of 

a correct answer to the j
th
 item increases as the examinee masters more latent skills Ŭk linked to 

the item. The fj*  results from adding up the false alarm rate fjk parameters for the k skills 

measured by the item as defined in the Q-matrix. The djk are skill-level detection parameters that 

indicate how well the item discriminates between the presence versus the absence of each 

specific skill Ŭk. When just one latent skill Ŭk is associated with the j
th
 item, Equation (3.9) is 

equivalent to the R-DINA model defined in Equation (3.3). As previously proposed in Equations 

(3.4) and (3.5), the mixing components P(Ŭ) of the compensatory model can be represented 

using a higher order structure to explain the conditional independence in the distribution of each 

skill. 

De la Torre (2011) and de la Torre and Lee (2013) have proposed a similar additive 

model as a specific instance of the G-DINA model. Although similar in terms of the 

measurement component, their model also presents differences compared to the compensatory 

model presented here. More information comparing the G-DINA model and the set of 

reparameterizations at hand is discussed in the next section.  

In a similar manner, Rupp and Templin (2008) and Rupp, Templin, and Henson (2010) 

have proposed a transformation of the NIDA model ïlabeled as NIDO modelï similar to the one 

proposed in Equation (3.9); however, the NIDO model parameters are not defined in terms of the 
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signal detection theory and there is no mention of a higher order structural component for such 

model. 

Equations (3.3), (3.7), and (3.9) indicate that the differences among models for cognitive 

diagnosis are subtle and mostly related to the ways in which the condensation rules for the skills 

are defined. In the R-DINA model, the conjunctive rule dictates that all skills are required in 

order to increase the probability of a correct response. In the R-DINO model, the disjunctive rule 

determines that at least one skill is required to increase the probability, and presenting more than 

one skill does not modify this probability; on the other hand, in the Additive CDM model, the 

presence of each skill increases the probability of a correct answer. 

In addition, the model reparameterizations make it clear that the elements that 

characterize a specific CDM as compensatory or noncompensatory are not well-defined in the 

literature as compared to models with continuous latent variables (e.g., Bolt & Lall, 2003). While 

the DINA and R-DINA models are noncompensatory according to Rupp and Templin (2008), 

this taxonomy does not correspond to the Additive CDM model in which cumulative effects of 

each present skill contribute to a higher probability of observing a correct answer. The DINO 

model has been defined either as a compensatory model (Rupp & Templin, 2008), as a 

noncompensatory model (Henson, Templin, & Wil lse, 2009), or as a disjunctive model (Templin 

& Henson, 2006), whereby the R-DINO model falls somewhere in between these classifications.  

 

3.4 A method to test the item condensation rule 

3.4.1 Review of former research 

As discussed before, in some cases there is uncertainty about the condensation rule for 

the skills linked to an item. Hence, there is a need to develop new methods to explore this 
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uncertainty. Further, most research on CDM assumes that all items included in a test present the 

same measurement component: either compensatory or noncompensatory. This assumption could 

lead to item misfit when the latent skills associated with a given item present a condensation rule 

different from the one assumed by the model selected to estimate the psychometric properties of 

the test (Rupp & Templin, 2008). 

The selection of a model for cognitive diagnosis with a specific condensation rule might 

be driven by several factors. The decision of what model to employ can be built on a theory-

based hypothesis about how the measured cognitive processes produce a specific answer pattern, 

so the focus of the analysis is on whether the data confirms or rejects this cognitive hypothesis. 

As an example, Huo and de la Torre (2014) consider that items for educational assessments may 

follow a conjunctive rule for the skills, since ideal performance on a test is assumed to depend on 

the mastery of all assessed skills. In a similar manner, a disjunctive rule might be preferred for 

purposes of classification in the context of clinical psychological assessment, since presenting 

only some symptoms (i.e., the latent attributes) is required to make a diagnosis for some 

psychological disorders (Templin & Henson, 2006). 

Another factor to choose among disjunctive, conjunctive, or compensatory models is 

related to the structure of the Q-matrix, since condensation rules become relevant only for the 

rows in the Q-matrix where the sum of its elements is greater that one. Then, during the test 

construction, special emphasis has to be put on the development of multidimensional items and 

the Q-matrix if the goal is to obtain additional evidence about the itemsô condensation rules. 

A review of the literature reveals that only a small portion of previous research has 

analyzed the ways in which specific features and assumptions of the models for cognitive 

diagnosis (e.g., the possibility of having multiple Q-matrices, item-level fit measures, the 
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hierarchy and condensation rules of the skills) are linked to the possibility of having items with 

different skill condensation rules in the same test.  

The principal methodological influence for this project comes from the research of 

DeCarlo (2012). In order to analyze Q-matrix misspecifications, DeCarlo (2012) proposed a 

Bayesian extension of the DINA model in which the dichotomous elements in the Q-matrix are 

defined as random variables with a conjugate Beta-Bernoulli distribution. Then, given the data at 

hand and the prior distributions defined for the model, the posterior distribution of the uncertain 

elements in the Q-matrix is analyzed to determine their correct specification. The methodology 

has proven to be effective in recovering the true Q-matrix in simulated data when there is 

uncertainty about some elements; moreover, this method also improves model fit when it is 

compared to competing models where the Q-matrix is assumed to be correctly specified. Chung 

(2014) has extended DeCarloôs (2012) Bayesian approach to estimate the Q-Matrix of the DINA 

model and the reduced reparametrized unified model (rRUM; Hartz, 2002) using a conjugate 

Dirichlet-Multinomial distribution for the examineesô skill patterns and a multinomial 

distribution for each row in the Q-matrix.  As discussed later in this section and Chapter 4, 

extensions of the methodology developed by DeCarlo (2012) can be utilized to explore the 

underlying skill condensation rule by incorporating a dichotomous latent variable in a compound 

probability model for each item in a test. 

Other theoretical and methodological approaches relevant because of their assumptions 

about the condensation rules and the hierarchy among skills include the work by Leighton, Gierl, 

and Hunka (2004) and their Attribute Hierarchy Method. In their framework, different 

hierarchical structures for attributes (e.g., linear, convergent, divergent, and unstructured) can be 

explored for a set of items. These different hierarchies reflect the psychological ordering among 
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skills required to solve a test problem, and can be implemented within a measurement model by 

defining alternative item-skill matrices. 

De la Torre and Douglas (2008) and Huo and de la Torre (2014) have also introduced an 

alternative method to the DINA model defined as Multiple Strategies DINA (MS DINA) model. 

The authors consider that different examinees might employ different strategies to solve an item 

correctly. In this sense, this multiple strategy model is mentioned because has a conceptual 

relation to the models here discussed. In MS DINA framework, M different Q-matrices have to 

be specified to reflect the potential skills that may be used to answer an item correctly, and a 

given examinee will be identified as using a specific set of skills reflected in the m
th
 Q-matrix 

depending on the DINA condensation rule for which he obtains a value equal to one. Despite the 

appeal of being able to detect examinees using different strategies to answer the same item 

correctly, the standard DINA model shows better fit when compared to the MS DINA model 

when real data are employed; in addition, the authors remark that the M Q-matrices have to be 

correctly specified in order to make the MS DINA model work (Huo & de la Torre, 2014). 

The papers by de la Torre (2011) and by de la Torre and Lee (2013) have focused on item 

fit measures using the Wald test for the generalized deterministic inputs, noisy óandô gate model 

(G-DINA; de la Torre, 2011). The G-DINA model uses an identity link function to predict the 

probability of a correct answer to an item given the specification of the latent skills loading on 

the item. By adding some constraints on the slope coefficients of the G-DINA model, it is 

possible to obtain parallel versions of the DINA and DINO models. In addition, de la Torre 

(2011) has proved that it is possible to test the fit of each item to specific models derived from 

the G-DINA model using the Wald test statistic, thereby providing new information about the 

specific condensation rule model underlying each item. 
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However, the G-DINA model and its item fit statistics have some limitations that leave 

room for improvement: first, the G-DINA focuses only on the measurement component of the 

model, so a saturated relation among skills in the structural component has to be assumed. This 

assumption might not hold in cases where a higher order model is included to explain the 

relationship among skills (de la Torre & Douglas, 2004; DeCarlo, 2012). Second, the G-DINA 

model focuses on intercept and slope parameters that are not directly linked to the item-level or 

skill-level guess and slip parameters initially proposed for models such as the DINA, NIDA or 

DINO; this is not the case for other model reparameterizations such as the R-DINA (DeCarlo, 

2011), or the LCDM (Henson, Templin & Willse, 2009), which have produced methods to 

recalculate the item guess and slip parameters. Third, the G-DINA relies on the EM algorithm to 

obtain the item and examinee parameter estimates, making it impossible to implement the Wald 

test for complex models that require an MCMC algorithm to estimate the model parameters. 

Fourth, as the number of skills loading on an item increases, the number of slope parameters of 

the G-DINA model also increases. In this respect, the R-DINA, R-DINO, and Additive CDM 

models represent an alternative to the G-DINA model able to identify the condensation rule of 

each item in a test without adding more item parameters. 

 

 

3.4.2 Assessing condensation rules  

While the prior research develops alternative approaches to the traditional framework on 

CDMs, it fails to address the analysis of the item condensation rules and does not include the 

possibility of incorporating a higher order model for the latent skills, thus increasing the chance 

that the item shows misfit because of the specific model selected.  
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Presented here is a methodology that could provide additional information regarding 

whether an item has a specific condensation rule when two different response functions are 

compared. For a given item Yij, assume it follows a particular item response function as 

expressed in Equations (3.3), (3.7), and (3.9) with a clearly defined vector of associated latent 

skills Ŭk; moreover, suppose that the specific item response function of the item (e.g., R-DINA, 

R-DINO, or Additive CDM) is not known, but that there is a probability that it can be either of 

one form (e.g., conjunctive) or another (e.g., disjunctive, compensatory). Then, it is possible to 

formulate a compound model for the item as  

( )( )1 1 1 1 2 2 2 2( 1| , , ; ) expit 1ij j j j jP Y f fd dè ø è ø= = + + + -ê ú ê új i j j i jŬ f d h(Ŭ,q) d h(Ŭ ,q ) d h(Ŭ ,q ) ( 3.10 ) 

where expit is the inverse of the logit function, and fj and dj are the transformed parameters 

previously defined, in which the numerical subscripts in the parameters are introduced to indicate 

that they do not have to take the same values in the two different models that are compared. In 

addition, ŭj is a random variable that indicates what type of condensation rule is more probably 

linked to the j
th
 item. The expression in (3.10) can be implemented in software for Bayesian 

statistics by adding specifications about the distribution of the structural and measurement 

components of the CDM.  For instance, if ŭj is conceived as only taking values zero or one, then 

the distribution of ŭj is expressed as 

~ ( )j jBernoullid l                                                        ( 3.11 ) 

and, in turn, ɚj distributes 
2
  

~ ( , )j Betal a b                                                            ( 3.12 ) 

                                                 
2
 9ǉǳŀǘƛƻƴ όоΦмнύ ŀƴŘ ŦǳǊǘƘŜǊ Ŝǉǳŀǘƛƻƴǎ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ .Ŝǘŀ ŘƛǎǘǊƛōǳǘƛƻƴ ǿƛƭƭ ƛƴŎƭǳŘŜ ǘƘŜ DǊŜŜƪ ƭŜǘǘŜǊ ʰ ǘƻ 

denote a shape parameter of such distribution. ForƳŜǊ Ŝǉǳŀǘƛƻƴǎ ǊŜƭŀǘŜŘ ǘƻ /5aǎ ǳǎŜ ǘƘŜ ǎŀƳŜ ǎȅƳōƻƭ ʰ ǘƻ 
ŘŜƴƻǘŜ ŀ ŎŀǘŜƎƻǊƛŎŀƭ ƭŀǘŜƴǘ ŀǘǘǊƛōǳǘŜΦ Lƴ ŀ ǎƛƳƛƭŀǊ ƳŀƴƴŜǊΣ ǘƘŜ DǊŜŜƪ ƭŜǘǘŜǊ ˂ ƘŜǊŜ ǊŜŦŜǊǎ ǘƻ ǘƘŜ ǇŀǊŀƳŜǘŜǊ ƻŦ ǘƘŜ 
ƭŀǘŜƴǘ ǾŀǊƛŀōƭŜ ʵΣ ǿƘŜǊŜŀǎ IŜƴǎƻƴ Ŝǘ ŀƭΦ όнллфύ ǳǎŜ ǘƘŜ ǎŀƳŜ ǎȅƳōƻƭ ŀǎ ǘƘŜ ŎƻŜŦŦƛŎƛŜƴǘs of the log-linear CDM. The 
ǊŜŀŘŜǊ ƛǎ ǿŀǊƴŜŘ ǘƻ ŘƛǎǘƛƴƎǳƛǎƘ ǘƘŜ ǳǎŜ ƻŦ ǘƘŜ ƎǊŜŜƪ ƭŜǘǘŜǊǎ ʰ ŀƴŘ ˂ ƛƴ ǘƘŜǎŜ ŘƛŦŦŜǊŜƴǘ ŎƻƴǘŜȄǘǎΦ   
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Similar to the framework proposed by DeCarlo (2012), the posterior mean of ɚj can be 

used to determine the condensation rule for the skills linked to the j
th
 item.  

In this context, it can be argued that Equations (3.11) and (3.12) constrain the estimation 

process because ŭj focuses only on one subset of the parameter space (e.g., in the estimation of f1 

and d1 or f2 and d2) at each iteration step. To address these limitations, an alternative approach 

defines ŭj
*
 as 

* ~ [0,1]j Uniformd                                                           ( 3.13 ) 

so it can take any value between zero and one at each iteration step. Further discussion on the 

Bayesian foundations and the implementation of the model proposed here is explained in the 

next chapter. 
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Chapter IV . Methodology 

The psychometric models sketched in sections 3.1 to 3.4 are defined in detail in section 

4.1. The simulation design is explained in section 4.2 and the corresponding code to simulate the 

data in R is included in Appendix B. Finally, a description of the analysis of empirical data is 

discussed at the end of this chapter. 

 

4.1 Models to test condensation rules 

` Different models are introduced in this section aimed to evaluate and to compare models 

with conjunctive, disjunctive, and compensatory condensation rules for each item. Code for the 

implementation of each model in OpenBUGS (Thomas, OôHara, Ligges, & Sturtz, 2006) is 

included in Appendix A. 

 

4.1.1 Conjunctive and disjunctive models 

Given a data set with i = 1, é, I examinees, and j = 1, é, J items, let Yij denote the 

answer of i
th
 examinee to the j

th
 item. The item responses Yij are conditionally independent and 

Bernoulli distributed 

~ ( )ij jY Bernoulli p                                                            ( 4.1 ) 

where pj is defined as the probability of answering correctly to the item given the latent skills. 

This probability takes the form  

1 2 2( 1| , , , , , )j ijp P Y f d f d d= = =1Ŭ                                               ( 4.2 ) 

( )1 1 2 2 2

1 1

expit (1 ) 1jk jk

K K

j j ik j j j j ik j

k k

q q
f d f d da d a d

= =

å õè ø è ø
+ + + - - -æ öé ù é ù

ê ú ê úç ÷
Ô Ô  
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Equation (4.2) is composed of two models that differ in their condensation rule for the 

skills Ŭk, so the objective is to explore which condensation rule underlies to an item given the 

observed data and the definitions about the distribution of the model parameters. In addition, fj 

correspond to false alarm rates parameters and dj to detection parameters. Condensation rules of 

the k = 1, é, K latent skills Ŭk differ according to the conjunctive DINA model and the 

disjunctive DINO model, respectively. In cases where a single skill Ŭk is linked to the j
th
 item 

based on the Q-matrix design, the result should be the same using both condensation rules. 

 Finally, ŭj is a latent variable that identifies the item response function more probably 

linked to the j
th
 item. In the case of a latent variable ŭj with Uniform distribution as described in 

Equation (3.13), values of ŭj å 1 indicate that the item has a conjunctive condensation rule and 

values of ŭj å 0 denote an item with a disjunctive condensation rule. For a model with a 

dichotomous variable ŭj with a Bernoulli distribution, ŭj = 1 identifies an item with a conjunctive 

rule, otherwise the item possess a disjunctive rule. 

Elements in Equation (4.2) are assumed to have their own distributions.  First, the latent 

skill Ŭik take values zero and one to indicate the presence or absence of the k
th
 skill in the i

th
 

examinee, and its distribution across examinees represents the structural component of the 

model. Here, each latent skill is assumed to be Bernoulli distributed 

                  | ~ ( )ik ik ikp Bernoulli pa                                                       ( 4.3 ) 

where the parameter pik presents, in turn, a Beta distribution  

~ ( , )ik ik ikp Beta a b                                                            ( 4.4 ) 

The Beta hyperparameters aik and bik in Equation (4.4) can be set to be equal to one, so 

the distribution becomes equivalent to a standard uniform distribution U[0, 1] (DeGroot & 

Schervish, 2012).  
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 The false alarm rate and detection parameters in Equation (4.2) are assumed to be 

normally distributed with mean equal to zero and variance equal to 10 

1 ~ (0,10)jf Normal                                                          ( 4.5 ) 

1 ~ (0,10)jd Normal                                                          ( 4.6 ) 

2 ~ (0,10)jf Normal                                                          ( 4.7 ) 

2 ~ (0,10)jd Normal                                                          ( 4.8 ) 

To maintain the monotonicity constraint of the DINA and DINO models (Junker & 

Sijtsma, 2001; Templin & Henson, 2006), the parameters d1j and d2j  (or d2jk in the case of the 

compensatory model) can be truncated to take on only positive values. 

Additionally, if  the random variable ŭj is regarded to be dichotomous, then it is 

distributed Bernoulli as discussed in Section 3.4 

| ~ ( )j j jBernoullid l l                                                       ( 4.9 ) 

with parameter ɚj 

~ ( , )j j jBeta c dl                                                            ( 4.10 ) 

Again, the hyperparameters cj and dj can be set equal to one, making the distribution 

equivalent to a uniform distribution U[0, 1]. Nevertheless, as discussed in Section 3.4, defining ŭj 

as being Bernoulli distributed constraints the estimation to only a part of the parameter space. An 

alternative to avoid those estimation problems is to define a standard Uniform distributed 

variable ŭj
*
 to reflect the identification of the item response function in a weighted way.  

Assuming independence among examinees and local independence among items, the 

joint likelihood function L for all items and examinees is defined as 
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1 2 2 1 2 2( , , | , , , , , ) ( , , , , , )ij ijP Y y i j L= " = =1 1Ŭ f d f d ŭ Ŭ f d f d ŭ                   ( 4.11 ) 

( )1 1 2 2 2

1 1 1 1

expit (1 ) 1jk jk

I J K K

j j ik j j j j ik j

i j k k

q q
f d f d da d a d

= = = =

è øå õè ø è ø
+ + + - - -é ùæ öé ù é ù

é ùê ú ê úç ÷ê ú
ÔÔ Ô Ô  

 

Hence, the full conditional posterior distributions of the parameters in Equation (4.2) is 

2 2 2 2( | , , , , , , ) ( | , , , , , ) ( | ) ( )P P P P´ =ik ik 1j 1j j j ik 1j 1j j j ik ik ikŬ y Ŭ f d f d ŭ y Ŭ f d f d ŭ Ŭ p p      ( 4.12 ) 

1 1
1

1 2 2

( ) (1 )
( , , , , , ) ( ) (1 )

( , )

ik ik

ik ik

a b

ik ik
ik ik

ik ik

p p
L p p

B a b

a a
- -

- è ø-
è ø³ - ³é ùê ú

ê ú
1Ŭ f d f d ŭ  

 

2 2 2 2( | , , , , , ) ( | , , , , , ) ( )P P P´ =1j 1j j j 1j 1j j j 1jf y Ŭ d f d ŭ y Ŭ f d f d ŭ f                      ( 4.13 ) 

( )
2

1 2 2 1

0.1 0.1
( , , , , , ) exp

2 2
jL f

p

è øå õ
³ -é ùæ ö

ç ÷ê ú
1Ŭ f d f d ŭ  

 

2 2 2 2 2( | , , , , , ) ( | , , , , , ) ( )P P P´ =j 1j j j 1j 1j j j 1jd y Ŭ f f d ŭ y Ŭ f d f d ŭ d                  ( 4.14 ) 

( )
2

1 2 2 1

0.1 0.1
( , , , , , ) exp

2 2
jL d

p

è øå õ
³ -é ùæ ö

ç ÷ê ú
1Ŭ f d f d ŭ  

 

2 2 2 2 2( | , , , , , ) ( | , , , , , ) ( )P P P´ =j 1j 1j j 1j 1j j j jf y Ŭ f d d ŭ y Ŭ f d f d ŭ f                  ( 4.15 ) 

( )
2

1 2 2 2

0.1 0.1
( , , , , , ) exp

2 2
jL f

p

è øå õ
³ -é ùæ ö

ç ÷ê ú
1Ŭ f d f d ŭ  

 

2 2 2 2 2( | , , , , , ) ( | , , , , , ) ( )P P P´ =j 1j 1j j 1j 1j j j jd y Ŭ f d f ŭ y Ŭ f d f d ŭ d                  ( 4.16 ) 

( )
2

1 2 2 2

0.1 0.1
( , , , , , ) exp

2 2
jL d

p

è øå õ
³ -é ùæ ö

ç ÷ê ú
1Ŭ f d f d ŭ  
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2 2 2 2( | , , , , , , ) ( | , , , , , ) ( | ) ( )P P P P´ =j 1j 1j j j j 1j 1j j j j j j jŭ y Ŭ f d f d ŭ ŭ Ŭ f d f d ŭ ŭ ɚ ɚ       ( 4.17 ) 

1 1

1

1 2 2

( ) (1 )
( , , , , , ) ( ) (1 )

( , )

j j

j j

c d

j j

j j

j j

L
B c d

d d l l
l l

- -

-
è ø-

è ø³ - ³é ùê ú
é ùê ú

1Ŭ f d f d ŭ  

In the case of the higher order model, the hyperparameter pik from Equation (4.12) is 

defined as in Equation (3.5). Then, each one of the skill-level hyper parameters ak, bk, and ɗ are 

defined as presenting a standard Normal distribution 

~ (0,1)

~ (0,1)

~ (0,1)

k

k

a Normal

b Normal

Normalq

                                                          ( 4.18 ) 

 

4.1.2 Conjunctive and compensatory models 

A model aimed to contrast a conjunctive condensation rule with respect to the 

compensatory condensation rule also meets the specifications in Equations (4.1) to (4.18), with 

the exception of the probability function for the item in Equation (4.2) and the joint likelihood 

function in Equation (4.11). In this case, the probability function is defined as 

1 2 2( 1| , , , , , )j ijp P Y f d f d d= = =1Ŭ                                             ( 4.19 ) 

( )1 1 2 * 2

11

expit 1jk

K K

j j ik j j jk jk ik j

kk

q
f d f q da d a d

==

å õè ø è ø
+ + + -æ öé ù é ù

ê úê úç ÷
äÔ  

where the condensation rule on the left hand side corresponds to a conjunctive R-DINA model 

and the one on the right to a compensatory Additive CDM model. Both condensation rules will 

provide the same result when a single latent skill Ŭk loads on the j
th
 item; thus, the random 

variable ŭj is introduced for items that require more than one attribute. 

Assuming independence among examinees and local independence among items, the 

likelihood function is defined as 
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1 2 2 1 2 2( , , | , , , , , ) ( , , , , , )ij ijP Y y i j L= " = =1 1Ŭ f d f d ŭ Ŭ f d f d ŭ                        ( 4.20 ) 

( )1 1 2 * 2

11 1 1

expit 1jk

I J K K

j j ik j j jk jk ik j

ki j k

q
f d f q da d a d

== = =

è øå õè ø è ø
+ + + -é ùæ öé ù é ù

ê úé ùê úç ÷ê ú
äÔÔ Ô  

 

4.1.3 Equation expansion 

Equations (4.2) and (4.19) can be expanded to analyze the weighting effect that ŭj has in 

the model parameters. In the case of the Equation (4.2), the expansion can be expressed as 

1 2 2( 1| , , , , , )j ijp P Y f d f d d= = =1Ŭ  

( )2 1 2 2 1 2

1 1 1

expit 1 (1 ) 1 (1 )jk jk jk

K K K

j j j j j ik j j ik j ik

k k k

q q q
f f f d d dd a d a a

= = =

å õè øè ø è ø
+ - + - - + - - -æ öé ùé ù é ùæ ö

ê ú ê úê úç ÷
Ô Ô Ô , 

resulting in a model with a general intercept in the form of the item parameter f2j, a weighted 

intercept component for the difference between f1j and f2j, a main effects slope d2j for the 

disjunctive model, and weighted slopes for the difference between a conjunctive model and a 

disjunctive model. 

The expansion of Equation (4.19) is defined as 

1 2 2( 1| , , , , , )j ijp P Y f d f d d= = =1Ŭ  

( )2 * 1 2 * 2 1 2

1 11

expit jk

KK K

j j j j jk jk ik j j ik jk jk ik

k kk

q
f f f q d d q dd a d a a

= ==

å õå õ
+ - + + -æ öæ ö

ç ÷ç ÷
ä äÔ

 

which also incorporates intercept components similar to those in the expansion of Equation (4.2). 

The expansion also presents main effects for each skill Ŭk. in the form of a compensatory model, 

as well as weighted slopes for the difference between a conjunctive model and a compensatory 

model. 

 If ŭj is assumed to be Uniform distributed, both expansions make evident that as the value 

of ŭj approaches zero, the conjunctive effects have a smaller weight in the model. On the other 
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side, as the value of ŭj approaches a value of one, the conjunctive model has a greater effect in 

defining the item response function. 

 

 4.1.4 Initial values  

The method defined in Equations (4.1) to (4.20) can be estimated using the Gibbs 

sampling algorithm in OpenBUGS (Thomas, OôHara, Ligges, & Sturtz, 2006). Initial values for 

some or all model parameters can be determined before starting the estimation process. In this 

study, initial values for the false alarm rate parameters f are set equal to ï1, detection parameters 

d are set equal to +2, and the ŭ parameters to +0.5. 

 

4.2 Simulation Study 

A simulation study was carried out in order to test for the condensation rules using the 

models developed in the previous section. The simulated data in R (R Core Team, 2012) was 

based on the reparametrized independent and higher order models for cognitive diagnosis 

defined in Chapter 3. 

Twenty-four conditions were analyzed with four factors for the simulation design: the 

first factor involves two conditions for the higher order association among the latent skills Ŭk; the 

second factor includes two conditions for the condensation rules to compare: conjunctive and 

disjunctive condensation rules, or conjunctive and compensatory condensation rules; the third 

factor consists of five models used to generate the data; and the fourth factor involves defining ŭj 

as either Beta-Bernoulli or Uniform distributed. Fifty data sets were generated per condition. 
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Table 3 presents the intersection of the four factors that produce the twenty-four conditions 

explored in this study. 

In terms of the association among the latent skills in the higher order model, data with 

independent skills were generated with the higher order parameter ak in Equation (3.5) set equal 

to zero; otherwise, the skills were allowed to have some degree of association. For the 

condensation rules to contrast, a conjunctive model was contrasted in each condition either with 

a disjunctive model or with the compensatory model.  

Finally, five different models were used to generate the data. In the first three conditions, 

data were generated from a conjunctive model (i.e., R-DINA), a disjunctive model (i.e., R-

DINO), or a compensatory model (i.e., Additive CDM). Two additional mixed models to 

generate the data were included: the first one consisted of half of the multiple-skill items being 

generated from a conjunctive model (i.e., items 5, 7, 9, 11, 13, and 15 in Table 4) and the other 

half from a disjunctive model (i.e., items 6, 8, 10, 12, and 14 in Table 4); the second mixed 

model also generated half of the items from a conjunctive model (i.e., items 5, 7, 9, 11, 13, and 

15 in Table 4) and the other half from a compensatory model (i.e., items 6, 8, 10, 12, and 14 in 

Table 4).  

Some cells in Table 3 are left in blank, indicating that the intersection of the four factors 

is not explored as a research condition in this study. Those unexplored conditions correspond to 

cases in which data are generated from a specific model (e.g., a disjunctive condensation rule 

model) but the contrasting would be based on the other two models (e.g., a comparison between 

models with conjunctive and compensatory condensation rules), so the potential results for ŭj 

would not be directly related to its capacity to detect the correct underlying condensation rule. 

TABLE 3. Conditions in the simulation study 

Conditions with ŭj defined as Uniform[0,1] distributed  
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Condensation rule  

for data generation 

Independent model Higher order model 

Conjunctive vs. 

disjunctive 

Conjunctive vs. 

compensatory 

Conjunctive vs. 

disjunctive 

Conjunctive vs. 

compensatory 

Conjunctive Condition 1 Condition 2 Condition 3 Condition 4 

Disjunctive Condition 5 
 

Condition 6 
 

Compensatory 
 

Condition 7 
 

Condition 8 

Conjunctive/ Disjunctive Condition 9 
 

Condition 10 
 

Conjunctive /Compensatory 
 

Condition 11 
 

Condition 12 

Conditions with ŭj defined as Bernoulli distributed with hyperparameter Beta(1,1) 

Condensation rule  

for data generation 

Independent model Higher order model 

Conjunctive vs. 

disjunctive 

Conjunctive vs. 

compensatory 

Conjunctive vs. 

disjunctive 

Conjunctive vs. 

compensatory 

Conjunctive Condition 13 Condition 14 Condition 15 Condition 16 

Disjunctive Condition 17  Condition 18  

Compensatory  Condition 19  Condition 20 

Conjunctive/ Disjunctive Condition 21  Condition 22  

Conjunctive /Compensatory  Condition 23  Condition 24 

Note. The cells left in blank in the table are potential conditions that were not be explored in this study. 

 

During the data generation process, some elements remained fixed across conditions: 15 

items per data set, 4 latent skills Ŭk, a sample size of 1000 examinees, identical structure of the 

Q-matrix and item parameter values, standardized normal distribution for the higher order latent 

variable ɗ (i.e., ɗ ~ N(0,1) across conditions), and values for the higher order difficulty 

parameters b = {b1 = ï1; b2 = ï0.328;  b3 = 0.3;  b4 = 0.678}. Table 4 describes the structure of 

the Q-Matrix and the item parameter values utilized to generate the data. The arbitrary values for 

the parameters fj and dj (or fj*  and djk for the compensatory model) were chosen based on results 

from prior applications of the R-DINA model, which found dj values ranging from 1.5 to 5.5, 

and fj from ï4 to 0 (DeCarlo, 2012). 

For the simulation conditions where data with associated skills Ŭk are generated (i.e., 

conditions where the higher order discrimination parameters ak are nonzero), a common value of 
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three was used for the skill discrimination parameters a = {a1 = a2 = a3 = a4 = +3}. In results 

from empirical data, DeCarlo (2011) found values for the parameters ak close to +3, indicating 

that the latent skills Ŭk were correlated. 

TABLE 4. Q-matrix and item parameter values across conditions 

 Q-matrix Item parameters 

Item Ŭ1 Ŭ2 Ŭ3 Ŭ4 fj dj 

1 1 0 0 0 -4 5 

2 0 1 0 0 -3 4 

3 0 0 1 0 -2 3 

4 0 0 0 1 -1 2 

5 1 1 0 0 0 1 

6 1 0 1 0 -4 1 

7 1 0 0 1 -3 2 

8 0 1 1 0 -2 3 

9 0 1 0 1 -1 4 

10 0 0 1 1 0 5 

11 1 1 1 0 -4 1 

12 1 1 0 1 -3 5 

13 1 0 1 1 -2 4 

14 0 1 1 1 -1 2 

15 1 1 1 1 0 3 

 

Previous research using a similar methodology has shown that, in the context of the 

Gibbs sampler, 40,000 iterations appeared to be sufficient to reach convergence in the posterior 

mean estimates. The present study followed that observation: 40,000 iterations were processed in 

each analyzed data set, discarding the initial 20,000 of them. Code in R for the data generation 

and in OpenBUGS for the data estimation are included in Appendices A and B, respectively. 

 Three additional conditions (i.e., conditions 25, 26, and 27, not included in Table 3) were 

explored in order to analyze the impact of non-informative priors in the detection of the item 

condensation rule. The simulation characteristics of these three conditions are equivalent to those 

of conditions 2, 7, and 11, respectively, described in Table 3: data generated from a either a 

conjunctive or a compensatory model with independent skills. The data generated from a 
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conjunctive model in condition 25 is compared with respect to a compensatory model, and the 

data generated from a compensatory model in condition 26 is contrasted to a conjunctive model. 

Condition 27 includes a mixture items generated from either a conjunctive or a compensatory 

model. The parameter values used to generate the data across replications are also equivalent to 

those used in conditions 2, 7, and 11.  

The differences with respect to conditions 2 and 7 are: first, the values for the variance of 

the distribution in the estimation of model parameters; specifically, item parameters fj and dj are 

all defined as normally distributed with mean equal to zero and variance equal to 1000. Second, 

the number of replications in conditions 25 and 26 was 20 rather than 50. 

  

4.2.1 Measures of condensation rule detection and parameter recovery 

The main objective of the present project is to examine the capacity of the model to 

detect the underlying item condensation rules by analyzing the posterior mean values of the 

unobserved variables ŭj. Additional analyses were carried out to measure the recovery of the item 

parameters fj and dj, as well as the latent class sizes. 

In the conditions in which the random variable ŭj was defined as Uniform distributed, the 

posterior mean of ŭj was be rounded to values of zero or one, reflecting the condensation rule 

that most probably generated the vector of responses for the j
th
 item. Posterior mean values for 

each ŭj below 0.5 were rounded to zero, while values greater than or equal to 0.5 were rounded to 

one. In those conditions where ŭj was defined as Beta-Bernoulli distributed, the posterior mean 

of its hyperparameter ɚj was used to identify the underlying condensation rule. Hence, for r = 1, 

é, R replications within each condition, it is possible to determine the efficacy of the 

methodology by calculating the proportion of correctly identified condensation rules. 
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For other model parameters ɗ (e.g., ɗ = { fj, dj}) and their corresponding posterior mean 

estimates, three measures of item recovery were calculated: variance, bias and mean square error 

(MSE).  The variance of the estimates across replications was calculated as 

2

1

1Ĕ Ĕ Ĕvar( ) ( )
1

R

r

rR
q q q

=

= -
-
ä                                                   ( 4.21 ) 

where Ĕq is the average parameter estimate value across replications and Ĕ
rq is the parameter 

estimate in the r
th
 replication (Rizzo, 2008).  

Bias, defined as the average difference across replications between the parameter value ɗ 

and its posterior mean estimateĔrq, was calculated as 

1

1Ĕ Ĕ( ) ( )
R

r

r

bias
R

q q q
=

= -ä                                                      ( 4.22 ) 

Finally, the MSE, defined as the mean squared difference between the estimate Ĕrq and 

the population parameter value ɗ, was calculated as  

2

1

1Ĕ Ĕ( ) ( )
R

r

r

MSE
R

q q q
=

= -ä                                                    ( 4.23 ) 

 

4.3 Empirical Study  

The models here described were used to assess publicly available data from standardized 

tests. For this purpose, two data sets previously analyzed in the literature were considered: first, a 

group of items from the fraction subtraction data set (Tatsuoka, 1990); and, second, data from the 

examination for the Certificate of Proficiency in English (ECPE; Templin & Bradshaw, 2014; 

Templin & Hoffman, 2013). Both data sets and their respective Q-matrices are available in the 

óCDMô package (Robitzsch et al., 2014) in R. 
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4.3.1 Fraction subtraction data 

The original fraction subtraction consists of 40 mathematics items in two test versions of 

20 items each (Tatsuoka, 1990).  Items in Version A are linked to 7 latent skills: convert a whole 

number to a fraction, convert 1
st
 mixed number to a fraction, convert 2

nd
 mixed number to 

fraction, simplify before subtracting, find a common denominator, column borrow to subtract 

numerator, and reduce answer to its simplest form. Items in Version B of the test are linked to 

other 7 latent skills: convert a whole number to fraction or mixed number, separate whole 

number from fraction, simplify before getting final answer, find the common denominator, 

borrow 1 from whole number part, change numerators and whole, column borrow to subtract 2
nd

 

numerator from 1
st
, and reduce answer to simplest form. The content and structure of the Q-

matrices are not equivalent in test Versions A and B. 

The version of the fraction subtraction data used here consists of 536 examinees, and 15 

items of the original Version A that measure to 5 latent skills: performing basic fraction-

subtraction operations, simplifying/reducing, separating whole numbers from fractions, 

borrowing one from whole number to fraction, and converting whole numbers to fractions. 

Although Version A of the fraction subtraction data has been widely analyzed in the former 

research on CDMs, different authors have used either just a part of the 20 original items (see de 

la Torre & Lee, 2013; DeCarlo, 2011, 2012; Henson, Templin & Willse, 2009) or a Q-matrix 

different from the one originally reported by Tatsuoka (see Chiu & Douglas, 2013; de la Torre & 

Douglas, 2004). A common characteristic in those previous studies is the assumption that the 

fraction subtraction items present a conjunctive condensation rule. The Q-Matrix that was used 

in this study is taken from DeCarlo (2012) and is summarized in Table 5.  
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The fraction subtraction data was analyzed to contrast models with conjunctive and 

disjunctive condensation rules, as well as models with conjunctive and compensatory 

condensation rules, assuming independence or a higher order relationship among the latent skills 

measured by the test. Both analyses were done considering instances in which ŭj is defined as 

being Beta-Bernoulli distributed or Uniform distributed. 

 

4.3.1 Examination for the Certificate of Proficiency in English (ECPE) data 

The ECPE consists of 28 multiple-choice items measuring skills of English as a second 

language. The items are associated to 3 latent skills: knowledge of morphosyntactic rules, 

knowledge of cohesive rules, and knowledge of lexical rules (Templin & Hoffman, 2013; 

Templin & Bradshaw, 2014). The retrieved data set includes information about the answers of 

2,922 examinees for the 28 items. 

Table 6 illustrates the Q-matrix of the ECPE test as defined in Templin and Hoffman 

(2013). A particularity of this Q-matrix is that no item in the test is associated to all three latent 

skills, but rather to just one or two of them.  

Prior research has analyzed the ECPE data using the LCDM model (Henson, Templin & 

Willse, 2009; Templin & Hoffman, 2013). The LCDM model expresses additive main effects 

and interactions among latent skills, and it can be constrained and reparametrized to obtain 

results equivalent to those of the DINA and DINO models. Hence, in the present study, the 

ECPE was analyzed to contrast the models with conjunctive and disjunctive condensation rules 

and models with conjunctive and compensatory condensation rules, considering situations in 

which the skills are defined as independent or conditionally independent given a higher order 
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latent variable. Once again, the analysis of the ECPE data was done considering instances in 

which ŭj is defined as being Beta-Bernoulli distributed or Uniform distributed. 

TABLE 5. Q-matrix for the fraction subtraction test 

  Q-matrix  

Item  Ŭ1 Ŭ2 Ŭ3 Ŭ4 Ŭ5 

1 
3 3

4 8
-  1 0 0 0 0 

2 
1 3

3 2
2 2
-  1 1 1 1 0 

3 
6 4

7 7
-  1 0 0 0 0 

4 
1

3 2
5

-  1 1 1 1 1 

5 
7

3 2
8
-  1 0 1 0 0 

6 
4 7

4 2
12 12
-  1 1 1 1 0 

7 
1 4

4 2
3 3
-  1 1 1 1 0 

8 
11 1

8 8
-  1 1 0 0 0 

9 
4 2

3 3
5 5
-  1 0 1 0 0 

10 
1

2
3
-  1 0 1 1 1 

11 
5 4

4 1
7 7
-  1 0 1 0 0 

12 
3 4

7
5 5
-  1 0 1 1 0 

13 
1 8

4 2
10 10
-  1 1 1 1 0 

14 
4

4 1
3

-  1 1 1 1 1 

15 
1 5

4 1
3 3
-  1 1 1 1 0 

Note. Ŭ1 = performing basic fraction-subtraction operation, Ŭ2 = simplifying/reducing, Ŭ3 = separating whole numbers from 

fractions, Ŭ4 = borrowing one from whole number to fraction, Ŭ5 = converting whole numbers to fractions.. 
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TABLE 6. Q-matrix for the ECPE test 

Item Ŭ1 Ŭ2 Ŭ3 
 Item Ŭ1 Ŭ2 Ŭ3 

1 1 1 0  15 0 0 1 

2 0 1 0  16 1 0 1 

3 1 0 1  17 0 1 1 

4 0 0 1  18 0 0 1 

5 0 0 1  19 0 0 1 

6 0 0 1  20 1 0 1 

7 1 0 1  21 1 0 1 

8 0 1 0  22 0 0 1 

9 0 0 1  23 0 1 0 

10 1 0 0  24 0 1 0 

11 1 0 1  25 1 0 0 

12 1 0 1  26 0 0 1 

13 1 0 0  27 1 0 0 

14 1 0 0  28 0 0 1 
Note. Ŭ1 = morphosyntactic rules, Ŭ2 = cohesive rules, Ŭ3 = lexical rules. 
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Chapter V. Results 

Results of the simulation study and empirical studies are presented in this chapter. With 

regard to the simulation study, the results are summarized for the variable ŭj, the latent class 

sizes, the item false rate alarm and detection parameters. Next, the empirical data results for the 

fraction subtraction data set and ECPE data set are presented. Appendix C includes 

complementary tables corresponding to additional results of both the simulation study and 

empirical study. 

5.1 Results of simulation study 

5.1.1 Random variable ŭj 

In order to assess the performance of the latent variables ŭj in the identification of the 

item condensation rule, its posterior mean values in each replication were rounded to zero if they 

were less than or equal to 0.5; otherwise, they were rounded up to one. Subsequently, the 

proportion of correctly identified condensation rules for the twelve simulation conditions was 

calculated. 

Table 7 summarizes the results for the proportion of correctly identified condensation 

rules in the simulation study; results are listed for each variable ŭj related to items five through 

fifteen and for the overall simulation condition. Items one to four are not included in Table 7 

because those items measure only one skill. In Table 7, each condition is identified by the type of 

model used to generate the data and the independence or higher order relationship among skills. 

Equivalent conditions with ŭj defined as either Uniform distributed or Beta-Bernoulli distributed 

are stacked one above the other.  



 

 

6
4 

TABLE 7. Proportion of correctly identified item condensation rules across conditions 

Data Conj Conj Conj Conj Disj Disj Comp Comp Mixed Mixed Mixed Mixed 

Compared with  Disj Comp Disj Comp Conj Conj Conj Conj Conj/Disj Conj/Disj Conj/Comp Conj/Comp 

Skills Idep Indep HO HO Indep HO Indep HO Indep HO Indep HO 

Conditions with ŭj defined as Uniform distributed 

Condition 1 2 3 4 5 6 7 8 9 10 11 12 

Parameter Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. Prop. 

ŭ5 0.96 0.98 0.88 0.96 0.96 0.96 0.74 0.78 0.98
*
 0.94

*
 1

*
 1

*
 

ŭ6 0.74 0.94 0.64 0.96 0.8 0.64 0.18 0.4 0.82 0.9 0.28 0.22 

ŭ7 1 0.9 1 0.9 1 1 0.82 0.88 1
*
 1

*
 0.96

*
 0.94

*
 

ŭ8 1 1 1 1 1 1 1 1 1 1 1 1 

ŭ9 1 1 1 1 1 1 1 1 1
*
 1

*
 1

*
 1

*
 

ŭ10 1 1 1 1 1 1 1 1 1 1 1 1 

ŭ11 0.66 1 0.82 1 0.76 0.84 0.34 0.38 0.76
*
 0.82

*
 1

*
 1

*
 

ŭ12 1 1 1 1 1 1 1 1 1 1 1 1 

ŭ13 1 1 1 1 1 1 1 1 1
*
 1

*
 1

*
 1

*
 

ŭ14 1 1 0.98 1 1 1 1 1 1 1 1 1 

ŭ15 1 1 1 1 1 1 1 1 0.98
*
 1

*
 1

*
 1

*
 

Mean 0.942 0.984 0.938 0.983 0.956 0.949 0.835 0.858 0.958 0.969 0.931 0.923 

Conditions with ŭj defined as Beta-Bernoulli distributed  

Condition 13 14 15 16 17 18 19 20 21 22 23 24 

ŭ5 1 0.98 1 0.96 0.62 0.64 0.96 0.96 1
*
 1

*
 0.98

*
 0.98

*
 

ŭ6 0.68 0.88 0.77 0.88 0.66 0.58 0.6 0.64 0.88 0.86 0.46 0.52 

ŭ7 1 0.86 0.98 0.84 0.7 0.79 0.94 0.88 1
*
 1

*
 0.86

*
 0.96

*
 

ŭ8 0.98 0.92 0.79 0.92 0.68 0.44 0.98 0.98 0.98 0.84 0.98 0.94 

ŭ9 1 1 0.51 0.68 0.38 0.6 0.96 1 1
*
 1

*
 1

*
 0.96

*
 

ŭ10 0.72 0.32 0.42 0.46 0.94 0.96 1 1 0.98 0.9 1 1 

ŭ11 0.78 0.98 0.75 0.98 0.72 0.7 0.88 0.76 0.76
*
 0.86

*
 0.98

*
 1

*
 

ŭ12 1 1 1 1 0.38 0.21 0.96 1 1 1 1 1 

ŭ13 1 0.76 0.98 0.92 0.7 1 1 1 1
*
 1

*
 0.94

*
 1

*
 

ŭ14 1 1 0.85 0.84 0.9 1 0.98 1 1 1 1 1 

ŭ15 1 1 1 1 0.74 1 1 1 1
*
 1

*
 1

*
 1

*
 

Mean 0.924 0.882 0.823 0.862 0.675 0.72 0.933 0.929 0.964 0.951 0.927 0.942 
Note: Prop. is the proportion of correctly identified item condensation rules, Conj refers to conjunctive models, Disj to disjunctive models, Comp to compensatory models, 

Conj/Disj corresponds to models with some items having a conjunctive rule and others having a disjunctive rule, Conj/Comp corresponds to models with some items having a 

conjunctive rule and others having a compensatory rule. Indep refers to models with independent skills and HO to instances with skills in a higher-order model. 40,000 iterations 

and 20,000 burn-ins were used with OpenBUGS and R. In mixed condensation rule conditions conditions, the asterisk mark ó*ô denotes that the items are conjunctive and the lack 

of the asterisk indicates the items are either disjunctive or compensatory.
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Results across conditions show that, on average, ŭj is able to correctly identify the 

condensation rule 93.55% of the time when defined as Uniform distributed and 87.77% of the 

time when characterized as Beta-Bernoulli distributed. Condition 2, which compares between 

conjunctive and disjunctive condensation rules when the data are generated from a conjunctive 

model, showed the best performance with 98.4% of the condensation rules correctly identified. 

On the other side, conditions 17 and 18, in which disjunctive items are analyzed in a model that 

compares conjunctive and disjunctive models, detect the correct condensation rule only 67.5% 

and 72.0% of the time, respectively. Since both conditions 17 and 18 involve the generation of 

disjunctive data (i.e., data in which the presence of only one skill Ŭk produces ɖ equal to 1), and 

then its comparison with respect of a conjunctive model, it is plausible to observe those low rates 

of correctly identified condensation rules since both conjunctive and disjunctive models are not 

mutually exclusive from each other. 

Overall, the identification of the underlying condensation rule is better when ŭj is defined 

as Uniform distributed rather than Beta-Bernoulli distributed. Among those conditions with 

Uniform distributed ŭj, the higher proportions of correct condensation rule identification occur in 

conditions with data generated based on conjunctive and disjunctive models (i.e., conditions 1 to 

6, 9 and 10) as compared to data generated with a compensatory relationship among skills (i.e., 

conditions 8, 9, 11, and 12). Regarding conditions with Beta-Bernoulli distributed ŭj, the highest 

rates of correct condensation rule identification were observed when some column vectors of the 

data were generated using a conjunctive model and others using a disjunctive model (i.e., 

conditions 21 and 22). It is worth to notice that items 6 and 11 showed a particularly low 

proportion of correctly identified condensation rules across several conditions, the role of those 

two items will be further discussed in the next paragraphs. 
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A hypothesis based on these results in Table 7 may suggest that condensation rule 

identification becomes more complicated for compensatory models because those models are 

less restrictive in the skill combinations that produce a correct item response, whereas 

conjunctive models restrain the correct response production to those observations that have 

mastered all skills linked to a specific item. Thus, in the comparison between compensatory and 

conjunctive models, a Uniform distributed ŭj weighs the probability that the observed data come 

from one model or the other, and tends to favor a simpler conjunctive model especially when ïas 

discussed in the next paragraphï the number of skills measured by the item is small. 

As presented in Table 7, condensation rule identification tends to improve as the number 

of skills measured by a given item increases (see items 11 to 15) as compared to items measuring 

only two skills (see items 5 to 10). These results may suggest that condensation rule 

identification is more complicated in those items measuring only two skills because the 

production of a correct response relies on relatively few possible skill profile combinations (e.g., 

Ŭ = { 00, 01, 10, 11}) ; hence the distinction among conjunctive, disjunctive, and compensatory 

items is based only on the inclusion or exclusion of one of those skill profiles. The number of 

skill profiles increases to the factor 2
K
 as the number of skills measured by the item increases, 

and such increase in skill profiles consequently improves the identification of the underlying 

condensation rule that produces a correct answer to a given item. 

There are no differences in the identification performance of ŭj among conditions with 

independent and correlated skills; the average proportion of correctly identified condensation 

rules is 90.92% in conditions with independent skills and 90.39% in conditions with skills being 

part of a higher order model. A comparison between every pair of equivalent conditions with 
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data generated from a model with independent skills or a higher order model reveals a similar 

performance of ŭj. 

At the item level, items 6 and 11 are consistently the most difficult to identify in terms of 

their corresponding condensation rule; both items have the distinction of being generated using 

the lowest false alarm parameter and detection parameter values (i.e., fj = ï4 and dj = 1 in both 

cases) among all items in the test. The correct identification of the condensation rule of items 6 

and 11 was particularly problematic in conditions with data generated from a higher order model 

with correlated skills, as well as in conditions with data generated from a compensatory model 

(e.g., conditions 7, 8, 12, 23, and 24). While it is not a central topic of research for the present 

study, the condensation rule identification is affected by the item parameter values.  

 

5.1.2 Latent class sizes  

Results for the latent class size estimates are presented in Tables 8 and 9. Table 8 

summarizes the results for conditions with data generated from an independent skills model, 

since the latent class size parameters are the same for those conditions. Table 9 presents the 

results for conditions with data generated from higher order models with correlated skills. 

Latent class size estimators can be compared among conditions in terms of their average 

estimator variance, bias, and MSE, with respect to the population parameter value. As shown in 

Table 8, the recovery of the latent class size parameters is very good in most conditions, with 

exception of condition 17 in which three out of the four latent class size parameter estimates 

were incorrectly estimated across replications. Many of the latent class size estimates show a 

negative but small bias with respect to the population parameter value, indicating a tendency to 

calculate slightly smaller latent class sizes estimates for each skill across replications. Related to 



 

68 
 

the estimate bias, average MSE values for the latent class size estimates are very small across 

conditions, indicating a good parameter recovery for latent class sizes across conditions in which 

data are generated from a model with independent skills. 

The negative bias result is also confirmed by observing the average posterior mean values 

for each latent class size, which tend to be smaller than their respective parameter across 

conditions. The estimator variance ï the third criterion to assess the performance of each 

posterior mean estimate with respect to the average posterior mean among replications ï also 

exhibits very small values across conditions. The smallest variance, absolute bias, and MSE 

reported in Table 8 is observed in Condition 1, in which models with conjunctive and disjunctive 

condensation rules are contrasted in data generated from a conjunctive model.  

Table 9 presents the latent class size estimates for the conditions in which data is 

generated and analyzed using the higher order model. The very small values of bias and MSE for 

the estimates across most of the conditions indicate that parameter recovery is very good in most 

cases. This result is supported by the average posterior mean values for the latent class sizes 

reported in Table 9, which are very close to the real parameter vales.  

On average, the smallest absolute bias is observed in conditions with data generated based on a 

conjunctive model (i.e., conditions 3 and 4) and in conditions with data produced from a mixture 

of conjunctive and disjunctive or compensatory models (i.e., conditions 10, 12, 22, and 24). 

Similar to the results for condition 17 in Table 8, condition 18 also showed the poorest 

performance in terms of parameter recovery for the latent class sizes. Both conditions 17 and 18 

also showed the lowest proportion of correctly identified condensation rules. 

 

 



 

69 
 

 

TABLE 8. Latent class size estimates for conditions with independent skills 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

Conditions with ŭj defined as Uniform distributed 

  

Condition 1: Conjunctive data. 

 

Condition 2: Conjunctive data. 

Comparison with disjunctive model. Comparison with disjunctive model. 

p(Ŭ1) 0.269 0.263 0.0006 -0.0061 0.0006 
 

0.254 0.0006 -0.0146 0.0008 

p(Ŭ2) 0.419 0.411 0.0006 -0.0074 0.0006 
 

0.407 0.0007 -0.0121 0.0008 

p(Ŭ3) 0.574 0.569 0.0008 -0.0051 0.0009 
 

0.562 0.0011 -0.012 0.0013 

p(Ŭ4) 0.663 0.671 0.0012 0.008 0.0012 
 

0.67 0.001 0.0066 0.0010 

  

Condition 5: Disjunctive data. 

 

Condition 7: Compensatory data. 

Comparison with conjunctive model. Comparison with conjunctive model. 

p(Ŭ1) 0.269 0.257 0.0013 -0.0122 0.0015 
 

0.26 0.0008 -0.0091 0.0009 

p(Ŭ2) 0.419 0.414 0.001 -0.005 0.001 
 

0.412 0.0011 -0.0064 0.0011 

p(Ŭ3) 0.574 0.57 0.0011 -0.0042 0.0011 
 

0.571 0.001 -0.0033 0.0009 

p(Ŭ4) 0.663 0.658 0.0006 -0.0051 0.0006 
 

0.66 0.0008 -0.0027 0.0008 

  

Condition 9: Conjunctive/disjunctive 

data. 
 

Condition 11:  

Conjunctive/compensatory data. 

Comparison between both models. Comparison between both models. 

p(Ŭ1) 0.269 0.245 0.0008 -0.0242 0.0014 
 

0.239 0.0008 -0.0299 0.0017 

p(Ŭ2) 0.419 0.405 0.0009 -0.0133 0.001 
 

0.408 0.0007 -0.0108 0.0008 

p(Ŭ3) 0.574 0.576 0.0016 0.0019 0.0016 
 

0.577 0.0009 0.0023 0.0009 

p(Ŭ4) 0.663 0.656 0.0008 -0.0074 0.0008 
 

0.655 0.0008 -0.0086 0.0008 

Conditions with ŭj defined as Beta-Bernoulli distributed  

  
Condition 13: Conjunctive data. 

 

Condition 14: Conjunctive data. 

  
Comparison with disjunctive model. Comparison with disjunctive model. 

p(Ŭ1) 0.269 0.27 0.0007 0.001 0.0007 
 

0.272 0.0004 0.0028 0.0004 

p(Ŭ2) 0.419 0.424 0.0005 0.005 0.0005 
 

0.405 0.0008 -0.0133 0.0010 

p(Ŭ3) 0.574 0.57 0.0021 -0.0043 0.0021 
 

0.582 0.002 0.0081 0.0020 

p(Ŭ4) 0.663 0.653 0.0018 -0.01 0.0019 
 

0.696 0.0023 0.0332 0.0033 

  
Condition 17: Disjunctive data. 

 

Condition 19: Compensatory data. 

  
Comparison with conjunctive model. Comparison with conjunctive model. 

p(Ŭ1) 0.269 0.585 0.0813 0.3161 0.1796 
 

0.297 0.0181 0.028 0.0185 

p(Ŭ2) 0.419 0.647 0.0353 0.228 0.0865 
 

0.438 0.0085 0.0189 0.0087 

p(Ŭ3) 0.574 0.583 0.0147 0.0082 0.0145 
 

0.585 0.0013 0.0108 0.0014 

p(Ŭ4) 0.663 0.727 0.0069 0.0641 0.0109 
 

0.66 0.0019 -0.0029 0.0019 

  
Condition 21: Conjunctive/disjunctive 

data. 
 

Condition 23:  

Conjunctive/compensatory data. 

  
Comparison between both models. Comparison between both models. 

p(Ŭ1) 0.269 0.258 0.0008 -0.0107 0.0009 
 

0.252 0.0007 -0.0166 0.0010 

p(Ŭ2) 0.419 0.401 0.0011 -0.0173 0.0014 
 

0.409 0.0012 -0.0101 0.0012 

p(Ŭ3) 0.574 0.581 0.0023 0.007 0.0023 
 

0.58 0.0011 0.0056 0.0011 

p(Ŭ4) 0.663 0.662 0.0008 -0.0016 0.0008 
 

0.656 0.001 -0.0068 0.0011 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE 9. Latent class size estimates for higher order models 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

  
Conditions with ŭj defined as Uniform distributed 

  

Condition 3: Conjunctive data. 

 

Condition 4: Conjunctive data. 

Comparison with disjunctive 

model. 
Comparison with disjunctive model. 

p(Ŭ1) 0.387 0.390 0.0004 0.0029 0.0004 
 

0.384 0.0005 -0.0026 0.0005 

p(Ŭ2) 0.462 0.466 0.0004 0.0045 0.0004 
 

0.461 0.0003 -0.001 0.0003 

p(Ŭ3) 0.534 0.546 0.0005 0.0122 0.0006 
 

0.541 0.0008 0.0068 0.0009 

p(Ŭ4) 0.577 0.593 0.0009 0.0162 0.0011 
 

0.605 0.0013 0.028 0.0021 

  

Condition 6: Disjunctive data. 

 

Condition 8: Compensatory data. 

Comparison with conjunctive 

model. 
Comparison with conjunctive model 

p(Ŭ1) 0.387 0.376 0.0011 -0.0108 0.0012 
 

0.400 0.0005 0.0132 0.0007 

p(Ŭ2) 0.462 0.453 0.0009 -0.0081 0.0009 
 

0.462 0.0006 0.0008 0.0006 

p(Ŭ3) 0.534 0.515 0.0008 -0.0181 0.0011 
 

0.528 0.0004 -0.0054 0.0004 

p(Ŭ4) 0.577 0.566 0.0006 -0.0107 0.0007 
 

0.575 0.0004 -0.0018 0.0004 

  

Condition 10: 

Conjunctive/disjunctive data. 
 

Condition 12:  

Conjunctive/compensatory data. 

Comparison between both models. Comparison between both models. 

p(Ŭ1) 0.387 0.384 0.0005 -0.0030 0.0005 
 

0.380 0.0003 -0.0065 0.0003 

p(Ŭ2) 0.462 0.461 0.0003 -0.0001 0.0003 
 

0.454 0.0003 -0.0078 0.0003 

p(Ŭ3) 0.534 0.531 0.0006 -0.0030 0.0006 
 

0.534 0.0005 0.0003 0.0005 

p(Ŭ4) 0.577 0.574 0.0004 -0.0027 0.0004 
 

0.568 0.0003 -0.0083 0.0004 

  
Conditions with ŭj defined as Beta-Bernoulli distributed  

  

Condition 15: Conjunctive data. 

 

Condition 16: Conjunctive data. 

Comparison with disjunctive 

model. 
Comparison with disjunctive model. 

p(Ŭ1) 0.387 0.386 0.0005 -0.0011 0.0005 
 

0.389 0.0004 0.0021 0.0004 

p(Ŭ2) 0.462 0.436 0.0010 -0.0249 0.0016 
 

0.455 0.0005 -0.0070 0.0006 

p(Ŭ3) 0.534 0.485 0.0037 -0.0481 0.0059 
 

0.515 0.0019 -0.0188 0.0022 

p(Ŭ4) 0.577 0.494 0.0055 -0.0820 0.0121 
 

0.621 0.0052 0.0442 0.0070 

  

Condition 18: Disjunctive data. 

 

Condition 20: Compensatory data. 

Comparison with conjunctive 

model. 
Comparison with conjunctive model. 

p(Ŭ1) 0.387 0.576 0.0118 0.1897 0.0476 
 

0.396 0.0013 0.0090 0.0014 

p(Ŭ2) 0.462 0.619 0.0049 0.1578 0.0297 
 

0.458 0.0008 -0.0036 0.0008 

p(Ŭ3) 0.534 0.539 0.0036 0.0051 0.0036 
 

0.523 0.0006 -0.0106 0.0007 

p(Ŭ4) 0.577 0.608 0.0016 0.0313 0.0026 
 

0.568 0.0005 -0.0089 0.0006 

  

Condition 22: 

Conjunctive/disjunctive data. 
 

Condition 24:  

Conjunctive/compensatory data. 

Comparison between both models. Comparison between both models. 

p(Ŭ1) 0.387 0.389 0.0004 0.0024 0.0004 
 

0.391 0.0004 0.0045 0.0004 

p(Ŭ2) 0.462 0.47 0.0005 0.0082 0.0005 
 

0.467 0.0004 0.0050 0.0004 

p(Ŭ3) 0.534 0.546 0.0020 0.0121 0.0021 
 

0.539 0.0004 0.0052 0.0005 

p(Ŭ4) 0.577 0.576 0.0004 -0.0007 0.0003 
 

0.578 0.0005 0.0015 0.0004 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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Table 10 presents a summary of the parameter recovery for the skill-level hyperparameter 

bk parameter in conditions with independent skills. Results show a satisfactory parameter 

recovery among most conditions; most average posterior means are very close to the population 

parameter value and show very small estimate variance. In general, conditions with Uniform 

distributed variables ŭj show smaller bias and MSE compared to the equivalent conditions in 

which is ŭj is defined as Beta-Bernoulli distributed.  Again, condition 17 had the worst parameter 

recovery performance showing the high values of bias and MSE reported for the 

hyperparameters b1, b2, and b4.  

Parameter recovery statistics for the higher order parameters ak and bk are provided for 

those conditions with data generated from a higher order model. Tables 11 and 12 describe the 

measures of parameter recovery for conditions with Uniform and Beta-Bernoulli distributed ŭj, 

respectively.  

 Consistently, an average negative bias is obtained for all slope parameters ak across the 

six conditions presented in Table 11, indicating that the true correlation among the skills Ŭk tends 

to be undervalued by the model. In general, the smallest values for estimate bias and MSE for the 

ak are observed in condition 8, in which data are generated using a compensatory model, while 

the largest bias and MSE are found when the data are generated using a disjunctive model (i.e., 

in condition 6). Average estimate variance for the ak parameters are very similar across 

conditions.  
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TABLE 10. Higher order parameter estimates for models with independent skills. 

Par Value APM Var  Bias MSE 
 

APM Var  Bias MSE 

Conditions with ŭj defined as Uniform distributed 

  

Cond. 1: Conjunctive data. 

 

Cond.2: Conjunctive data. 

Comparison with disjunctive model. Comparison with disjunctive model. 

b1 -1 -1.039 0.0162 -0.0395 0.0174  -1.084 0.0174 -0.0843 0.0242 

b2 -0.328 -0.361 0.0103 -0.0325 0.0111  -0.380 0.0122 -0.0524 0.0147 

b3 0.3 0.281 0.0142 -0.0186 0.0143  0.254 0.0193 -0.0463 0.0211 

b4 0.678 0.723 0.0238 0.0446 0.0253  0.717 0.0222 0.0386 0.0232 

  

Cond.5: Disjunctive data. 

 

Cond.7: Compensatory data. 

Comparison with conjunctive model. Comparison with conjunctive model. 

b1 -1 -1.082 0.0367 -0.0816 0.0426  -1.058 0.0215 -0.0585 0.0245 

b2 -0.328 -0.352 0.0167 -0.0241 0.0169  -0.357 0.0193 -0.0293 0.0198 

b3 0.3 0.285 0.0182 -0.0149 0.0181  0.288 0.0162 -0.0115 0.0160 

b4 0.678 0.659 0.0121 -0.0189 0.0123  0.670 0.0156 -0.0081 0.0154 

  

Cond.9: Conjunctive/disjunctive data. 

 

Cond.11: Conjunctive/compensatory data 

Comparison between both models. Comparison between both models. 

b1 -1 -1.141 0.0232 -0.1411 0.0427  -1.172 0.0257 -0.1716 0.0546 

b2 -0.328 -0.386 0.0151 -0.0581 0.0182  -0.375 0.0124 -0.0472 0.0144 

b3 0.3 0.311 0.0271 0.0115 0.0267  0.312 0.0159 0.0120 0.0157 

b4 0.678 0.650 0.0158 -0.0280 0.0163  0.645 0.0151 -0.0330 0.0159 

Conditions with ŭj defined as Beta-Bernoulli distributed  

  
Cond.13: Conjunctive data. 

 

Cond.14: Conjunctive data. 

  
Comparison with disjunctive model. Comparison with disjunctive model. 

b1 -1 -1.003 0.0185 -0.0031 0.0182  -0.993 0.0104 0.0075 0.0103 

b2 -0.328 -0.309 0.0086 0.0189 0.0088  -0.385 0.0145 -0.0575 0.0176 

b3 0.3 0.287 0.0370 -0.0135 0.0365  0.338 0.0353 0.0382 0.0361 

b4 0.678 0.643 0.0375 -0.0349 0.0380  0.849 0.0554 0.1707 0.0835 

  
Cond.17: Disjunctive data. 

 

Cond.19: Compensatory data. 

  
Comparison with conjunctive model. Comparison with conjunctive model. 

b1 -1 0.335 0.8470 1.1646 1.4080  -0.861 0.5429 0.1393 0.5515 

b2 -0.328 0.724 0.8279 1.0522 1.9186  -0.241 0.1859 0.0875 0.1899 

b3 0.3 0.373 0.3369 0.0733 0.3355  0.347 0.0221 0.0475 0.0239 

b4 0.678 1.054 0.3005 0.3760 0.4358  0.677 0.0511 -0.0014 0.0501 

  
Cond.21: Conjunctive/disjunctive data. 

 

Cond.23: Conjunctive/compensatory data 

  
Comparison between both models. Comparison between both models. 

b1 -1 -1.068 0.0236 -0.0679 0.0277  -1.098 0.0218 -0.0981 0.0310 

b2 -0.328 -0.403 0.0192 -0.0752 0.0244  -0.373 0.0201 -0.0448 0.0217 

b3 0.3 0.334 0.0410 0.0337 0.0413  0.326 0.0182 0.0260 0.0186 

b4 0.678 0.676 0.0167 -0.0023 0.0164  0.654 0.0205 -0.0243 0.0207 

Note: Par is the parameter in the model, APM is the average posterior mean across conditions, Var is the estimator 

variance across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error. 

40,000 iterations and 20,000 burn-ins were used with OpenBUGS and R. 
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TABLE 11. Hyperparameter estimates for higher order models with Uniform distributed ŭj. 

Par Value APM Var Bias MSE   APM Var Bias MSE 

    Conditions with ŭj defined as Uniform distributed 

    
Cond.3: Conjunctive data. 

  
Cond.4: Conjunctive data. 

Comparison with disjunctive model. Comparison with disjunctive model. 

a1 3 2.786 0.066 -0.2137 0.1103 
 

2.813 0.0624 -0.1864 0.0959 

a2 3 2.707 0.0729 -0.2924 0.1569 
 

2.72 0.0904 -0.2798 0.1669 

a3 3 2.62 0.0717 -0.38 0.2147 
 

2.615 0.1058 -0.3842 0.2512 

a4 3 2.44 0.097 -0.5599 0.4085 
 

2.457 0.0999 -0.543 0.3927 

b1 -1 -0.936 0.0366 0.0638 0.04 
 

-0.988 0.0404 0.0114 0.0397 

b2 -0.328 -0.279 0.031 0.0488 0.0328 
 

-0.32 0.0205 0.0079 0.0202 

b3 0.3 0.363 0.03 0.0634 0.0334 
 

0.313 0.0457 0.0135 0.0449 

b4 0.678 0.695 0.0403 0.0176 0.0398 
 

0.791 0.0631 0.113 0.0746 

  
Cond.6: Disjunctive data. 

 
Cond.8: Compensatory data. 

Comparison with conjunctive model. Comparison with conjunctive model. 

a1 3 2.64 0.0621 -0.3594 0.19 
 

2.815 0.1025 -0.1843 0.1344 

a2 3 2.66 0.0892 -0.3399 0.2029 
 

2.801 0.0661 -0.1986 0.1043 

a3 3 2.539 0.1142 -0.4603 0.3238 
 

2.701 0.0642 -0.2988 0.1522 

a4 3 2.547 0.0749 -0.4521 0.2778 
 

2.814 0.096 -0.1852 0.1284 

b1 -1 -0.991 0.0681 0.009 0.0668 
 

-0.845 0.0347 0.1541 0.0578 

b2 -0.328 -0.347 0.0506 -0.019 0.0499 
 

-0.306 0.0386 0.022 0.0384 

b3 0.3 0.148 0.0426 -0.1514 0.0647 
 

0.244 0.028 -0.0559 0.0305 

b4 0.678 0.541 0.0381 -0.1365 0.056 
 

0.651 0.0342 -0.0263 0.0342 

  
Cond.10: Conjunctive/disjunctive data. 

 
Cond.12:  Conjunctive/compensatory data. 

Comparison between both models. Comparison between both models. 

a1 3 2.7 0.0639 -0.2996 0.1524 
 

2.629 0.0635 -0.3706 0.1995 

a2 3 2.706 0.1028 -0.2934 0.1869 
 

2.792 0.0906 -0.2072 0.1318 

a3 3 2.699 0.0715 -0.3008 0.1605 
 

2.803 0.0966 -0.1963 0.1332 

a4 3 2.581 0.101 -0.4186 0.2742 
 

2.703 0.0749 -0.297 0.1616 

b1 -1 -0.963 0.0434 0.0362 0.0438 
 

-0.977 0.0258 0.0221 0.0257 

b2 -0.328 -0.305 0.0196 0.0225 0.0197 
 

-0.384 0.0185 -0.0561 0.0213 

b3 0.3 0.258 0.0395 -0.0411 0.0404 
 

0.291 0.0346 -0.0089 0.0339 

b4 0.678 0.599 0.0281 -0.0785 0.0337   0.57 0.0241 -0.1075 0.0352 

Note: Par is the parameter in the model, APM is the average posterior mean across conditions, Var is the estimator 

variance across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error. 

40,000 iterations and 20,000 burn-ins were used with OpenBUGS and R. 

 

Conversely, in the case of the intercept parameters bk, the smallest values for estimate 

bias are observed in condition 10 ï which includes a mixture of conjunctive and disjunctive 

items ï and the largest in condition 6, mainly due to the highly biased estimates for the 

parameters b3 and b4.  In the case of Table 11, no condition exhibited particularly high values for 

estimate variance or MSE. 
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Parameter recovery results in Table 12, corresponding to higher order models with Beta-

Bernoulli distributed variables ŭj, are similar to those in Table 11, with exception of condition 18 

in which the population parameter values were poorly recovered.  

 

TABLE 12. Hyperparameter estimates for higher order models with Beta-Bernoulli distributed ŭj. 

Par Value APM  Var  Bias MSE   APM  Var  Bias MSE 

    Conditions with ŭj defined as Beta-Bernoulli distributed  

    
Cond.15: Conjunctive data. 

  
Cond.16: Conjunctive data. 

Comparison with disjunctive model. Comparison with disjunctive model. 

a1 3 2.6439 0.0689 -0.338 0.1814 
 

2.7651 0.0827 -0.2349 0.1362 

a2 3 3.2552 0.3854 0.2552 0.4428 
 

2.9141 0.1505 -0.0859 0.1548 

a3 3 3.1537 0.4304 0.148 0.4437 
 

2.9203 0.1377 -0.0797 0.1414 

a4 3 3.6965 0.7971 0.6887 1.2554 
 

2.4556 0.3856 -0.5444 0.6742 

b1 -1 -0.9202 0.0353 0.0751 0.0402 
 

-0.9398 0.0501 0.0602 0.0527 

b2 -0.328 -0.6104 0.1235 -0.2736 0.1958 
 

-0.3962 0.0505 -0.0682 0.0541 

b3 0.3 -0.1845 0.3557 -0.4746 0.5738 
 

0.1119 0.1352 -0.1881 0.1679 

b4 0.678 -0.1573 0.4995 -0.8357 1.1879 
 

0.8928 0.1648 0.2148 0.2076 

  
Cond.18: Disjunctive data. 

 
Cond.20: Compensatory data. 

Comparison with conjunctive model. Comparison with conjunctive model. 

a1 3 4.3593 0.6639 1.3593 2.4983 
 

2.8649 0.1103 -0.1351 0.1263 

a2 3 4.4352 0.351 1.4352 2.4038 
 

2.8206 0.0953 -0.1794 0.1256 

a3 3 2.727 0.3636 -0.273 0.4309 
 

2.776 0.061 -0.224 0.11 

a4 3 4.2596 0.8965 1.2596 2.4651 
 

2.7166 0.1125 -0.2834 0.1906 

b1 -1 1.018 1.1594 2.018 5.2084 
 

-0.882 0.0818 0.118 0.094 

b2 -0.328 1.4976 0.7093 1.8256 4.0281 
 

-0.3356 0.0518 -0.0076 0.0509 

b3 0.3 0.3236 0.2363 0.0236 0.2321 
 

0.2083 0.0421 -0.0917 0.0497 

b4 0.678 1.2673 0.3137 0.5893 0.6547 
 

0.5823 0.0448 -0.0957 0.053 

  
Cond.22: Conjunctive/disjunctive data. 

 
Cond.24:  Conjunctive/compensatory data. 

Comparison between both models. Comparison between both models. 

a1 3 2.6825 0.0729 -0.3175 0.1723 
 

2.6608 0.0667 -0.3392 0.1804 

a2 3 2.8292 0.1202 -0.1708 0.1469 
 

2.9437 0.0965 -0.0563 0.0977 

a3 3 2.817 0.1088 -0.183 0.1401 
 

2.7668 0.0559 -0.2332 0.1092 

a4 3 2.7528 0.0958 -0.2472 0.155 
 

2.7133 0.0942 -0.2867 0.1746 

b1 -1 -0.9145 0.0241 0.0855 0.0309 
 

-0.8908 0.0284 0.1092 0.0398 

b2 -0.328 -0.2485 0.032 0.0795 0.0377 
 

-0.2845 0.0303 0.0435 0.0316 

b3 0.3 0.4064 0.1662 0.1064 0.1742 
 

0.3325 0.034 0.0325 0.0344 

b4 0.678 0.6445 0.0004 -0.0335 0.0305   0.6543 0.035 -0.0237 0.0349 

Note: Par is the parameter in the model, APM is the average posterior mean across conditions, Var is the estimator 

variance across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error. 

40,000 iterations and 20,000 burn-ins were used with OpenBUGS and R.  
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5.1.3 Item parameter estimates 

Results for the item detection dj and the item false alarm fj estimates are presented in 

Table 13 for those conditions with simulated conjunctive items and independent skills, 

contrasting conjunctive versus disjunctive item condensation rules. Detailed results for the other 

twenty two conditions are included in Appendix C.  

It is important to point out that for both conditions with Beta-Bernoulli distributed and 

Uniform distributed variables ŭj, the fitted model is not the same as the model used to generate 

the data because the fitted model is a mixture. Thus, item parameter recovery is not exact. With 

respect to the detection parameter dj estimates, the condition with Beta-Bernoulli distributed 

variable ŭj shows smaller average values for the absolute bias and MSE compared to the 

condition with Uniform distributed ŭj. In the latter case, ŭj acts as a weight of the two item 

response functions that are being contrasted in the condensation rule identification process, so 

the item parameter estimates obtained are biased because of these weighting components. Thus, 

it can be concluded that the detection parameter dj recovery is better when ŭj is restricted to only 

take values of zero or one. 

Estimate variance, bias, and MSE consistently increase as the item measures more skills 

(e.g., items 11 to 15) in the condition with the Beta-Bernoulli distributed ŭj. This result is 

explained by the fact that, unlike the false alarm parameter fj, the detection parameter dj interacts 

with the skills Ŭk in the reparametrized models; thus, an accurate estimation of dj depends on how 

well the skill profile is estimated for each examinee.  

Regarding the recovery of the false alarm parameter fj, Table 13 shows that smaller 

average variance, absolute bias, and MSE are found in the condition with Beta-Bernoulli 

distributed variables ŭj. Once again, the Uniform distributed ŭj produces more biased false alarm 
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estimates because its weighting role in the item response functions. In contrast to the results 

found for the detection parameter dj estimates, the bias and MSE of the false alarm fj parameter 

estimates do not increase or decrease as the number of skills measured by the item increases. 

As discussed in the results corresponding to Table 7, items six and eleven show the most 

flaws in their condensation rule identification across conditions.  These two items also showed 

the largest average values of bias and MSE for the false alarm fj parameter in the condition with 

the Beta-Bernoulli distributed ŭj. Based on these results, it can be concluded that the Beta-

Bernoulli distributed ŭj yields less biased item parameter estimates in general, and flaws in the 

recovery of item parameters are especially noticeable when the condensation rule is not correctly 

identified.  

The results for the two conditions presented in Table 13 are consistent with most of those 

summarized in Appendix C. However, some exceptions were observed as indicated in Table 14 

corresponding to conditions 5 and 17, where item parameter recovery shows a different trend 

when data are generated from a disjunctive model. In those conditions, the model with Uniform 

distributed ŭj produce false alarm rate and detection parameters with smaller absolute bias and 

MSE compared to the equivalent model with Beta-Bernoulli distributed ŭj. Furthermore, those 

conditions with disjunctive generated data did not show a pattern of increasing or decreasing bias 

and MSE as the number of skills linked to a given item increased. 

5.2 Additional results on the model parameter estimation 

5.2.1 Impact of non-informative priors in condensation rule detection 

 Results for the condensation rule identification in the three conditions with non-

informative priors are presented in Table 15. In these three conditions, Normal prior distributions  
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TABLE 13. Item detection and false alarm parameters. Conditions with simulated conjunctive 

items and independent skills, contrasting conjunctive versus disjunctive item condensation rules. 

  Condition 1. Uniform distributed  ŭj  Condition 13. Beta-Bernoulli distributed  ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 5.626 0.249 0.626 0.636 
 

4.989 0.329 -0.011 0.322 

d2 4 5.011 0.251 1.011 1.268 
 

4.197 0.299 0.197 0.332 

d3 3 4.323 0.178 1.323 1.925 
 

3.037 0.300 0.037 0.295 

d4 2 3.731 0.103 1.731 3.099 
 

1.945 0.144 -0.055 0.144 

d5 1 1.756 0.183 0.756 0.752 
 

1.058 0.080 0.058 0.082 

d6 1 1.639 0.142 0.639 0.547 
 

1.663 0.143 0.663 0.580 

d7 2 2.762 0.173 0.762 0.751 
 

2.102 0.129 0.102 0.137 

d8 3 4.075 0.203 1.075 1.355 
 

2.988 0.071 -0.012 0.070 

d9 4 5.050 0.469 1.050 1.562 
 

4.273 0.447 0.273 0.513 

d10 5 5.437 0.342 0.437 0.526 
 

4.235 1.700 -0.765 2.251 

d11 1 1.675 0.120 0.675 0.573 
 

1.689 0.091 0.689 0.563 

d12 5 6.178 0.373 1.178 1.753 
 

5.371 0.659 0.371 0.783 

d13 4 5.273 0.476 1.273 2.088 
 

4.296 0.559 0.296 0.636 

d14 2 3.089 0.195 1.089 1.378 
 

2.046 0.111 0.046 0.111 

d15 3 4.276 0.519 1.276 2.138 
 

3.477 1.060 0.477 1.266 

f1 -4 -4.450 0.180 -0.450 0.379  -4.019 0.314 -0.019 0.308 

f2 -3 -3.717 0.220 -0.717 0.730  -3.204 0.268 -0.204 0.304 

f3 -2 -2.886 0.159 -0.886 0.942  -2.053 0.269 -0.053 0.267 

f4 -1 -1.905 0.107 -0.905 0.924  -0.959 0.099 0.041 0.099 

f5 0 0.176 1.720 0.176 1.716  0.011 0.005 0.011 0.005 

f6 -4 -3.560 0.498 0.440 0.682  -2.437 1.399 1.563 3.815 

f7 -3 -3.439 0.364 -0.439 0.549  -3.087 0.045 -0.087 0.052 

f8 -2 -2.500 0.557 -0.500 0.795  -1.995 0.102 0.005 0.100 

f9 -1 -1.339 0.222 -0.339 0.333  -1.012 0.014 -0.012 0.013 

f10 0 -0.238 0.201 -0.238 0.254  0.029 0.012 0.029 0.012 

f11 -4 -3.572 0.325 0.428 0.502  -2.770 1.150 1.230 2.639 

f12 -3 -3.657 0.058 -0.657 0.488  -2.995 0.042 0.005 0.041 

f13 -2 -2.537 0.201 -0.537 0.485  -1.993 0.018 0.007 0.017 

f14 -1 -1.520 1.501 -0.520 1.742  -0.999 0.007 0.001 0.007 

f15 0 -0.411 1.046 -0.411 1.195  0.008 0.004 0.008 0.004 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE 14. Item detection and false alarm parameters. Conditions with simulated disjunctive 

items and independent skills, contrasting conjunctive versus disjunctive item condensation rules 

  Condition 5. Uniform distributed ŭj  Condition 17. Beta-Bernoulli distributed ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 5.662 0.390 0.662 0.820  3.176 2.602 -1.824 5.879 

d2 4 4.929 0.222 0.929 1.081  3.669 0.544 -0.331 0.643 

d3 3 4.403 0.109 1.403 2.074  3.184 0.780 0.184 0.799 

d4 2 3.679 0.079 1.679 2.896  2.105 0.335 0.105 0.339 

d5 1 1.855 0.087 0.855 0.817  1.749 0.566 1.749 3.615 

d6 1 1.602 0.220 0.602 0.579  1.800 0.199 0.800 0.835 

d7 2 2.635 0.302 0.635 0.699  2.508 1.133 0.508 1.368 

d8 3 3.746 0.221 0.746 0.774  3.159 0.754 0.159 0.764 

d9 4 5.174 0.114 1.174 1.490  3.134 0.682 -0.866 1.418 

d10 5 6.376 0.446 1.376 2.330  5.437 1.330 0.437 1.494 

d11 1 1.730 0.238 0.730 0.765  1.754 0.129 0.754 0.695 

d12 5 5.940 0.317 0.940 1.195  3.475 1.740 -1.525 4.032 

d13 4 5.048 0.228 1.048 1.323  4.036 1.403 0.036 1.376 

d14 2 2.943 0.196 0.943 1.081  2.720 1.166 0.720 1.660 

d15 3 4.345 0.123 1.345 1.930  3.624 1.382 0.624 1.743 

f1 -4 -4.237 0.230 -0.237 0.281  -3.383 0.679 0.617 1.046 

f2 -3 -3.634 0.126 -0.634 0.526  -3.469 0.529 -0.469 0.738 

f3 -2 -2.957 0.103 -0.957 1.017  -1.999 0.346 0.001 0.339 

f4 -1 -1.836 0.043 -0.836 0.740  -1.271 0.452 -0.271 0.516 

f5 0 -0.031 0.970 -0.031 0.952  -0.271 0.324 -0.271 0.391 

f6 -4 -3.401 0.550 0.599 0.898  -2.659 1.747 1.341 3.510 

f7 -3 -3.252 0.725 -0.252 0.774  -2.355 3.738 0.645 4.080 

f8 -2 -2.152 0.312 -0.152 0.329  -1.785 2.243 0.215 2.244 

f9 -1 -1.116 0.163 -0.116 0.173  -0.381 0.259 0.619 0.637 

f10 0 0.049 0.085 0.049 0.086  -0.518 1.120 -0.518 1.367 

f11 -4 -3.463 0.916 0.537 1.186  -2.573 1.279 1.427 3.290 

f12 -3 -3.143 0.486 -0.143 0.497  -1.125 2.364 1.875 5.835 

f13 -2 -2.250 0.435 -0.250 0.489  -1.930 2.065 0.070 2.029 

f14 -1 -0.884 1.324 0.116 1.311  -1.616 1.443 -0.616 1.793 

f15 0 0.108 0.280 0.108 0.286  -0.768 1.305 -0.768 1.869 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 

 

N(0, 1000) for the item parameters fj and dj are included in the model; contrary to the results 

obtained in Table 7 ïin which the item parameters fj and dj had prior distributions N(0, 10)ï, the 

non-informative priors had a negative impact in the condensation rule identification and model 

parameter recovery. The average proportion of correctly identified condensation rules was 0.945 
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in condition 25, 0.186 in condition 26, and 0.668 in condition 27. The results of condition 25 are 

deceiving without the information about the item parameter recovery, which was inconsistent 

with the results presented in the previous sections. Thus, when non-informative priors are 

included in the model, ŭj tends to estimate values linked to conjunctive models regardless of the 

data were generated from a compensatory model. Additional results on the parameter recovery 

for the item parameters and latent class sizes for these three conditions are included the 

Appendix C.  

TABLE 15. Proportion of correctly identified item condensation rules. Conditions with non-informative 

priors 

Data Conjunctive Compensatory Mixed conjunctive 

Comparison with vs Compensatory vs Conjunctive and compensatory 

Skills Independent Independent Independent 

Condition 25 26 27 

Parameter Prop. Prop. Prop. 

ŭ5 0.90 0.05 1.00
*
 

ŭ6 0.85 0.05 0.00 

ŭ7 0.85 0.15 1.00
*
 

ŭ8 0.85 0.20 0.05 

ŭ9 1.00 0.15 0.95
*
 

ŭ10 0.95 0.75 0.75 

ŭ11 1.00 0.00 1.00
*
 

ŭ12 1.00 0.30 0.6 

ŭ13 1.00 0.15 1.00
*
 

ŭ14 1.00 0.10 0.00 

ŭ15 1.00 0.15 1.00
*
 

Mean 0.945 0.186 0.668 

Note: Prop. is the proportion of correctly identified item condensation rules; 40,000 iterations and 20,000 burn-ins were used 

with OpenBUGS and R. Conditions 25, 26, and 27 are equivalent to conditions 2, 7, and 11 in Table 7, respectively. In mixed 

condensation rule conditions conditions, the asterisk mark ó*ô denotes that the items are conjunctive and the lack of the asterisk 

indicates the items are either disjunctive or compensatory. 

 

 These results show the importance of the prior distribution in the model estimation. 

Informative prior distributions, obtained either from definitions of the domain of the random 

variables in the model or additional information based on prior data, produced an effective 
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identification of the condensation rule and a good recovery of the model parameters. Non-

informative priors generated aberrant results for the model parameter estimates, including the 

values for ŭj used for the condensation rule identification. 

 

5.2.2 Item parameter estimates conditional on ŭj 

Results for conditions 1 to 24 indicated that some items (e.g., items six and eleven) were 

prone to be incorrectly identified with their corresponding condensation rule regardless of the 

distribution defined for ŭj, the type of model used to generate the data, the relationship among 

skills, or the contrasted models in the condensation rule identification. Furthermore, it was 

observed that item parameters tended to show a better recovery in conditions with ŭj defined as 

Beta-Bernoulli distributed. Thus, additional plots were generated for two items within the same 

data set, one item correctly identified with its condensation rule while the other item was 

incorrectly identified, in order to further recognize the impact of the Beta-Bernoulli distributed 

variable ŭj in the estimation of the item parameters.  

Figures 1 and 2 include trace and density plots for items five and eleven, respectively. 

Both items belong to the same data set generated from a conjunctive model with independent 

skills; hence, ŭj has to be equal to one in both cases in order to identify the conjunctive 

relationship among the skills. Both figures include five trace plots and five density plots that 

correspond to the iterative estimation of ŭj, f1, d1, f2, and d2; 40,000 iterations were done and 

20,000 burn-ins were discarded before creating the trace and density plots. A vertical line is 

included in the density plots to indicate the population parameter value for the false alarm and 

detection parameters. 
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In the case of Figure 1 related to item five, ŭj consistently took a value of one throughout 

the iterations, indicating that the item was correctly identified after the burn-in. The trace plots of 

f1 and d1, the correct item parameters of the conjunctive model, display a pattern linked to a 

correct estimation rather than aberrant outcomes. The density plots of f1 and d1 show that the 

estimated values tend to concentrated in the neighborhood of the population parameter values. 

Conversely, the trace plots of f2 and d2 show an erratic pattern, resulting in bimodal density plots 

with estimated values not close to their real parameter values. 

Figure 2 corresponds to item eleven. The trace plot of ŭj shows several shifts from zero to 

one and vice versa; as a result, the histogram of ŭj reveals that this variable tended to take values 

of zero in a higher frequency. This incorrect identification of the condensation rule has an impact 

in the item parameters, as shown in the subsequent plots presented in Figure 2. The trace plots of 

the correct and incorrect item parameters f1, d1, f2, and d2 show an irregular pattern that depends 

on the value taken by ŭj. The density plots for both false alarm parameters and for detection 

parameter d1 seem to be bimodal, and the four density plots show estimated values close to their 

respective real parameter value. 
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Figure 1. Trace plots and density plots for an item correctly identified with its 

condensation rule. 
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Figure 2. Trace plots and density plots for an item incorrectly identified with its 

condensation rule. 

 

The analyses of both figures indicate that more effective estimation of the parameter 

values for the correct f and d can be based on their posterior means conditional on the value 
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taken by ŭj. Figure 3 shows again the trace plot for the f1 and d1 parameters corresponding to 

item eleven, as well as density plots with values conditional on ŭj being equal to one. Compared 

to the equivalent density plots in Figure 2, the conditional density plots in Figure 3 show more 

exact estimate values in the vicinity of the population parameter value. Appendix C contains 

additional tables on the item parameter recovery conditional on values of ŭj linked to the correct 

underlying condensation rule for conditions 13 to 24; as shown in Appendix C, item parameter 

recovery for fj and dj improves for the multidimensional items when the additional information of 

ŭj is taken into account.  

 

Figure 3. Trace plots and conditional density plots for item 11. 
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5.3 Results of studies with empirical data  

5.3.1 Fraction subtraction data 

The fraction subtraction data set was analyzed by contrasting models with conjunctive 

versus disjunctive condensation rules, as well as models with conjunctive versus compensatory 

condensation rules. Both analyses were performed twice to analyze the performance of the latent 

variable ŭj when the skills are assumed to be independent or conditionally independent given a 

higher order continuous variable ɗ. Results corresponding to models with Uniform distributed ŭj 

are included in this section; those for models with Beta-Bernoulli distributed ŭj can be found in 

Appendix C.  

Table 16 presents the posterior mean estimates of the latent variable ŭj. Results are 

summarized for comparing the four models among different types of condensation rules 

assuming independence or correlation among the skills. Posterior means higher than 0.5 indicate 

the variable ŭj identifies an item with a conjunctive condensation rule, otherwise ŭj identifies 

items with disjunctive or compensatory condensation rule. In the case of the models comparing 

between conjunctive and disjunctive condensation rules, all items are identified as being 

conjunctive when skills are assumed to be independent; however, items 5, 8, 9, and 11 are 

classified as disjunctive when skills are modeled as part of a higher order model. 

On the other side, when models in which conjunctive and compensatory condensation 

rules are contrasted, items 5, 9, 11, and 13 are recognized as compensatory in the analysis with 

independent skills. In the case of a higher order model, most items are identified as 

compensatory.  

While the four analyses in Table 16 provide results that, to some extent, identify different 

condensation rules for the fraction subtraction data set, three patterns merit specific attention: 
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first, models with independent skills tend to identify more items with conjunctive condensation 

rules as compared to models with higher order latent variables; second, three out of the four 

models detect more conjunctive items than either disjunctive or compensatory items; and, third, 

items 2, 4, and 14 are consistently categorized as conjunctive items in the four analyses. 

Table 17 presents the results concerning the latent class size estimates for the different 

models analyzed using the fraction subtraction data set. Models assuming independence among 

skills show similar latent class sizes with very small variance for the five skills measured by the 

test. The values for the latent class sizes in the models with independent skills described in Table 

17 are consistent with those reported in DeCarlo (2012) using a conjunctive model. Higher order 

models consistently showed latent class sizes smaller than those reported in the models with 

independent skills.  

TABLE 16. Posterior mean of ŭj for the fraction subtraction data. 

 

Conjunctive versus disjunctive 

 

Conjunctive versus compensatory 

 

Independent 

 

Higher order 

 

Independent 

 

Higher order 

 

PM PSD 

 

PM PSD 

 

PM PSD 

 

PM PSD 

ŭ2 0.727 0.156 
 

0.878 0.117 
 

0.792 0.167 
 

0.802 0.178 

ŭ4 0.792 0.144 
 

0.603 0.106 
 

0.596 0.082 
 

0.529 0.089 

ŭ5 0.636 0.207 
 

0.333 0.183 
 

0.494 0.254 
 

0.381 0.237 

ŭ6 0.842 0.132 
 

0.810 0.134 
 

0.841 0.141 
 

0.367 0.240 

ŭ7 0.851 0.112 
 

0.810 0.119 
 

0.872 0.099 
 

0.480 0.196 

ŭ8 0.799 0.130 
 

0.408 0.144 
 

0.623 0.243 
 

0.133 0.111 

ŭ9 0.833 0.121 
 

0.408 0.116 
 

0.257 0.161 
 

0.192 0.136 

ŭ10 0.809 0.137 
 

0.570 0.1095 
 

0.393 0.177 
 

0.453 0.180 

ŭ11 0.804 0.128 
 

0.374 0.123 
 

0.274 0.175 
 

0.203 0.149 

ŭ12 0.857 0.113 
 

0.818 0.1249 
 

0.784 0.130 
 

0.184 0.135 

ŭ13 0.779 0.148 
 

0.541 0.1216 
 

0.398 0.183 
 

0.217 0.179 

ŭ14 0.863 0.104 
 

0.796 0.1301 
 

0.840 0.112 
 

0.631 0.142 

ŭ15 0.886 0.097 
 

0.854 0.1064 
 

0.894 0.091 
 

0.187 0.147 

Note: PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 20,000 burn-ins 

were used with OpenBUGS. Bold posterior means correspond to items identified as having a conjunctive 

condensation rule. 
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The higher order parameter estimates ak and bk for the fraction subtraction data are 

reported in Table 18. As presented in Table 18, the five skills measured by the fraction 

subtraction test also showed a high correlation among themselves based on their estimated higher 

order parameters. Combining results from both Tables 17 and 18 shows that skills with show the 

highest loading ak on their higher order latent variable ɗ (i.e., Ŭ2, Ŭ3, and Ŭ4) also had the highest 

reduction in their latent class size estimate compared to equivalent estimates in models with 

independent skills. 

TABLE 17. Latent class size estimates for the fraction subtraction data. 

 
Conjunctive versus disjunctive 

 
Conjunctive versus compensatory 

 
Independent 

 
Higher order 

 
Independent 

 
Higher order 

 
PM PSD 

 
PM PSD 

 
PM PSD 

 
PM PSD 

P(Ŭ1) 0.783 0.021  0.727 0.024  0.739 0.025  0.623 0.019 

P(Ŭ2) 0.957 0.018  0.679 0.031  0.971 0.016  0.744 0.019 

P(Ŭ3) 0.929 0.019  0.622 0.035  0.836 0.043  0.760 0.018 

P(Ŭ4) 0.661 0.027  0.574 0.034  0.764 0.038  0.479 0.021 

P(Ŭ5) 0.776 0.032  0.475 0.035  0.754 0.034  0.568 0.096 

Note: PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 20,000 burn-ins 

were used with OpenBUGS. 

 

 The five slope parameters ak show very similar values in both the models comparing 

between conjunctive and disjunctive condensation rules and the models contrasting evaluating 

between conjunctive and compensatory condensation rules.  

The estimates of the intercept parameters bk are different between the two models 

presented in Table 18; nevertheless, each set of intercept parameters bk is consistent with its own 

latent class size estimate reported in Table 17. For instance, b5 presents a negative estimate in the 

model contrasting conjunctive and disjunctive condensation rules, whose respective latent class 

Ŭ5 reports a class smaller than 0.5 in Table 17; a similar pattern is observed for b4 in the model 

that compares conjunctive and compensatory condensation rules, whose latent class size was 

equal to 0.479 in Table 17. 
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Results for the false alarm and detection estimates reported in the next tables correspond 

to models with a Uniform distribution for the ŭj variables, assuming independence among their 

latent skills. Additional analyses with Beta-Bernoulli distributed variables ŭj and using the 

higher-order model are included in Appendix C. 

TABLE 18. Higher order parameter estimates for the fraction subtraction data 

 
Conjunctive versus disjunctive 

 
Conjunctive versus compensatory 

 
PM PSD 

 
PM PSD 

a1 2.584 0.447  2.787 0.402 

a2 3.464 0.510  3.272 0.428 

a3 3.157 0.523  3.199 0.438 

a4 3.116 0.558  3.424 0.577 

a5 2.265 0.503  1.343 0.717 

b1 1.874 0.366  0.929 0.216 

b2 1.753 0.381  2.397 0.357 

b3 1.047 0.400  2.558 0.375 

b4 0.554 0.357  -0.396 0.257 

b5 -0.303 0.311  0.249 0.518 

Note: PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 20,000 burn-ins 

were used with OpenBUGS. 

 

Table 19 presents the results of the item parameter estimates for conditions in which 

conjunctive and disjunctive models were contrasted assuming independence among the latent 

skills. Consistent with the CDM reparameterization paradigm, all false alarm rate estimates 

showed negative values, indicating low guessing for the items in this test. The item parameter 

estimates produced by this model are also consistent with those reported in DeCarlo (2012). 

However, some item parameter estimates reported in Table 19 did not presented low variance, 

suggesting there may be some issues in the item parameter estimation.  

From the fifteen items in the fraction subtraction data, only item 5 presented false alarm 

and detection estimates that indicate the item is either being answered correctly because of 

guessing   (g5 = 0.230) or incorrectly due to slipping (s5 = 0.146).  



 

89 
 

Finally, Table 20 includes the results for the item parameter estimates when models with 

conjunctive and compensatory condensation rules are compared.  Similar to the results in Table 

16, all false alarm rate estimates were negative and all detection estimates positive. 

TABLE 19. Item detection and false alarm estimates for the fraction subtraction data. 

ICR Parameter PM PSD  Parameter PM PSD 

--- d1 5.650 0.988  f1 -4.646 0.988 

Conjunctive d2 4.802 1.188  f2 -2.869 1.899 

--- d3 4.801 0.451  f3 -1.525 0.363 

Conjunctive d4 4.998 1.150  f4 -2.642 1.404 

Conjunctive d5 2.975 1.211  f5 -1.207 1.706 

Conjunctive d6 5.515 1.127  f6 -4.101 1.175 

Conjunctive d7 5.996 0.981  f7 -3.242 0.952 

Conjunctive d8 5.181 1.007  f8 -2.464 1.502 

Conjunctive d9 5.955 1.060  f9 -2.625 1.008 

Conjunctive d10 5.328 1.162  f10 -2.137 1.319 

Conjunctive d11 5.225 1.003  f11 -2.814 1.382 

Conjunctive d12 6.225 1.055  f12 -4.053 1.009 

Conjunctive d13 4.717 1.118  f13 -2.800 1.186 

Conjunctive d14 5.999 0.912  f14 -4.459 1.011 

Conjunctive d15 6.449 0.954  f15 -4.779 1.035 

Note: The table includes false alarm and detection item parameter estimates for a model with independent skills that 

compares item response functions with conjunctive versus disjunctive condensation rules. ICR is the identified 

condensation rule, PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 

20,000 burn-ins were used with OpenBUGS. 
 

Items identified as conjunctive in Table 20 tended to show detection and false alarm rate 

estimates within the range of values suggested as suitable in DeCarlo (2011). Many of the items 

detected as being compensatory presented extremely small false alarm estimates with high 

variance, but acceptable detection estimates. 

5.3.2 Examination for the certificate of proficiency in English data 

The Examination for the Certification of Proficiency in English (ECPE) was analyzed 

using four models considering the relationship among the latent skills ŭj (i.e., independent or as 

part of a higher order model) and the contrasting condensation rules (conjunctive versus 

disjunctive condensation rules, and conjunctive versus compensatory condensation rules). As 

presented in the case of the fraction subtraction data, results using Uniform distributed variables 
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ŭj are reported here; results for models with Beta-Bernoulli distributed variables ŭj are included 

in Appendix C. 

TABLE 20. Item detection and false alarm estimates for the fraction subtraction data. 

ICR Parameter PM PSD  Parameter PM PSD 

--- d1 3.754 0.421  f1 -2.628 0.403 

Conjunctive d2 3.633 0.750  f2 -2.265 1.172 

--- d3 3.991 0.366  f3 -0.767 0.252 

Conjunctive d4 8.215 1.481  f4 -0.963 1.410 

Compensatory d5-1 2.646 1.426  f5 -0.269 1.816 

 d5-3 1.233 1.031     

Conjunctive d6 4.945 0.829  f6 -4.390 1.288 

Conjunctive d7 5.480 0.636  f7 -3.581 1.046 

Conjunctive d8 4.162 1.456  f8 -2.319 2.001 

Compensatory d9-1 5.653 1.179  f9 -2.960 1.251 

 d9-3 1.336 0.771     

Compensatory d10-1 6.032 1.508  f10 -6.198 3.150 

 d10-3 0.449 0.676     

 d10-4 3.959 1.415     

 d10-5 1.781 0.889     

Compensatory d11-1 4.781 1.178  f11 -2.751 1.330 

 d11-3 1.368 0.741     

Conjunctive d12 5.768 0.845  f12 -4.990 1.425 

Compensatory d13-1 6.059 1.464  f13 -6.437 2.616 

 d13-2 1.172 0.967     

 d13-3 0.991 0.901     

 d13-4 2.684 1.141     

Conjunctive d14 5.460 0.706  f14 -5.342 1.507 

Conjunctive d15 6.119 0.752  f15 -5.242 1.159 

Note: The table includes false alarm and detection item parameter estimates for a model with independent skills that 

compares item response functions with conjunctive versus compensatory condensation rules. ICR is the identified 

condensation rule, PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 

20,000 burn-ins were used with OpenBUGS. 

 

Table 21 includes the posterior mean estimates of the variables ŭj for the 

multidimensional items included in the ECPE test. Equivalent to the case of the fraction 

subtraction data, posterior means higher than 0.5 indicate the variable ŭj detects an item with a 

conjunctive condensation rule, otherwise an item with disjunctive or compensatory condensation 

rules is identified. Four items were consistently identified as conjunctive (i.e., items 3, 11, 16, 

and 20) in the four analyses presented in Table 21. 



 

91 
 

When models with conjunctive and disjunctive condensation rules are compared, the 

model with independent skills identifies the most items as having a conjunctive condensation 

rule among their skills, with the exception of items 12, 17, and 21 that are categorized as 

disjunctive. When a higher order model is used to identify the underlying item condensation 

rules, only items 17 and 21 are detected as disjunctive items. 

In the analyses comparing between conjunctive and compensatory condensation rules, all 

multidimensional items are identified as being conjunctive in the model with independent skills. 

Only items 1, 7, and 21 are detected as compensatory in the case of the higher order model.   

TABLE 21. Posterior mean of ŭj for the ECPE data. 

 
Conjunctive versus disjunctive 

 
Conjunctive versus compensatory 

 
Independent 

 
Higher order 

 
Independent 

 
Higher order 

 
PM PSD 

 
PM PSD 

 
PM PSD 

 
PM PSD 

ŭ1 0.621 0.186 
 

0.609 0.225 
 

0.623 0.199 
 

0.410 0.339 

ŭ3 0.715 0.161 
 

0.681 0.101 
 

0.543 0.333 
 

0.599 0.303 

ŭ7 0.546 0.149 
 

0.503 0.115 
 

0.578 0.254 
 

0.397 0.170 

ŭ11 0.636 0.139 
 

0.587 0.142 
 

0.597 0.304 
 

0.526 0.189 

ŭ12 0.461 0.130 
 

0.577 0.149 
 

0.631 0.304 
 

0.524 0.302 

ŭ16 0.577 0.163 
 

0.507 0.184 
 

0.626 0.193 
 

0.549 0.229 

ŭ17 0.464 0.173 
 

0.374 0.204 
 

0.570 0.207 
 

0.614 0.174 

ŭ20 0.609 0.125 
 

0.612 0.166 
 

0.564 0.231 
 

0.561 0.281 

ŭ21 0.499 0.166 
 

0.458 0.201 
 

0.504 0.284 
 

0.489 0.285 

Note: PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 20,000 burn-ins 

were used with OpenBUGS. Bold posterior means correspond to items identified as having a conjunctive 

condensation rule. 

 

As shown in Table 22, estimates for the latent class sizes show different values for first 

skill Ŭ1  among the independent and higher order models comparing conjunctive and disjunctive 

condensation rules, on one side, and models contrasting conjunctive and compensatory 

condensation rules, on the other. Yet consistency in the results is observed, since the first skill is 

repeatedly estimated as the one with the smallest latent class size, and the second and third skills 

show very similar latent class sizes across the four models. Analogous to the results observed for 
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the fraction subtraction data, higher order models show latent class sizes smaller than those 

estimated in the models with independent skills. 

TABLE 22. Latent class size estimates for the ECPE data. 

 
Conjunctive versus disjunctive 

 
Conjunctive versus compensatory 

 
Independent 

 
Higher order 

 
Independent 

 
Higher order 

 
PM PSD 

 
PM PSD 

 
PM PSD 

 
PM PSD 

P(Ŭ1) 0.400 0.021  0.391 0.018  0.603 0.018  0.511 0.014 

P(Ŭ2) 0.611 0.076  0.545 0.032  0.715 0.059  0.569 0.025 

P(Ŭ3) 0.695 0.016  0.662 0.014  0.692 0.015  0.635 0.012 

Note: PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 20,000 burn-ins 

were used with OpenBUGS. 

 

Table 23 includes the estimates of the higher order skill parameters ak and bk for models 

comparing between conjunctive and disjunctive condensation rules, and models contrasting 

conjunctive and compensatory condensation rules. In both analyses, the three skills measured by 

the test are highly correlated based on their estimates of their respective loadings ak with the 

higher order variable ɗ.  In the case of the intercept parameters, b1 shows particularly different 

estimates in the two models presented in Table 23. On the other side, b2 and b3 show more 

correspondence in both models.  

Consistent with the approach used in the fraction subtraction data, results for the ECPE 

item parameter estimates reported in the next tables correspond to models with a Uniform 

distribution for the ŭj variables assuming independence among their latent skills. Additional 

analyses can be found in the section corresponding to Appendix C.  

Table 24 summarizes the results of the item parameter estimates for conditions 

comparing conjunctive and disjunctive models. As show in Table 24, detection parameter 

estimates are within the range of values observed by DeCarlo (2011) using empirical data. The 

detection estimates show in general small variance with exception of those items linked to more 

than one latent skill (i.e., the items that were tested in terms of their underlying condensation 
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rule). Results for the false alarm rate estimates show that many items (e.g., items 1, 2, 5, and so 

on) present values substantially above zero, indicating that many of them are being responded to 

by guessing rather than through mastery of the latent skills. 

TABLE 23. Higher order parameter estimates for the ECPE data 

 
Conjunctive versus disjunctive 

 
Conjunctive versus compensatory 

 
PM PSD 

 
PM PSD 

a1 2.832 0.384  3.759 0.454 

a2 3.795 0.487  3.642 0.468 

a3 3.404 0.423  4.088 0.464 

b1 -0.939 0.201  0.093 0.173 

b2 0.470 0.355  0.698 0.283 

b3 1.612 0.234  1.537 0.201 

Note: PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 20,000 burn-ins 

were used with OpenBUGS. 

 

Table 25 describes the item parameter estimates for models comparing between 

conjunctive and compensatory condensation rules. Similar to the results reported in Table 24, 

several ECPE items present positive values in their false alarm rate fj estimate, confirming the 

prevalence of guessing in answering the test. Once again, detection parameter estimates are 

located within the range of values proposed for the reparametrized models (DeCarlo, 2012). 

Some items show high variance in their detection and false alarm rate estimates. 

 

5.3.3 Model fit comparison 

Independent and higher order reparameterized DINA models were compared in terms of 

model fit with respect to models in which some items were specified as conjunctive and others as 

compensatory; the results from Tables 16 and 21 for the fraction subtraction data and the ECPE 

data, respectively, were used to define the conjunctive and compensatory items in the mixed 

models. Additionally, a unidimensional two-parameter logistic item response theory (2-PL IRT) 
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model was also estimated in both data sets in order to compare its fit with respect to the 

reparameterized models. 

TABLE 24. Item detection and false alarm estimates for the ECPE data. 

ICR Parameter PM PSD  Parameter PM PSD 

Conjunctive d1 4.142 1.602  f1 0.431 1.178 

--- d2 1.533 0.248  f2 0.840 0.152 

Conjunctive d3 2.030 0.836  f3 -0.022 0.592 

--- d4 1.656 0.109  f4 -0.174 0.081 

--- d5 2.117 0.165  f5 0.986 0.088 

--- d6 1.620 0.134  f6 0.844 0.085 

Conjunctive d7 4.146 1.320  f7 0.086 1.190 

--- d8 2.543 0.893  f8 1.260 0.172 

--- d9 1.171 0.104  f9 0.098 0.079 

--- d10 2.143 0.164  f10 0.003 0.063 

Conjunctive d11 3.030 1.012  f11 0.099 0.765 

Disjunctive d12 2.944 1.105  f12 0.554 1.081 

--- d13 1.567 0.157  f13 0.649 0.058 

--- d14 1.258 0.121  f14 0.186 0.057 

--- d15 2.144 0.159  f15 0.921 0.088 

Conjunctive d16 3.204 1.147  f16 -0.036 0.815 

Disjunctive d17 2.291 0.958  f17 2.929 1.192 

--- d18 1.451 0.128  f18 0.853 0.085 

--- d19 1.865 0.113  f19 -0.268 0.086 

Conjunctive d20 3.272 0.810  f20 -3.414 1.099 

Disjunctive d21 2.993 1.209  f21 0.460 0.807 

--- d22 2.252 0.124  f22 -0.952 0.107 

--- d23 1.637 0.260  f23 0.665 0.153 

--- d24 1.348 0.194  f24 -0.683 0.195 

--- d25 1.154 0.115  f25 0.069 0.055 

--- d26 1.124 0.105  f26 0.128 0.080 

--- d27 1.665 0.113  f27 -0.898 0.068 

--- d28 1.794 0.127  f28 0.488 0.084 

Note: The table includes false alarm and detection item parameter estimates for a model with independent skills that 

compares item response functions with conjunctive versus disjunctive condensation rules. ICR is the identified 

condensation rule, PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 

20,000 burn-ins were used with OpenBUGS. 
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TABLE 25. Item detection and false alarm estimates for the ECPE data. 

ICR Parameter PM PSD  Parameter PM PSD 

Conjunctive d1 2.110 1.223  f1 -0.682 1.181 

--- d2 1.532 0.211  f2 0.652 0.160 

Conjunctive d3 1.665 1.357  f3 -0.500 1.420 

--- d4 1.651 0.112  f4 -0.165 0.083 

--- d5 2.119 0.165  f5 0.991 0.088 

--- d6 1.671 0.138  f6 0.826 0.085 

Conjunctive d7 2.270 1.282  f7 -0.484 1.205 

--- d8 2.093 0.330  f8 1.074 0.183 

--- d9 1.230 0.103  f9 0.065 0.076 

--- d10 1.834 0.121  f10 -0.334 0.079 

Conjunctive d11 2.096 1.318  f11 0.567 1.019 

Conjunctive d12 2.127 1.364  f12 -1.294 1.198 

--- d13 1.366 0.126  f13 0.414 0.074 

--- d14 1.185 0.108  f14 -0.042 0.071 

--- d15 2.117 0.163  f15 0.937 0.086 

Conjunctive d16 1.873 1.043  f16 -0.954 0.893 

Conjunctive d17 1.766 1.106  f17 3.261 1.556 

--- d18 1.419 0.127  f18 0.873 0.084 

--- d19 1.906 0.113  f19 -0.282 0.085 

Conjunctive d20 1.888 1.242  f20 -0.978 2.303 

Conjunctive d21 1.742 1.500  f21 -0.287 1.177 

--- d22 2.276 0.121  f22 -0.963 0.100 

--- d23 1.534 0.210  f23 0.516 0.171 

--- d24 1.454 0.208  f24 -0.912 0.217 

--- d25 0.969 0.105  f25 -0.074 0.070 

--- d26 1.120 0.103  f26 0.133 0.077 

--- d27 1.656 0.124  f27 -1.267 0.099 

--- d28 1.808 0.125  f28 0.490 0.082 

Note: The table includes false alarm and detection item parameter estimates for a model with independent skills that 

compares item response functions with conjunctive versus compensatory condensation rules. ICR is the identified 

condensation rule, PM is the posterior mean, and PSD is the posterior standard deviation; 40,000 iterations and 

20,000 burn-ins were used with OpenBUGS. 

 

All the models were using Latent Gold V.5.1 (Vermunt, & Magidson, 2005) using 

posterior mode estimation in a latent class regression framework. Bayes constants were set equal 

to unity in order to obtain comparable maximum likelihood estimates among models. Table 26 

summarizes the model fit measures in terms of number of parameters estimated, log-likelihood, 

Akaike information criterion (AIC), and Bayesian information criterion (BIC).  

In the case of the fraction subtraction data set, a higher order model including conjunctive 

and additive items showed the best fit in terms of log-likelihood and AIC, and the 2-PL IRT 
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model presented the best fit in terms of BIC. The reparametrized DINA model with independent 

skills showed the highest values for AIC and BIC among the five models estimated. The 2-PL 

model shows the best fit in the case of the ECPE data set, followed by the higher order model 

with reparametrized conjunctive and compensatory items. 

TABLE 26. Model fit with empirical data 

Skills Model Number of parameters LL  AIC  BIC 

Fraction subtraction data 

Independent R-DINA 30 -3890.61 7841.211 7969.735 

Independent R-DINA / Additive 39 -3799.88 7677.769 7844.85 

Higher Order R-DINA 40 -3460.35 7000.695 7172.06 

Higher Order R-DINA / Additive 61 -3412.37 6946.732 7208.064 

 

2-PL IRT 30 -3451.70 6963.41 7091.93 

ECPE data 

Independent DINA 56 -43360.4 86832.88 87167.76 

Higher Order DINA 62 -42851.3 85826.62 86197.39 

Higher Order R-DINA / Additive 65 -42823.2 85776.49 86165.19 

 2-PL IRT 56 -42546.7 85205.33 85540.21 

Note: LL stands for log-likelihood, AIC for Akaike information criterion, and BIC for Bayesian information 

criterion. In the case of the ECPE data, the results for the unidimensional 2-parameter logistic item response theory 

model (2-PL IRT) were taken from Templin and Bradshaw (2014). R-DINA refers to the reparametrized DINA 

model (DeCarlo, 2011) with conjunctive condensation rules; Additive refers to the Additive model introduced in 

Chapter 3.  
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  Chapter VI. Discussion and conclusions 

6.1 Summary 

In summary, results from the simulation study showed that it is possible to correctly 

identify the underlying item condensation rules by extending the methodology proposed by 

DeCarlo (2011, 2012) for Q-Matrix exploration. In this regard, correct condensation rule 

identification consistently was observed in most of the items in the conditions explored in this 

study. In sum, the study here proposed enhances the research within psychometrics aimed to 

develop quantitative methodologies to analyze the cognitive processes linked to performance in 

standardized tests.  

A detailed analysis of the results draw attention to certain factors have to be taken into 

account to enhance the condensation rule identification and the recovery of model parameters: 

distribution assumed for the latent variable ŭj in the model, condensation rule of the model used 

to produce the data, as well as the independence or correlation among the categorical skills 

measured by the test. 

Moreover, it was found that additional test features, which were not fully addressed as 

factors in the study, also had an impact in the condensation rule identification: number of skills 

linked to each item, and values for the item parameters (i.e., false alarm and detection 

parameters) used to generate the data. In terms of number of skills, the results seem to indicate 

that better condensation rule identification is achieved for items measuring more skills. 

It was also found that items generated using low false alarm and low detection parameters 

values (i.e., low guess and high slip parameters values, respectively) tended to be erroneously 

identified with a different condensation rule; items with such psychometric parameter values 
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would undermine the model capacity to correctly identify the mastery of the skills measured by 

the item in real life testing situations (de la Torre, 2007; Huo & de la Torre, 2014). Further 

research can address the impact of both factors in the item condensation rule identification. 

In terms of the condensation rule identification, the best approach is to use a model with 

Uniform distributed latent variables ŭj, since this methodology tended to perform better across 

conditions compared to latent variables ŭj with a Beta-Bernoulli conjugate distribution. In 

general, data sets produced using conjunctive and disjunctive types of condensation rules were 

better identified using a model in which ŭj was allowed to randomly vary between zero and one. 

Correct identification of the item condensation rule was more problematic when the data was 

generated from a compensatory model. No differences were found in the proportion of correctly 

identified condensation rules between models with independent skills and higher order models. 

In addition, it was found that the use of non-informative priors in the estimation of the 

model parameters resulted in less accurate identification of the condensation rule. In this regard, 

one of the best practices in Bayesian statistics is the inclusion of informative prior distributions 

in order to reach good parameter recovery; the presence of implausible prior distributions in 

some or all model parameters can lead to aberrant results, as observed in this study. Further 

research should focus on the impact of additional non-informative prior distributions (e.g., non-

informative prior distributions for the latent class size hyperparameters ak and bk) in the 

condensation rule identification and model parameter recovery. 

While the main objective of the study was the condensation rule identification, additional 

analysis were focused on the recovery of model parameters (i.e., latent class sizes, item false 

alarm parameters, and item detection parameters). Results of the simulation study showed that 

parameter recovery was also impacted by factors considered in the study: the estimation of the 
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latent variable ŭj as being dichotomous or allowed to vary within a given interval, the generation 

of data with independent or correlated categorical skills, and the item condensation rule used to 

produce the data. 

The use of models with Uniform distributed variables ŭj also results effective in 

estimating latent class sizes for models with independent skills and higher order models. In fact, 

parameter recovery ï which was measured using averages of estimate posterior mean, estimate 

bias, and estimate mean squared error ï was very good in both types of models. In contrast, the 

use of a Beta-Bernoulli distributed ŭj for the estimation of latent class sizes has some limitations, 

especially when the data is generated from a model with disjunctive condensation rules. 

Nevertheless, mixed results were encountered in the estimation of the item parameters. 

The framework with Beta-Bernoulli distributed ŭj provided better estimates of the item detection 

parameters for data generated with independent skills, especially when those estimated values 

are conditional on ŭj taking a value linked to the correct underlying condensation rule. The 

approach with Uniform distributed ŭj showed a good performance at estimating the false alarm 

parameter in models with disjunctive and compensatory condensation rules. 
The results from the studies using empirical data complemented the simulation study with 

two assessments from the real world. The fraction subtraction data and the examination for the 

certificate of proficiency in English data, which measure two very different sets of constructs 

using Q-matrices with a very distinct structure.  

The results for the fraction subtraction data set showed that its items follow either a 

conjunctive or a compensatory condensation rule. These results imply that complex relations 

happen among the skills measured in this test, but the mastery of all skills is not necessary for all 

the items in order to answer them correctly. Linking these results with previous research, de la 
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Torre and Lee (2013) found that specific items from the faction subtraction data set fitted models 

with conjunctive and compensatory condensation rules; their results are consistent with those 

using the item condensation rule identification methodology proposed here. 

In addition, the latent class sizes and item parameter estimates obtained when the model 

compared between conjunctive and disjunctive condensation rules are equivalent to those 

reported in DeCarlo (2012), who estimated model parameters for the fraction subtraction data 

using a conjunctive model. The reparameterization framework proposed in DeCarlo (2011, 2012) 

was extended to models with disjunctive and compensatory models in this study, so no 

comparison with prior results can be made for the items identified as compensatory; still, the 

estimates of the latent class sizes found for the models comparing between conjunctive and 

compensatory condensation rules are also similar to those found by DeCarlo (2012). 

While the ECPE data set is composed by 28 items, only nine of them measure two skills 

and no item in the test measure the three skills according to its Q-matrix (see Table 6). Results of 

the condensation rule identification were not as clear in the case of the ECPE data as they were 

for the fraction subtraction data; the reason for this relies on the model comparing between 

conjunctive and disjunctive condensation, which identified some items with a conjunctive 

condensation, while the analysis comparing between conjunctive and compensatory models 

identified all items as conjunctive. Still , it can be stated that most of the multidimensional items 

in the ECPE data set have a conjunctive condensation rule for their categorical skills. 

The analysis of the ECPE test consistently showed that some items hold high values for 

their false alarm parameter, which detriments their capacity to correctly classify people 

according to their skill mastery. Previous analyses of the ECPE data have been done using the 

log-linear cognitive diagnosis model (Templin & Hoffman, 2013) and the hierarchical diagnostic 
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classification model (HDCM, Templin & Bradshaw, 2014). The item parameter estimates from 

those models, which are based on coefficients for the main effects and interactions among 

categorical skills, cannot be directly compared with the false alarm and detection estimates here 

reported.  

Considering the results here found, the mastery of the three skills measured by the ECPE 

test is highly prevalent in the sample of examinees. In terms of comparison with previous 

research, both Templin and Hoffman (2013) and Templin and Bradshaw (2014) included 

analysis of skill mastery profile for specific examinees, but estimates for the latent class sizes are 

not reported.  

For practitioners, the methodology and results here reported are useful to explore the 

plausibility of cognitive-related hypotheses about the skills measured by a test. For instance, the 

content of each item, the Q-matrix structure of the test, and psychological theory underlying the 

assessment are different components that may drive plausible hypotheses about the interactions 

among the latent skills. As shown in the analyses using empirical data, the methodology can be 

used to detect items with different condensation rules within the same test; once the condensation 

rules are detected for each item in a test, different reparametrized models can be compared in 

terms of their fit. Afterward, the practitioner will be able to confirm or reject the hypotheses 

based on the detected condensation rules and the models that show the best fit to the data. 

6.2 Limitations and future research 

The study here presented extended the reparameterization framework proposed by 

DeCarlo (2011, 2012) to other models for cognitive diagnosis, at the same time it also proposed a 

methodology for the identification of item condensation rules. While this methodology showed 
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to be effective in the identification of condensation rules, important limitations of the study have 

to be addressed in further research. 

It was found that certain factors, which were not considered in the design of the 

simulation study, had an impact in the capacity of the model to correctly identify the underlying 

condensation rules: the number of skills measured by each item and the item parameter values 

used to generate the data. Future research using the methodology here presented has to analyze 

the role of both factors in the identification of condensation rules and estimation of model 

parameters. An additional factor to consider in prospective research is sample size; the results 

here presented were based on data sets all generated with a sample size equal to 1000 

observations, there is not guarantee that similar outcomes would be obtained in bigger or smaller 

sample sizes. 

Furthermore, the results showed that models with Uniform distributed variables ŭj were 

effective in the identification of condensation rules and in the estimation of latent class sizes, but 

not in the estimation of item parameters. Thus, it would be interesting to test if item parameter 

recovery improves using a two-step estimation methodology: first, correct item condensation 

rules are identified for each item in the test using the methodology here described; second, item 

parameters and latent class sizes are estimated for a model in which each item response function 

is expressed based on its identified condensation rule in the first step. An alternative estimation 

process imply the calculation of item parameter estimates conditional on the value taken by ŭj, 

which in this study proved to be an effective approach when ŭj is defined as Beta-Bernoulli 

distributed. 

While the fraction subtraction data set has been widely analyzed before  (see Chiu & 

Douglas, 2013; de la Torre & Douglas, 2004; de la Torre & Lee, 2013; DeCarlo, 2011, 2012; 



 

103 
 

Henson, Templin & Willse, 2009), the ECPE data set is a relatively new source for the analysis 

of models for cognitive diagnosis. Additional research using the ECPE data set should focus on 

calculating and reporting its item and examinee parameter estimates using some of the traditional 

models for cognitive diagnosis (e.g., the DINA model; Junker & Sijtsma, 2001), in determining 

whether the elements in its Q-Matrix are correctly specified or not (DeCarlo, 2011, 2012), or in 

comparing its psychometric properties and model fit using different approaches as it has been 

done in Lee, de la Torre, and Park (2012). 

Furthermore, the framework and results here presented open the doors to new areas of 

research. For instance, similar to the R-DINA model with covariates proposed by Park and Lee 

(2014), the R-DINO and the Additive CDM models can be extended to include models with 

covariates at the skill and item levels. If success is found in the parameterization of these models, 

then they could complement new trends of research using process data in the form of covariates 

and product data (e.g., scores in items and tests) for game-based assessments (Mislevy et al., 

2014). Related to this idea, the reparameterization framework proposed by DeCarlo (2011) could 

also be extended to models for adaptative learning in educational data mining that present a 

response function similar to the one of the DINA model. 

The methodology to compare among models with different condensation rules using an 

underlying latent variable ŭj can be extended, for instance, to compare among models than differ 

in the number of skills measured by the item, as well as in the case of models with different 

hierarchical structures in their skills (e.g., Leighton et al., 2004; Templin & Bradshaw, 2014). 

Further research will prove if the potential applications of this methodology are in fact 

successful. 
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It would be worth to develop an extension of the model proposed here to concurrently 

compare among three or more potential condensation rules (e.g., to simultaneously contrast 

among conjunctive, disjunctive, and compensatory condensation rules). This would be feasible if 

ŭj is defined using a conjugate Dirichlet-Multinomial distribution.  

In a similar manner, new research could extend the ideas presented here within a 

maximum likelihood framework. For instance, it could be interesting to develop an Expectation-

Maximization algorithm to estimate the compound model assuming independence among latent 

skills; it would also be worth to define a methodology to compare among models with different 

condensation rules using the Wald statistic (de la Torre & Lee, 2013). 
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Appendix A. OpenBUGS code 

I. Model to compare conjunctive and disjunctive condensation rules 

{  

#Priors for item  parameters f and d  

  for (j in 1:J) {  

 d1[j] ~ dnorm(0, 0.1)I(0,)    # For DINA 

 f 1[j] ~ dnorm(0, 0.1)         # For DINA 

 d2[j] ~ dnorm(0, 0.1)I(0,)    # For DINO 

 f2[j] ~ dnorm(0, 0.1)        # For DINO 

 u[j] ~ dbeta(1,1)         # Prior bet a 

 z[j] ~  dbern(u[j])   # Z random variable  

 }  

 

#Priors for skill class sizes  

 p1 ~ dbeta(1,1)  p2 ~ dbeta(1,1)  p3 ~ dbeta(1,1)  p4 ~ dbeta(1,1)  

  

# Models to compare  

for (i in 1:N){  

 

x1[i] ~ dbern(p1)  

x2[i] ~ dbern(p2)  

x3[i] ~ dbern(p3)  

x4[i] ~ dbern(p4)  

 

pa[i,1] < -   1/(1+exp((( - f1[1] -  d1[1]*(x1[i]))*z[1]) + (( - f2[1] -  d2[1]*(1 -  

(1 - x1[i])))*(1 - z[1])) ))  

  

pa[i,2] < -   1/(1+exp((( - f1[2] -  d1[2]*(x2[i]))*z[2]) + (( - f2[2] -  d2[2]*(1 -  

(1 - x2[i])))*(1 - z[2])) ))  

  

pa[i,3] < -   1/(1+exp((( - f1[3] -  d1[3]*(x3[i]))*z [3]) + (( - f2[3] -  d2[3]*(1 -  

(1 - x3[i])))*(1 - z[3])) ))  

  

pa[i,4] < -   1/(1+exp((( - f1[4] -  d1[4]*(x4[i]))*z[4]) + (( - f2[4] -  d2[4]*(1 -  

(1 - x4[i])))*(1 - z[4])) ))  

  

pa[i,5] < -   1/(1+exp((( - f1[5] -  d1[5]*((x1[i])*(x2[i])))*z[5]) + (( - f2[5] -  

d2[5]*(1 -  (1 - x1[i]) *(1 - x2[i])))*(1 - z[5])) ))  

  

pa[i,6] < -   1/(1+exp((( - f1[6] -  d1[6]*((x1[i])*(x3[i])))*z[6]) + (( - f2[6] -  

d2[6]*(1 -  (1 - x1[i])*(1 - x3[i])))*(1 - z[6])) ))  

  

pa[i,7] < -   1/(1+exp((( - f1[7] -  d1[7]*((x1[i])*(x4[i])))*z[7]) + (( - f2[7] -  

d2[7]*(1 -  (1 - x1[i])*(1 - x4[i ])))*(1 - z[7])) ))  

  

pa[i,8] < -   1/(1+exp((( - f1[8] -  d1[8]*((x2[i])*(x3[i])))*z[8]) + (( - f2[8] -  

d2[8]*(1 -  (1 - x2[i])*(1 - x3[i])))*(1 - z[8])) ))  

  

pa[i,9] < -   1/(1+exp((( - f1[9] -  d1[9]*((x2[i])*(x4[i])))*z[9]) + (( - f2[9] -  

d2[9]*(1 -  (1 - x2[i])*(1 - x4[i])))*(1 - z[9])) ))  

  

pa[i,10] < -  1/(1+exp((( - f1[10] -  d1[10]*((x3[i])*(x4[i])))*z[10]) + (( - f2[10] 

-  d2[10]*(1 -  (1 - x3[i])*(1 - x4[i])))*(1 - z[10])) ))  
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pa[i,11] < -  1/(1+exp((( - f1[11] -  d1[11]*((x1[i])*(x2[i])*(x3[i])))*z[11]) + 

(( - f2[11] -  d2[11]*(1 -  (1 - x1[i])*(1 - x2[i])*(1 - x3[i])))*(1 - z[11])) ))  

  

pa[i,12] < -  1/(1+exp((( - f1[12] -  d1[12]*((x1[i])*(x2[i])*(x4[i])))*z[12]) + 

(( - f2[12] -  d2[12]*(1 -  (1 - x1[i])*(1 - x2[i])*(1 - x4[i])))*(1 - z[12])) ))  

  

pa[i,13] < -  1/(1+exp((( - f1[13] -  d1[13]*((x1[i])*(x3[i])*(x4 [i])))*z[13]) + 

(( - f2[13] -  d2[13]*(1 -  (1 - x1[i])*(1 - x3[i])*(1 - x4[i])))*(1 - z[13])) ))  

  

pa[i,14] < -  1/(1+exp((( - f1[14] -  d1[14]*((x2[i])*(x3[i])*(x4[i])))*z[14]) + 

(( - f2[14] -  d2[14]*(1 -  (1 - x2[i])*(1 - x3[i])*(1 - x4[i])))*(1 - z[14])) ))  

  

pa[i,15] < -  1/(1+exp ((( - f1[15] -  

d1[15]*((x1[i])*(x2[i])*(x3[i])*(x4[i])))*z[15]) + (( - f2[15] -  d2[15]*(1 -  

(1 - x1[i])*(1 - x2[i])*(1 - x3[i])*(1 - x4[i])))*(1 - z[15])) ))  

 

 }  

 

for (i in 1:N){  

 for (j in 1:J) {  

  y[i,j] ~ dbern(pa[i,j])  

  }  

 }  

}  #END OF THE CODE 
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II. Model to compare conjunctive and compensatory condensation rules 

{  

  #priors for parameters f and d  

  for (j in 1:J) {  

    d1[j] ~ dnorm(0, 0.1)%_%I(0,)    # For conjunctive  

    f1[j] ~ dnorm(0, 0.1)            # For conjunctive  

    f2[j] ~ dnorm(0, 0. 1)     # For compensatory  

    z[j] ~ dunif(0, 1)        # Uniform indicator  

  }  

   

  # 28 d parameters for compensatory model  

  d251  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d252  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d261  ~ dnorm(0, 0.1) %_%I(0,)    # For compensatory  

  d263  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d271  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d274  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d282  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d283  ~  dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d292  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d294  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2103  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2104  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2111  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2112  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2113  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2121  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2122  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2124  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2131  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2133  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2134  ~ dnorm( 0, 0.1)%_%I(0,)    # For compensatory  

  d2142  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2143  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2144  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2151  ~ dnorm(0, 0.1)%_%I(0,)    # For compensator y 

  d2152  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2153  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

  d2154  ~ dnorm(0, 0.1)%_%I(0,)    # For compensatory  

   

  #priors for skill class sizes  

  p1 ~ dbeta(1,1)   

  p2 ~ dbeta(1,1)   

  p3 ~ dbeta(1,1 )   

  p4 ~ dbeta(1,1)  

   

  for (i in 1:N){  

    x1[i] ~ dbern(p1)  

    x2[i] ~ dbern(p2)  

    x3[i] ~ dbern(p3)  

    x4[i] ~ dbern(p4)  

    pa[i,1] < -   1/(1+exp((( - f1[1] -  d1[1]*(x1[i]))*z[1]) ))                                                                                                 

    

    pa[i,2] < -   1/(1+exp((( - f1[2] -  d1[2]*(x2[i]))*z[2]) ))                                                                                                 
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    pa[i,3] < -   1/(1+exp((( - f1[3] -  d1[3]*(x3[i]))*z[3]) ))                                                                                                 

     

    pa[i,4] < -   1/(1+exp((( - f1[4] -  d1[4]*( x4[i]))*z[4]) ))                                                                                                 

     

    pa[i,5] < -   1/(1+exp((( - f1[5] -  d1[5]*((x1[i])*(x2[i])))*z[5]) + (( - f2[5] 

-  ((d251*x1[i])+(d252*x2[i])))*(1 - z[5])) ))  

     

    pa[i,6]  <-   1/(1+exp((( - f1[6] -  d1[6]*((x1[i])*(x3[i])))*z[6]) + (( - f2[6] 

-  ((d261*x1[i])+(d263*x3[i])))*(1 - z[6])) ))  

     

    pa[i,7] < -   1/(1+exp((( - f1[7] -  d1[7]*((x1[i])*(x4[i])))*z[7]) + (( - f2[7] 

-  ((d271*x1[i])+(d274*x4[i])))*(1 - z[7])) ))   

     

    pa[i,8 ] < -   1/(1+exp((( - f1[8] -  d1[8]*((x2[i])*(x3[i])))*z[8]) + (( - f2[8] 

-  ((d282*x2[i])+(d283*x3[i])))*(1 - z[8])) ))  

     

    pa[i,9] < -   1/(1+exp((( - f1[9] -  d1[9]*((x2[i])*(x4[i])))*z[9]) + (( - f2[9] 

-  ((d292*x2[i])+(d294*x4[i])))*(1 - z[9])) ))  

     

    pa[i,10 ] < -  1/(1+exp((( - f1[10] -  d1[10]*((x3[i])*(x4[i])))*z[10])+ (( -

f2[10] -  ((d2103*x3[i])+(d2104*x4[i])))*(1 - z[10])) ))      

     

    pa[i,11] < -  1/(1+exp((( - f1[11] -  d1[11]*((x1[i])*(x2[i])*(x3[i])))*z[11])+ 

(( - f2[11] - ((d2111*x1[i])+(d2112*x2[i])+(d2113*x3[i] )))*(1 - z[11])) ))      

     

    pa[i,12] < -  1/(1+exp((( - f1[12] -  d1[12]*((x1[i])*(x2[i])*(x4[i])))*z[12])+ 

(( - f2[12] - ((d2121*x1[i])+(d2122*x2[i])+(d2124*x4[i])))*(1 - z[12])) ))    

     

    pa[i,13] < -  1/(1+exp((( - f1[13] -  d1[13]*((x1[i])*(x3[i])*(x4[i])))*z[13])+ 

(( - f2[13] - ((d2131*x1[i])+(d2133*x3[i])+(d2134*x4[i])))*(1 - z[13])) ))     

     

    pa[i,14] < -  1/(1+exp((( - f1[14] -  d1[14]*((x2[i])*(x3[i])*(x4[i])))*z[14])+ 

(( - f2[14] - ((d2142*x2[i])+(d2143*x3[i ])+(d2144*x4[i])))*(1 - z[14])) ))     

     

    pa[i,15]< - 1/(1+exp((( - f1[15] - d1[15]*((x1[i])*(x2[i])*(x3[i])*(x4[i]))) 

*z[15])+(( - f2[15] - ((d2151*x1[i])+(d2152*x2[i])+(d2153*x3[i])+ 

(d2154*x4[i])))*(1 - z[15])) ))  

  }  

  for (i in 1:N){  

    for (j in 1:J) {  

      y[i,j] ~ dbern(pa[i,j])  

    }  

  }  

}  
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Appendix B. R code for data generation 

I. HO-RDINA data generation code  

n.sims < -  2 # number of simulated data sets  

 

for (ka in 1:n.sims)  

{  

  N = 1000; # Sample Size  

  n = 15; # Number of items  

  k = 4; # Number of attributes  

  # Item parameter values  

  f1= - 4; f2= - 3; f3= - 2; f4= - 1; f5=0; f6= - 4; f7= - 3;  

  f8= - 2; f9= - 1; f10=0; f11= - 4; f12= - 3; f13= - 2; f14= - 1; f15=0;  

  d1=5; d2=4; d3=3; d4=2; d5=1; d6=1; d7=2; d8=3; d9=4;  

  d10=5; d11=1; d12=5; d13=4;  d14=2; d15=3;  

  # Higher - order structural parameter values  

  b1=- 1; b2= - 0.328;  b3=0.3;  b4=0.678;  

  a1=0; a2=0; a3=0; a4=0  

   

  # Loop to get the dichotomized latent classes  

  Theta < -  rnorm(N, mean = 0, sd = 1)  

  a_pars < -  c(a1, a2, a3, a4)  

  b_pars < -  c(b1, b2, b3, b4)  

   

  # Function that calculates P(skill | Higher Order Vars)  

  ProbFunc < -  function(Par.Theta, Par.a, Par.b) {1 / (1 + (exp(( - 1)*(Par.b + 

(Par.a*Par.Theta)))))}  

   

  # Storage for P(skill)  

  LClass.Mat < -  matrix(data = NA, nrow = N, nc ol = k)  

   

  #Loop to get a matrix of P(skill) for the k skills in the N examinees  

  for (j in 1:N) {  

    for (l in 1:k){  

      LClass.Mat[j,l] < -  ProbFunc(Theta[j], a_pars[l], b_pars[l])  

    }  

  }  

 

  # A N - by - k matrix of ~U(0,1)  

  Z.Mat < -  matrix(NA, nrow = N, ncol = k)  

   

  for (l in 1:k) {  

    Z.Mat[,l] < -  runif(N,0,1)         

  }  

  Z.Mat  

   

  # Storage for x (dichotomized P(skill))  

  X.Mat < -  matrix(data = NA, nrow = N, ncol = k)  

   

  #Loop to get a matrix of P(skill) for the k skills in the N examinees  

  for (j in 1:N) {  

    for (l in 1:k){  

      X.Mat[j,l] < -  ifelse(LClass.Mat[j,l] >= Z.Mat[j,l], 1, 0)  

    }  
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  }  

  

  # Storage for the probabilities of each item  

  py < -  matrix(data = NA, nrow = N, ncol = n)  

   

  for(it in 1:N){                                                              

    py[it,1] = 1 /(1 + exp ( - 1*(f1+(d1*X.Mat[it,1]))))                                 

    py[it,2] = 1 /(1 + exp ( - 1*(f2+(d2*X.Mat[it,2]))))                                 

    py[it,3] = 1 /(1 + exp ( - 1*(f3+(d3*X.Mat[it,3]))))                                 

    py[it,4] = 1 /(1 + exp ( - 1*(f4+(d4*X.Mat[it,4]))))                                 

    py[it,5] = 1 /(1 + exp ( - 1*(f5+(d5*X.Mat[it,1]*X.Mat[it,2]))))                       

    py[it,6] = 1 /(1 + exp ( - 1*(f6+(d6*X.Mat[it,1]*X.Mat[it,3]))))                       

    py[it,7] = 1 /(1 + exp ( - 1*(f7+(d7*X.Mat[it,1]*X.Mat[it,4]))))                       

    py[it,8] = 1 /(1 + exp ( - 1*(f8+(d8*X.Mat[it,2]*X.Mat[it,3]))))                       

    py[it,9] = 1 /(1 + exp ( - 1*(f9+(d9*X.Mat[it,2]*X.Mat[it,4]))))                       

    py[it,10] = 1 /(1 + exp( - 1*(f10+(d10*X.Mat[it,3]*X.Mat[it,4]))))                     

    py[it,11] = 1 /(1 + exp( - 1*(f11+(d11*X.Mat[it,1]*  

X.Mat[ it,2]*X.Mat[it,3]))))           

    py[it,12] = 1 /(1 + exp( - 1*(f12+(d12*X.Mat[it,1]*  

X.Mat[it,2]*X.Mat[it,4]))))           

    py[it,13] = 1 /(1 + exp( - 1*(f13+(d13*X.Mat[it,1]*  

X.Mat[it,3]*X.Mat[it,4]))))           

    py[it,14] = 1 /(1 + exp( - 1*(f14+(d14 *X.Mat[it,2]*  

X.Mat[it,3]*X.Mat[it,4]))))           

    py[it,15] = 1 /(1 + exp( - 1*(f15+(d15*X.Mat[it,1]*  

X.Mat[it,2]*X.Mat[it,3]*X.Mat[it,4]))))  

  }  

 

  # A N - by - n matrix of ~U(0,1)  

  Z2.Mat < -  matrix(NA, nrow = N, ncol = n)  

  for (l in 1:n) {  

    Z2.Mat[ ,l] < -  runif(N,0,1)         

  }  

  Z2.Mat  

   

   

  # Storage for x (dichotomized P(skill))  

  Data.Mat < -  matrix(NA, nrow = N, ncol = n)  

   

  #Loop to get a matrix of 0 or 1 for the n items answered by the N examinees  

  for (j in 1:N) {  

    for (l in 1:n){  

      Data.Mat[j,l] < -  ifelse( py[j,l] >= Z2.Mat[j,l], 1, 0)         

    }  

  }   

  Data.Mat  

     

  save(Data.Mat, file=paste("DINAdata",ka,".RData",sep=""), col.names=F, 

row.names=F)  

}  
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I I. HO-RDINO data generation code 

n.sims < -  2 # number of simul ated data sets  

for (ka in 1:n.sims)  

{  

  N = 1000; # Sample Size  

  n = 15; # Number of items  

  k = 4; # Number of attributes  

  # Item parameter values  

  f1= - 4; f2= - 3; f3= - 2; f4= - 1; f5=0; f6= - 4; f7= - 3;  

  f8= - 2; f9= - 1; f10=0; f11= - 4; f12= - 3; f13= - 2; f14= - 1; f15=0;  

  d1=5; d2=4; d3=3; d4=2; d5=1; d6=1; d7=2; d8=3; d9=4;  

  d10=5; d11=1; d12=5; d13=4; d14=2; d15=3;  

  # Higher - order structural parameter values  

  b1=- 1; b2= - 0.328;  b3=0.3;  b4=0.678;  

  a1=0; a2=0; a3=0; a4=0  

   

  # Loop to get the dichotomized latent classes  

  Theta < -  rnorm(N, mean = 0, sd = 1)  

  a_pars < -  c(a1, a2, a3, a4)  

  b_pars < -  c(b1, b2, b3, b4)  

   

  # Function that calculates P(skill | Higher Order Vars)  

  ProbFunc < -  function(Par.Theta, Par.a, Par.b)  {1 / (1 + (exp(( - 1)*(Par.b + 

(Par.a*Par.Theta)))))}  

   

  # Storage for P(skill)  

  LClass.Mat < -  matrix(data = NA, nrow = N, ncol = k)  

   

  #Loop to get a matrix of P(skill) for the k skills in the N examinees  

  for (j in 1:N) {  

    for (l in 1:k){  

      LClass.Mat[j,l] < -  ProbFunc(Theta[j], a_pars[l], b_pars[l])  

    }  

  }  

 

  # A N - by - k matrix of ~U(0,1)  

  Z.Mat < -  matrix(NA, nrow = N, ncol = k)  

    for (l in 1:k) {  

    Z.Mat[,l] < -  runif(N,0,1)         

  }  

  Z.Mat  

   

  # Storage for x (dichotomized P(skill))  

  X.Mat < -  matrix(data = NA, nrow = N, ncol = k)  

   

  #Loop to get a matrix of P(skill) for the k skills in the N examinees  

  for (j in 1:N) {  

    for (l in 1:k){  

      X.Mat[j,l] < -  ifelse(LClass.Mat[j,l] >= Z.Ma t[j,l], 1, 0)  

    }  

  }  

  

    # Storage for the probabilities of each item  

  dy < -  matrix(data = NA, nrow = N, ncol = n)  

  py < -  matrix(data = NA, nrow = N, ncol = n)  
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  for(it in 1:N){                                                              

    dy[it,1]  < -  1 -  ((1 - X.Mat[it,1]))      

    dy[it,2]  < -  1 -  ((1 - X.Mat[it,2]))      

    dy[it,3]  < -  1 -  ((1 - X.Mat[it,3]))      

    dy[it,4]  < -  1 -  ((1 - X.Mat[it,4]))      

    dy[it,5]  < -  1 -  ((1 - X.Mat[it,1])*(1 - X.Mat[it,2]))      

    dy[it,6]  < -  1 -  ((1 - X.Mat[it,1])*(1 - X.Mat[it,3]))      

    dy[it,7]  < -  1 -  ((1 - X.Mat[it,1])*(1 - X.Mat[it,4]))      

    dy[it,8]  < -  1 -  ((1 - X.Mat[it,2])*(1 - X.Mat[it,3]))      

    dy[it,9]  < -  1 -  ((1 - X.Mat[it,2])*(1 - X.Mat[it,4]))      

    dy[it,10] < -  1 -  ((1 - X.Mat[it,3])*(1 - X.Mat[it,4]))      

    dy[it,11] < -  1 -  ((1 - X.Mat[it,1])*(1 - X.Mat[it,2])*(1 - X.Mat[it,3]))      

    dy[it,12] < -  1 -  ((1 - X.Mat[it,1])*(1 - X.Mat[it,2])*(1 - X.Mat[it,4]))      

    dy[it,13] < -  1 -  ((1 - X.Mat[it,1])*(1 - X.Mat[it,3])*(1 - X.Mat[it,4]))      

    dy[it,14] < -  1 -  ((1 - X.Mat[it,2])*(1 - X.Mat[it,3])*(1 - X.Mat[it,4]))      

    dy[it,15] < -  1 -  ((1 - X.Mat[it,1])*(1 - X.Mat[it,2])*( 1- X.Mat[it,3])*(1 -

X.Mat[it,4]))  

    py[it,1] = 1 /(1 + exp( - 1*(f1+(d1*dy[it,1]))))           

    py[it,2] = 1 /(1 + exp( - 1*(f 2+(d2*dy[it,2]))))           

    py[it,3] = 1 /(1 + exp( - 1*(f3+(d3*dy[it,3]))))           

    py[it,4] = 1 /(1 + exp( - 1*(f4+(d4*dy[it,4]))))           

    py[it,5] = 1 /(1 + exp( - 1*(f5+(d5*dy[it,5]))))           

    py[it,6] = 1 /(1 + exp( - 1*(f6+(d6*dy[it, 6]))))           

    py[it,7] = 1 /(1 + exp( - 1*(f7+(d7*dy[it,7]))))           

    py[it,8] = 1 /(1 + exp( - 1*(f8+(d8*dy[it,8]))))           

    py[it,9] = 1 /(1 + exp( - 1*(f9+(d9*dy[it,9]))))           

    py[it,10] = 1 /(1 + exp( - 1*(f10+(d10*dy[it,10]))))       

    py[it,11] = 1 /(1 + exp( - 1*(f11+(d11*dy[it,11]))))       

    py[it,12] = 1 /(1 + exp( - 1*(f12+(d12*dy[it,12]))))       

    py[it,13] = 1 /(1 + exp( - 1*(f13+(d13*dy[it,13]))))       

    py[it,14] = 1 /(1 + exp( - 1*(f14+(d14*dy[it,14]))))       

    py[ it,15] = 1 /(1 + exp( - 1*(f15+(d15*dy[it,15]))))  

 

  }  

 

  # A N - by - n matrix of ~U(0,1)  

  Z2.Mat < -  matrix(NA, nrow = N, ncol = n)  

  for (l in 1:n) {  

    Z2.Mat[,l] < -  runif(N,0,1)         

  }  

  Z2.Mat  

     

  # Storage for x (dichotomized P(skill))  

  Data.Mat < -  matrix(NA, nrow = N, ncol = n)  

  #Loop to get a matrix of 0 or 1 for the n items answered by the N examinees  

  for (j in 1:N) {  

    for (l in 1:n){  

      Data.Mat[j,l] < -  ifelse( py[j,l] >= Z2.Mat[j,l], 1, 0)         

    }  

  }   

  Data.Mat  

     

  save(Data.Mat, file=paste("DINOdata",ka,".RData",sep=""), col.names=F, 

row.names=F)  

}  
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II I. Additive model generation code 

n.sims < -  2 # number of simulated data sets  

 

for (ka in 1:n.sims)  

{  

  N = 1000; # Sample Size  

  n = 15; # Number of items  

  k = 4; # Number of attributes  

  # Item parameter values  

  f1= - 4; f2= - 3; f3= - 2; f4= - 1; f5=0; f6= - 4; f7= - 3;  

  f8= - 2; f9= - 1; f10=0; f11= - 4; f12= - 3; f13= - 2; f14= - 1; f15=0;  

  d1=5; d2=4; d3=3; d4=2; d5=1; d6=1; d7=2; d8=3; d9=4;  

  d10=5; d11=1; d12=5; d13=4; d14 =2; d15=3;  

  # Higher - order structural parameter values  

  b1=- 1; b2= - 0.328;  b3=0.3;  b4=0.678;  

  a1=0; a2=0; a3=0; a4=0  

   

  # Loop to get the dichotomized latent classes  

  Theta < -  rnorm(N, mean = 0, sd = 1)  

  a_pars < -  c(a1, a2, a3, a4)  

  b_pars < -  c(b1, b2, b3, b4)  

   

  # Function that calculates P(skill | Higher Order Vars)  

  ProbFunc < -  function(Par.Theta, Par.a, Par.b) {1 / (1 + (exp(( - 1)*(Par.b + 

(Par.a*Par.Theta)))))}  

   

  # Storage for P(skill)  

  LClass.Mat < -  matrix(data = NA, nrow = N, nc ol = k)  

   

  #Loop to get a matrix of P(skill) for the k skills in the N examinees  

  for (j in 1:N) {  

    for (l in 1:k){  

      LClass.Mat[j,l] < -  ProbFunc(Theta[j], a_pars[l], b_pars[l])  

    }  

  }  

 

  # A N - by - k matrix of ~U(0,1)  

  Z.Mat < -  matrix(NA, n row = N, ncol = k)  

   

  for (l in 1:k) {  

    Z.Mat[,l] < -  runif(N,0,1)         

  }  

  Z.Mat  

   

  # Storage for x (dichotomized P(skill))  

  X.Mat < -  matrix(data = NA, nrow = N, ncol = k)  

   

  #Loop to get a matrix of P(skill) for the k skills in the N examinees  

  for (j in 1:N) {  

    for (l in 1:k){  

      X.Mat[j,l] < -  ifelse(LClass.Mat[j,l] >= Z.Mat[j,l], 1, 0)  

    }  

  }  

  

  # Storage for the probabilities of each item  
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  py < -  matrix(data  = NA, nrow = N, ncol = n)  

   

  for(it in 1:N){                                                              

 

    py[it,1] = 1 /(1 + exp ( - 1*(f1+(d1*(X.Mat[it,1])))))                                 

    py[it,2] = 1 /(1 + exp ( - 1*(f2+(d2*(X.Mat[it,2])))))                                 

    py[it,3] = 1 /(1 + exp ( - 1*(f3+(d3*(X.Mat[it,3])))))                                 

    py[it,4] = 1 /(1 + exp ( - 1*(f4+(d4*(X.Mat[it,4])))))                                 

    py[it,5] = 1 /(1 + exp ( - 1*(f5+(d5*(X.Mat[ it,1]+X.Mat[it,2])))))                       

    py[it,6] = 1 /(1 + exp ( - 1*(f6+(d6*(X.Mat[it,1]+X.Mat[it,3])))))                       

    py[it,7] = 1 /(1 + exp ( - 1*(f7+(d7*(X.Mat[it,1]+X.Mat[it,4])))))                       

    py[it,8] = 1 /(1 + exp ( - 1*(f8+(d8*(X.Mat[it,2]+X.Mat[it,3])))))                       

    py[it,9] = 1 /(1 + exp ( - 1*(f9+(d9*(X.Mat[it,2]+X.Mat[it,4])))))                       

    py[it,10] = 1 /(1 + exp( - 1*(f10+(d10*(X.Mat[it,3]+X.Mat[it,4])))))                     

    py[it,11] = 1 /(1 + exp( - 1*(f11+(d11*(X.Mat[it,1]+  

X.Mat[it,2]+X.Mat[it,3])))))           

    py[it,12] = 1 /(1 + exp( - 1*(f12+(d12*(X.Mat[it,1]+X.Mat[it,2]+  

X.Mat[it,4])))))           

    py[it,13] = 1 /(1 + exp( - 1*(f13+(d13*(X.Mat[it,1]+X.Mat[it,3]+  

X.Mat[it,4])))))           

    py[it,14] = 1 /(1 + exp( - 1*(f14+(d14*(X.Mat[it,2]+X.Mat[it,3]+  

X.Mat[it,4])))))           

    py[it,15] = 1 /(1 + exp( - 1*(f15+(d15*(X.Mat[it,1]+X.Mat[it,2]+  

X.Mat[it,3]+X.Mat[it,4])))))     

 

 

  }  

 

  # A N - by - n matrix of ~U(0,1 )  

  Z2.Mat < -  matrix(NA, nrow = N, ncol = n)  

  for (l in 1:n) {  

    Z2.Mat[,l] < -  runif(N,0,1)         

  }  

  Z2.Mat  

   

   

  # Storage for x (dichotomized P(skill))  

  Data.Mat < -  matrix(NA, nrow = N, ncol = n)  

   

  #Loop to get a matrix of 0 or 1 for the n items answered by the N examinees  

  for (j in 1:N) {  

    for (l in 1:n){  

      Data.Mat[j,l] < -  ifelse( py[j,l] >= Z2.Mat[j,l], 1, 0)         

    }  

  }   

  Data.Mat  

     

  save(Data.Mat, file=paste("Additivedata",ka,".RData",sep=""), col.names=F, 

row.names=F)  

}  
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Appendix C. Additional analysis of the simulation and empirical 

studies  
 

TABLE C1. Item detection and false alarm parameters. Conditions with simulated conjunctive items and 

independent skills, contrasting conjunctive versus compensatory item condensation rules 

  Condition 14. Beta-Bernoulli distributed ŭj  Condition 2. Uniform distributed ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 4.748 0.642 -0.252 0.693  5.793 0.255 0.793 0.879 

d2 4 3.809 0.249 -0.191 0.280  5.076 0.171 1.076 1.326 

d3 3 2.923 0.338 -0.077 0.337  4.346 0.202 1.346 2.009 

d4 2 2.050 0.225 0.050 0.223  3.669 0.100 1.669 2.885 

d5 1 1.172 0.125 0.172 0.152  1.130 0.115 0.130 0.130 

d6 1 1.357 0.198 0.357 0.321  1.128 0.131 0.128 0.145 

d7 2 2.124 0.092 0.124 0.105  2.114 0.114 0.114 0.124 

d8 3 2.985 0.131 -0.015 0.128  3.405 0.173 0.405 0.334 

d9 4 4.322 0.529 0.322 0.622  4.832 0.481 0.832 1.164 

d10 5 3.272 1.265 -1.728 4.225  5.249 0.345 0.249 0.400 

d11 1 1.274 0.183 0.274 0.255  1.015 0.122 0.015 0.120 

d12 5 5.219 0.521 0.219 0.558  5.675 0.497 0.675 0.942 

d13 4 4.025 1.206 0.025 1.182  4.813 0.661 0.813 1.308 

d14 2 2.056 0.084 0.056 0.086  2.065 0.124 0.065 0.125 

d15 3 3.387 0.837 0.387 0.970  3.380 0.798 0.380 0.927 

f1 -4 -3.847 0.367 0.153 0.383  -4.422 0.129 -0.422 0.305 

f2 -3 -2.814 0.203 0.186 0.234  -3.746 0.129 -0.746 0.683 

f3 -2 -2.035 0.296 -0.035 0.291  -2.848 0.183 -0.848 0.898 

f4 -1 -1.147 0.183 -0.147 0.201  -1.851 0.130 -0.851 0.851 

f5 0 0.002 0.005 0.002 0.005  -0.047 0.694 -0.047 0.682 

f6 -4 -3.084 0.571 0.916 1.399  -3.905 0.153 0.095 0.159 

f7 -3 -2.471 0.708 0.529 0.973  -3.086 0.471 -0.086 0.469 

f8 -2 -1.778 0.314 0.222 0.357  -2.536 0.544 -0.536 0.820 

f9 -1 -1.020 0.009 -0.020 0.009  -1.267 0.342 -0.267 0.407 

f10 0 0.014 0.006 0.014 0.006  -0.343 0.397 -0.343 0.507 

f11 -4 -3.754 0.351 0.246 0.404  -4.441 0.061 -0.441 0.254 

f12 -3 -3.008 0.047 -0.008 0.046  -3.597 0.141 -0.597 0.494 

f13 -2 -1.521 0.762 0.479 0.976  -2.350 0.120 -0.350 0.240 

f14 -1 -1.023 0.008 -0.023 0.008  -1.320 0.370 -0.320 0.465 

f15 0 -0.015 0.005 -0.015 0.005  -0.160 0.010 -0.160 0.035 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE C2. Item detection and false alarm parameters. Conditions with simulated conjunctive 

items and correlated skills, contrasting conjunctive versus disjunctive item condensation rules 

  Condition 15. Beta-Bernoulli distributed ŭj  Condition 3. Uniform distributed ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 5.3962 0.2903 0.3431 0.3994  6.0246 0.2532 1.0246 1.2978 

d2 4 3.7247 0.4437 -0.2711 0.5083  5.1465 0.1607 1.1465 1.4721 

d3 3 2.7766 0.3341 -0.2412 0.3853  4.4197 0.1189 1.4197 2.1320 

d4 2 1.7064 0.1493 -0.2860 0.2281  3.7033 0.0788 1.7033 2.9784 

d5 1 1.0619 0.0206 0.0657 0.0245  1.6568 0.1215 0.6568 0.5505 

d6 1 1.5900 0.1502 0.5955 0.5018  1.5791 0.1185 0.5791 0.4515 

d7 2 1.9702 0.0624 -0.0219 0.0616  2.9099 0.1276 0.9099 0.9530 

d8 3 2.8991 0.0593 -0.0974 0.0675  3.8897 0.2017 0.8897 0.9892 

d9 4 3.3062 0.6772 -0.7141 1.1732  5.0365 0.1468 1.0365 1.2181 

d10 5 3.7113 2.2481 -1.2704 3.8168  5.9344 0.4790 0.9344 1.3426 

d11 1 1.4957 0.0873 0.4919 0.3274  1.6627 0.1142 0.6627 0.5510 

d12 5 5.0781 0.1147 0.0762 0.1182  5.9244 0.0916 0.9244 0.9442 

d13 4 4.0364 0.1362 0.0355 0.1348  4.9976 0.1152 0.9976 1.1082 

d14 2 2.0982 0.0493 0.1025 0.0588  2.9353 0.1076 0.9353 0.9803 

d15 3 3.2271 0.2417 0.2370 0.2930  4.0032 0.2190 1.0032 1.2210 

f1 -4 -4.3843 0.3066 -0.3387 0.4131  -4.8573 0.2490 -0.8573 0.9790 

f2 -3 -2.7354 0.4559 0.2674 0.5183  -3.9126 0.1521 -0.9126 0.9819 

f3 -2 -1.7432 0.3165 0.2753 0.3857  -3.0597 0.1093 -1.0597 1.2300 

f4 -1 -0.7119 0.1282 0.2839 0.2062  -1.9423 0.0523 -0.9423 0.9391 

f5 0 -0.0067 0.0065 -0.0030 0.0063  0.0447 2.4480 0.0447 2.4011 

f6 -4 -2.7021 1.1456 1.3216 2.8688  -3.3337 0.3946 0.6663 0.8306 

f7 -3 -2.8538 0.2390 0.1509 0.2570  -3.4033 0.5409 -0.4033 0.6927 

f8 -2 -1.5315 0.6177 0.4516 0.8091  -2.2887 0.5327 -0.2887 0.6054 

f9 -1 -0.4758 0.2434 0.5341 0.5237  -1.2335 0.1433 -0.2335 0.1950 

f10 0 0.0280 0.0101 0.0300 0.0108  -0.1267 0.1962 -0.1267 0.2083 

f11 -4 -2.8377 0.9888 1.1100 2.1984  -3.5602 0.3701 0.4398 0.5561 

f12 -3 -2.9027 0.0409 0.0951 0.0492  -3.4396 0.1935 -0.4396 0.3829 

f13 -2 -1.8775 0.1272 0.1279 0.1410  -2.4916 0.2822 -0.4916 0.5183 

f14 -1 -0.8311 0.1136 0.1561 0.1355  -1.1543 1.0342 -0.1543 1.0373 

f15 0 0.0188 0.0058 0.0130 0.0058  -0.1481 1.1154 -0.1481 1.1150 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE C3. Item detection and false alarm parameters. Conditions with simulated conjunctive 

items and correlated skills, contrasting conjunctive versus compensatory item condensation rules 

  Condition 16. Beta-Bernoulli distributed ŭj  Condition 4. Uniform distributed ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 5.2283 0.5630 0.2283 0.6039  5.9917 0.2068 0.9917 1.1862 

d2 4 3.9203 0.3463 -0.0797 0.3457  5.0882 0.2213 1.0882 1.4011 

d3 3 2.9138 0.2859 -0.0862 0.2876  4.5437 0.2312 1.5437 2.6096 

d4 2 2.3187 0.5039 0.3187 0.5954  3.7867 0.1561 1.7867 3.3453 

d5 1 1.0656 0.0999 0.0656 0.1022  1.0867 0.0880 0.0867 0.0937 

d6 1 1.4177 0.2327 0.4177 0.4026  1.0532 0.1004 0.0532 0.1012 

d7 2 2.0897 0.0624 0.0897 0.0692  1.8781 0.0775 -0.1219 0.0908 

d8 3 2.9391 0.0544 -0.0609 0.0570  3.1989 0.0908 0.1989 0.1285 

d9 4 3.6005 0.5969 -0.3995 0.7446  4.4820 0.0929 0.4820 0.3234 

d10 5 3.7610 2.1103 -1.2390 3.6033  5.6781 0.4810 0.6781 0.9312 

d11 1 1.1158 0.2119 0.1158 0.2210  0.8227 0.0732 -0.1773 0.1032 

d12 5 5.0600 0.1512 0.0600 0.1518  5.2135 0.0753 0.2135 0.1194 

d13 4 3.9320 0.2496 -0.0680 0.2492  4.1645 0.1114 0.1645 0.1362 

d14 2 2.1323 0.0483 0.1323 0.0648  1.9351 0.0500 -0.0649 0.0532 

d15 3 3.1750 0.1487 0.1750 0.1764  3.1206 0.1999 0.1206 0.2104 

f1 -4 -4.2731 0.5176 -0.2731 0.5818  -4.7751 0.1692 -0.7751 0.7666 

f2 -3 -2.9678 0.3349 0.0322 0.3292  -3.8194 0.1831 -0.8194 0.8508 

f3 -2 -1.9218 0.2883 0.0782 0.2886  -3.0906 0.2147 -1.0906 1.3998 

f4 -1 -1.3699 0.5025 -0.3699 0.6292  -2.0776 0.1530 -1.0776 1.3112 

f5 0 0.0123 0.0064 0.0123 0.0064  -0.0116 1.6971 -0.0116 1.6633 

f6 -4 -3.0856 0.4137 0.9144 1.2416  -3.9024 0.1954 0.0976 0.2010 

f7 -3 -2.3960 0.4438 0.6040 0.7997  -3.0992 0.7743 -0.0992 0.7686 

f8 -2 -1.7937 0.2820 0.2063 0.3189  -2.5029 0.4061 -0.5029 0.6509 

f9 -1 -0.7255 0.2417 0.2745 0.3122  -1.2357 0.0854 -0.2357 0.1392 

f10 0 -0.0072 0.0052 -0.0072 0.0051  -0.0952 0.0888 -0.0952 0.0961 

f11 -4 -3.7339 0.2649 0.2661 0.3304  -4.4533 0.1116 -0.4533 0.3149 

f12 -3 -2.9857 0.0730 0.0143 0.0718  -3.5471 0.2156 -0.5471 0.5107 

f13 -2 -1.8590 0.3199 0.1410 0.3334  -2.3889 0.0851 -0.3889 0.2346 

f14 -1 -0.8599 0.1378 0.1401 0.1546  -1.1711 0.1184 -0.1711 0.1453 

f15 0 -0.0094 0.0043 -0.0094 0.0043  -0.1146 0.0080 -0.1146 0.0210 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE C4. Item detection and false alarm parameters. Conditions with simulated disjunctive 

items and correlated skills, contrasting conjunctive versus disjunctive item condensation rules 

  Condition 18. Beta-Bernoulli distributed ŭj  Condition 6. Uniform distributed ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 4.3255 0.7781 -0.6745 1.2175  6.1977 0.4129 1.1977 1.8391 

d2 4 3.6817 0.3692 -0.3183 0.4631  5.1966 0.0948 1.1966 1.5249 

d3 3 3.2162 0.4864 0.2162 0.5234  4.4547 0.1505 1.4547 2.2635 

d4 2 1.9167 0.0367 -0.0833 0.0429  3.6966 0.0482 1.6966 2.9257 

d5 1 1.4709 0.3039 0.4709 0.5195  1.6420 0.0593 0.6420 0.4703 

d6 1 1.6332 0.1709 0.6332 0.5685  1.5395 0.1506 0.5395 0.4387 

d7 2 2.2430 0.1366 0.2430 0.1929  2.5457 0.0771 0.5457 0.3733 

d8 3 2.6481 0.0588 -0.3519 0.1815  3.7680 0.1016 0.7680 0.6894 

d9 4 3.3677 0.5778 -0.6323 0.9661  4.9865 0.1473 0.9865 1.1174 

d10 5 4.7533 0.8644 -0.2467 0.9079  6.3570 0.5213 1.3570 2.3522 

d11 1 1.7289 0.2646 0.7289 0.7907  1.7250 0.1930 0.7250 0.7147 

d12 5 2.9824 1.0294 -2.0176 5.0796  5.9264 0.2168 0.9264 1.0707 

d13 4 4.2006 0.0846 0.2006 0.1232  4.8927 0.1081 0.8927 0.9029 

d14 2 2.0810 0.0306 0.0810 0.0365  2.7726 0.0989 0.7726 0.6938 

d15 3 3.1156 0.0507 0.1156 0.0630  4.0778 0.1243 1.0778 1.2834 

f1 -4 -4.1501 0.3137 -0.1501 0.3299  -4.6382 0.1543 -0.6382 0.5586 

f2 -3 -3.3961 0.3739 -0.3961 0.5233  -3.7638 0.0662 -0.7638 0.6484 

f3 -2 -2.0445 0.0533 -0.0445 0.0542  -2.8305 0.0674 -0.8305 0.7558 

f4 -1 -1.0003 0.0231 -0.0003 0.0226  -1.7930 0.0383 -0.7930 0.6664 

f5 0 -0.0253 0.0112 -0.0253 0.0116  0.0250 1.3771 0.0250 1.3501 

f6 -4 -2.5364 1.3665 1.4636 3.4811  -3.2653 0.5666 0.7347 1.0950 

f7 -3 -2.5499 1.7141 0.4501 1.8824  -3.2150 0.4037 -0.2150 0.4418 

f8 -2 -0.8497 1.0686 1.1503 2.3704  -2.0036 0.4987 -0.0036 0.4888 

f9 -1 -0.6876 0.3611 0.3124 0.4515  -1.0936 0.1547 -0.0936 0.1604 

f10 0 -0.0250 0.0136 -0.0250 0.0140  0.0430 0.1565 0.0430 0.1552 

f11 -4 -2.6744 1.9854 1.3256 3.7029  -3.6156 0.7423 0.3844 0.8752 

f12 -3 -0.5700 1.4921 2.4300 7.3671  -3.4534 0.2146 -0.4534 0.4158 

f13 -2 -2.2964 0.0776 -0.2964 0.1639  -2.2962 0.1276 -0.2962 0.2128 

f14 -1 -1.1039 0.0259 -0.1039 0.0362  -1.0429 0.4742 -0.0429 0.4666 

f15 0 -0.1576 0.0198 -0.1576 0.0442  0.0608 0.2770 0.0608 0.2751 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE C5. Item detection and false alarm parameters. Conditions with simulated compensatory items and 

independent skills, contrasting conjunctive versus compensatory item condensation rules 

  Condition 19. Beta-Bernoulli distributed ŭj  Condition 7. Uniform distributed ŭj 

Par Value APM Var  Bias MSE 
 

APM Var  Bias MSE 

d1 5 4.842 0.734 -0.158 0.744  6.123 0.320 1.123 1.575 

d2 4 4.059 0.232 0.059 0.231  5.137 0.186 1.137 1.476 

d3 3 3.023 0.074 0.023 0.073  4.411 0.118 1.411 2.107 

d4 2 1.999 0.058 -0.001 0.057  3.613 0.060 1.613 2.660 

d5 1 1 1.120 0.152 0.120 0.163  2.071 0.238 1.071 1.381 

d5 2 1 1.085 0.106 0.085 0.111  2.157 0.124 1.157 1.460 

d6 1 1 1.651 0.242 0.651 0.661  1.623 0.152 0.623 0.537 

d6 3 1 1.810 0.197 0.810 0.850  1.924 0.223 0.924 1.072 

d7 1 2 2.125 0.095 0.125 0.109  2.596 0.208 0.596 0.559 

d7 4 2 2.066 0.134 0.066 0.136  2.877 0.175 0.877 0.941 

d8 2 3 2.990 0.195 -0.010 0.192  3.922 0.134 0.922 0.982 

d8 3 3 3.050 0.111 0.050 0.111  3.968 0.140 0.968 1.074 

d9 2 4 4.096 0.655 0.096 0.651  4.877 0.368 0.877 1.130 

d9 4 4 4.041 0.277 0.041 0.273  5.044 0.162 1.044 1.248 

d10 3 5 5.293 0.510 0.293 0.585  5.645 0.511 0.645 0.917 

d10 4 5 5.157 0.675 0.157 0.686  5.729 0.387 0.729 0.912 

d11 1 1 1.256 0.294 0.256 0.353  1.986 0.296 0.986 1.263 

d11 2 1 1.375 0.324 0.375 0.458  2.116 0.380 1.116 1.617 

d11 3 1 1.323 0.353 0.323 0.450  2.026 0.548 1.026 1.591 

d12 1 5 4.760 0.585 -0.240 0.631  5.459 0.737 0.459 0.933 

d12 2 5 4.729 0.586 -0.271 0.648  5.431 0.315 0.431 0.494 

d12 4 5 4.593 0.379 -0.407 0.537  5.265 0.194 0.265 0.261 

d13 1 4 4.290 1.013 0.290 1.077  4.859 0.589 0.859 1.314 

d13 3 4 4.039 0.262 0.039 0.258  4.700 0.347 0.700 0.830 

d13 4 4 3.991 0.245 -0.009 0.240  4.725 0.334 0.725 0.853 

d14 2 2 2.116 0.135 0.116 0.146  3.274 0.163 1.274 1.784 

d14 3 2 2.105 0.101 0.105 0.110  3.160 0.069 1.160 1.414 

d14 4 2 2.051 0.075 0.051 0.076  3.181 0.155 1.181 1.546 

d15 1 3 3.548 1.068 0.548 1.348  3.876 0.737 0.876 1.490 

d15 2 3 3.635 0.737 0.635 1.125  4.033 0.782 1.033 1.833 

d15 3 3 3.354 0.745 0.354 0.856  3.894 0.356 0.894 1.148 

d15 4 3 3.063 0.492 0.063 0.486  3.751 0.314 0.751 0.871 

f1 -4 -3.835 0.259 0.165 0.281  -4.636 0.258 -0.636 0.658 

f2 -3 -3.104 0.254 -0.104 0.260  -3.786 0.163 -0.786 0.778 

f3 -2 -2.032 0.047 -0.032 0.047  -2.939 0.121 -0.939 1.000 

f4 -1 -1.004 0.060 -0.004 0.059  -1.796 0.051 -0.796 0.684 

f5 0 -0.010 0.024 -0.010 0.023  0.038 1.002 0.038 0.983 

f6 -4 -2.524 1.940 1.476 4.078  -2.582 0.946 1.418 2.939 

f7 -3 -2.899 0.408 0.101 0.410  -2.627 1.468 0.373 1.578 

f8 -2 -2.047 0.183 -0.047 0.181  -2.129 0.538 -0.129 0.544 

f9 -1 -0.909 0.075 0.091 0.082  -1.109 0.075 -0.109 0.086 

f10 0 0.032 0.062 0.032 0.062  0.117 0.058 0.117 0.070 

f11 -4 -3.582 2.075 0.418 2.208  -2.749 1.961 1.251 3.486 

f12 -3 -2.526 0.440 0.474 0.656  -2.779 0.172 0.221 0.217 

f13 -2 -2.012 0.406 -0.012 0.398  -1.996 0.128 0.004 0.125 

f14 -1 -1.014 0.085 -0.014 0.083  -0.959 0.564 0.041 0.555 

f15 0 -0.037 0.638 -0.037 0.627  0.122 0.129 0.122 0.141 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE C6. Item detection and false alarm parameters. Conditions with simulated compensatory items and 

correlated skills, contrasting conjunctive versus compensatory item condensation rules 

  
Condition 20. Beta-Bernoulli  

distributed ŭj 
 

Condition 8. ŭj defined as 

Uniform distributed  

Par Value APM Var  Bias MSE 
 

APM Var  Bias MSE 

d1 5 5.0567 0.2178 0.0567 0.2167  5.7826 0.1434 0.7826 0.7530 

d2 4 4.0719 0.0799 0.0719 0.0834  5.0990 0.0648 1.0990 1.2713 

d3 3 3.0329 0.0429 0.0329 0.0431  4.2733 0.0929 1.2733 1.7123 

d4 2 2.0438 0.0380 0.0438 0.0392  3.6512 0.0483 1.6512 2.7739 

d5 1 1 1.0868 0.1600 0.0868 0.1644  1.6967 0.1814 0.6967 0.6632 

d5 2 1 1.0677 0.1351 0.0677 0.1370  1.9673 0.1518 0.9673 1.0843 

d6 1 1 1.6663 0.2596 0.6663 0.6984  1.6300 0.2400 0.6300 0.6321 

d6 3 1 1.7668 0.1325 0.7668 0.7179  1.8623 0.2717 0.8623 1.0098 

d7 1 2 2.1042 0.0834 0.1042 0.0926  2.4602 0.2597 0.4602 0.4663 

d7 4 2 2.1071 0.0713 0.1071 0.0814  2.9897 0.3001 0.9897 1.2736 

d8 2 3 3.0183 0.1042 0.0183 0.1025  3.9562 0.1845 0.9562 1.0952 

d8 3 3 2.9656 0.1011 -0.0344 0.1003  4.0456 0.1559 1.0456 1.2461 

d9 2 4 4.3202 0.7225 0.3202 0.8105  5.1068 0.6068 1.1068 1.8198 

d9 4 4 4.2534 0.3453 0.2534 0.4026  5.1115 0.3060 1.1115 1.5353 

d10 3 5 4.9791 0.4762 -0.0209 0.4671  5.4418 0.3255 0.4418 0.5141 

d10 4 5 5.2225 0.5606 0.2225 0.5989  5.6538 0.3283 0.6538 0.7491 

d11 1 1 1.4440 0.3982 0.4440 0.5873  1.8660 0.3151 0.8660 1.0587 

d11 2 1 1.4277 0.4107 0.4277 0.5854  1.9582 0.4269 0.9582 1.3364 

d11 3 1 1.4922 0.4808 0.4922 0.7134  2.1739 0.2432 1.1739 1.6164 

d12 1 5 5.0389 1.0500 0.0389 1.0305  5.4685 0.6707 0.4685 0.8768 

d12 2 5 4.9661 0.6817 -0.0339 0.6692  5.4657 0.4990 0.4657 0.7058 

d12 4 5 4.9903 0.3086 -0.0097 0.3025  5.4985 0.2645 0.4985 0.5077 

d13 1 4 3.9651 0.5666 -0.0349 0.5565  4.8214 0.9466 0.8214 1.6023 

d13 3 4 4.2279 0.2878 0.2279 0.3339  4.7244 0.6796 0.7244 1.1907 

d13 4 4 4.1665 0.2358 0.1665 0.2588  4.8505 0.4080 0.8505 1.1232 

d14 2 2 2.1078 0.1526 0.1078 0.1611  3.0879 0.3677 1.0879 1.5438 

d14 3 2 2.0697 0.1329 0.0697 0.1351  3.1749 0.2115 1.1749 1.5877 

d14 4 2 2.1193 0.0874 0.1193 0.0998  3.1255 0.2525 1.1255 1.5142 

d15 1 3 3.1576 0.9830 0.1576 0.9882  3.6183 0.8357 0.6183 1.2013 

d15 2 3 3.6146 0.8696 0.6146 1.2299  4.0680 0.7036 1.0680 1.8302 

d15 3 3 3.5334 0.6788 0.5334 0.9498  3.9278 0.8012 0.9278 1.6460 

d15 4 3 3.6278 0.8657 0.6278 1.2426  3.9662 0.5162 0.9662 1.4395 

f1 -4 -4.0866 0.1569 -0.0866 0.1612  -4.7007 0.1316 -0.7007 0.6200 

f2 -3 -3.0662 0.0680 -0.0662 0.0710  -3.8234 0.0710 -0.8234 0.7476 

f3 -2 -1.9945 0.0318 0.0055 0.0312  -2.8150 0.0577 -0.8150 0.7208 

f4 -1 -1.0353 0.0169 -0.0353 0.0178  -1.8300 0.0350 -0.8300 0.7233 

f5 0 -0.0134 0.0107 -0.0134 0.0106  0.1502 1.9839 0.1502 1.9668 

f6 -4 -2.3972 1.4312 1.6028 3.9716  -3.0707 0.8126 0.9293 1.6600 

f7 -3 -2.6472 0.9795 0.3528 1.0844  -2.8524 1.4081 0.1476 1.4017 

f8 -2 -1.8808 0.0957 0.1192 0.1080  -2.2937 0.2033 -0.2937 0.2855 

f9 -1 -0.9908 0.0185 0.0092 0.0182  -1.1099 0.1358 -0.1099 0.1451 

f10 0 0.0235 0.0159 0.0235 0.0162  0.0180 0.0447 0.0180 0.0441 

f11 -4 -3.1112 2.8497 0.8888 3.5827  -2.9209 1.4192 1.0791 2.5553 

f12 -3 -2.9485 0.0993 0.0515 0.0999  -3.1990 0.0563 -0.1990 0.0948 

f13 -2 -1.9931 0.0297 0.0069 0.0291  -2.2431 0.0817 -0.2431 0.1392 

f14 -1 -1.0101 0.0163 -0.0101 0.0161  -0.9508 0.4207 0.0492 0.4147 

f15 0 -0.0156 0.0144 -0.0156 0.0144  0.0880 0.0833 0.0880 0.0894 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE C7. Item detection and false alarm parameters. Conditions with simulated mixed 

conjunctive and disjunctive items and independent skills. 

  
Condition 21. ŭj defined as  

Beta-Bernoulli distributed  
 

Condition 9. Uniform  

distributed ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 4.936 0.502 -0.064 0.496  5.838 0.441 0.838 1.135 

d2 4 4.354 0.349 0.354 0.467  5.397 0.278 1.397 2.223 

d3 3 3.190 0.273 0.190 0.304  4.420 0.230 1.420 2.243 

d4 2 2.087 0.056 0.087 0.063  3.700 0.086 1.700 2.975 

d5 1 1.214 0.154 0.214 0.197  1.727 0.230 0.727 0.754 

d6 1 1.604 0.076 0.604 0.440  1.624 0.150 0.624 0.536 

d7 2 1.961 0.077 -0.039 0.077  2.835 0.189 0.835 0.883 

d8 3 3.041 0.454 0.041 0.447  3.744 0.228 0.744 0.777 

d9 4 4.605 0.685 0.605 1.037  4.950 0.336 0.950 1.232 

d10 5 5.192 0.646 0.192 0.670  6.216 0.475 1.216 1.944 

d11 1 1.633 0.072 0.633 0.472  1.841 0.248 0.841 0.951 

d12 5 4.547 0.450 -0.453 0.646  5.357 0.295 0.357 0.417 

d13 4 4.695 0.657 0.695 1.127  5.390 0.530 1.390 2.451 

d14 2 2.204 0.238 0.204 0.275  2.903 0.188 0.903 1.000 

d15 3 3.543 0.719 0.543 0.999  4.013 0.589 1.013 1.604 

f1 -4 -3.780 0.158 0.220 0.204  -4.303 0.135 -0.303 0.224 

f2 -3 -3.159 0.280 -0.159 0.300  -3.935 0.166 -0.935 1.038 

f3 -2 -2.180 0.287 -0.180 0.314  -2.962 0.145 -0.962 1.067 

f4 -1 -1.047 0.039 -0.047 0.041  -1.869 0.075 -0.869 0.829 

f5 0 0.005 0.005 0.005 0.005  0.145 1.020 0.145 1.020 

f6 -4 -3.102 1.014 0.898 1.799  -3.311 0.517 0.689 0.981 

f7 -3 -2.956 0.039 0.044 0.040  -3.454 0.311 -0.454 0.510 

f8 -2 -2.003 0.546 -0.003 0.535  -2.102 0.767 -0.102 0.762 

f9 -1 -0.959 0.016 0.041 0.017  -1.115 0.369 -0.115 0.375 

f10 0 0.032 0.081 0.032 0.080  0.018 0.205 0.018 0.201 

f11 -4 -2.895 0.948 1.105 2.151  -3.803 0.609 0.197 0.636 

f12 -3 -2.585 0.413 0.415 0.577  -2.470 0.541 0.530 0.811 

f13 -2 -1.999 0.022 0.001 0.022  -2.388 0.126 -0.388 0.275 

f14 -1 -1.193 0.232 -0.193 0.265  -1.218 0.748 -0.218 0.781 

f15 0 0.016 0.003 0.016 0.003  -0.182 0.806 -0.182 0.822 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE C8. Item detection and false alarm parameters. Conditions with simulated mixed 

conjunctive and disjunctive items and correlated skills. 

  
Condition 22. Beta-Bernoulli  

distributed ŭj 
 

Condition 10. Uniform  

distributed ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 5.2252 0.3342 0.2252 0.3782  6.0314 0.1653 1.0314 1.2258 

d2 4 4.0980 0.1307 0.0980 0.1377  5.1280 0.1197 1.1280 1.3897 

d3 3 3.1258 0.1284 0.1258 0.1417  4.3790 0.0830 1.3790 1.9830 

d4 2 2.0639 0.0185 0.0639 0.0222  3.6596 0.0598 1.6596 2.8128 

d5 1 1.0315 0.0290 0.0315 0.0294  1.6586 0.0904 0.6586 0.5223 

d6 1 1.4643 0.1141 0.4643 0.3274  1.4918 0.1639 0.4918 0.4025 

d7 2 2.0469 0.0734 0.0469 0.0741  2.7044 0.1189 0.7044 0.6128 

d8 3 2.9015 0.0765 -0.0985 0.0847  3.7823 0.1442 0.7823 0.7533 

d9 4 4.1608 0.2441 0.1608 0.2650  5.0537 0.2246 1.0537 1.3303 

d10 5 5.0922 1.2618 0.0922 1.2451  6.0413 0.3263 1.0413 1.4041 

d11 1 1.4305 0.1716 0.4305 0.3535  1.6940 0.1805 0.6940 0.6585 

d12 5 5.2577 0.1790 0.2577 0.2418  5.7808 0.2439 0.7808 0.8488 

d13 4 4.1056 0.0983 0.1056 0.1075  4.9197 0.1276 0.9197 0.9709 

d14 2 2.0649 0.0447 0.0649 0.0480  2.8225 0.0980 0.8225 0.7725 

d15 3 3.1012 0.3221 0.1012 0.3259  4.1939 0.2459 1.1939 1.6664 

f1 -4 -4.2319 0.3187 -0.2319 0.3661  -4.7975 0.1888 -0.7975 0.8211 

f2 -3 -3.1211 0.0979 -0.1211 0.1106  -3.8112 0.0828 -0.8112 0.7393 

f3 -2 -2.1237 0.1522 -0.1237 0.1644  -2.9053 0.0523 -0.9053 0.8709 

f4 -1 -1.0237 0.0081 -0.0237 0.0085  -1.8236 0.0320 -0.8236 0.7097 

f5 0 -0.0059 0.0067 -0.0059 0.0066  -0.2511 1.9530 -0.2511 1.9770 

f6 -4 -3.1361 1.0898 0.8639 1.8143  -3.4779 0.6573 0.5221 0.9168 

f7 -3 -3.0569 0.0449 -0.0569 0.0472  -3.2993 0.4277 -0.2993 0.5087 

f8 -2 -1.6592 0.5767 0.3408 0.6814  -2.2752 0.5945 -0.2752 0.6583 

f9 -1 -0.9956 0.0130 0.0044 0.0127  -1.1285 0.0828 -0.1285 0.0976 

f10 0 -0.0238 0.0131 -0.0238 0.0135  0.0941 0.2195 0.0941 0.2240 

f11 -4 -3.0295 1.2009 0.9705 2.1187  -3.6049 0.4840 0.3951 0.6305 

f12 -3 -3.2800 0.1857 -0.2800 0.2604  -3.4234 0.3197 -0.4234 0.4926 

f13 -2 -1.9999 0.0152 0.0001 0.0149  -2.3362 0.2146 -0.3362 0.3233 

f14 -1 -1.0690 0.0325 -0.0690 0.0367  -1.2493 1.1154 -0.2493 1.1553 

f15 0 0.0339 0.0053 0.0339 0.0064  0.0572 0.3120 0.0572 0.3090 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 

 

 

 

 

 

 

 



 

135 
 

TABLE C9. Item detection and false alarm parameters. Conditions with simulated mixed 

conjunctive and compensatory items and independent skills. 

    
Condition 23. Beta-Bernoulli  

distributed ŭj 
  

Condition 11. Uniform  

distributed ŭj 

Par Value APM Var Bias MSE   APM Var Bias MSE 

d1 5 5.039 0.496 0.039 0.487 
 

5.974 0.24 0.974 1.183 

d2 4 4.129 0.354 0.129 0.364 
 

5.226 0.168 1.226 1.666 

d3 3 3.172 0.194 0.172 0.22 
 

4.409 0.121 1.409 2.104 

d4 2 2.047 0.053 0.047 0.054 
 

3.747 0.062 1.747 3.113 

d5 1 1.216 0.152 0.216 0.196 
 

1.269 0.33 0.269 0.396 

d6 1 1 1.802 0.228 0.802 0.866 
 

1.728 0.153 0.728 0.68 

d6 3 1 1.87 0.174 0.87 0.927 
 

1.827 0.301 0.827 0.98 

d7 2 2.144 0.078 0.144 0.097 
 

2.111 0.129 0.111 0.139 

d8 2 3 3.079 0.224 0.079 0.226 
 

4.031 0.206 1.031 1.265 

d8 3 3 3.059 0.226 0.059 0.225 
 

3.995 0.282 0.995 1.267 

d9 4 4.619 0.383 0.619 0.758 
 

4.703 0.49 0.703 0.975 

d10 3 5 4.94 0.498 -0.06 0.491 
 

5.529 0.396 0.529 0.668 

d10 4 5 5.13 0.395 0.13 0.404 
 

5.579 0.404 0.579 0.732 

d11 1 1.093 0.193 0.093 0.198 
 

0.985 0.117 -0.015 0.114 

d12 1 5 4.989 0.415 -0.011 0.407 
 

5.205 0.47 0.205 0.503 

d12 2 5 4.388 0.487 -0.612 0.851 
 

4.904 0.49 -0.096 0.489 

d12 4 5 4.213 0.275 -0.787 0.89 
 

4.76 0.318 -0.24 0.37 

d13 4 4.325 0.761 0.325 0.852 
 

4.753 0.542 0.753 1.098 

d14 2 2 2.072 0.173 0.072 0.174 
 

3.196 0.211 1.196 1.638 

d14 3 2 2.113 0.078 0.113 0.09 
 

3.194 0.206 1.194 1.627 

d14 4 2 2.125 0.093 0.125 0.106 
 

3.117 0.103 1.117 1.347 

d15 3 3.558 0.608 0.558 0.907 
 

3.727 0.465 0.727 0.984 

f1 -4 -3.762 0.215 0.238 0.267 
 

-4.265 0.184 -0.265 0.25 

f2 -3 -3.083 0.426 -0.083 0.424 
 

-3.825 0.111 -0.825 0.789 

f3 -2 -2.147 0.141 -0.147 0.16 
 

-2.955 0.11 -0.955 1.02 

f4 -1 -1.022 0.029 -0.022 0.029 
 

-1.847 0.075 -0.847 0.791 

f5 0 0.015 0.004 0.015 0.004 
 

-0.24 0.365 -0.24 0.415 

f6 -4 -2.103 1.827 1.897 5.389 
 

-2.758 1.087 1.242 2.608 

f7 -3 -2.51 0.641 0.49 0.869 
 

-3.162 0.387 -0.162 0.406 

f8 -2 -2.014 0.31 -0.014 0.304 
 

-2.227 0.811 -0.227 0.846 

f9 -1 -1 0.012 0 0.012 
 

-1.282 0.106 -0.282 0.183 

f10 0 0.019 0.069 0.019 0.068 
 

0.119 0.095 0.119 0.107 

f11 -4 -3.815 0.213 0.185 0.242 
 

-4.473 0.121 -0.473 0.342 

f12 -3 -2.093 0.168 0.907 0.988 
 

-2.121 0.198 0.879 0.967 

f13 -2 -1.834 0.208 0.166 0.231 
 

-2.449 0.104 -0.449 0.303 

f14 -1 -1.072 0.074 -0.072 0.077 
 

-0.954 1.172 0.046 1.151 

f15 0 0.007 0.007 0.007 0.007   -0.151 0.016 -0.151 0.039 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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TABLE C10. Item detection and false alarm parameters. Conditions with simulated mixed 

conjunctive and compensatory items and correlated skills. 

  
Condition 24. Beta-Bernoulli  

distributed ŭj 
 

Condition 12. Uniform  

distributed ŭj 

Par Value APM Var Bias MSE 
 

APM Var Bias MSE 

d1 5 5.4303 0.2059 0.4303 0.3870  6.2123 0.2143 1.2123 1.6797 

d2 4 4.0632 0.0858 0.0632 0.0880  5.1219 0.0646 1.1219 1.3221 

d3 3 3.0803 0.0582 0.0803 0.0635  4.2863 0.0652 1.2863 1.7184 

d4 2 2.0346 0.0273 0.0346 0.0280  3.6721 0.0522 1.6721 2.8470 

d5 1 1.0717 0.0685 0.0717 0.0722  1.0482 0.0511 0.0482 0.0524 

d6 1 1 1.7543 0.2232 0.7543 0.7877  1.7792 0.1435 0.7792 0.7477 

d6 3 1 1.8019 0.1859 0.8019 0.8252  1.8654 0.1761 0.8654 0.9214 

d7 2 2.0532 0.0493 0.0532 0.0511  1.9567 0.0972 -0.0433 0.0971 

d8 2 3 3.1351 0.1199 0.1351 0.1357  4.0811 0.2745 1.0811 1.4378 

d8 3 3 3.0159 0.0896 0.0159 0.0880  3.9808 0.2220 0.9808 1.1797 

d9 4 4.0006 0.2594 0.0006 0.2542  4.5880 0.2670 0.5880 0.6074 

d10 3 5 4.4814 0.4903 -0.5186 0.7495  4.9890 0.5032 -0.0110 0.4933 

d10 4 5 4.8347 0.4945 -0.1653 0.5120  5.6547 0.2322 0.6547 0.6562 

d11 1 1.0440 0.1321 0.0440 0.1314  0.9100 0.1201 -0.0900 0.1258 

d12 1 5 4.7177 0.5034 -0.2823 0.5730  5.2369 0.4970 0.2369 0.5432 

d12 2 5 5.0059 0.6839 0.0059 0.6702  5.6552 0.5813 0.6552 0.9990 

d12 4 5 5.2080 0.4606 0.2080 0.4946  5.7206 0.4685 0.7206 0.9785 

d13 4 4.1238 0.0795 0.1238 0.0932  4.0024 0.1117 0.0024 0.1095 

d14 2 2 2.0898 0.2797 0.0898 0.2822  3.1463 0.4436 1.1463 1.7487 

d14 3 2 2.0896 0.2037 0.0896 0.2077  3.0993 0.4833 1.0993 1.6820 

d14 4 2 2.2054 0.1041 0.2054 0.1443  3.2747 0.3096 1.2747 1.9282 

d15 3 3.2677 0.3319 0.2677 0.3970  3.2628 0.3869 0.2628 0.4482 

f1 -4 -4.4294 0.2026 -0.4294 0.3829  -4.9479 0.1588 -0.9479 1.0542 

f2 -3 -3.0857 0.0882 -0.0857 0.0938  -3.7836 0.0558 -0.7836 0.6687 

f3 -2 -2.0697 0.0510 -0.0697 0.0548  -2.8470 0.0651 -0.8470 0.7812 

f4 -1 -0.9992 0.0199 0.0008 0.0195  -1.8029 0.0350 -0.8029 0.6789 

f5 0 0.0068 0.0053 0.0068 0.0052  -0.3537 1.3859 -0.3537 1.4833 

f6 -4 -2.2090 1.3303 1.7910 4.5115  -2.6470 0.6878 1.3530 2.5046 

f7 -3 -2.7692 0.3236 0.2308 0.3704  -3.0315 0.6947 -0.0315 0.6818 

f8 -2 -1.9757 0.2615 0.0243 0.2568  -2.2302 0.1669 -0.2302 0.2166 

f9 -1 -0.9437 0.0340 0.0563 0.0365  -1.2096 0.2857 -0.2096 0.3240 

f10 0 0.0179 0.0177 0.0179 0.0176  0.0784 0.0551 0.0784 0.0601 

f11 -4 -3.8870 0.1693 0.1130 0.1787  -4.5007 0.1583 -0.5007 0.4058 

f12 -3 -2.9511 0.0925 0.0489 0.0930  -3.1138 0.0963 -0.1138 0.1073 

f13 -2 -1.9928 0.0114 0.0072 0.0112  -2.2685 0.1339 -0.2685 0.2033 

f14 -1 -1.0607 0.0281 -0.0607 0.0312  -1.0189 0.5955 -0.0189 0.5840 

f15 0 0.0359 0.0066 0.0359 0.0077  -0.0655 0.0101 -0.0655 0.0142 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 
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Model parameter recovery for conditions 25, 26, and 27 

 

TABLE C11. Latent class size parameter estimates for conditions 25, 26, and 27 

Par Value APM Var Bias MSE   APM Var Bias MSE 

  
Condition 25:  

Conjunctive data.  
Condition 26:  

Compensatory data. 

p(Ŭ1) 0.269 0.261 0.0007 -0.0014 0.0006 
 

0.265 0.0007 -0.0015 0.0006 

p(Ŭ2) 0.419 0.408 0.0005 -0.0014 0.0005 
 

0.415 0.0005 -0.0013 0.0005 

p(Ŭ3) 0.574 0.551 0.0002 -0.0055 0.0002 
 

0.562 0.0002 -0.0050 0.0002 

p(Ŭ4) 0.663 0.645 0.0002 -0.0046 0.0003   0.652 0.0002 -0.0045 0.0003 

  Condition 27:       

  Compensatory data.      

p(Ŭ1) 0.269 0.228 0.0007 -0.0405 0.0033      

p(Ŭ2) 0.419 0.396 0.0002 -0.0227 0.0010      

p(Ŭ3) 0.574 0.568 0.0010 -0.0068 0.0024      

p(Ŭ4) 0.663 0.634 0.0019 -0.0292 0.0055      

Note: Par is the latent class size parameter, APM is the average posterior mean across conditions, Var is the 

estimator variance across replications, Bias is the estimator bias across replications, MSE is the estimator mean 

squared error. 40,000 iterations and 20,000 burn-ins were used with OpenBUGS and R. 
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TABLE C12. Item detection and false alarm parameter estimates for condition 25  

Par Value APM Var  Bias MSE   Par Value APM Var Bias MSE 

d1 5 28.89 61.40 21.76 505.20 
 

f1 -4 -23.54 52.79 -16.78 309.62 

d2 4 29.32 109.58 26.07 718.11 
 

f2 -3 -22.28 66.93 -19.33 400.28 

d3 3 27.55 86.05 25.43 653.71 
 

f3 -2 -17.51 41.73 -16.68 287.91 

d4 2 21.97 62.42 24.36 596.00 
 

f4 -1 -9.82 20.62 -11.78 143.68 

d5 1 2.55 59.53 6.58 75.15 
 

f5 0 -2.19 12.61 -0.21 8.63 

d6 1 1.86 1.18 0.37 1.08 
 

f6 -4 -5.86 94.05 0.62 88.26 

d7 2 2.60 20.38 2.13 22.31 
 

f7 -3 -4.40 65.11 0.15 62.36 

d8 3 4.93 386.97 22.50 466.30 
 

f8 -2 -1.30 108.35 6.09 116.18 

d9 4 15.78 89.43 22.29 450.99 
 

f9 -1 3.75 63.56 6.70 96.17 

d10 5 26.37 1.39 21.21 408.09 
 

f10 0 -1.48 336.01 -13.96 372.20 

d11 1 0.98 0.13 -0.27 0.14 
 

f11 -4 -4.56 9.70 -0.17 9.66 

d12 5 18.81 40.28 21.17 406.41 
 

f12 -3 -4.40 231.44 -1.08 230.45 

d13 4 17.61 57.86 22.27 450.14 
 

f13 -2 -2.26 162.71 1.47 162.04 

d14 2 1.89 541.87 24.33 536.79 
 

f14 -1 -1.24 47.43 0.23 47.25 

d15 3 22.19 9.42 23.36 495.40   f15 0 -0.21 169.12 2.55 168.71 

Note: Par is the item parameter, APM is the average posterior mean across conditions, Var is the estimator variance 

across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error. 40,000 

iterations and 20,000 burn-ins were used with OpenBUGS and R. 
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TABLE C13. Item detection and false alarm parameter estimates for condition 26  

Par Value APM Var  Bias MSE 
 

Par Value APM Var Bias MSE 

d1 5 26.23 54.36 21.23 505.20 
 

f1 -4 -20.34 42.57 -16.34 309.62 

d2 4 28.68 109.17 24.68 718.11 
 

f2 -3 -21.28 65.94 -18.28 400.28 

d3 3 26.84 85.53 23.84 653.71 
 

f3 -2 -17.69 41.70 -15.69 287.91 

d4 2 25.34 51.05 23.34 596.00 
 

f4 -1 -12.39 14.04 -11.39 143.68 

d5 1 1 17.72 39.05 16.72 318.71 
 

f5 0 -1.23 634.53 -1.23 636.03 

d5 2 1 19.96 65.30 18.96 424.63 
  

     d6 1 1 11.65 44.35 10.65 157.78 
 

f6 -4 -8.52 431.92 -4.52 452.34 

d6 3 1 12.68 63.00 11.68 199.37 
  

     d7 1 2 16.75 82.65 14.75 300.25 
 

f7 -3 2.25 451.43 5.25 478.95 

d7 4 2 17.67 91.52 15.67 336.98 
  

     d8 2 3 18.73 74.80 15.73 322.29 
 

f8 -2 -7.90 496.32 -5.90 531.18 

d8 3 3 19.91 89.29 16.91 375.34 
  

     d9 2 4 22.08 46.23 18.08 373.00 
 

f9 -1 -14.94 245.79 -13.94 440.00 

d9 4 4 19.86 56.99 15.86 308.49 
  

     d10 3 5 27.55 42.41 22.55 550.76 
 

f10 0 9.62 97.66 9.62 190.20 

d10 4 5 29.68 13.81 24.68 622.95 
  

     d11 1 1 19.92 73.03 18.92 431.14 
 

f11 -4 -0.64 516.59 3.36 527.90 

d11 2 1 19.69 53.83 18.69 403.24 
  

     d11 3 1 21.73 66.90 20.73 496.59 
  

     d12 1 5 28.09 50.44 23.09 583.49 
 

f12 -3 -7.71 474.88 -4.71 497.03 

d12 2 5 21.56 61.80 16.56 336.08 
  

     d12 4 5 20.73 83.59 15.73 330.92 
  

     d13 1 4 26.05 72.31 22.05 558.68 
 

f13 -2 0.23 587.25 2.23 592.22 

d13 3 4 19.13 63.17 15.13 292.10 
  

     d13 4 4 18.73 58.31 14.73 275.33 
  

     d14 2 2 21.11 57.11 19.11 422.24 
 

f14 -1 -10.49 873.27 -9.49 963.38 

d14 3 2 20.37 53.32 18.37 390.72 
  

     d14 4 2 20.92 46.10 18.92 404.17 
  

     d15 1 3 25.99 66.79 22.99 595.30 
 

f15 0 -4.51 631.34 -4.51 651.69 

d15 2 3 24.61 103.07 21.61 570.21 
       

d15 3 3 17.58 66.95 14.58 279.48 
       

d15 4 3 20.11 73.68 17.11 366.27 
       

Note: Par is the item parameter, APM is the average posterior mean across conditions, Var is the estimator variance 

across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error. 40,000 

iterations and 20,000 burn-ins were used with OpenBUGS and R. 
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TABLE C14. Item detection and false alarm parameter estimates for condition 27 

Par Value APM Var  Bias MSE   Par Value APM Var Bias MSE 

d1 5 25.92 24.69 20.92 498.24 
 

f1 -4 -16.10 18.31 -12.10 191.25 

d2 4 25.34 32.58 21.34 535.15 
 

f2 -3 -18.03 17.34 -15.03 268.45 

d3 3 23.95 33.93 20.95 521.90 
 

f3 -2 -15.75 16.39 -13.75 229.12 

d4 2 23.88 10.74 21.88 504.93 
 

f4 -1 -11.02 3.53 -10.02 109.15 

d5 1 2.61 4.15 1.61 12.74 
 

f5 0 -0.08 0.07 -0.08 0.17 

d6 1 1 12.13 13.35 11.13 156.50 
 

f6 -4 -6.10 222.36 -2.10 549.21 

d6 3 1 15.15 15.94 14.15 239.31 
       

d7 2 2.05 0.56 0.05 1.38 
 

f7 -3 -2.11 8.02 0.89 20.43 

d8 2 3 22.06 13.80 19.06 397.07 
 

f8 -2 -6.23 237.91 -4.23 600.75 

d8 3 3 23.26 19.94 20.26 459.23 
       

d9 4 25.29 10.41 21.29 478.83 
 

f9 -1 4.43 65.75 5.43 190.58 

d10 3 5 28.46 3.09 23.46 558.08 
 

f10 0 2.72 54.33 2.72 140.54 

d10 4 5 29.64 13.10 24.64 639.31 
       

d11 1 0.88 0.02 -0.12 0.08 
 

f11 -4 -3.98 3.02 0.02 7.40 

d12 1 5 32.02 10.57 27.02 755.79 
 

f12 -3 -12.24 136.68 -9.24 420.32 

d12 2 5 24.48 27.65 19.48 447.32 
       

d12 4 5 25.94 17.19 20.94 480.66 
       

d13 4 24.92 12.17 20.92 467.54 
 

f13 -2 -2.34 0.04 -0.34 0.22 

d14 2 2 20.63 11.31 18.63 374.68 
 

f14 -1 -12.41 387.44 -11.41 1079.41 

d14 3 2 22.45 7.49 20.45 436.43 
       

d14 4 2 21.04 9.27 19.04 385.28 
       

d15 3 26.36 0.29 23.36 546.18   f15 0 -0.28 0.21 -0.28 0.59 

Note: Par is the item parameter, APM is the average posterior mean across conditions, Var is the estimator variance 

across replications, Bias is the estimator bias across replications, MSE is the estimator mean squared error. 40,000 

iterations and 20,000 burn-ins were used with OpenBUGS and R. 
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Item parameter recovery conditional on ŭj for conditions 13 to 24 

TABLE C15. Item detection and false alarm parameter estimates conditional on ŭj. Conditions 

with simulated conjunctive items and independent skills  

    Condition 13   Condition 14 

Par Value APM Var Bias MSE   APM Var Bias MSE 

d1 5 4.989 0.3287 -0.0106 0.3222  4.748 0.6417 -0.2523 0.6926 

d2 4 4.197 0.2989 0.1970 0.3318  3.809 0.2487 -0.1913 0.2803 

d3 3 3.037 0.3004 0.0374 0.2958  2.924 0.3382 -0.0760 0.3373 

d4 2 1.945 0.1444 -0.0547 0.1445  2.051 0.2255 0.0506 0.2235 

d5 1 1.058 0.0798 0.0584 0.0816  1.172 0.1254 0.1725 0.1526 

d6 1 1.642 0.1307 0.6417 0.5398  1.353 0.2027 0.3526 0.3230 

d7 2 2.102 0.1293 0.1015 0.1370  2.110 0.2657 0.0259 0.2540 

d8 3 2.998 0.2496 -0.0622 0.2449  3.025 1.2336 -0.3380 1.1914 

d9 4 4.273 0.4468 0.2733 0.5125  4.322 0.5292 0.3215 0.6220 

d10 5 4.649 6.5936 -1.3737 7.3027  4.351 10.2412 -2.6503 13.0545 

d11 1 1.700 0.1032 0.7000 0.5912  1.273 0.1803 0.2730 0.2513 

d12 5 5.371 0.6594 0.3706 0.7836  5.126 0.7712 0.1257 0.7716 

d13 4 4.297 0.5605 0.2969 0.6374  4.532 6.7746 -0.8273 5.4746 

d14 2 2.046 0.1111 0.0459 0.1110  2.056 0.0843 0.0559 0.0857 

d15 3 3.477 1.0592 0.4771 1.2656  3.404 1.0573 0.3361 1.1444 

f1 -4 -4.019 0.3142 -0.0186 0.3082 

 

-3.847 0.3668 0.1528 0.3828 

f2 -3 -3.204 0.2684 -0.2037 0.3046 

 

-2.814 0.2032 0.1860 0.2337 

f3 -2 -2.053 0.2696 -0.0532 0.2670 

 

-2.036 0.2970 -0.0358 0.2923 

f4 -1 -0.959 0.0992 0.0413 0.0989 

 

-1.147 0.1836 -0.1471 0.2016 

f5 0 0.011 0.0051 0.0111 0.0051 

 

0.002 0.0051 0.0020 0.0050 

f6 -4 -2.487 1.2107 1.5127 3.4748 

 

-3.089 0.5797 0.9111 1.3983 

f7 -3 -3.086 0.0452 -0.0865 0.0518 

 

-2.536 0.9202 0.5657 1.2116 

f8 -2 -2.036 0.1030 0.0047 0.0993 

 

-1.954 0.4965 0.2805 0.5102 

f9 -1 -1.012 0.0135 -0.0117 0.0134 

 

-1.020 0.0090 -0.0204 0.0092 

f10 0 -0.120 0.3152 -0.0933 0.3169 

 

-0.289 2.1238 -0.1561 2.0880 

f11 -4 -2.737 1.2837 1.2625 2.8519 

 

-3.759 0.3381 0.2414 0.3897 

f12 -3 -2.995 0.0415 0.0055 0.0407 

 

-2.871 0.6174 0.1295 0.6218 

f13 -2 -1.993 0.0177 0.0075 0.0174 

 

-2.043 1.2855 0.5698 1.2087 

f14 -1 -0.999 0.0067 0.0009 0.0066 

 

-1.023 0.0076 -0.0232 0.0080 

f15 0 0.008 0.0040 0.0079 0.0039 

 

-0.014 0.0051 -0.0140 0.0052 

Note: APM is the average posterior mean across conditions, Var is the estimator variance across replications, Bias is 

the estimator bias across replications, MSE is the estimator mean squared error. 40,000 iterations and 20,000 burn-

ins were used with OpenBUGS and R. 

 

 




