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Abstract 
,....~~ 

Traub, Wasilkowski, and Wo£niakowski have shown how un-

certainty can be defined and analyzed without a norm or metric. 

Thier theory is based on two natural and non-restrictive axioms. 

We show that these axioms induce a family of pseudometrics, and that 

balls of radius £ are (roughly) the E-approximations to the 

solution. In addition, we show that a family of pseudometrics is 

necessary, even for the problem of computing x such that \f(x) \ < E , 

where f is a real function. 



In two recent monographs ([3] ,[4]), Traub and his colleagues 

have studied the optimal solution of problems which are solved 

approximately, that is, where there is uncertainty in the answer. 

In [4], uncertainty was measured by a norm. For some problems, 

this is not an appropriate or natural assumption. Therefore, in 

[3] it is shown how uncertainty can be introduced via two natural 

and non-restrictive axioms. 

In a private communication, Traub asked about the strength of 

these axioms. That is, do the axioms generate any interesting 

structures? In Section 2 of this paper, we show that these axioms 

induce a family of pseudometrics. Moreover, we show that the balls 

of radius E generated by this family of pseudometrics are (roughly 

speaking) the E-approximations to the solution. 

Is a family of pseudometrics necessary? We give an affirmative 

answer in Section 3, using the problem of computing x such that 

If(x) I < E ,where f is a real function. 
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We first recall the definition of a solution operator from [3]. 

Let F and G be sets, and let 2G denote the power set of G, 

i.e., the class of all subsets of G. Let m+ denote the non

negative real numbers. If 8 : F x m + - 2G is an operator such 

that 

(2.1) V f E F, 8(f,0) :f:. 0 

and 

(2. 2) V f E F, 

then 8 is said to be a solution operator, and 8(f,E) is said to 

be the set of E-approximations to the (exact) solution 8(f,0). 

Note that 8(f,E) is a set. This formulation allows the exact 

solution 8(f,0) to be a set, i.e., a problem may have multiple 

solutions. In addition, 8(f,E) a set means that we are willing 

to accept any element of 8(f,E) as an E-approximation. These 

axioms are very natural: the first says that every problem has a 

solution, while the second says that increasing the uncertainty 

cannot decrease the family of E-approximations. 

In order to clarify these notions we give three examples. 

Example 2.1. Let F be a set and let G be a normed linear 

space. Let 8 : F - G be an operator. Define 8 : F x m+ -0 2G 

by 

8 ( f ,E) = [g E G : U Sf - g II .s. E} • 

Then 8 is a solution operator, and g EGis an E-approximation 
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to Sf precisely when Hg - sfH < E. 

studied in [4].) 

(This is the setting extensively 

Example 2.2. For a continuous function f JR .... lR, let 

Z(f):= [x EJR : f(x) = O} 

denote the zeroset of f. Now let 

F = [f : lR -JRlf is continuous and Z(f) ~ 0}, 

choose G = lR, and define S F x JR+ - 2G by 

(2. 3) S(f,&):= [x ElR I f (x) I ~ d. 

Then S is a solution operator, and x E S(f,E) precisely when 

If(x) I ~ E, i.e., the residual of f at x is at most E. 

Before introducing the last example, we recall that a pseudo-

metric d 

(2.4) 

on G is a map 

d(g,g) = 0 

d(gl,g2) = d(g2,gl) 

+ d:GxG .... JR 

d(gl,g3) < d(gl,g2) + d(g2,g3) 

satisfying 

v g E G, 

V gl,g2 E G, 

V gl,g2,g3 E G. 

(This terminology is standard in topology, see [2, pg. 198]. However, 

Collatz [1, pg. 21] refers to such a map as a "quas imetric," letting 

"pseudometric" refer to another concept entirely [1, pg. 51].) If 

d is a pseudometric on G, the set 

B(g,d,d:= [x E G : d(x,g) ~ E} 

is called the d-ball of radius ~ centered at g. 
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Example ~ Let F and G be sets. Let S be an F-

indexed family of pseudometrics on G. Let S : F - G be an operator. 

For f E F, choose d f E S, and define 

S (f , E) : = B (Sf, d f , E) V E > O. 

Then it is easy to see that S : F x m+ - 2G is a solution 

operator. 

We now show that, roughly speaking, Example 3 is the most 

general example of a solution operator. 

Theorem 2.1. Let F,G be sets, and let S : F x m+ - 2G 

be a solution operator. Then for any EO > 0, there is an operator 

S : F - G and a family S = [df : f E F} of pseudometrics on G 

such that 

(2.5) S(f,E) C B(Sf,df,E) C S(f,E ' ) 

for any f E F, any E E [O,E O)' and any EI E (E,E O]. 

Proof: Let f E F. For g E G, let 

Df(g):= [ E > 0 g E S(f,E)}, 

and now define d f : G x G - m+ by 

(2.6) 

where the inf of an empty set is defined to be CD, and CD - CD = O. 

We first show that d f is a pseudometric on G. Clearly, the 

first two properties in (2.4) hold for dfi we need only check the 

third (the triangle inequality). Let gl,g2,g3 E G, and let 
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Arguing by cases if necessary, it is easy to see that (2.6) and 

(2.7) yield the triangle inequality. 

We now define S : F - G to be any map such that 

Sf E S(f,O) V f E F. 

This is possible because S(f,O) ~ 0. 

We now must prove (2.5). Let f E F and E E [O,e:
O
). We 

first claim that 

Indeed, since Sf E S(f,O), we have 

so that (2.8) follows from (2.6). 

To see that S(f,e:) C B(Sf,df,e:), let g E S(f,e:). We then 

have 

inf D f (g) < e:; 

since e: < e:O' we use (2.8) to find 

and so g E B(Sf,df,e:) . 

Now let SI E (e:,e: O]· We wish to show that B(Sf,df,e:) C S(f,e: ' ). 

Let g E B(Sf,df,s) . Since e: < e: 0' we use (2.8) to find 
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( 2 • 9) 

The first part of (2.9) and the definition of infimum yield 

g E S(f,df(g,Sf) + 6) 

for all 6 > 0, no matter how small. Setting 6 = E' - E > 0, 

we then have 

g E S(f,df(g,Sf) + E' - E) 

C S(f,E + e:' - E) 

= S(f,E ' ), 

where the inclusion follows from the second part of (2.9) and the 

monotonicity condition (2.2). 

Remark 2.1. We comment on the role played by EO. It is 

possible to describe problems with 0f(g) empty for some f E F 

and g E G. (For example, take S : F - G to be any operator 

where G is not a singleton, and define S(f,E):= [Sf] V f ~ F, 

E > 0; then for any f E F, g E G with g # Sf, and E > 0, 

g ~ S(f,E), so that 0f(g) = 0.) If we were to define 

* d f (gl ,g2):= I inf Of (g2) - inf Of (gl) I , 

* -we would then find df(g,Sf) = m for such f and g. Hence, 

* d f is not a pseudometric (since the value of a pseudometric must 

be finite). 

Hence, EO is used to force d f to take finite values. It 

may be thought of as the maximal uncertainty to be tolerated, the 

motivation being that we want "good" approximations, i.e., 
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E-approximations for small values of E. 

On the other hand, if for any f E F and g E G, there is 

an E > 0 such that g E S(f,s) (i.e., the "distance" between any 

* solution and any point in G is finite), then d f is always finite. 

* Hence d f is a pseudometric, and (2.5) holds for all E > 0, with 

* d f replacing d f . 

Remark 2.2. It would be more satisfying to be able to say 

that 

(2.10) 

in the conclusion of Theorem 2.1. However, we cannot do this in 

general. To see this, let d be a pseudometric on G, where G 

is not a singleton, and let ~ : F ~ G be any operator. Define a 

solution operator S : F x m+ ~ 2G by 

{ 

[g E 

S(f,s):= [~f} 
G : d (g ,~f) < s} if 

if 

Suppose there exists S : F ~ G and a family [df 

metrics such that (2.10) holds. 

s > 0 

s = ° 
f E F} of pseudo-

We first note that S =~. Indeed, since df(Sf,Sf) = 0, 

we have 

i.e., Sf = ~f. 

Next, we show that for any f E F and g E G, 

(2.11) df(g,Sf) < d(g,Sf). 
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Indeed, let 0 > O. Since d(g,Sf) < d(g , Sf) + 0 and @f = Sf, 

we have 

g ~ S(f,d(g,Sf) + 6) = B(Sf,df,d(g,Sf) + 6), 

so that 

df(g,Sf) < d(g,Sf) + 6. 

Since 6 ) ° is arbitrary, (2.11) follows. 

We claim that there exist f E F and 9 E G such that 

(2 . 12) 

Indeed, if df(g,Sf) = 0 for all f E F and 9 E G, we would 

have 

g ~ B(Sf,df , O) = S(f,O) = (Sf], 

which would mean that 

g = Sf Vf~F, g~G. 

Fixing f and letting 9 vary, this would imply that G is a 

singleton, a contradiction. 

Finally, we choose f E F and 9 E G such that (2.12) holds. 

Then dfig,Sf) ~ df{g,Sf) yields 

g ~ B(Sf,df,df{g,Sf» = S(f,df(g,Sf». 

Since (2.12) holds, we hav e 

contradicting (2.11) . 
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In this section, we reconsider Example 2.2, the solution of 

nonlinear equations. We show explicitly how to construct a family 

of pseudometrics such that (2 . 10) holds for all E ) O. Moreov er, 

we show that a family of pseudometrics is necessary. 

We first define S : F -m by letting Sf be the zero of f 

that is s mallest in magnitude; if there are two such zeros , choose 

the positive one . 

Next, define 

(Such ~ zero exists because f is continuous.) 

+ d f : lR x lR - lR (for f E F) by 

df(x,y):= If(x) - fly) I. 

Then d
f 

is a pseudornetric. 

We then have 

Theor em 3.1. 

Proof: Let f ~ F, E > O. Since f(Sf) = 0, we have 

x E S (f , 0) Q 1 f (x) 1 < E -
Q 1 f (x) - f (Sf) 1 < E 

Q df(x,Sf) < E 

Q X E B(Sf, d f,o). 

Hence, Example 2.2 generates a family [d f : f E FJ of pseudo

me trics, and the df - ball of radius E about Sf is the set of 

E-approximations t o the zeroset of f t for any f E F and E > O. 

We now show that Example 2.2 cannot be generated by a single 

pseudometric. 
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Theorem 3.2. There does not exist an operator S 

and a single pseudometric d on E such that 

F-JR 

( 3 . 1) S(f,e:) = B(Sf,d,e:) 

Proof: Suppose there exists S 

We first note that Sf E Z(f) for all 

f E F. Since d(Sf,Sf) = 0, we have 

Hence If(Sf) 1 < a by (2.3), so that 

as claimed. 

We next claim that 

.'1 f E F, e: > O. 

and d such that (3.1) holds. 

f E F. To see this, let 

Sf E B(Sf,d,O) = S(f,O). 

f(Sf) = a and Sf E Z(f), 

( 3 • 2) d(x,Sf) = If(x) 1 VxEJR, fEF. 

Indeed, let f E F, and x E E. Using (2.3) and (3.1), we have 

and 

1 f (x) 1 < 1 f (x) 1 ~ x ~ S (f, 1 f (x) I) = B (Sf ,d, 1 f (x) I) 

~ d(x,Sf) < If(x) I, 

d(x,Sf) < d(x,Sf) ~ x e B(Sf,d,d(x,Sf») = S(f,d(x,Sf)) 

~ 1 f(x) 1 < d(x,Sf), 

yielding (3.2). 

We now let x, y E E wi th x # y. Def ine fa. E F by 

( 3 • 3) fa.(t):= a.(t - y) Va.EE. 

Then the first paragraph of this proof yields 

Va.EJR, 



i. e. , 

(3. 4) Sfa. = y 

Hence (3.4), (3.2), and (3.3) yield 

d(x,y) = d(x,S~) 

= 1 fa. (x) 1 

= Ia.(x - y)1 

= Ia.llx - yl 
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Va.EJR. 

Va.EJR. 

Since x # y, this means that d(x,y) must be multiple-valued, a 

contradiction. 

Note that the proof of Theorem 3.2 did not require the use of 

functions with mUltiple zeros. Hence, even if we consider Example 2.2 

with F replaced by 

FI:= [f JR ~ JR 1 f is continuous and has exactly one zero] 

we still cannot use a single pseudometric to generate this example. 

I would like to thank J. F. Traub, C. A. Micchelli, G. Wasilkowski, 

and H. wo~niakowski for their comments and suggestions. 
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