Theses Doctoral

Applying Large-Scale Data and Modern Statistical Methods to Classical Problems in American Politics

Ghitza, Yair

Exponential growth in data storage and computing capacity, alongside the development of new statistical methods, have facilitated powerful and flexible new research capabilities across a variety of disciplines. In each of these three essays, I use some new large-scale data source or advanced statistical method to address a well-known problem in the American Political Science literature. In the first essay, I build a generational model of presidential voting, in which long-term partisan presidential voting preferences are formed, in large part, through a weighted "running tally" of retrospective presidential evaluations, where weights are determined by the age in which the evaluation was made. By gathering hundreds of thousands of survey responses in combination with a new Bayesian model, I show that the political events of a voter's teenage and early adult years, centered around the age of 18, are enormously influential, particularly among white voters. In the second and third essays, I leverage a national voter registration database, which contains records for over 190 million registered voters, alongside methods like multilevel regression and poststratification (MRP) and coarsened exact matching (CEM) to address critical issues in public opinion research and in our understanding of the consequences of higher or lower turnout. In the process, I make numerous methodological and substantive contributions, including: building on the capabilities of MRP generally, describing methods for dealing with data of this size in the context of social science research, and characterizing mathematical limits of how turnout can impact election outcomes.


  • thumnail for Ghitza_columbia_0054D_12314.pdf Ghitza_columbia_0054D_12314.pdf application/pdf 8.07 MB Download File

More About This Work

Academic Units
Political Science
Thesis Advisors
Gelman, Andrew
Ph.D., Columbia University
Published Here
September 8, 2014