Capturing the two-way hydromechanical coupling effect on fluid-driven fracture in a dual-graph lattice beam model

Ulven, Ole Ivar; Sun, WaiChing

Fluid-driven fractures of brittle rock is simulated via a dual-graph lattice model. The new discrete hydromechanical model incorporates a two-way coupling mechanism between the discrete element model and the flow network.By adopt- ing an operator-split algorithm, the coupling model is able to replicate the transient poroelasticity coupling mechanism and the resultant Mandel-Cryer hydromechanical coupling effect in a discrete mechanics framework. As crack propagation, coalescence and branching are all path-dependent and irreversible processes, capturing this transient coupling effect is important for capturing the essence of the fluid-driven fracture in simulations. Injection simulations indicate that the onset and propagation of fractures are highly sensitive to the ratio between the injection rate and the effective permeability. Furthermore, we show that in a permeable rock, the borehole breakdown pressure, the pressure at which fractures start to grow from the borehole, depends on both the given ratio between injection rate and permeability and the Biot coefficient.


  • thumnail for Ulven_et_al-2017-International_Journal_for_Numerical_and_Analytical_Methods_in_Geomechanics.pdf Ulven_et_al-2017-International_Journal_for_Numerical_and_Analytical_Methods_in_Geomechanics.pdf application/pdf 2.57 MB Download File

Also Published In

International Journal for Numerical and Analytical Methods in Geomechanics

More About This Work

Academic Units
Civil Engineering and Engineering Mechanics
Published Here
December 18, 2017