A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials

Liu, Yang; Sun, WaiChing; Yuan, Zifeng; Fish, Jacob

A three-dimensional nonlocal multiscale discrete-continuum model has been developed for modeling mechanical behavior of granular materials. In the proposed multiscale scheme, we establish an information-passing coupling between the discrete element method, which explicitly replicates granular motion of individual particles, and a finite element continuum model, which captures nonlocal overall responses of the granular assemblies. The resulting multiscale discrete-continuum coupling method retains the simplicity and efficiency of a continuum-based finite element model, while circumventing mesh pathology in the post-bifurcation regime by means of staggered nonlocal operator. We demonstrate that the multiscale coupling scheme is able to capture the plastic dilatancy and pressure-sensitive frictional responses commonly observed inside dilatant shear bands, without employing a phenomenological plasticity model at a macroscopic level. In addition, internal variables, such as plastic dilatancy and plastic flow direction, are now inferred directly from granular physics, without introducing unnecessary empirical relations and phenomenology. The simple shear and the biaxial compression tests are used to analyze the onset and evolution of shear bands in granular materials and sensitivity to mesh density. The robustness and the accuracy of the proposed multiscale model are verified in comparisons with single-scale benchmark discrete element method simulations.


  • thumnail for liu_et_al-2015-international_journal_for_numerical_methods_in_engineering__1_.pdf liu_et_al-2015-international_journal_for_numerical_methods_in_engineering__1_.pdf application/pdf 5.07 MB Download File

Also Published In

International Journal for Numerical Methods in Engineering

More About This Work

Academic Units
Civil Engineering and Engineering Mechanics
Published Here
January 20, 2016