Academic Commons

Theses Doctoral

Efficient, High power Precision RF and mmWave Digital Transmitter Architectures

Bhat, Ritesh Ashok

Digital transmitters offer several advantages over conventional analog transmitters such as reconfigurability, elimination of scaling-unfriendly, power hungry and bulky analog blocks and portability across technology. The rapid advancement of technology in CMOS processes also enables integration of complex digital signal processing circuitry on the same die as the digital transmitter to compensate for their non-idealities. The use of this digital assistance can, for instance, enable the use of highly efficient but nonlinear switching-class power amplifiers by compensating for their severe nonlinearity through digital predistortion. While this shift to digitally intensive transmitter architectures is propelled by the benefits stated above, several pressing challenges arise that vary in their nature depending on the frequency of operation - from RF to mmWave.
Millimeter wave CMOS power amplifiers have traditionally been limited in output power due to the low breakdown voltage of scaled CMOS technologies and poor quality of on-chip passives. Moreover, high data-rates and efficient spectrum utilization demand highly linear power amplifiers with high efficiency under back-off. However, linearity and high efficiency are traditionally at odds with each other in conventional power amplifier design. In this dissertation, digital assistance is used to relax this trade-off and enable the use of state-of-the-art switching class power amplifiers. A novel digital transmitter architecture which simultaneously employs aggressive device-stacking and large-scale power combining for watt-class output power, dynamic load modulation for linearization, and improved efficiency under back-off by supply-switching and load modulation is presented.
At RF frequencies, while the problem of watt-class power amplification has been long solved, more pressing challenges arise from the crowded spectrum in this regime. A major drawback of digital transmitters is the absence of a reconstruction filter after digital-to-analog conversion which causes the baseband quantization noise to get upconverted to RF and amplified at the output of the transmitter. In high power transmitters, this upconverted noise can be so strong as to prevent their use in FDD systems due to receiver desensitization or impose stringent coexistence challenges. In this dissertation, new quantization noise suppression techniques are presented which, for the first time, contribute toward making watt-class fully-integrated digital RF transmitters a viable alternative for FDD and coexistence scenarios. Specifically, the techniques involve embedding a mixed-domain multi-tap FIR filter within highly-efficient watt-class switching power amplifiers to suppress quantization noise, enhancing the bandwidth of noise suppression, enabling tunable location of suppression and overcoming the limitations of purely digital-domain filtering techniques for quantization noise.


  • thumnail for Bhat_columbia_0054D_14068.pdf Bhat_columbia_0054D_14068.pdf application/pdf 12.3 MB Download File

More About This Work

Academic Units
Electrical Engineering
Thesis Advisors
Krishnaswamy, Harish
Ph.D., Columbia University
Published Here
January 19, 2018