Scalar flux profile relationships over the open ocean

Edson, J. B.; Zappa, Christopher J.; Ware, J. A.; McGillis, Wade R.; Hare, J. E.

The most commonly used flux-profile relationships are based on Monin-Obukhov (MO) similarity theory. These flux-profile relationships are required in indirect methods such as the bulk aerodynamic, profile, and inertial dissipation methods to estimate the fluxes over the ocean. These relationships are almost exclusively derived from previous field experiments conducted over land. However, the use of overland measurements to infer surface fluxes over the ocean remains questionable, particularly close to the ocean surface where wave-induced forcing can affect the flow. This study investigates the flux profile relationships over the open ocean using measurements made during the 2000 Fluxes, Air-Sea Interaction, and Remote Sensing (FAIRS) and 2001 GasEx experiments. These experiments provide direct measurement of the atmospheric fluxes along with profiles of water vapor and temperature. The specific humidity data are used to determine parameterizations of the dimensionless gradients using functional forms of two commonly used relationships. The best fit to the Businger-Dyer relationship [Businger, 1988] is found using an empirical constant of aq = 13.4 ± 1.7. The best fit to a formulation that has the correct form in the limit of local free convection [e.g., Wyngaard, 1973] is found using aq = 29.8 ± 4.6. These values are in good agreement with the consensus values from previous overland experiments and the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithm [Fairall et al., 2003]; e.g., the COARE algorithm uses empirical constants of 15 and 34.2 for the Businger-Dyer and convective forms, respectively. Although the flux measurements were made at a single elevation and local similarity scaling is applied, the good agreement implies that MO similarity is valid within the marine atmospheric surface layer above the wave boundary layer.


  • thumnail for Edson_et_al-2004-Journal_of_Geophysical_Research-_Solid_Earth__1978-2012_.pdf Edson_et_al-2004-Journal_of_Geophysical_Research-_Solid_Earth__1978-2012_.pdf application/pdf 583 KB Download File

Also Published In

Journal of Geophysical Research: Oceans

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Ocean and Climate Physics
American Geophysical Union
Published Here
February 29, 2016