2000 Articles
Feature extraction using non-linear transformation for robust speech recognition on the Aurora database
We evaluate the performance of several feature sets on the Aurora task as defined by ETSI. We show that after a non-linear transformation, a number of features can be effectively used in a HMM-based recognition system. The non-linear transformation is computed using a neural network which is discriminatively trained on the phonetically labeled (forcibly aligned) training data. A combination of the non-linearly transformed PLP (perceptive linear predictive coefficients), MSG (modulation filtered spectrogram) and TRAP (temporal pattern) features yields a 63% improvement in error rate as compared to baseline me frequency cepstral coefficients features. The use of the non-linearly transformed RASTA-like features, with system parameters scaled down to take into account the ETSI imposed memory and latency constraints, still yields a 40% improvement in error rate.
Files
-
icassp00-aurora.pdf application/pdf 48 KB Download File
Also Published In
- Title
- 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing: Proceedings, 5-9 June, 2000, Hilton Hotel and Convention Center, Istanbul, Turkey
- Publisher
- IEEE
- DOI
- https://doi.org/10.1109/ICASSP.2000.859160
More About This Work
- Academic Units
- Electrical Engineering
- Published Here
- July 3, 2012