Theses Doctoral

Enlargement of Filtration and the Strict Local Martingale Property in Stochastic Differential Equations

Dandapani, Aditi

In this thesis, we study the strict local martingale property of solutions of various types of stochastic differential equations and the effect of an initial expansion of the filtration on this property. For the models we consider, we either use existing criteria or, in the case where the stochastic differential equation has jumps, develop new criteria that can can detect the presence of the strict local martingale property. We develop deterministic sufficient conditions on the drift and diffusion coefficient of the stochastic process such that an enlargement by initial expansion of the filtration can produce a strict local martingale from a true martingale. We also develop a way of characterizing the martingale property in stochastic volatility models where the local martingale has a general diffusion coefficient.

Files

  • thumnail for Dandapani_columbia_0054D_13423.pdf Dandapani_columbia_0054D_13423.pdf application/pdf 495 KB Download File

More About This Work

Academic Units
Applied Physics and Applied Mathematics
Thesis Advisors
Protter, Philip E.
Degree
Ph.D., Columbia University
Published Here
August 2, 2016