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ABSTRACT

Local Regularity of the Complex
Monge-Ampère Equation

Yu Wang

In this thesis, we study the local regularity of the complex Monge-Ampère equation,(√
−1∂∂̄u

)n
= fdx

where
√
−1∂∂̄u stands for the complex Hessian form and dx the Lebesgue measure.

The underline idea of our work is to consider this equation as a full-nonlinear

equation and apply modern theory and techniques of elliptic PDEs. Our main results

include

• A simplified viscosity theory on the solvability of the Dirichlet problem of the

complex Monge-Ampère equation.

• A small perturbation result: if f is slightly better than Dini continuous and the

solution u is L∞-close to a quadratic polynomial whose complex Hessian has

determinant 1, then u is C2 at the points x on which f(x) = 1.

• A Liouville type theorem: if u solves
(√
−1∂∂̄u

)n
= dx on entire Cn and u −

1
2
|x|2 is of sub-quadratic growth at infinity, then u differs from 1

2
|x|2 by a linear

function.

• A converging theorem: Assume f ≥ λ > 0, if a sequence of solutions uk con-

verging uniformly to a smooth solution ϕ, then uk converges smoothly to ϕ.

• An C2,α-regularity theorem: if f is Hölder and the solution u is in W 2,p for

p > n(n− 1), then u is C2,α.
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Chapter 1

Introduction

The complex Monge-Ampère equation

(
√
−1∂∂̄u)n = f dx (1.1)

is a central object in complex geometry, multi-variable complex analysis and stability

theory. It has been undergoing intensive research in the past three decades. Well-

known works include [BT76], [Yau78], [CKNS85] and many others.

On the global side, by the pioneer work of Yau [Yau78] and contribution from

many other authors (see [Aub76,PS09,GL10] and reference therein), the regularity of

solutions to (1.1) with smooth data are well-understood on compact Kähler manifold.

In particular, one has

Theorem 1.1 (Yau, 1978). Let X be a compact Kähler manifold and u be a solution

to (1.1). If f ∈ C3(X), then u ∈ C2,α(X)

‖u‖C2,α(X) ≤ C(X, ‖f‖C3(X)). (1.2)

In particular,

‖∇u‖L∞(X), ‖D2u‖L∞(X) ≤ C(X, ‖f‖C3(X), ‖u‖L∞(X)). (1.3)
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By the well-known work of Caffarelli, Kohn, Nirenberg and Spruck [CKNS85],

regularity of complex Monge-Ampère equation on a bounded domain Ω ⊂ Cn with

well-prescribed data is also well-understood. One has

Theorem 1.2 (Caffarelli, Kohn, Nirenberg, Spruck). Let Ω be in Cn and u be a

plurisubharmonic function that solves the Dirichlet problem(
√
−1∂∂̄u)n = f dx in Ω

u = ϕ on ∂Ω

(1.4)

If

λ ≤ f ≤ Λ, f ∈ C3(Ω),

Ω strictly pesudo-convex, ϕ ∈ C4(∂Ω)
(1.5)

then u ∈ C2,α(Ω) and

‖u‖C2,α(Ω) ≤ C(Ω, ‖f‖C2(Ω), ‖ϕ‖C4(∂Ω)). (1.6)

On the local side, starting from foundational work of Bedford and Taylor [BT76],

pluripotential theory has been applied to study the complex Monge-Ampère equation,

specially with rough right-hand side. This direction was further developed by many

authors. Related works include [BT82,Dem98,Ceg04,Kol98,Kol05]. One of the most

important result along this direction is Kolodziej’s L∞-estimate.

Theorem 1.3 (Kolodziej 1998). Let Ω be a bounded pseudo convex domain in Cn

and u satisfies (1.1). If

u = 0 on ∂Ω (1.7)

then, for any p > 1

− inf
Ω
u ≤ C(n, p, diam(Ω))‖f‖1/n

Lp(Ω). (1.8)

However, the literature for the higher local regularity of the complex Monge-

Ampère equation is extremely limited.
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Similar to the real Monge-Ampère equation, the complex Monge-Ampère equation

does not admit pure interior regularity. This is illustrated by an example due to

Blocki [Blo97]: The function

u(x) = |z′|2−2/n
(1 + |zn|2), z′ = (z1, ..., zn−1) (1.9)

satisfies

(i∂∂̄u)n = cn(1 + |zn|2)n−2 dx, on Cn (1.10)

in weak sense. However u is not C2 near {z′ = 0}.

The natural question is then to ask under what local condition, a solution u does

not have singularity. Currently, very little is known in this direction.

One of the approaches has been considered is to study the Green’s function of the

complex Monge-Ampère equation, i.e., the solution of the Dirichlet problem(
√
−1∂∂̄u)n = δ0 the Dirac measure in Ω

u = 0 on ∂Ω

. (1.11)

Lempert [Lem83] gave an explicit form for solutions on convex domain in terms of

Kobayashi distance and Guan [Gua98] proved C1,α-regularity of the solutions for any

α ∈ (0, 1). However, due to the linearity, these results do not produce any interior

regularity.

By our best knowledge, there are only three local regularity results available in

the current literature.

The first one is a gradient estimate given by Blocki [Blo09]. It states that if f is

Lipschitz and the solution u has a convex level set, then u has bounded gradient in

the interior of this level set. The key point of this estimate is that the bound of ∇u

does not depend on the regularity and curvature of the given level set.

The second result is given by Blocki and Dinew [BD11]. They have proven that

if a solution u of (1.1) lies in W 2,p for some p > n(n − 1) and the right-hand-side f

is C1,1, then u is indeed C2,α in the interior.
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The third result given by Dinew, Zhang and Zhang considers the Hölder regularity

of D2u. They have shown that if f is α-Hölder and D2u is bounded in L∞, then D2u

is also α-Hölder.

On one hand, the local regularity results for the complex Monge-Ampère equations

are very limited. On the other hand, it has gain increasing interests in the recent

research, especially in the study of singular Kähler metrics (see [EGZ11] and reference

therein). Besides its interests in complex geometry and analysis, complex Monge-

Ampère is very interesting from a pure PDE-theoretical point of view. It is a nonlinear

equation whose family of invariance is extremely large and complicated. The study

of local regularity of the complex Monge-Ampère equation will be of great value in

the development of the elliptic PDE theory.

There are two main purposes of this thesis: First, we give a self-contained account

of the local regularity of the complex Monge-Ampère equation through the modern

nonlinear PDE point of view. Second, we apply Savin’s small perturbation theory

[Sav07] to produce new regularity results of the complex Monge-Ampère equation.

The main results of this thesis are stated as follows.

Our main theorem, following from a generalization of Savin’s small perturbation

theorem (see Theorem 5.2), considers an estimate of D2u for a solution u that is

uniformly close to a quadratic polynomial. Denote the modulus of continuity of f by

ωf

Theorem 1.4. Suppose that u is a viscosity solution of (1.1) in B1 and f satisfies

f ∈ C0(B1), and f(0) = 1,∫ 1

0

ω(r) log r−1

r
dr <∞.

(1.12)

For any δ < 1/2, there exists a constant µ only depending on n, ωf , δ such that,if

‖u− |x|2 /2‖ ≤ µ, (1.13)

then u has a Taylor expansion of order 2 at origin and

‖D2u(0)− I‖ ≤ δ. (1.14)
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An important corollary of the above theorem is the following Liouville property.

Corollary 1.5. If u satisfies

M[u] ≡ 1, on Cn (1.15)

and

u =
1

2
|x|2 + o(|x|2), x→∞ (1.16)

then

u =
1

2
|x|2 + constant. (1.17)

We have also obtained the following convergence property for the complex Monge-

Ampère equation.

Corollary 1.6. Let {uk} be a sequence of continuous function on B1 that satisfies

M[uk) = fk ∈ Cα(B1), Λ ≥ fk ≥ λ k = 1, 2..., (1.18)

and ϕ be a solution of

M[ϕ] = f ∈ Cα(B1). (1.19)

If ϕ ∈ C2,α(B1) and

‖uk − ϕ‖L∞(B1) → 0, ‖fk − f‖Cα(B1) → 0, (1.20)

then uk ∈ C2,α(B1/2) for k sufficiently large and

‖uk − ϕ‖C2,α(B1/2) → 0 (1.21)

Our last result considers an improvement of Blocki and Dinew’s C2,α-regularity

theorem.

Theorem 1.7. Let u be a solution to (1.1) in B1. Suppose that

‖∆u‖Lp ≤ Λ, for some p > n(n− 1), (1.22)
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and

f ∈ Cα(B1), f ≥ λ. (1.23)

Then u ∈ C2,α(B1/2) and

‖u‖C2,α(B1/2) ≤ C (1.24)

where C only depends on n, p, λ,Λ, ‖f‖Cα(B1).

The thesis is organized as follows: In the first chapter, we fix our notations and

present basic preliminaries. In particular, we explain the identification of complex

determinant as a function of real matrices. In the second chapter, we present a vis-

cosity approach to the Dirichlet problem of the complex Monge-Ampère equation.

Our approach utilize the specific relation between real and complex determinant and

it is considerably simpler than the standard viscosity treatment [CIL92, EGZ11]. In

the third chapter, we discuss the regularity results priori to this thesis and singular

examples. In Chapter four, we give a slight generalization of Savin’s small perturba-

tion theorem [Sav07]. This will be the key tools in proving our main results. In the

last Chapter, we present the proof of our main results.
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Chapter 2

Preliminaries

2.1 Notations

In this section, we fix our basic notations and conventions

• Throughout this thesis, unless explicit mentioned, all constants are assumed to

be positive.

• Let R2n be the standard 2n-dimensional Euclidean space. Denote its inner

product by < ·, · >.

• The coordinate system on R2n is the coordinate system that given by the basis

{ei} where

ei = (0, ..1, ...0). (2.1)

We denote the coordinate functions by xi.

• Let Cn be the standard n-dimensional complex space. Throughout this thesis,

we shall identify Cn as R2n by

z = x+ iy 7→
(
x

y

)
(2.2)

• Let Ω be a domain in R2n. Denote its diameter by diam(Ω).
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• Let Mat(C, n) be the space of n × n complex matrices and Mat(R, 2n) be

the space of 2n × 2n real matrices. We identify Mat(C, n) as a subspace of

Mat(R, 2n) by the following map:

ı : N = A+ iB 7→

A −B

B A

 . (2.3)

• Let Herm(n) be the n× n be the space of Hermitian matrices and Sym(2n) be

the space of 2n× 2n symmetric matrices.

• Let SU(n) be the group of n× n unitary matrices and SO(2n) be the group of

2n× 2n orthogonal matrices.

• Given M ∈ Sym(2n), we denote its spectral normal by ‖M‖, i.e.,

‖M‖ := max
i
{|λi|} (2.4)

where λi’s are the eigenvalue of M .

• Denote the n× n identity matrix by In.

• Denote the standard determinant operator by det.

• A matrix P ∈ Sym(2n) is said to be positive, denoted by P ≥ 0, if all its

eigenvalue are positive. The notation A ≥ B means A−B is positive. Similarly,

we define strictly positive matrices and the notation A > B.

• The cone of positive matrices, denoted by P , is the subset of Sym(2n) that

consists all non-negative matrices P ∈ Sym(2n).

• Let u, ϕ ∈ C0(Ω), we say ϕ touches u from below in Ω at x0 if

u(x) ≥ ϕ(x) ∀x ∈ Ω, and u(x0) = ϕ(x0). (2.5)

Similarly, we define ϕ touches ufrom above in Ω at x0. We shall simply say ϕ

touches u from above (below) if there is no confusion about the relevant domain

Ω and point x0.
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• We shall denote the complex Monge-Ampère operator by M,i.e., for a C2-

function u

M[u] := det(2uk̄j). (2.6)

• A function is called a paraboloid of opening K if it is of the form

P (z) =
K

2
|z|2 + l (2.7)

where l is an affine function.

2.2 Basic linear algebra

In this section, we summarize some basic linear algebra for our investigation. A large

part considers complex matrices and their real embeddings, which are standard but

less well-known.

2.2.1 Complex structure

Definition 2.1. A complex structure on Rn is a linear map J : Rn → Rn such that

J2 = −id. (2.8)

The canonical complex structure J on R2n is a complex structure whose matrix form

with respect to the canonical coordinate is 0 −In
In 0

 (2.9)

where In is the n× n identity matrix.

By reordering coordinate system on Rn as {x1, xn+1, x2, xn+2, ...xn, x2n}, the canon-

ical complex structure J takes the form

J =


J2 · · · 0
...

. . . 0

0 0 J2

 , J2 =

0 −1

1 0

 (2.10)



CHAPTER 2. PRELIMINARIES 10

The following lemma summarizes the important relations between complex and

real matrices. The proof is straight forward and we shall omit it.

Lemma 2.2. Under the identification (2.3), we have

Herm(n) = {M ∈ Sym(2n) : [M,J ] = 0} ⊂ Sym(2n)

SU(n) = {O ∈ SO(2n) : OJ = JO} ⊂ SO(2n).
(2.11)

Moreover, if p : Mat(R, 2n)→ Mat(R, 2n) be defined by

p : M 7→ M + JTMJ

2
, (2.12)

then the following diagram commute

Mat(n,C) ı //

∼

++

Mat(R, 2n)

p

��
{M ∈ Mat(R, 2n) : [M,J ] = MJ − JM = 0}.

(2.13)

The above diagram remains commutative when restrict to Sym(2n)

2.2.2 Complex determinant

Definition 2.3. We define the complex determinant operator detC on Sym(2n) by

detC(M) := det1/2

(
M + JTMT

2

)
, M ∈ Sym(2n). (2.14)

The following lemma justify the terminology.

Lemma 2.4. Let H ∈ Herm(n), then

det(H) = detC(ı(H)). (2.15)

Proof. If H is diagonal, then the identify follows from direct calculation. The identity

for general H then follows from diagonalization.

The following inequality connecting real and complex determinant is important

for our later discussion. Recall P stands the cone of positive matrices in Sym(2n).
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Lemma 2.5. If M ∈ P, then

det
1/n
C (M) ≥ det1/2n(M). (2.16)

Proof. This follows immediately from the fact that det1/2n is concave in the cone of

positive matrices.

2.2.3 Complex Hessian

Let ϕ be a C2-function on Cn. Its complex Hessian
√
−1∂∂̄ϕ is a Hermitian matrices

given by

(
√
−1∂∂̄ϕ)k̄i = 2∂zi∂zk̄ϕ. (2.17)

Label the xn+k coordinate function as yk and recall

∂zi =
1

2

(
∂xi −

√
−1∂yi

)
. (2.18)

The entries of
√
−1∂∂̄ϕ in real coordinates is given by

(
i∂∂̄ϕ

)
k̄i

=
1

2

[(
∂ϕ

∂xi∂xk
+

∂ϕ

∂yi∂yk

)
+
√
−1

(
∂ϕ

∂xk∂yi
− ∂ϕ

∂yk∂xi

)]
. (2.19)

Then it is easy to verify that

ı
(√
−1∂∂̄ϕ

)
=

1

2

(
D2u+ JTD2uJ

)
(2.20)

where D2u stands for the real Hessian of u.

Now, Lemma 2.4 implies that for any C2-function,

M[ϕ] = det1/2

(
D2u+ JTD2uT

2

)
. (2.21)

2.3 Semi-concave functions

We recall the basic definition and properties of semi-concave functions.
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Definition 2.6. Let w be a continuous function on a domain Ω ⊂ R2n. A function

w is said to be K-semi-concave in Z with respect to Ω, if for any point x ∈ Z, there

exists a paraboloid of opening K touch w from above in Ω. We shall simply say w is

semi-concave if Z = Ω. Similarly, one define semi-convexity.

Remark 2.7. Notice that we do not require Z to be open.

In order to state a fundamental property of semi-concave functions, we shall need

the following terminology.

Definition 2.8. A continuous function u on Ω is said to be C2 at point x0 if there

exists a quadratic polynomial P such that

u = P + o(|x− x0|2), as x→ x0. (2.22)

If u is C2 at x0, we define

D2u(x0) := DP (x0), ∇u(x0) := ∇P (x0) (2.23)

Clearly, if u is C2 at x0, then the polynomial P is unique. Therefore the above

definition is well-defined.

We recall the Alexandroff’s theorem on second order differentiability.

Theorem 2.9. If u is semi-concave (convex) in B1, then u is C2 at almost all points

(with respect to the Lebesgue measure) in B1.

For following lemma will be used in the later of this thesis.

Lemma 2.10. Let w be a continuous function on a domain Ω and A be a subset of

Ω. If w is a-semi-concave on A with respect to Ω and b-semi-convex on A with respect

to Ω, then w is differentiable at every point x ∈ A and the map

T (x) := Dw(x) (2.24)

is Lipschitz on A and

|T (x)− T (y)| ≤ C |x− y| , ∀x, y ∈ A (2.25)

with C only depending on a, b.
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Proof. Fix a point x0 ∈ A, by the definition of semi-concavity, there exists two

paraboloids P1, P2 such that

P1(x) ≤ w(x) ≤ P2(x), ∀x ∈ Ω

w(x0) = P1(x0) = P2(x0).
(2.26)

It follows then, for every direction e

lim
h→0

P1(x0 + he)− P1(x0)

h
≤ lim

h→0

w(x0 + he)− w(x0)

h
≤ lim

h→0

P2(x0 + he)− P2(x0)

h
(2.27)

Since P1, P2 are quadratic polynomial, the limits on both sides exists. Moreover, by

the maximum principle,

∇P1(x0) = ∇P2(x0). (2.28)

Therefore the limit for w also exists and equal to ∇P1(x0) · e. This proves the differ-

entiability and the map T is well-defined.

Now, we estimate the Lipschitz constant of T . Let the constant C be fixed and

be specified later in the proof. Suppose that T has Lipschitz constant strictly greater

than C. Then, up to scaling and subtract a plane from w, there exist two points

x, y ∈ such that

|x− y| = 1,∇w(x) = 0

∇w(y) · (y − x) > C
(2.29)

Let

P (x) =
a

2
|x− y|2 +∇w(y) · (x− y) + c (2.30)

be the paraboloid that touches w from above at y. Since w is touched from above by

a paraboloid of opening a, we have

P (y) = c = w(y) ≤ a

2
(2.31)

Thus by take C large enough according to a, b, we have

w(x) ≤ P (x) < 0. (2.32)

This contradicts to the fact that w is a graph.
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2.4 Pointwise C2,α-regularity

When dealing with viscosity solutions of an elliptic PDE, it is more convenient to

work with point-wise regularity.

Definition 2.11. A continuous function u on R2 is said to be C2,α at point x0 if

there exists a quadratic polynomial P and constants C, ρ such that

‖u− P‖L∞(Br) ≤ Cr2+α, ∀r ≤ ρ. (2.33)

We define point-wise C2,α-norm by

[D2u]α,ρ(x0) := min{C | ‖u− P‖L∞(Br) ≤ Crα,∀r < ρ}. (2.34)

The following lemma justifies the relation between point-wise C2,α-regularity and

the classical C2,α-regularity.

Lemma 2.12. A function u ∈ C2,α(B1) if and only if u is C2,α at all point x ∈ B1

and there exist constant C, ρ independent of x such that∣∣D2u(x0)
∣∣+ [D2u]α,ρ(x) ≤ C. (2.35)

Proof. The necessity follows immediately from the definition. The sufficiency follows

from a similar argument in the proof of Lemma 2.10.

2.5 Continuous plurisubharmonic functions

Recall the definition of plurisubharmonic function.

Definition 2.13. A function u ∈ L1(Ω) is said to be subharmonic in Ω if for every

complex line

{a+ bz | z ∈ C} (2.36)

the function z 7→ u(a+ bz) is a subharmonic function on the set

{z ∈ C | a+ bz ∈ Ω}. (2.37)
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For our purpose, the following characterization of plurisubharmonic function is

convenient.

Lemma 2.14. u ∈ C(Ω) is plurisubharmonic if and only if the following statement

holds: for every C2-function ϕ if ϕ touches u from above at x ∈ Ω, then

√
−1∂∂̄ϕ(x) ≥ 0.

Proof. To show the necessity, assume that u is plurisubharmonic. Let L := {a+ bz :

z ∈ C} be an eigenspace of
√
−1∂∂̄ϕ(x). Since ϕ touches u from above, ϕ touches

u|L from above. By standard viscosity theory, ϕ is subharmonic on L∩Ω. This holds

for all eigenspace of
√
−1∂∂̄ϕ(x), thus

√
−1∂∂̄ϕ(x) ≥ 0. The sufficiency is proved

similarly.

2.6 Sup-inf convolution

In this section, we recall the sup-convolution technique. In working with viscosity

solutions, sup-convolution is the natural regularization technique.

Definition 2.15. Let K(r) be a non-decreasing function on [0,∞) and u be a bounded

function on Ω. The sup-convolution against kernel K is defined by

uK(x0) := sup{u(x)−K(|x− x0|) : y ∈ Ω}. (2.38)

The inf-convolution is defined by

uK := inf{u(x) +K(|x− x0|) : y ∈ Ω}. (2.39)

We are specially interested in two kind of kernels. The first kind considers kernels

that are modulus of continuity.

Lemma 2.16. Suppose the kernel K satisfies

K(a+ b) ≤ K(a) +K(b), lim
r→0+

K(r) = 0. (2.40)



CHAPTER 2. PRELIMINARIES 16

Then for any bounded function u on Ω, uK , u
K are uniformly continuous on Ω and

ωuK (r), ωuK (r) ≤ K(r). (2.41)

In particular, if K(r) = Crα, then uK , uK are α-Hölder continuous.

Proof. We shall only prove the lemma for uK ; the proof for inf-convolution is same.

Fix x, y ∈ Ω, for every z ∈ Ω,

uK(x) ≥ u(z)−K(|x− z|)

≥ u(z)−K(|y − z|)−K(|x− y|)
(2.42)

Taking supermum over z we conclude

uK(x)− uK(y) ≥ −K(|x− y|). (2.43)

Since x, y are chosen arbitrarily, the proof is complete.

The second kind of kernels are of the form C |r|2. Sup-inf convolution against

these kernels are first studied by Jensen (see [CC95] and reference therein).

Lemma 2.17. Let Ω be bounded domain and u ∈ C(Ω). Let uε be the sup convolution

of u against 1
ε
r2. Then the following properties holds:

1. uε is Lipschitz continuous with Lipschitz constant smaller than 2
ε
diam(Ω)2.

2. u is 2
ε
-semi-convex on Ω.

3. uε decreasing uniformly to u as ε tending to zero.

Corresponding statement holds for inf-convolution.

Proof. The first statement is proved similarly as Lemma 2.16. One only need to

notice that

|x− y + y − z|2 ≤ |x− y|2 + |y − z|2 + 2 |x− y| |y − z| . (2.44)
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The semi-convexity follows immediately from the definition. Since uε is defined

as supremum of a family of paraboloid.

To show the last statement, let x∗ be the point that realize the supremum in the

definition of uε(x). Observe that

|x− x∗|2 = ε |u(x)− u(x∗)| ≤ ε osc
Ω
u (2.45)

Hence x∗(ε)→ x as ε→ 0. Thus for every x ∈ Ω,

0 ≤ uε(x)− u(x) ≤ u(x∗)− u(x) ≤ ω(|x∗ − x|)→ 0 (2.46)

The convergence is uniform as u is a uniform continuous function. The monotonicity

is clear.

Next, we consider the behaviour of continuous plurisubharmonic function under

sup-inf convolution.

Lemma 2.18. Let u be a continuous plurisubharmonic function on a bounded domain

Ω. Then uε, uε are both plurisubharmonic.

Proof. Rewrite the definition of sup-convolution as follows

uε(x) = sup{u(x+ y)− 1

ε
|y|2 : y ∈ Ω− x0} (2.47)

Fix ε > 0, from the definition and standard diagonal argument, there exists a

sequence yi such that

vi(x) := u(x+ yi)−
1

ε
|yi|2 (2.48)

converges monotonically and point-wisely to uε. Clearly vi’s are plurisubharmonic

functions.

By Lemma 2.17, uε is continuous. Thus by Dini’s theorem vi converges uniformly

to uε. The plurisubharmonicity then follows.

The case for inf-convolution is proved similarly.
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Chapter 3

Viscosity Solutions

3.1 Definition and basic properties

3.1.1 Basic definitions

We define the viscosity solutions of the complex Monge-Ampère equation.

Definition 3.1. Let f ∈ C(Ω), we say a continuous plurisubharmonic u satisfies

M[u] ≥ f in viscosity sense if the following condition holds: for every plurisubhar-

monic C2 function ϕ on Ω, if ϕ touches u from above at x, then

detC[D2ϕ](x) ≥ f(x). (3.1)

In this case, we shall call u a viscosity subsolution. Similarly, we define M [u] ≤ f

in viscosity sense. u is said to be a viscosity solution to M [u] = f if u satisfies both

M [u] ≥ f and M [u] ≤ f in viscosity sense.

Remark 3.2. Unlike for general elliptic equations, we only need to test the equa-

tion against smooth plurisubharmonic functions, because u is priorly assumed to be

plurisubharmonic. By maximum principle, if ϕ touch u from above at x, then ϕ is

plurisubharmonic near x.
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In the rest of this chapter, unless otherwise mentioned, we assume u is continuous

plurisubharmonic and f is continuous.

The following equivalent definition of viscosity solutions is convenient.

Lemma 3.3. Let u be a continuous plurisubharmonic function on Ω. u satisfies

M[u] ≥ f in viscosity sense if and only if the following condition holds: for every

plurisubharmonic quadratic polynomial P , if P touches u from above in a neighbour-

hood of x, then

detC(D2P ) ≥ f(x). (3.2)

Proof. The necessity follows directly from the definition. To show the sufficiency, let

ϕ touches u from above at x0. Let P be the second order Taylor expansion of ϕ at

x0, then, for any ε > 0

Pε(x) := P (x) + ε |x− x0| (3.3)

touches u from above in a neighbourhood of x0. By the hypothesis, we conclude that

detC(D2P + 2εI) ≥ f(x0). (3.4)

By the continuity of determinant, we may let ε tend to zero and arrive

detC(D2ϕ)(x0) = detC(D2P ) ≥ f(x0). (3.5)

Now, we list some basic properties of viscosity solutions of the complex Monge-

Ampère equation.

Lemma 3.4. Let u, v ∈ C(Ω) and f ∈ C(Ω).

1. If u satisfies M[u] ≥ f in viscosity sense, then M[u + <(h)] ≥ f in viscosity

sense for all holomorphic function h.

2. If u ∈ C2, thenM[u] ≥ f in viscosity sense if any only ifM[u] ≥ f in classical

sense.
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3. Suppose M[u] ≥ f in viscosity sense and w ∈ C(Ω) is plurisubharmonic. If

w touches u from above x and w is C2 at x, then M [w](x) ≥ f(x) in classical

sense.

Corresponding statements are valid for viscosity supersolutions.

Proof. The first statement follows immediately from the definition. The second and

third statements follow from an argument that is similar to the one in the proof of

Lemma 3.3

3.1.2 Properties for Perron method

Now we consider properties of viscosity solutions to the complex Monge-Ampère equa-

tion that will be needed to perform the Perron’s method.

The first lemma considers the maximum of two subsolutions.

Lemma 3.5. IfM[u] ≥ f and M [v] ≥ f , thenM[max {u, v}] ≥ f in viscosity sense.

Proof. Let ϕ be a C2 function that touches from max{u, v} from above at x0, then

ϕ touches either u or v from above at x0. In either case, we have, from the definition

of viscosity solution,

detC(D2ϕ)(x0) ≥ f(x0). (3.6)

Next, we show the convergence property of the solutions.

Lemma 3.6. Let uk be a sequence of continuous function on Ω satisfyingM[uk] ≥ fk.

Suppose uk converges uniformly to u on compact subsets of Ω and fk converges to f

on compact subsets of Ω, then M[u] ≥ f in viscosity sense.

Proof. Let P be a quadratic polynomial that touches u from above at x0 in Br(x0),

then, for every ε > 0

Pε(x) := P (x) + ε |x− x0|2 + c (3.7)
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touches some uk from above at xk(ε) after a proper choice of c. By the uniform

convergence,

xk(ε)→ x0, as ε→ 0. (3.8)

Since uk’s are subsolutions, we conclude

detC(D2P + 2εI) ≥ fk(xk). (3.9)

Moreover, The proof is completed by letting ε go to zero.

We end this section with a property considers supersolutions.

Lemma 3.7. Let u be a viscosity subsolution on Ω. If u does not satisfies M[u] ≥ f

in viscosity sense, then there exists a continuous plurisubharmonic function û such

that

M[û] ≥ f, û|∂Ω = u

û(x) > u at some point x ∈ Ω
(3.10)

Proof. Since u is not a supersolution, there exists a plurisubharmonic quadratic

polynomial P and a point x0 ∈ Ω such that P touches u from below at x0, but

M(P ) > f(x0) ≥ 0.

Consider

ψ := P − ε

2
(
∣∣x− x2

0

∣∣− r2). (3.11)

By the continuity of f , there exists r, ε small enough such that ψ is plurisubharmonic

and

M[ψ] > f(x), ∀z ∈ Br(x0) ⊂⊂ Ω, (3.12)

Moreover

ψ(z0) > u(z0), ψ|∂Br(x0) ≤ u|∂Br(x0). (3.13)

Now define

û :=

max{ψ, u} x ∈ Br(z0)

u x ∈ Ω \Br(z0).

(3.14)
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We claim û ∈ S.

Clearly, û is still a continuous plurisubharmonic and

û(z0) = ψ(z0) = u(z0) + εr2/2 > u(z0) (3.15)

It also follows from the definition that outside ball Br(z0) ⊂ Ω, û = u, in particular,

û|∂Ω = u.

To check that û is a viscosity subsolution. Take any quadratic polynomial P such

that P touches û from above at some x0 ∈ Ω.

If û(x0) = u(x0), then, by the fact that u is a subsolution

M[P ] ≥ f(x0). (3.16)

If û(x0) = ψ(x0) > u(x0), then x0 ∈ Br(z0) and P touches ψ from above at x0. In

turn

M [P ] ≥M [ψ] > f(x0)) (3.17)

follows again.

Thus in both case the desired inequality is verified, hence û is a subsolution.

3.2 Maximum and comparison principle

3.2.1 Alexandroff-Bakelman-Pucci estimate

In this section, we prove a version of Alexandroff-Bakelman-Pucci estimate. This will

be a key tool in our study of the solvability of the Dirichlet problem to the complex

Monge-Ampère equation.

Lemma 3.8. Let Ω be a bounded domain containing origin and w ∈ C(Ω) be semi-

concave. If

w ≥ 0 on ∂Ω, w(0) = −a < 0 (3.18)
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then there exists a point x0 ∈ Ω such that w is C2 at x0 and

D2w(x0) > 0, det(D2w(x0)) ≥
(

a

3diam(Ω)

)n
, w(x0) < 0 (3.19)

Proof. Let A be the subset of Ω consists of points on which w can be touched from

below by planes (linear functions).

Since u is semi-concave, by 2.10, T (x) = Dw(x) is well-defined Lipschitz map on

A.

By the differentiability of Lipschitz map (see [EG92]), T is almost every differen-

tiable and there exists a set Z with zero measure such that

DT (x) = D2w(x), x ∈ A \ Z (3.20)

Then, by the area-formula, we conclude that

|T (A)| ≤
∫
A\Z

det(D2w) dx. (3.21)

Next, we claim that

T (A) ⊃ Ba/d, d = diam(Ω). (3.22)

Let l(x) be a linear function such that

l(x) = v · x+ c, v ∈ Ba/(3d). (3.23)

Let x1 be the point that l(x) touches w from below. We need to show that x ∈ Ω.

Since w(x0) = −a, we have

l(x0) = v · x0 + c ≤ −a (3.24)

Thus

c ≤ −a+ |v| |x0| ≤ −
2a

3
. (3.25)

In turn

l(x) ≤ −2a

3
+ |v| |x0| ≤ −

a

3
< 0, ∀x ∈ ∂Ω. (3.26)
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Therefore l touches w in the interior and the claim is proved.

Now, claim there exists x0 ∈ A that satisfies the desired condition. Clearly,

w(x) < 0 for all x ∈ A. Suppose that

det(D2w(x)) < (
a

3d
)n, ∀x ∈ A ∩ Z (3.27)

Then (3.21) and (3.22) give a contradiction. Therefore the desired point exists in A

and the proof is completed.

3.2.2 Jansen’s approximation

We now consider the behaviour viscosity solutions under sup-inf convolution.

Lemma 3.9. Let u ∈ C(Ω) satisfy M[u] ≥ f in viscosity sense. Then for any

compact subdomain Ω′, there exists ε0 depending on dist(Ω′,Ω), oscΩ u such that, for

all ε < ε0, uε satisfies M[uε] ≥ fε with

fε(x) := inf

{
f(y) | y ∈ Br(x), r =

(
ε osc

Ω
u
)1/2

}
(3.28)

Similarly, if u satisfies M[u] ≤ f in viscosity sense. Then for any compact

subdomain Ω′, there exists ε0 depending on dist(Ω′,Ω), oscΩ u such that, uε satisfies

M[uε] ≤ f ε with

f ε(x) := sup

{
f(y) | y ∈ Br(x), r =

(
ε osc

Ω
u
)1/2

}
(3.29)

Proof. Let P be a quadratic polynomial that touches uε from above at x0 ∈ Ω′. Let

x∗0 be the point on which the maximum in the definition of uε is realized.

By Lemma 2.17,

|x0 − x∗0| ≤ rε, rε =
(
ε osc

Ω
u
)1/2

(3.30)

Thus, for ε sufficiently small x∗0 ∈ Ω.

Consider the quadratic polynomial Q given by

Q(x) := P (x+ x0 − x∗0) +
1

ε
|x∗0 − x0|2 . (3.31)
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It is easy to see that Q touches u from above in a neighbourhood of x∗0. It follows

then

detC(D2P ) = detC(D2Q) ≥ f(x∗0) ≥ fε(x). (3.32)

Thus uε is a solution. The proof for supersolution case is similar.

3.2.3 Comparison principle

Proposition 3.10. Let Ω be a bounded domain in Cn and f ∈ C(Ω). Suppose that

u, v are viscosity subsolution and supersolution of the equation M[·] = f respectively.

Then

v ≥ u on ∂Ω ⇒ v ≥ u in Ω. (3.33)

Proof. Without lose of generality, we may assume 0 ∈ Ω. Let d = diam(Ω). Moreover,

by replacing v by v + c and u by u+ µ |x|2 , µ = c/(2d2), we may assume v > u and

M[u] ≥ f(x) + µ. (3.34)

The general case will follow from this by taking c to be zero.

Argue by contradiction. Write w = v − u. Assume there exists x0 ∈ Ω such that

w(x0) = −a < 0. (3.35)

Fix a compact subdomain U of Ω such that x0 ∈ U and w|U ≥ 0. This choice is pos-

sible because w is continuous and w∂Ω > 0. Regularizing v, u via sup-inf convolution

and write wε = vε − uε.

Fix any ε > 0, denote Eε ⊂ U the set consists of points on which wε, v
ε,−uε are

C2. By Lemma 2.17, |U \ Eε| = 0 and wε is semi-concave. Apply Lemma 3.8, we may

choose xε ∈ Eε such that

w(xε) < 0, det1/n(D2u)(xε) > 0 (3.36)

By Lemma 3.9, for all sufficiently small ε

M(vε)(xε) ≤ f ε(xε) (3.37)
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and

M(uε)(xε) ≥ fε(xε) + µ (3.38)

Combine (3.36)-(3.38), Minkowski inequality of determinant and Lemma 2.5, we

conclude that

f ε(xε) ≥ fε(xε) + µ (3.39)

Since µ is independent of ε and f ε, fε converges uniform to f , (3.39) leads to a

contradiction when ε is taken sufficiently small.

3.3 Solvability of the Dirichlet problem

The goal of this section is to prove the following theorem.

Theorem 3.11. Let Ω be a bounded domain in Cn, f ∈ C(Ω) and g ∈ C(∂Ω). If there

exists a continuous harmonic function h on Ω with h|∂Ω = g and a plurisubharmonic

function u ∈ C(Ω) such that

M [u] ≥ f, in Ω, and u|∂Ω = g, (3.40)

then the Dirichlet Problem M [u] = f in Ω

u = g on ∂Ω

(3.41)

has a unique viscosity solution. Moreover the solution u is uniformly continuous and

ωu(r) ≤ 2dω(d)r + d2ω(r) (3.42)

where ω = max{ωu, ωh, ωf1/n}.
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3.3.1 The key lemma

Lemma 3.12. Under assumption of Theorem 3.11. For each subsolution u with

u|∂Ω ≤ g, there exists a continuous plurisubharmonic function ũ such that

1. ũ is a viscosity subsolution.

2. ũ ≥ u in Ω and ũ|∂Ω = g.

3. The modulus of continuity ωũ of ũ satisfies:

ωũ(r) ≤ ωu(r) ≤ 2dω(d)r + d2ω(r). (3.43)

where ω = max{ωu, ωh, ωf1/n} and d = �Ω.

Proof. Without lose of generality, we shall assume 0 ∈ Ω. By taking sup{u, u}, we

may assume u|∂Ω = g and u ≥ u in ∂Ω.

Define ũ as following:

ũ(x) := sup
y∈Ω

{max[u(x)− ω(|x− y|) +
ω(|x− y|)

2
(|z|2 − d2), u(z)]}, (3.44)

Let z∗ for the point where the maximum occurs.

We shall show ũ satisfies desired properties.

Step 1 We show that ũ is indeed a subsolution. Let P be quadratic polynomial

that touches ũ from above at x0 ∈ Ω; If ũ(x0) = u(x0), then

detC(D2P ) ≥ f(x0). (3.45)

If ũ(x0) > u(x0), then the polynomial

Q(x) := P (x+ x0 − x∗0) + ω(|x0 − x∗0|)−
τ

2
(|x|2 − d2) (3.46)

touches u at x∗0.

Claim x∗0 ∈ Ω. Suppose otherwise x∗0 ∈ ∂Ω ,then

u(x∗0)− ω(|x∗0 − x0|) +
ω

2
(|x0|2 − d2) ≤ h(x∗0)− ω(|x∗0 − x0|) ≤ h(x∗0) = u(x∗0),

(3.47)
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which contradicts to the fact that ũ(x0) > u(x0).

Since u is a subsolution, we conclude that

detC(D2Q) ≥ f(x∗0) (3.48)

Apply Minkowski inequality of determinant, we obtain

det
1/n
C (D2P ) ≥ det

1/n
C (D2Q) + ω(|x0 − x|)

≥ f 1/n(x∗0) + ω(|x0 − x|) ≥ f 1/n(x0).
(3.49)

Therefore, we have shown ũ is a subsolution.

Step 2 We now prove the second statement. Same as in the previous step, if

y ∈ ∂Ω, then for any x ∈ Ω

u(y)− ω(|x− y|) +
ω

2
(|y|2 − d2) ≤ h(y)− ω(|x− y|) < h(y) = u(y). (3.50)

Hence

ũ|∂Ω = u|∂Ω = g. (3.51)

ũ ≥ u in Ω is obvious.

Step 3 To show the last statement, we recall that ω is sub-additivity, i.e., for every

x1, x2 ∈ Ω,and every y ∈ Ω:

ω(|x1 − y|) + ω(|x2 − y|) ≥ ω(|x2 − x1|) (3.52)

Therefore

ω(x1, y)(|x1|2 − d2)− ω(x2, y)(|x2|2 − d2)

= ω(x1, y)(|x1|2 − |x2|2) + (ω(x1, y)− ω(x2, y))(|x2|2 − d2)

≥ −2dω(d) |x1 − x2| − d2ω(x1, x2)

(3.53)

Combine all these, we obtain

ũ(x1)− ũ(x2) ≥ −2dω(d) |x1 − x2| − d2ω(|x1 − x2|) (3.54)

Since x1, x2 are chosen arbitrarily, the proof is completed
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3.3.2 Proof of the solvability theorem

Proof of Theorem 3.11. The uniqueness follows from the comparison principle (The-

orem 3.10).

We first prove the existence and uniqueness. Consider the following collection of

plurisubharmonic functions

S := {v ∈ C(Ω) :M(v) ≥ f(x, v) in Ω, v|∂Ω ≤ g}, (3.55)

and

u := sup{v : v ∈ S}. (3.56)

Consider the following sub-family of S

S̃ := {ṽ : v ∈ S}, (3.57)

where ṽ is defined according to Lemma 3.12.

By the Lemma 3.12, S̃ is a equi-continuous subset of S and

u = sup{ṽ : ṽ ∈ S̃}. (3.58)

By Arzelà–Ascoli, u is the uniform limit of a sequence of subsolutions. Hence that

u ∈ C(Ω) and it is again a subsolution.

Claim that u is also a supersolution. Argue by contradiction. If u is not a

supersolution, then by Lemma 3.7, there exists a subsolution û such that û = g and

û > u at some point in Ω. However this contradicts to the maximality of u.

We now estimate the modulus of continuity. Let u be the solution of the equation

constructed above. Apply Lemma 3.12 to u, then the resulting ũ is identical to u.

Thus u has the desired modulus of continuity.

3.4 Relation to pluripotential solution

In this section, we discuss the equivalence between weak solution in the sense of

pluripotential theory and in the sense of viscosity.
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Proposition 3.13. Let f ∈ C(Ω) be non-negative and u ∈ C(Ω). Then (
√
−1∂∂̄u)n =

f(z) in pluripotential-potential sense if and only if that M(u) = f(z) in viscosity

sense.

Proof. Let u be a pluripotential solution of M(u) = f(z). First we show that u is a

viscosity supersolution.

Let P be a quadratic polynomial that touches u from below at some x0 ∈ Ω. We

need to verify that detC(D2P ) ≤ f(x0). Without loss of generality, we assume that

z0 = 0.

Suppose on the contrary that detC(D2P ) ≤ f(x0). By continuity of f , there exists

some r0 and ε0 such that

√
−1∂∂̄(P − ε0

2
|x|2) > 0, det

[√
−1∂∂̄(p− ε0

2
|x|2
]
> f(x), ∀x ∈ Br0 . (3.59)

Then

P − ε0
2

(|z|2 − r2
0

2
) < u, on ∂Br0 ;

P +
ε0
2

r2
0

2
> u(0).

(3.60)

But this contradicts to the pluripotential comparison principle. Thus a pluripotential

solution u is also a viscosity supersolution.

The proof of u being a subsolution is similar.

Now to prove the converse statement. Let u ∈ C(Ω) satisfy MC(·) = f in viscosity

sense. Solve the Dirichlet problem with data f, g = u|∂Ω in pluripotential sense.

Denote the unique solution by ũ. By the discuss above ũ is also a viscosity solution

of the Dirichlet problem. The viscosity uniqueness forces that ũ = u.
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Chapter 4

Summary of Current Local

Regularity Results

4.1 Review of the current literature

As mentioned in the introduction, there are only three interior regularity results

available in the current literature. We first give a detail review of them.

The first one is a gradient estimate of a solution u with a convex level set [Blo09].

Theorem 4.1 (Blocki, 2000). Let Ω be a bounded convex domain in Cn. If u is a

continuous plurisubharmonic function that satisfiesM[u] = f(Ω) in Ω

u = 0 on ∂Ω f 1/n ∈ C1,1(Ω)

(4.1)

then u is Lipschitz in the interior of Ω and for any compact subdomain Ω′

|u(x)− u(y)| ≤ C |x− y| , ∀x, y ∈ Ω′ (4.2)

where

C = diam(Ω)2

(
2Λ

dist(Ω′,Ω)
+ ‖f 1/n‖C0,1

(
1 +

diam(Ω)

dist(Ω′,Ω)

))
. (4.3)
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The value of this estimate lies in the fact that it does not the require regularity

and curvature information of ∂Ω. However, this estimate is not a special property to

the complex Monge-Ampère equation. In fact, one observes from its proof that any

concave elliptic operator F of homogeneous 1 will have the same estimate (see next

section the proof when f ≡ 1).

The insufficiency of the estimate lies in the assumption that u has a convex level

set. This is in general not true for solutions of the complex Monge-Ampère equation.

In particular, the assumption that u has a convex level set is not invariant under bi-

holomorphic transformations. An interesting question is the following: if the solution

u has a convex level set Ω, whether all level sets that contained in Ω are convex. If

this is the case, then one can show that u is C1,α in the interior, provided that the

complex Monge-Ampère measure is comparable to the Lebesgue measure.

The second result, due to Blocki and Dinew [BD11], states that if a solution D2u

is Lp for a large p, then u is indeed C2.

Theorem 4.2 (Blocki, Dinew, 2011). Suppose that u is a continuous plurisubhar-

monic function that satisfiesM[u] = f ∈ C1,1(B1) in B1

f 1/n ∈ C1,1(B1).

(4.4)

If

θ ≤ f(x) ≤ θ−1, ∀x ∈ B1

∃p > n(n− 1) such that ‖∆u‖Lp(B1) ≤ Λ,
(4.5)

then for every α > 0, u ∈ C2,α(B1/2) and

‖D2u‖C2,α(B1/2) ≤ C(‖f 1/n‖C1,1(B1/2), θ,Λ, p, α, ‖u‖L∞(B1)). (4.6)

The key value of the above result lies in the fact that the integrability assumption

on ∆u is optimal. Block’s example discussed in the previous chapter are singular

examples with ∆u ∈ Lp, p < n(n− 1).
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The proof follows from a general method given by Trudinger [Tru80]. The special

ingredient from the complex Monge-Ampère equation is the Kolodziej’s L∞-estimate

(see next section for more details).

The insufficiency of the estimate is that the condition ∆u ∈ Lp for p > n(n − 1)

is difficulty to verify in general.

The last result is given by Dinew, Zhang and Zhang [DZZ]. It states the following:

Theorem 4.3 (Dinew, Zhang, Zhang, 2010). Suppose that u is a continuous plurisub-

harmonic function that satisfiesM[u] = f in B1

f 1/n ∈ Cα(B1).

(4.7)

If

θ ≤ f(x) ≤ θ−1,∀x ∈ B1

‖D2u‖L∞(B1) ≤ Λ,
(4.8)

then u ∈ C2,α(B1/2) and

‖D2u‖C2,α(B1/2) ≤ C(‖f 1/n‖Cα(B1/2),Λ, α, ‖u‖L∞(B1)). (4.9)

The key importance of the above theorem is that D2u is of exactly same Hölder

exponent as f .

4.2 Gradient and Hessian estimates

In this section, we present the proof of Theorem 4.1 and 4.2 for the case the right-hand

side f ≡ 1. They key in both proof is the concavity property of the determinant.

We first present the proof of Blocki’s estimate

Proof of Theorem 4.1 when f ≡ 1. By scaling, we may assume

B1 ⊂ Ω. (4.10)
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and 0 is the centre of mass of Ω.

For an arbitrary y ∈ Br, r ≤ 1/2, define

Tα(x) := (1− r)x+ y. (4.11)

It is easy to see that T (Ω) ⊂ Ω.

Now, let

v(x) := u ◦ T (x) + r

(
|x|2

2
− diam(Ω)2

2

)
. (4.12)

Then

M1/n[v](x) ≥ (1− r)M1/n[u](T (x)) + r ≥ 1. (4.13)

and v|∂Ω ≤ 0.

Therefore, by the comparison principle, we conclude

v(0) = u(y)− diam(Ω)2r ≤ u(0). (4.14)

This proves the estimate.

Next we present proof of Blocki and Dinew’s estimate.

Proof of Theorem 4.2 when f ≡ 1. All constants in the proof will only depends on

Λ, n, p. By standard approximation, we may assume u ∈ C4. All derivatives are

performed against the canonical complex coordinates {z1, ..., zn}.

Let L[ϕ] be the linearized complex Monge-Ampère operator:

L[ϕ] := uij̄ϕj̄i (4.15)

Since F [u] = 1, we have for every k

L[uk] = 0, L[∆u] ≥ 0 (4.16)

Fix q ∈ (1, p
n(n−1)

), let

α = 1 +
p

qn
, β = 2

(
1 +

qn

p

)
. (4.17)
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Clearly, α, β ≥ 2; Let

η(z) := (1− |z|2)β, w := η · (∆u)α (4.18)

By direct calculation,

L[w] ≥ (∆u)αuij̄
(
ηij̄ −

α

α− 1

ηiηj
η

)
(4.19)

By the choice of η, we have∣∣ηij̄∣∣ , ∣∣∣∣ηiηj̄η
∣∣∣∣ ≤ Cη1−2/β. (4.20)

Thus, we obtain

L[w] ≥ −Cw1−2β(∆u)2α/β
∑
ij

∣∣∣uij̄∣∣∣ . (4.21)

By standard linear algebra, ∆u is bounded in Lp implies uij̄ are bounded in

Lp/(n−1). It follows then

‖(L[w])−‖ ≤ C
(

1 + ‖w‖1−2β
L∞

)
(4.22)

where f− := −min{f, 0}.

Now, solve

F [v] = (L[w])− , v|∂B1 = 0 (4.23)

in viscosity sense. By the arithmetic-geometric inequality, we have

L[v] ≥ nF 1/n[u] (L[w])− ≥ −L[w]. (4.24)

It implies

w ≤ (−v), in B1. (4.25)

On the other hand, by Kolodzieg’s estimate, we have

− v ≤ C‖F [v]‖1/n
q (4.26)

Finally, combine (4.22) - (4.26), we have

‖w‖L∞(B1) ≤ C(1 + ‖w‖1−2/β
L∞(B1)) (4.27)

The desired estimate follows.
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4.3 Singular examples

4.3.1 Basic calculations

We consider singular solution to the complex Monge-Ampère equation of the form

u(x) = u(|x′| , |(x2n−1, x2n)|). (4.28)

The following calculation will be needed.

Lemma 4.4. The following calculation holds:

1. Let

u(x) = h(r)g(t), r = |x′| = |(x1, ..., x2n−2)| , t = |(x2n−1, x2n)| . (4.29)

For all x such that |x′| 6= 0, u satisfies

detC(D2u) =
1

4

(
h′

r

)n−2

gn−2

[
gh

(
h′

r
+ h′′

)(
g′

t
+ g

)
− (h′g′)

2

]
(4.30)

2. Let

u(x) = r + rβ(1 + t2). (4.31)

Then for all x such that r 6= 0, u satisfies

detC(D2u) = rβ+1−n (βrβ−1t2 + βrβ−1 + 1
) (
β2rβ−1 + 1

)
(4.32)

Proof. Let u be a plurisubharmonic function on Cn of the form

u(x) = h(r)g(t), , r = |x′| = |(x1, ..., x2n−2)| , t = |(x2n−1, x2n)| (4.33)

We would like to compute its complex Hessian. Fix a point x, we claim: there

exists a complex coordinate system such that

x = (0, .., 0, r, 0, t). (4.34)
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The key observation here is that x′ is an eigenvector of p(x⊗x). Let U ∈ SU(2n)

such that

Up(x′ ⊗ x′)UT = diagonal. (4.35)

U−1 gives a complex coordinate transformation that maps x′/ |x′| to one of the coor-

dinate axis. Relabelling the coordinate if necessary, we may assume x/ |x| = e2n−2.

With the same procedure, we find a linear map V on R2 such that V −1 maps

s = (x2n−1, x2n) to (0, |s|).

Then the mapping

T =

U−1 0

0 V −1

 (4.36)

gives the required coordinate transformation.

Now, in this new coordinate system, we have

D2u(x) =

g h′(r)r
I2n−4 0

0 M

 (4.37)

where

M =


g h
′(r)
r

0 0 0

0 gh′′(r) 0 h′(r)g′(t)

0 0 g′(t)
t
h 0

0 h′(t)g′(t) 0 g′′(t)h

 (4.38)

By directly calculation, we have

p(D2u(x)) =

g h′(r)r
I2n−4 0

0 p(M)

 (4.39)

and

p(M) =
1

2


g h
′(r)
r

+ gh′′(r) 0 h′(t)g′(t) 0

0 g h
′(r)
r

+ gh′′(r) 0 h′(t)g′(t)

h′(t)g′(t) 0 g′(t)
t
h+ g′′(t)h 0

0 h′(t)g′(t) 0 g′(t)
t
h+ g′′(t)h

 .

(4.40)
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(4.30) follows immediately.

Now consider

u(x) = r + rβ(1 + t2) (4.41)

Apply the previous calculation with h(r) = rβ, g(t) = (1 + t2), we have

p(D2u(x)) =

(βrβ−2(1 + t2) + β−1
)
I2n−4 0

0 p(M)

 (4.42)

and

p(M) =
1

2


β2rβ−2(1 + t2) + 1

r
0 2rβ−1t 0

0 β2rβ−2(1 + t2) + 1
r

0 2rβ−1t

2rβ−1t 0 4rβ 0

0 2rβ−1t 0 4rβ

 . (4.43)

(4.32) follows immediately.

4.3.2 Partially radial symmetric examples

We now present Blocki’s example [Blo97] and its modifications.

Theorem 4.5 (Blocki, 1997). Let δn be a constant only depending on n with δ2 =∞;

let

Ω = {x : |t| ≤ δn}. (4.44)

There exists a plurisubharmonic function u ∈ C1,1− 1
n

(Ω) but not C2 such that

M[u] = 1, in Ω. (4.45)

Proof. Let

u = rαg(t). (4.46)

By Lemma 4.4 and its proof, we have

detC(D2u) =
αn

4
r(α−2)(n−2)+2(α−1)gn−2

[
g

(
g′′ +

g′

t

)
− (g′)2

]
. (4.47)
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and u is psh when (
g′

t
+ g′′

)
+ α2r−2g ≥ 0, r 6= 0 (4.48)

Now, let

α = 2− 2

n
(4.49)

and let g be the solution of the following initial value problemg
(
g′′ + g′

t

)
− (g′)2 = 4gn−2

α2

g(0) = 1, g′(0) = 0

(4.50)

By the standard ODE theory, there exists δn such that g(t) exists for t < δn and

g(t) > 0∀t ∈ [0, δn).

Moreover, when n = 2

g(t) = 1 + t2 (4.51)

is the solution.

Thus, u(x) = rαg(t) satisfies the required condition.

Remark 4.6. By adding trivial variables to the 2-D example, i.e., consider

u(z, w, ξ) := |z| (1 + |w|2) + |ξ|2 /2, (z, w, ξ) ∈ C× C× Cn−2,

we obtain singular global solution to M[u] = 1 in any dimension n ≥ 2.

Now we present a more singular solution but with non-constant right-hand side

Theorem 4.7. Let n ≥ 3, the function

u = r + rn−1(1 + t2) (4.52)

satisfies

M[u] = f ∈ C∞(Cn), f > 0. (4.53)

However u ∈ C0,1(Cn) but not in C1,α for any α > 0.

Proof. Follows immediately from Lemma 4.4



CHAPTER 4. SUMMARY OF CURRENT LOCAL REGULARITY RESULTS 40

4.4 Remark on global singular solutions

In the previous section, we have seen that the complex Monge-Ampère equation

admits global singular solutions. e.g.,

u = |z| (1 + |w|2)

solvesM[u] = 1 on C2. The singular set,i.e, the set of points where u is not smooth,

is given by

Σu = {(0, w) : w ∈ C}.

Now, consider a holomorphic mapping F : C2 → C2 (not necessarily injective nor

surjective) such that

det(JF ) = 1, JF :=

F 1
z F 1

w

F 2
z F 2

w


then u ◦ F is again a solution with singular set

Σu◦F = F−1(Σu).

Consider the mapping

F (z, w) := (ez − 1, e−zw)

then

Σu◦F = {(z, w) : ez = 1, w ∈ C}

which consists of infinitely many copies of C.

Given any holomorphic function f : C→ C, by considering the mapping,

F (z, w) := (z, w − f(z)),

the graph of f graph can be realized as the singular set of a solution toM[u] = 1 on

C2.
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Now, it is interesting to ask whether there are singular set of solutions M[u] = 1

on C2 with more complicated geometry. For example, can the singular set be of the

form

Σu = {(z, w) : z2 = w3}.

More generally, one would like to classify all possible singular sets of global solu-

tions of M[u] = 1 on Cn. Here, we would like to make the following conjecture:

Conjecture: Let u be a solution of M[u] = 1 on C2, then the singular set Σu is

an area-minimizing currents.
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Chapter 5

Small Perturbation Solutions

5.1 Main statements

We shall consider a family of elliptic operators.

Definition 5.1. Given constants δ, θ,K > 0, the family Fδ,θ,K consists of functions

F : Sym(2n)→ R that satisfy the following conditions:

H1 For every M ∈ Sym(2n)

F (M + P ) ≥ F (M), ∀P ≥ 0. (5.1)

H2 F (0) = 0.

H3 For every M with ‖M‖ ≤ δ

θ−1‖P‖ ≥ F (M + P )− F (M) ≥ θ‖P‖,∀P ≥ 0, ‖P‖ ≤ δ. (5.2)

H4 F is twice differentiable in the set {M | ‖M‖ ≤ δ} and

∣∣D2F (M)
∣∣ ≤ K. (5.3)

We will prove the following more general theorem.
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Theorem 5.2 (Savin, 2007). For every δ > 0, if F ∈ Fδ,θ,K and

f(0) = 0,

∫ 1

0

−ωf (r) log r

r
dr <∞, (5.4)

then there exist constants µ, ρ, C only depending on n, δ, θ,K, ωf such that, if

F [u] := F (D2u) = f, in B1

‖u‖L∞(B1) ≤ µ,
(5.5)

then there exists a quadratic polynomial P such that

F (D2P ) = 0, ‖D2P‖ ≤ δ

‖u− P‖L∞(Br) ∼ o(r2), as r → 0.
(5.6)

Remark 5.3. The condition on the modulus of continuity of f seems a bit unnatural.

The optimal condition that one would like to obtain is that f is Dini continuous, i.e.,∫ 1

0

ωf (r)

r
dr <∞.

However, we cannot reach this generality at this moment.

In the case that f ≡ 0, Theorem 5.2 was first introduced by Savin in [Sav07] where

Theorem 5.2 has been proved for more general elliptic equations. Though not stated

explicitly, the proof in [Sav07] essentially covers the case that f has proper modulus

of continuity. However, the result and method in [Sav07] seem not well-known in the

study of the complex Monge-Ampère equations. For the purpose of completeness, we

shall present a detailed proof of Theorem 5.2.

5.2 Setup and the main ideas

Fix δ > 0, in the rest of this chapter, we shall refer constants that only depends on

n, δ, θ,K, β, ωf as universal constants. Denote

η(r) := −ωf (r) log r (5.7)
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The proof of Theorem 5.2 is divided into two parts.

In the first part, we want to establish a modified version of Harnack inequality (see

Prop.5.9) for f has small oscillation around 0 . As the standard Harnack inequality,

it will provide us necessary compactness in performing a blow-up. The underline

idea of the proof is essentially same to the classical proof of Krylov-Safonov Harnack

inequality (see [CC95]). The key observation here is that in the classical proof, one

only need the equation to be evaluated on test functions that touches v. In the case

v is very close to zero, we can choose test functions with very small Hessian. For this

part, we follows exactly same proof as given in [Sav07].

In the second part, we obtain estimate of D2u through a blow-up argument. The

formal idea is the following: Let v = εh, by a formal Taylor expansion

F (D2u)− 1 = ε∆h+O(ε2). (5.8)

Thus h satisfies ∆h = 1 in turn h and v are regular. However, the formal argument

is unsatisfactory because the O(ε2) depends on the seize of D2w which is not under

control. This issue is resolved through the compactness. In this part, we modify

slightly the argument in [Sav07] to cover the case f is non-constant.

Before moving on, we list some immediate consequences of the structure conditions

of F .

Lemma 5.4. If F : Sym(2n)→ R belongs to Fδ,θ,K, then

1. For every M ∈ Sym(2n) such that ‖M‖ ≤ δ

θ‖M+‖ − (2n− 1)θ−1‖M−‖ ≤ F (M) ≤ (2n− 1)θ−1‖M+‖ − θ‖M−‖, (5.9)

2. There exists a universal constant c0 such that: for all a ≤ c0δ, If F (M) ≤ 1 + a

and M ≥ −aI, then

M ≤ C0aI. (5.10)
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Proof. Statement 1 follows immediately from H3 of the Definition 5.1. To prove the

second statement, Let e be the eigenvector that corresponds to the largest eigenvalue

of M and take C such that Me = (Ca)e. Since M ≥ −aI,

M ≥ Cae⊗ e− aI. (5.11)

First, claim that Ca ≤ δ. Suppose otherwise, then

M ≥ δe⊗ e− aI. (5.12)

and by the first statement, we have

c0δ ≥ a ≥ F (M)− 1 ≥ F (δe× e− aI)

≥ θδ − θ−1(n− 1)a ≥ θδ − θ−1(n− 1)c0δ.
(5.13)

This leads to a contradiction when c0 is small.

Next, as we have shown that Ca ≤ δ, we can apply Statement 1 to conclude that

a ≥ F (M)− 1 ≥ θCa− θ−1(n− 1)a (5.14)

which implies that

C ≤ θ−1 + θ−2(n− 1). (5.15)

This completes the proof.

5.3 Measure estimate and localization

In this section, we establish two important tools in the proof.

First, we introduce the concept of contact sets.

Definition 5.5. For each closed subset E ⊂ B1 and positive number a, we define the

contact set

Aa(E) := {x | ∃y ∈ E such that Pa,y touches u from below at x.} (5.16)
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where

Pa,y := −a
2
|x− y|2 + c, c ∈ R. (5.17)

We set Aa := Aa(B1).

The following properties of contact sets will be useful

Lemma 5.6. Let E be a closed subset of B1 and a > 0, then the following statement

holds

1. Aa(E) is closed hence measurable.

2. If E ⊂ F , then Aa(E) ⊂ Aa(F ).

3. If a < b, then Aa(B1) ⊂ Ab(B1).

Proof. Statement 1 and 2 are straight forward to check. To show 3, let x ∈ Aa(E)

and ya ∈ B1 be its corresponding point. It is easy to check that the polynomial

P (x) := − b
2
|x− yb|2 + cb (5.18)

with

yb =
(

1− a

b

)
x+

a

b
ya (5.19)

will touch u at x after a proper choice of cb.

5.3.1 Measure estimate

We now state and prove an ABP-type measure estimate.

Lemma 5.7. There exists a constant c1 such that: for every ν ∈ (0, 1), every δ′ ≤ c0δ

and every E ⊂ B1, if F ∈ Fδ,θ,K,

F [u] ≤ 1 + νδ′ (5.20)

and

Aa(E) ⊂ B1 (5.21)
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then for all a ∈ (νδ′, c0δ0),

|Aa(E)| ≥ c1 |E| . (5.22)

Proof. It suffices to prove the lemma for u being semi-concave in B1. The general

case follows from jansen’s approximation.

By Lemma 2.10, the map

T (x) := x+
1

a
∇w(x) (5.23)

is a well-defined Lipschitz map on A. By the assumption that A ⊂ Ω, we conclude

that

T (A) = E (5.24)

Since u is semi-concave, we know by Theorem 2.9 that there exists a set Z such

that |B1 \ Z| = 0 and w is C2 on all z ∈ Z.

Fix x ∈ A ∩ Z, by the definition of contact set and 5 of Lemma5.4, we have

− aI ≤ D2u(x) ≤ CI. (5.25)

Thus, by the area formula, we conclude from (5.24), (5.25) that

|E| ≤
∫
A\Z

det(D2w) dx ≤ Cn |A| . (5.26)

This proves the desired estimate.

5.3.2 Localization

The ABP measure estimate suggests that the good sets (contact sets) are not small

in measure. To obtain point-wise estimate, we need a finer information on their

distribution.

Lemma 5.8. For any ν ∈ (0, 1) and δ′ ≤ c0δ, if F ∈ Fδ,θ,K and

F [u] ≤ 1 + νδ′ (5.27)
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then there exist constants c, C such that, for all a ∈ (νδ′, C−1
2 c0δ), if

Br(x0) ⊂ B1, Br(x0) ∩ Aa 6= ∅, (5.28)

then ∣∣ACa ∩Br/8(x0)
∣∣

|Br(x0)|
≥ c (5.29)

Proof. Without loss of generality assume

x1 ∈ Br(x0) ∩ Aa 6= ∅ (5.30)

Otherwise we replace r by r + ε and the result follows by letting ε→ 0.

Denote by y1 ∈ B1 the vertex of the tangent paraboloid

Py1(x) := w(x1) +
a

2
|x1 − y1|2 −

a

2
|x− y1|2 (5.31)

that touches w from below at x1.

We devide the proof into three steps.

Step 1 Claim: there exists a point z ∈ Br/16(x0) such that

u(z)− Py1(z) ≤ Car2. (5.32)

Let ϕ be the radially symmetric continuous function

ϕ : B1 → R, ϕ(x) :=

α
−1
(
|x|−α − 1

)
, 1

16
≤ |x| ≤ 1

α−1 (16α − 1) , |x| ≤ 1
16

(5.33)

where α is a large constant.

Construct a function ψ by adding a rescaling of the above function to the tangent

paraboloid Py1(x), i.e.,

ψ : B1 → R, ψ(x) := Py1(x) + ar2ϕ

(
x− x0

r

)
. (5.34)

We claim that ψ satisfies F [ψ] ≥ 1 + νδ′ in the region

r/16 < |x− x0| < r. (5.35)
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Indeed, using Lemna 5.4 we find

F [ψ]− F [0] ≥ λa
[
(α + 1)t−α−2 − 1

]
− (n− 1)Λa(1 + t−α−2) ≥ a (5.36)

where t = |x− x0| /r.

Now let z be the point where

min
x∈Br(x0)

(u− ψ) (5.37)

is realized.

If x ∈ ∂Br(x0) then

u(x) ≥ Py1 = ψ(x). (5.38)

However, the value in (5.35) is negative since x1 ∈ Br(x0) and

u(x1)− ψ(x1) = Py1(x1)− ψ(x1) < 0. (5.39)

Therefore, from the above consideration, we deduce that the minimum cannot be

realized in the region given by (5.32). In conclusion

z ∈ Br/16 (5.40)

and

u(z) < ψ(z) ≤ Py1(z) + Car2 (5.41)

which proves the claim.

Step 2 Claim: for every y ∈ Br/64(z), the polynomial

P (x; y) := Py1(x)− C ′a

2
|x− y|2 + cy (5.42)

touches v from below in B1.

The opening of the above paraboloid is (C ′ + 1) a and the vertex is

T (y) :=
C ′

C + 1
y +

1

C ′ + 1
y0 ∈ B1 (5.43)
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From (5.32) we find

cy ≤ Car2 + C ′
a

2

( r
64

)2

. (5.44)

If |x− z| ≥ r/16 and C ′ is large

Py1(x)− C ′a
2
|x− y|2 + cy

≤ Py1(x)− C ′a
2

( r
32

)2

+ Car2 + C ′
a

2

( r
64

)2

< u(x).
(5.45)

Thus, the contact points are inside Br/16 ⊂ Br/8(x0) ⊂ B1. This proves the claim.

Step 3 Complete the proof. Let

E = T (Br/64(z0)) (5.46)

By Step 2, we know

AC2a(E) ⊂ B1, C2 = C ′ + 1. (5.47)

Therefore, we can apply Lemma 5.7 to conclude

|AC2a| ≥ |AC2aE| ≥ |E| =
(

C ′

C ′ + 1

)n ∣∣Br/64

∣∣ . (5.48)

The desired estimate follows.

5.4 Oscillation decay and compactness

Recall that for uniformly elliptic equation, the oscillation of a solution over Br decays

as r tends to zero. This shows that the solutions are uniformly Hölder and hence the

family of solutions are compact.

The goal of this section is to show that oscillation of v over Br decays for r not

too small.

Proposition 5.9. Suppose that F ∈ Fδ,θ,K and

‖u‖L∞(B1) ≤ δ′ ≤ c0δ, u(0) = 0. (5.49)
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There exists a small constant ν such that if

1− νδ′ ≤ F [u] ≤ 1 + νδ′, in B1 (5.50)

then

‖u‖L∞(B1/2) ≤ (1− ν)δ′. (5.51)

As an immediate corollary, we have

Corollary 5.10. If F ∈ Fδ,θ,K and for some k,

‖u‖L∞(B1) ≤ δ′ ≤ 2−2kc0δ, u(0) = 0 (5.52)

and

1− νδ′ ≤ F [w] ≤ 1 + νδ′, (5.53)

then for all ρ ≥ 2−(k+1)

‖u‖L∞(Bρ) ≤ 2ρβδ′, (5.54)

where β is a small constant.

5.4.1 Oscillation decay in measure

We first show that the measure of contact set of w with large opening is very large

compare to B1. This is done via a measure covering argument.

Lemma 5.11. Let ν ∈ (0, 1), δ′ ≤ c0δ and a ∈ (νδ′, c0δ), if F ∈ Fδ,θ,K,

F [u] ≤ 1 + νδ′ (5.55)

and

Aa ∩B1/2 6= ∅, (5.56)

then for all k such that Ck
2a ≤ c0δ,∣∣B1/2 \ ACka

∣∣ ≤ (1− c3)k
∣∣B1/2

∣∣ . (5.57)
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Proof. Let Dk := ACka ∩B1/2. The proof is divided into two steps.

Step 1 Claim: for all x ∈ B1/2∣∣Br/3(x) ∩Dk+1

∣∣ ≥ c
∣∣B1/3 ∩Br(x)

∣∣ (5.58)

where

r := dist(x0, Dk). (5.59)

To show this, let

x′ := x− r

6

x

|x|
. (5.60)

Notice that

Br/6(x′) ⊂ Br/2(x) ∩B1/2. (5.61)

From Lemma 5.8 and

dist(x′, Dk) ≤ r +
r

6
=

7

6
r, (5.62)

we conclude that ∣∣Br/6(x′) ∩Dk+1

∣∣ ≥ c′
∣∣B1/2 ∩Br(x)

∣∣ (5.63)

which proves the claim.

Step 2 Now we perform a Vitali covering argument. For each x ∈ B1/2, we consider

the ball of centre x and radius

rx = dist(x,Dk). (5.64)

By Vitali’s covering lemma (see [EG92]), we can choose a sequence of balls Bri(xi)

that covers B1/2 \Dk and Bri/3 are disjoint.

We have∣∣B1/2 \Dk

∣∣ ≤∑
i

∣∣Bri(xi) ∩B1/2

∣∣
≤ c−1

∑∣∣Bri/2 ∩ (Dk+1 \Dk)
∣∣ ≤ c−1 |Dk+1 \Dk| .

(5.65)

In conclusion,∣∣B1/2 \Dk+1

∣∣ ≤ ∣∣B1/3 \Dk

∣∣− |Dk+1 \Dk| ≤ (1− c3)
∣∣B1/2 \Dk

∣∣ (5.66)

and the lemma is proved.
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5.4.2 Proof of the oscillation decay property

Now, we give the proof of Proposition 5.9.

Proof of Proposition 5.9. We proceed the proof in three steps.

Step 1 Let

E+ = {u ≤ δ′/4} ∩B1/3, E− = {u ≥ −δ′/4} ∩B1/3 (5.67)

Claim:

|E+| , |E−| ≥ c. (5.68)

To estimate E+, we slide from below the paraboloids

− 16δ′ |x− y|2 + cy, |y| ≤ 1/3. (5.69)

Since w(0) = 0, and w ≥ −δ′, we see that the contact points belong to E+. Then

Lemma 5.7 implies the desired estimate. Flip the above picture, we obtain the esti-

mate of E−.

Step 2 We prove the lower bound of u by contradiction. Suppose that there exists

a point x0 ∈ B1/3 such that

u(x0) ≥ −δ′ + νδ′. (5.70)

Let a = 72νδ′. By a proper choice of cx0 , the paraboloid

− a

2
|x− x0|2 + cx0 (5.71)

touches u from below in B1/2. Therefore

Aa ∩B1/2 6= ∅. (5.72)

By Lemma 5.11 and the fact that

u(x) = PCka,y(x) ≤ Ckνδ′ ∀x ∈ ACka ∩B1/2, (5.73)

we conclude that ∣∣{u ≥ −δ′ + Ckνδ} ∩B1/2

∣∣ ≤ (1− c3)k
∣∣B1/2

∣∣ (5.74)
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Now, we first choose k such that

(1− c3)k
∣∣B1/2

∣∣ ≤ c/2 (5.75)

then choose ν such that

Ckν ≤ 1/2. (5.76)

Then (5.74) and

|E−| =
∣∣{u ≥ −δ/4} ∩B1/2

∣∣ ≥ c (5.77)

contradict the fact that (x,w(x)) is a graph on B1/2.

Step 3 To complete the proof, we are left to estimate u|B1/2
from above. This

follows simply via applying Step 2 to −u and −F (−M).

5.4.3 Compactness

In this section, we prove the Corollary 5.10 and discuss its implication in compactness.

Proof of Corollary 5.10. The proof contains two steps.

Step 2 Claim: if

‖u‖L∞(Br) ≤ δ′ ≤ r2c0δ, w(0) = 0 (5.78)

then

‖u‖L∞(Br/2) ≤ (1− ν)δ′. (5.79)

This follows from a simple scaling. Fix r < 1, let

ur(x) := r−2u(rx), x ∈ B1. (5.80)

Then wr satisfies

‖ur‖L∞(B1) ≤ r−2δ′ (5.81)

and

|F [ur]− 1| ≤ νδ′ ≤ r−2νδ′. (5.82)
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Thus, we can apply Proposition 5.9 to conclude that

‖ur‖L∞(B1/2) ≤ (1− ν)r−2δ′ (5.83)

The claim then follows.

Step 2 By standard interpolation argument, it suffices to prove the corollary for

dyadic balls, that is,

‖u‖L∞(B
2−j ) ≤ (1− ν)jδ′, j ≤ k + 1. (5.84)

This follows directly from an inductive application of Step 1.

The following lemma explains the relation between compactness of solutions and

Proposition 5.9.

We introduce the following terminology.

Definition 5.12. A continuous function w ∈ B1 is said to have γ-Hölder modulus of

continuity outside a ρ neighbourhood with normal C if

‖w − w(x)‖L∞(Br) ≤ Crα, ∀r ≥ ρ. (5.85)

Lemma 5.13. Let wk be a sequence of continuous function on B1. Assume wk has

β-Hölder continuity outside ρk neighbourhood normal C. If C, β are independent of k

and ρk → 0, then wk converges uniformly on compact subsets to a continuous function

w.

Proof. Let w̃k the inf-convolution of wk against kernel |x− y|β

By Lemma 2.17, w̃k is γ-Hölder continuous with normal C. By ArzelàAscoli, we

conclude that w̃k converges uniformly on compact sets to w.

On the other hand,

|w̃(x)− w(x)| =
∣∣∣w(x∗)− w(x) + C |x− x∗|β

∣∣∣ (5.86)
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where x∗ is the point to realize the minimum in the definition of inf-convolution. By

the β-Hölder continuity outside ρk, we conclude that

|w̃(x)− w(x)| ≤ 2Cρβk , ∀x ∈ B1. (5.87)

Therefore, wk also converges uniformly to w. This proves the lemma.

5.5 Proof of the main statement

We now complete the proof of Theorem 5.2. We denote by P (N, x) the quadratic

polynomial

P (N, x) =
1

2
xTNx+ l(x) (5.88)

where l(x) is a linear function.

The key is the following proposition.

Proposition 5.14. Under assumption of Theorem 5.2, there exist small universal

constants σ,C1, ρ1 such that, for every r < ρ1, if

‖u− P (N, x)‖L∞(Br) ≤ r2η(r) (5.89)

and

F (N) = 0, ‖N‖ ≤ δ

2
, (5.90)

then there exists N ′ such that

‖u− P (N ′.x)‖L∞(Bσr) ≤ (σr)2η(σr) (5.91)

and

F (N ′) = 0, ‖N ′ −N‖ ≤ Cη(r). (5.92)

Proof. The proof is proceed via contradiction. Let σ,C be fixed constants that will be

specified later in the proof. Suppose the statement if false, then there exist sequences

rk → 0, Fk ∈ Fδ,θ,K , fk ∈ C0(B1)

uk ∈ C0(B1), Nk ∈ Sym(2n)
(5.93)
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such that for all k ≥ 0

fk(0) = 1, ‖Nk‖ ≤ δ/2

Fk(D
2uk) = fk in B1,

∫ 1

0

r−1η(r) dr ≤ A

‖uk − P (Nk, x)‖L∞(Brk ) ≤ r2
kη(rk),

(5.94)

but there exists no N ′k ∈ Sym(2n) that satisfies

‖uk − P (N ′k, x)‖L∞(Bσrk
≤ (σrk)

2η(σr)

F (N ′k) = 0, ‖N ′k −Nk‖ ≤ Cη(r).
(5.95)

We shall arrive a contradiction in three steps.

Step 1 : Let wk : B1 → [0, 1] be defined by

uk(rkx) = P (Nk, rkx) + r2η(r)w(rkx), x ∈ B1 (5.96)

Claim, wk converges uniformly to w.

Define

F̃k(M) :=
1

η(rk)

[
Fk(Nk + η(rk)M)− F (Nk)

]
(5.97)

The function wk satisfies

F̃k(D
2wk) =

1

η(rk)
fk, in B1. (5.98)

and F̃k ∈ Fδ̃k,θ,K with

δ̃k = δη−1(rk) (5.99)

For each x0 ∈ B1/2,

vk = wk − wk(x0) (5.100)

satisfies ∣∣∣F̃k(D2vk)
∣∣∣ ≤ C(K, δ)η(rk) +

1

− log r
(5.101)

Now let δ′ = 2, for any l ∈ N, we can take k sufficiently large, we can insure

δ′ ≤ 2 ≤ c0δ

22lη(rk)
‖vk‖B1/2(x0) ≤ δ′∣∣∣F̃k(D2vk)

∣∣∣ ≤ νδ′.

(5.102)
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Therefore, by Corollary 5.10, we conclude that

‖vk‖ ≤ 4rγ, ∀r ≥ 2−(l+1) ≥ 1

2
√

2

√
c0δη(rk) (5.103)

It follows that wk has a Hölder modulus of continuity outside a r′k, r
′
k → 0.

By Lemma 5.13, we conclude that wk converges uniformly to a continuous function

w in B1/2. This completes the Step 1.

Step 2 Claim: w satisfies

tr
(
ND2w

)
= 0, in B1/2 (5.104)

where N is a limit of Nk modulo subsequences.

It suffices to show w is a supersolution, the other case follows similarly. Assume

by contradiction that we can touch w from below at x∗ by a smooth function ϕ and

tr
(
ND2ϕ

)
(x∗) > ε > 0. (5.105)

Then

ϕ− ε′ |x− x∗|2 + c (5.106)

touches wk from below at xk, xk → x∗. We have

0 ≥ 1

η(rk)

[
Fk(Nk + η(rk)M)− F (Nk)

]
≥ tr(NkD

2ϕ)− nε′ − C(ϕ,K)η(rk)

≥ ε/2, as k → 0.

(5.107)

This is a contradiction and the claim is proved.

Step 3 Reach the contradiction. Follows from standard theory of linear equation,

there exists Ñ ∈ Sym(2n) and universal constants C such that for every σ < 1/2

tr
(
N · Ñ

)
= 0, ‖Ñ‖ ≤ C

‖w − P (Ñ , x)‖L∞(Bσ ≤ Cσ3.
(5.108)

Let σ be chosen so that

Cσ <
1

3
η(σ) (5.109)
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Let

Ñk := Ñ + skI (5.110)

where sk is choose so that

F (Nk + rβk Ñk) = 0. (5.111)

Such sk always exists for large k, because for sk such that skη(rk) ≤ δ/2

1

η(rk)
Fk(Nk + η(rk)(Ñ + sI)) = Csk + trNkÑ + Csδ/2, 0 <

s

sk
< 1 (5.112)

whose sign will only depends on sk when r

Moreover, (5.112) implies that for k large,

|sk| ≤ ηβ/3. (5.113)

By the uniform continuity, we have for k large

|wk − w|L∞(Bσ) ≤
1

3
σ2η(σ) (5.114)

Combine (5.108), (5.113) and (5.114), we can take k large enough so that

‖wk − P (Ñk, x)‖L∞(Bσ) ≤ σ2η(σ). (5.115)

Therefore, the polynomial P (N ′k, x) with

N ′k = Nk + η(rk)Ñk (5.116)

satisfies

‖uk − P (N ′k, x)‖L∞(Bσr) ≤ (σr)2η(σr)

F (N ′k) = 0, ‖N ′k −Nk‖ ≤ Cη(rk).
(5.117)

However, this contradicts to our starting hypothesis (5.95).

Proof of Theorem 5.2. Since ∫ 1

0

η(r)

r
dr <∞ (5.118)
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we can choose ρ ≤ ρ1 so that

C

∞∑
k=1

η(σkρ) ≤ δ/2. (5.119)

Then choose

µ :=
1

2
ρ2η(ρ). (5.120)

Define

P0 := 0. (5.121)

The triple (u, P0, Bρ) verifies the hypothesis of Proposition 5.14. Starting with

(u, P0), inductively apply Proposition 5.14, we obtain a sequence of quadratic poly-

nomials

Pk = P (Mk, x) =
1

2
xTMkx+ bk · x+ ck (5.122)

that satisfies:

‖u− Pk‖L∞(B
σkρ

) ≤ (σkρ)2η(σkρ), F (Mk) = 0, (5.123)

It follows then

(σkr0)2‖Mk −Mk+1‖,
(
σkr0

)
‖bk − bk+1‖, |ck − ck+1| ≤ (σkρ)2η(σkρ) (5.124)

From the above estimate, we conclude that Pk’s form a Cauchy sequence and

converge uniformly to

P = P (M,x) =
1

2
xTMx+ b · x+ c (5.125)

in Br0 .

Clearly F (M) = 0. Consider

‖u− P‖L∞(Br). (5.126)

Fix r < r0, there exists k such that

σk+1ρ < r ≤ σkρ (5.127)
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By (5.123) and (5.124), we have,

‖u− P‖L∞(Br) ≤ ‖u− Pk‖L∞(B
σkρ

) + ‖Pk − P‖L∞(B
σkρ

)

≤ C1(σkρ)2η(σkρ) ≤ C1η(σkρ)

σ2
r2

(5.128)

Observe that the term
C1η(σkρ)

σ2
→ 0, as r → 0. (5.129)

Therefore, we conclude u is C2 at 0. Clearly D2P = M satisfies F (D2P ) = 0.
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Chapter 6

Proof of the Main Theorems

6.1 Proof of Theorem 1.4 and its corollary

Theorem 1.4 will follow from Theorem 5.2 and the following lemma.

Lemma 6.1. Let F : Sym(2n)→ R be defined by

Fλ(M) :=

det1/2 (λI + p(M))− 1, I + p(M) ≥ 0

−1 otherwise.

(6.1)

There exists constant θ,K only depending on the dimension n such that, for every

δ < min{λ, 1/2}, Fλ ∈ Fδ,θ,K.

Proof. This follows directly from the properties of the determinant.

Proof of Theorem 1.4. Apply Theorem 5.2 to F1, then the desired conclusion follows.

Now, we proof the corollaries.

6.1.1 Proof of Corollary 1.5

Proof of Corollary 1.5. We shall show that

D2u(x)− I = 0 ∀x ∈ Cn. (6.2)
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Fix x ∈ Cn, by a translation of coordinates, we may assume x = 0. For every ε,

let µε be the constant produced by Theorem 1.4.

By the comparison principle and the growth condition, we conclude that

‖u− |x|
2

2
‖L∞(BR) = o(R2).

Therefore, we can take Rε large so that

wε(x) :=
1

R2
ε

u(Rεx)− 1

2
|x|2 (6.3)

satisfies

‖wε‖L∞(B1) =
1

R2
ε

‖u− 1

2
|x|2‖L∞(BRε )

≤ µε. (6.4)

Then by apply Theorem 1.4 to (w,F1, δ), we conclude that

‖D2u(0)− I‖ = ‖D2w(0)‖ ≤ ε. (6.5)

The conclusion follows by taking ε to zero.

6.1.2 Proof of Corollary 1.6

Proof of Corollary 1.6. Clearly, the α-Hölder modulus of continuity satisfies∫ 1

0

−Cr
α log r

r
<∞. (6.6)

Given x0 ∈ B1/3 and ε > 0, we will show

‖D2uk(x0)−D2ϕ(x0)‖ ≤ ε′ := min{ε, 1

2
‖D2ϕ‖L∞(B1/3) min

x∈B1/3

dist(D2ϕ(x), ∂P)}

(6.7)

for all k sufficiently large. C2,α-convergence then follows from [DZZ].

Let h be a poly-harmonic quadratic polynomial such that

D2ϕ(x0) = p(D2ϕ(x0)) +D2h. (6.8)

By replacing uk, ϕ by uk − h, ϕ− h, we may assume

p(D2ϕ(x0)) = D2ϕ(x0) (6.9)
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It follows that we can take a linear transformation L such that

L(0) = x0, D2ϕ ◦ L(0) = I, [L, J ] = 0. (6.10)

Let wk : B1 → R be defined by

wk(x) := λkr
−2

(
u ◦ L(rx)− |x|

2

2

)
(6.11)

where r is a small constant that will be specified later and

λk = f
−1/n
k (x0). (6.12)

wk satisfies the equation

Fλk(D
2w) = λ

−1/n
k fk ◦ L− 1 ∈ C∞ (6.13)

Since fk ◦ L converges uniformly to f ◦ L, for sufficiently large k

λk ∈ (
3

4
,
4

3
) (6.14)

Therefore, for all k sufficiently large, Fλk ∈ Fε′/2,θ,K where θ,K only depends on ϕ.

Now, we can apply Theorem 5.2 to obtain a small constant µ such that if

‖wk‖L∞(B1) ≤ µ (6.15)

then

‖D2wk(0)‖ ≤ ε′/2. (6.16)

On the other hand, by the definition of wk, we have

‖wk‖B1 ≤
1

λkr2
‖uk − ϕ‖L∞(Br(x0)) + ‖D2ϕ‖Cα(B1/3)r

α. (6.17)

Now, we first take

rα <
µ

2‖D2ϕ‖Cα(B1/3)

(6.18)

then take k large so that

1

λkr2
‖uk − ϕ‖L∞(Br(x0)) < µ/2. (6.19)

In this way, we conclude that wk satisfies (6.15) for all k large. (6.7) then follows

immediately.
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6.2 Proof of Theorem 1.7

Theorem 1.7 follows immediately from Theorem 5.2 and the following proposition.

Lemma 6.2. Let f ∈ C0(B1) and p > n(n− 1). If u ∈ W 2,p is a viscosity solution of

M[u] = f, in B1, (6.20)

then for every µ > 0, exists εµ depending on µ, ‖u‖L∞ , n such that, If |f − 1|B1
≤ εµ,

then there exists a universal constant r0, C0 and a quadratic polynomial P0 such that

‖u− P0‖Br0 ≤ µr2
0

M[P0] = 1, ‖D2P0‖ ≤ C0.
(6.21)

Proof. Suppose the statement is false, that is, there exists a number µ > 0 and

sequences

εk → 0, uk ∈ W 2,p, fk ∈ C0(B1) (6.22)

such that

‖uk‖W 2,p ≤ Λ, ‖uk‖L∞ ≤ A, ‖fk − 1‖L∞(B1) ≤ εk, (6.23)

but no required Pk exists.

Since ‖∆uk‖Lp ≤ Λ, modulo subsequences, uk converges uniformly to some u ∈

C0(B1). By standard harmonic analysis

u ∈ W 2,p, ‖u‖W 2,p(B1) ≤ Λ. (6.24)

Since

M [uk] = fk, fk → 1 uniformly , (6.25)

we conclude that u satisfies

M[u] = 1 in B1 (6.26)

By Thm.4.2, there exists a polynomial P0 such that M[P0] = 1, ‖D2P0‖ ≤ C0

and

‖u− P0‖L∞(Br) ≤ Cr3,∀r < 1/2 (6.27)
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where C0, C are universal constants.

Fix r0 small so that

Cr0 = µ0/2, (6.28)

then fix k large so that

‖uk − u‖L∞(Br0 ) ≤ µ0r
2
0/2. (6.29)

We then find that

‖uk − P0‖L∞(Br0 ) ≤ µ0r
2
0. (6.30)

This leads to a contradiction.

Proof of Theorem 1.7. Fix p > n(n − 1), let C1 be a universal constant such that if

u satisfies M[u] = 1 in B1

‖∆u‖Lp(B1) ≤ Λ

(6.31)

then

‖D2u‖L∞(B1/2) ≤ C1 (6.32)

By Theorem 4.2, such a constants exists.

Let µ be the constant produced by Theorem 1.4 with respect to

δ =
1

2Cn−1
. (6.33)

Take r1 according to εµ such that

f̃(x) := f(r1x) satisfies
∣∣∣f̃(x)− 1

∣∣∣
B1

≤ εµ. (6.34)

Let

ũ(x) :=
1

r2
1

u(r1x), x ∈ B1, (6.35)

then ũ satisfies

M[ũ] = f̃ in B1. (6.36)
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By Lemma (6.2), we conclude that there exists universal P0, r0 such that

‖ũ− P0‖L∞(Br0 ) ≤ µ0r
2
0, M[P0] = 1 (6.37)

Let

û :=
1

r2
0

ũ(r0x), P̂0 :=
1

r2
0

P0(r0x) (6.38)

Then

M[P̂0] = 1 and
∣∣∣û− P̂0

∣∣∣
B1

≤ µ0 (6.39)

Moreover

M[û](x) = M [ũ](r0x) = f̃(r0x) := f̂(x), x ∈ B1. (6.40)

Now, by an argument that is similar to the one given in the proof of Corollary

1.6, we conclude that

‖D2u−D2P‖L∞(Br0r1/2) = ‖D2û−D2P̂‖L∞(B1/2) ≤ δ. (6.41)

Higher regularity of u follows from [DZZ].
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