Multi-scale Modeling of Trauma Injury

Imielinska, Celina Z.; Przekwas, Andrzej; Tan, X. G.

We develop a multi-scale high fidelity biomechanical and physiologically-based modeling tools for trauma (ballistic/impact and blast) injury to brain, lung and spinal cord for resuscitation, treatment planning and design of personnel protection. Several approaches have been used to study blast and ballistic/impact injuries. Dummy containing pressure sensors and synthetic phantoms of human organs have been used to study bomb blast and car crashes. Large animals like pigs also have been equipped with pressure sensors exposed to blast waves. But these methods do not anatomically and physiologically biofidelic to humans, do not provide full optimization of body protection design and require animal sacrifice. Anatomy and medical image based high-fidelity computational modeling can be used to analyze injury mechanisms and to optimize the design of body protection. This paper presents novel approach of coupled computational fluid dynamics (CFD) and computational structures dynamics (CSD) to simulate fluid (air, cerebrospinal fluid) solid (cranium, brain tissue) interaction during ballistic/blast impact. We propose a trauma injury simulation pipeline concept staring from anatomy and medical image based high fidelity 3D geometric modeling, extraction of tissue morphology, generation of computational grids, multiscale biomechanical and physiological simulations, and data visualization.


  • thumnail for 2006_Imielinska_ICCS_LNCS_Przekwas_Tan.pdf 2006_Imielinska_ICCS_LNCS_Przekwas_Tan.pdf application/pdf 2.87 MB Download File

Also Published In

Lecture Notes in Computer Science

More About This Work

Academic Units
Biomedical Informatics
Computer Science
Radiation Oncology
Published Here
September 9, 2014