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ABSTRACT

p-adic Heights of Heegner points on Shimura curves

Daniel Disegni

Let f be a primitive Hilbert modular form of weight 2 and level N for

the totally real field F , and let p - N be an odd rational prime such that f

is ordinary at all primes ℘|p. When E is a CM extension of F of relative

discriminant ∆ prime to N p, we give an explicit construction of the p-

adic Rankin–Selberg L-function Lp( fE , ·) and prove that when the sign of

its functional equation is −1, its central derivative is given by the p-adic

height of a Heegner point on the abelian variety A associated to f . This

p-adic Gross–Zagier formula generalises the result obtained by Perrin-Riou

when F = Q and N satisfies the so-called Heegner condition. We deduce

applications to both the p-adic and the classical Birch and Swinnerton-Dyer

conjectures for A.
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Introduction

In this work we generalise Perrin-Riou’s p-adic analogue of the Gross–

Zagier formula [30] to totally real fields, in a generality similar to the work

of Zhang [45–47]. We describe here the main result and its applications.

The p-adic Rankin–Selberg L-function. — Let f be a primitive Hilbert

modular form of parallel weight 2, level N and trivial character for the to-

tally real field F of degree g and discriminant DF . Let p be a rational prime

coprime to 2N . Fix embeddings ι∞ and ιp of the algebraic closure Q of F

into C and Qp respectively. We assume that f is ordinary at p, that is, that

for each prime ℘ of OF dividing p, the coefficient a( f ,℘) of the ℘th Hecke

polynomial of f

P℘, f (X ) =X 2− a( f ,℘)X +N℘

is a p-adic unit for the chosen embedding; we let α℘ = α℘( f ) be the unit

root of P℘, f .

Let E ⊂Q be a CM (that is, quadratic and purely imaginary) extension of

F of relative discriminant∆ coprime to N p, let

ε= εE/F : F ×A /F ×→{±1}

be the associated Hecke character and N=NE/F be the relative norm. If

W : E×A/E×→Q
×
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is a finite order Hecke character(1) of conductor f, the Rankin–Selberg L-

function L( fE ,W , s) is the entire function defined for ℜ(s)> 3/2 by

L( fE ,W , s) = LN∆(W )(εW|F×A , 2s − 1)
∑

m

a( f , m)rW (m)

Nm s ,

where ∆(W ) = ∆N(f), rW (m) =
∑

N(a)=mW (a) (the sum running over all

nonzero ideals of OE ) and

LN∆(W )(εW|OF
, s) =

∑

(m,N∆(W ))=1

ε(m)W (m)Nm−s .

This L-function admits a p-adic analogue (§4). Let E ′∞ be the maximal

abelian extension of E unramified outside p, and E∞ the maximal Zp -extension

of E . Then G =Gal(E∞/E) is a direct factor of finite, prime to p index in

G ′ =Gal(E ′∞/E). (It has rank 1+δ + g over Zp , where δ is the Leopoldt

defect of F .)

Theorem A. — There exists a bounded Iwasawa function Lp( fE ) ∈ QpJG ′K

satisfying the interpolation property

Lp( fE )(W ) =
τ(W )N(∆(W ))1/2Vp( f ,W )W (D)

αN(f)Ω f

L( fE ,W , 1),

for all finite order characters W of G ′ which are ramified exactly at the places

w|p. Here both sides are algebraic numbers(2),W =W −1 and

Ω f = (8π
2)g 〈 f , f 〉N

(1)We will throughout use the same notation for a Hecke character, the associated ideal
character, and the associated Galois character.
(2)By a well-known theorem of Shimura [35]. They are compared via ι−1

p and ι−1
∞ .
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with 〈·, ·〉N the Petersson inner product (1.1.2); τ(W ) is a Gauß sum, Vp( f ,W )

is a product of Euler factors and αN(f) =
∏

℘|p α
v℘(N(f))
℘ .

The restriction of Lp( fE ) toG satisfies a functional equation with sign (−1)gε(N )

relating its values atW to its values atW −c , where c is the nontrivial automor-

phism of E/F andW c (σ) =W (cσ c).

This is essentially a special case of results of Panchishkin [28] and Hida

[15]; we reprove it entirely here (see §4) because the precise construction of

Lp( fE ) will be crucial for us. It is achieved, using a technique of Hida and

Perrin-Riou, via the construction of a convolution Φ of Eisenstein and theta

measures on G ′ valued in p-adic modular forms, giving an analogue of the

kernel of the classical Rankin–Selberg convolution method. The approach

we follow is adelic; one novelty introduced here is that the theta measure

is constructed via the Weil representation, which seems very natural and

would generalise well to higher rank cases.

On the other hand, Manin [25] and Dabrowski [11] have constructed a

p-adic L-function Lp( f , ·) as an analogue of the standard L-function L( f , s).

It is a locally analytic function on the p-adic Lie group of continuous char-

acters χ : G ′F → Cp , where G ′F is the Galois group of the maximal abelian

extension of F unramified outside p; it satisfies the interpolation property

Lp( f ,χ ) =
τ(χ )

αP

∏

℘|p
℘-P

 

1−
1

α℘

!2
L( f ,χ , 1)

Ω+
f

for all finite order characters χ of conductor P which are trivial at infinity.

(Here Ω+
f

is a suitable period, cf. §9.1.)
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The corresponding formula for complex L-functions implies a factorisa-

tion

Lp( fE ,χ ◦N) =
Ω+

f
Ω+

fε

D−1/2
E Ω f

Lp( f ,χ )Lp( fε,χ ),

where fε is the form with coefficients a( fε, m) = ε(m)a( f , m) and DE =

N(∆).

Heegner points on Shimura curves and the main theorem. — Suppose

that ε(N ) = (−1)g−1, where g = [F : Q]. Then for each embedding τ : F →

C, there is a quaternion algebra B(τ) over F ramifed exactly at the finite

places v |N for which ε(v) = −1 and the infinite places different from τ; it

admits an embedding ρ : E ,→ B(τ), and we can consider an order R of B(τ)

of discriminant N and containing ρ(OE ). This data defines a Shimura curve

X . It is an algebraic curve over F , whose complex points for any embedding

τ : F →C are described by

X (Cτ) = B(τ)×\H±× bB(τ)×/bF ×bR× ∪{cusps}.

It plays the role of the modular curve X0(N ) in the works of Gross–Zagier

[13] and Perrin-Riou [30] who consider the case F =Q and ε(v) = 1 for all

v |N (it is only in this case that the set of cusps is not empty).

The curve X is connected but not geometrically connected. Let J (X )

be its Albanese (∼= Jacobian) variety; it is an abelian variety defined over

F , geometrically isomorphic to the product of the Albanese varieties of

the geometrically connected components of X . There is a natural map

ι : X → J (X )⊗Q given by ι(x) = [x]− [ξ ], where [ξ ] ∈ Cl(X )⊗Q is a
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canonical divisor class constructed in [45] having degree 1 in every geomet-

rically connected component of X ; an integer multiple of ι gives a morphism

X → J (X ) defined over F .

As in the modular curve case, the curve X admits a finite collection of

Heegner points defined over the Hilbert class field H of E and permuted sim-

ply transitively by Gal(H/E). They are the points represented by (
p
−1, t )

for t ∈ bE×/E× bF × bO ×E when we use the complex description above and view

E ⊂ B via ρ. We let y be any such Heegner point, and let [z] denote the

class

[z] = u−1ι
�

TrH/E y
�

∈ J (X )(E)⊗Q,

where u = [O ×E : O ×F ].

As a consequence of Jacquet–Langlands theory, the Hecke algebra on

Hilbert modular forms of level N acts through its quaternionic quotient

on J (X ). Let z f ∈ J (X )(E)⊗Q be the f -component of [z].

Heights and the formula. — On any curve X over a number field E , there

is a notion (§5.1) of p-adic height 〈·, ·〉` attached to the auxiliary choices of

splittings(3) of the Hodge filtrations on H 1
dR(X /Ew) for w|p and of a p-adic

logarithm ` : E×A/E×→Qp . It is a symmetric bilinear pairing on the group

of degree zero divisors on X modulo rational equivalence, which we can

view as a pairing on J (X )(E). And more generally, for any abelian variety

A/E there is defined a p-adic height pairing on A(E)×A∨(E).

LetW be a Hecke character of E taking values in 1+pZp ⊂ Z×p . Under the

assumption ε(N ) = (−1)g−1, the value Lp( fE ,1) is zero by the (complex or

(3)In our case there will be a canonical choice for those splittings at least on the direct factor
of H 1

dR
(X /Ew ) of interest to us.
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p-adic) functional equation. Then we can consider the derivative of Lp( fE )

in theW -direction

L′p,W ( fE ,1) =
d

d s

�

�

�

�

�

s=0

Lp( fE )(W
s ).

Assume that ∆E/F is totally odd, and that every prime ℘|p is split in E .

(These assumptions can be removed a posteriori if the left-hand side of the

formula below is nonzero – see §8.2.)

Theorem B. — Suppose that εE/F (N ) = (−1)g−1. Then Lp( fE ,1) = 0 and

L′p,W ( fE ,1) =D−2
F

∏

℘|p

 

1−
1

α℘

!2 

1−
1

ε(℘)α℘

!2

〈z f , z f 〉W

where 〈·, ·〉W is the height pairing on J (X )(E) associated to the logarithm ` =
d
d s

�

�

�

s=0
W s .

Applications to the conjecture of Birch and Swinnerton-Dyer. — It is

conjectured that to the Hilbert modular newform f one can attach a simple

abelian variety A = Af over F , characterised uniquely up to isogeny(4) by

the equality of L-functions

L(A, s) =
∏

σ : M f→C

L( f σ , s)

up to Euler factors at places dividing N . Here M =M f is the field generated

by the Fourier coefficients of f ; A has dimension [M : Q] and its endomor-

phism algebra contains M (we say that A is of GL2(M )-type; in fact since

F is totally real, A is of strict GL2-type, that is, its endomorphism algebra

(4)Thanks to Faltings’s isogeny theorem [12].
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equals M – see e.g. [43, Lemma 3.3]). The conjecture is known to be true

([45, Theorem B]) when either [F : Q] is odd or v(N ) is odd for some finite

place v; in this case A is a quotient φ of J (X ) for a suitable Shimura curve X

of the type described above. Viceversa any abelian variety of GL2-type (for

some field M ) over a totally real field F is conjectured to be associated to a

Hilbert modular form f as above.

In view of known Aut(C/Q)-equivariance properties of automorphic L-

functions and the above equality, the order of vanishing of L(A, s) at s = 1

will be an integer multiple r [M : Q] of the dimension of A. We call r the

M -order of vanishing of L(A, s) or the analytic M -rank of A.

Conjecture (Birch and Swinnerton-Dyer). — Let A be an abelian variety

of GL2(M )-type over a totally real field F of degree g .

1. The M -order of vanishing of L(A, s) at s = 1 is equal to the dimension of

A(F )Q as M -vector space.

2. The Tate-Shafarevich group X(A/F ) is finite, and the leading term of

L(A, s) at s = 1 is given by

L∗(A, 1)

ΩA

=D−d/2
F |X(A/F )|RA

∏

v -∞
cv = BSD (A),

where d = dimA= [M : Q], the cv are the Tamagawa numbers of A at

finite places (almost all equal to 1),

ΩA=
∏

τ : F→R

∫

A(Rτ)
|ωA|τ
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for a Néron differential(5) ωA, and

RA=
det(〈xi , y j 〉)

[A(F ) :
∑

Zxi][A
∨(F ) :

∑

Zy j ]

is the regulator of the Néron-Tate height paring on A(F )×A∨(F ), defined

using any bases {xi}, {y j } of A(F )Q and A∨(F )Q.

By the automorphic description of L(A, s) and results of Shimura [35],

we know that L(A, s)/
∏

σ : M f→CΩ
+
f σ

is an algebraic number. Comparison

with the Birch and Swinnerton-Dyer conjecture suggests the following con-

jecture.

Conjecture. — We have

ΩA∼
∏

σ : M f→C

Ω+f σ in C×/Q
×

.

The conjecture is known for F =Q [36] or when A has complex multi-

plication (over Q) [5]; see §9 below for a more precise conjecture and some

further evidence and motivation. Assuming the conjecture, we can define a

p-adic L-function Lp(A) for A by

Lp(A) =

∏

σ Ω
+
f σ

ΩA

∏

σ : M f→C

Lp( f
σ )
∏

v |N

Lv, p(A)
∏

σ Lv, p( f
σ )

for any prime p of good reduction. (Here Lv, p(A), Lv, p( f
σ ) interpolate the

bad Euler factors.)

(5)When it exists, which is only guaranteed if F = Q. Otherwise, we take for ωA
any generator of H 0(A,Ωd

A/F ) and to define ΩA we divide by the product of the indices

[H 0(Av ,Ωd
Av/OF ,v

) : OF ,vÝωA] of (the extension of) ωA in the space of top differentials on

the local Néron modelsAv/OF ,v of A.
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Then, fixing a ramified Hecke character ν : G ′F → 1+ pZp ⊂ Z×p which we

omit from the notation, one can formulate a p-adic version of the Birch and

Swinnerton-Dyer conjecture similarly as above for Lp(A, ν s ):(6) the formula

reads
∏

℘|p
(1−α−1

℘
)−2L∗p(A,1) = BSDp(A)

where BSDp(A) differs from BSD(A) only in the regulator term, which is

now the regulator of the p-adic height pairing on A(F )×A∨(F ) associated

to the p-adic logarithm ` deduced from ν as in Theorem B.

Similarly, one can formulate a main conjecture of Iwasawa theory for

Lp(A).

Then, just as in [30], we can deduce the following arithmetic application

of Theorem B.

Theorem C. — For the abelian varitey A=Af we have:

1. The following are equivalent:

(a) The p-adic L-function Lp(A, ν s ) has M f -order of vanishing r ≤ 1 at

the central point.

(b) The complex L-function L(A, s) has M f -order of vanishing r ≤ 1

at the central point and the p-adic height pairing associated to ν is

non-vanishing on A(F ).

2. If either of the above assumptions holds, the rank parts of the classical and

the p-adic Birch and Swinnerton-Dyer conjecture are true for A and the

Tate-Shafarevich group of A is finite.

(6)Here s ∈ Zp and the central point is s = 0, corresponding to ν0 = 1.
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3. If moreover the cyclotomic Iwasawa main conjecture is true for A, then

the classical and the p-adic Birch and Swinnerton-Dyer formulas for A

are true up to a p-adic unit.

Proof. — In 1., the statement follows trivially from the construction of Lp(A)

if r = 0; if r = 1, both conditions are equivalent to the assertion that for a

suitable CM extension E , the Heegner point z f = z f ,E is nontorsion: this

is obvious from our main theorem in case 1a; in case 1b, by the work of

Zhang [45, 46] (generalising Gross–Zagier [13] and Kolyvagin [23, 24]), the

Heegner point

P =
∑

σ

TrE/Fφ(z f σ ,E ) ∈A(F )⊗Q

(with φ : J (X )→ A) generates A(F )⊗Q as M f -vector space, so that the p-

adic height pairing on A(F ) is non-vanishing if and only if it is nonzero at

z f . Part 2. then follows from 1. and the results of Zhang [45, 46].

Schneider [33] proves an “arithmetic” version of the p-adic Birch and

Swinnerton-Dyer formula for (the Iwasawa L-function associated to) A, which

under the assumption of 3. can be compared to the analytic p-adic formula

as explained in [30] to deduce the p-adic Birch and Swinnerton-Dyer for-

mula up to a p-adic unit. In the analytic rank 0 case the classical Birch

and Swinnerton-Dyer formula follows immediately. In the case of analytic

rank 1, recall that the main result of [45, 47] is, in our normalisation, the

formula
L′( fE , 1)

Ω f

=
1

D2
F D1/2

E

〈z f , z f 〉=D−1/2
E GZ( fE )
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(where 〈·, ·〉 denotes the Néron–Tate height); whereas we introduce the no-

tation GZp( fE ) to write our formula (for any fixed ramified cyclotomic char-

acterW ) as

L′p( fE ,1) =
∏

℘|p

 

1−
1

α℘

!2 

1−
1

ε(℘)α℘

!2

GZp( fE ).

Then, after choosing E suitably so that L( fε, 1) 6= 0 (which can be done by

[4], [40]), we can argue as in [30] to compare the p-adic and the complex

Birch and Swinnerton-Dyer formulas via the correspoding Gross–Zagier

formulas to get the result. Namely, denoting by LN (A) a suitable ratio of

bad Euler factors(7), we have

L∗(A, 1)

ΩABSD(A)
=

∏

σ Ω
+
f σ

ΩA

1

BSD(A)

∏

σ

L′( f σE , 1)

Ω f σ

Ω f σ

Ω+
f σ
Ω+

f σε

Ω+
f σε

L( f σ
ε

, 1)
LN (A)

=

∏

σ Ω
+
f σ

ΩA

∏

σGZ( f σE )

BSD(A)

∏

σ

D−1/2
E Ω f σ

Ω+
f σ
Ω+

f σε

Ω+
f σε

L( f σ
ε

, 1)
LN (A)

by the complex Gross–Zagier formula and the factorisation of L( fE , s). Sim-

ilarly,

∏

℘|p
(1−α−1

℘
)−2

L∗p(A, 1)

BSDp(A)
=

∏

σ Ω
+
f σ

ΩA

∏

σGZp( f
σ

E )

BSDp(A)

∏

σ

D−1/2
E Ω f σ

Ω+
f σ
Ω+

f σε

Ω+
f σε

L( f σ
ε

, 1)
LN (A)

by the p-adic Gross–Zagier formula, the factorisation of Lp( fE ) and the in-

terpolation property of Lp( fε). Since we know that the left-hand side of the

(7)Namely, LN (A) =
∏

v |N Lv (A, 1)/
∏

σ Lv ( f
σ , 1).
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last formula is a p-adic unit, the result follows from observing the equality
∏

σGZ( f σE )

BSD(A)
=

∏

σGZp( f
σ

E )

BSDp(A)

of rational numbers.(8)

Discussion of the assumptions. — The conjecture on periods could be dis-

pensed of if one were willing to work with a “wrong” p-adic L-function for

A (namely, one without the period ratio appearing in the definition above).

Then at least the rank part of the p-adic Birch and Swinnerton-Dyer conjec-

ture makes sense and parts 1 and 2 of the Theorem hold. The nonvanishing

of the p-adic height pairing is only known for CM elliptic curves [1]. The

Iwasawa main conjecture is known in most cases for elliptic curves over

Q thanks to the work of Rubin, Kato and Skinner–Urban (see [38]). For

Hilbert modular forms, one divisibility in the CM case is known by work

of Ming-Lun Hsieh [17] (this implies one divisibilty in the above result),

and in the non-CM case there is work in progress by Xin Wan. The other

divisibility is not known but could be within reach with current methods,

cf. [39, remarks on top of p.6].

Plan of the proof. — The proof of the main formula follows the strategy

of Perrin-Riou [30]. It is enough (see §8) to study the case whereW is cyclo-

tomic, since both sides of the formula are zero whenW is anticyclotomic.

(8)The rationality of the ratios follows from the fact that the z f σ essentially belong to
J (X )(F ) – that is, they belong to the +1-eigenspace for the action of Gal(E/Q) on
J (X )(E)⊗Q – and that in this sense, their images φ(z f σ ) form a Gal(Q/Q)-invariant basis

of A(F )⊗Q, orthogonal for the height pairing.
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In the first part of this thesis, we construct a measure Φ on G valued

in p-adic modular forms such that Lp( fE )(W ) essentially equals L f0
(Φ(W )),

where L f0
is a p-adic analogue of the functional “Petersson product with f ”

on p-adic modular forms. This allows us to write

L′p,W ( fE ,1) .= L f0
(Φ′W ),

where
.= denotes equality uo to suitable nonzero factors, andΦ′W =

d
d sΦ(W

s )|s=0

is a p-adic Hilbert modular form.

On the other hand, there is a modular form Ψ with Fourier coefficients

given by 〈z,T (m)z〉W , so that L f0
(Ψ) .= 〈z f , z f 〉W . It can be essentially

written as a sum Ψfin +Ψp , where Ψfin encodes the local contributions to

the height from places not dividing p and Ψp the contribution from places

above p. Then we can show by explicit computation that the Fourier coef-

ficients of Φ′ are equal to the Fourier coefficients of Ψfin up to the action of

suitable Hecke operators, whereas by making use of the assumption that f

is ordinary at p we prove that L f0
(Ψp) = 0. The desired formula follows.

One difficulty in the approach just outlined is that compared to the case of

modular curves there are no cusps available, so that in this case the divisors z

and T (m)z have intersecting supports and the decomposition of the height

pairing into a sum of local pairings is not available. Our solution to this

problem, which is inspired from the work of Zhang [45], is to make use

of p-adic Arakelov theory as developed by Besser [3] (see §5.2) and work

consistently in a suitable space of Fourier coefficients.

Notation. — Throughout this text we use the following notation and as-

sumptions, unless otherwise noted:
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– F is a totally real field of degree g ;

– NF is the monoid of nonzero ideals of OF ;

– | · |v is the standard absolute value on Fv ;

– A=AF is the adèle ring of F ; if ∗ is a place or a set of places or an ideal

of F , the component at ∗ (respectively away from ∗) of an adelic object

x is denoted x∗ (respectively x∗). For example if φ=
∏

vφv is a Hecke

character and δ is an ideal of OF we write φδ(y) =
∏

v |δφv(yv), and

|y|δ =
∏

v |δ |y|v . We also use the notation

|m|v = |πm|v , |m|δ = |πm|δ , φv(m) =φv(πm), φδ(m) =φδ(πm)

if m is an ideal of OF and φ is unramified at δ (here πm satisfies

πmOF = m).

– “>” denotes the partial order on AF given by x > 0 if and only if x∞ is

totally positive;

– RA = R⊗F A if R is an F -algebra;

– Nm is the absolute norm of an ideal m in a number field (the index of

m in the ring of integers: it is a positive natural number);

– dF is the inverse different of F ;

– πN , for N an ideal of OF , is the idèle with components πv(N )
v for v -∞

and 1 for v |∞.

– DF =NdF is the discriminant of F .

– m× = {a ∈ F ×A |aOF = m} if m is any nonzero fractional ideal of F

(this notation will be used with m = d−1
F ).

– E is a quadratic CM (that is, totally imaginary) extension of F ;

– D=DE/F is the relative inverse different of E/F .

– N=NE/F is the realtive norm on E or any E -algebra;



p-ADIC HEIGHTS OF HEEGNER POINTS ON SHIMURA CURVES 15

– ∆=∆E/F =N(D) is the relative discriminant of E/F and we assume

(∆E/F , p) = 1;

in §§ 2.5, 4.5 and part of §3.2 we further assume that

(∆, 2) = 1

and in §§ 7.2, 8.1, that

(∆, 2) = 1 and all primes ℘ dividing p are split in E .

– DE =N(∆) is the absolute discriminant of E .

– UF (N ) is the subgroup of bO ×F =
∏

v O ×F ,v ⊂ F ×A∞ consisiting of elements

x ≡ 1 modN bOF , if N is any ideal of OF ;

– ev(x) = exp(−2πi{TrFv/Qp
(x)}p) for v |p <∞ and {y}p the p-fractional

part of y ∈Qp is the standard addtive character of Fv , with conductor

d−1
F ,v ; for v |∞, ev(x) = exp(2πiTrFv/R

(x));

– e(x) =
∏

v ev(xv) is the standard additive character of AF .

– 1Y is the characteristic function of the set Y ;

– if ϕ is any logical proposition, we define 1[ϕ] to be 1 when ϕ is true

and 0 when ϕ is false – e.g. 1[x ∈ Y ] = 1Y (x).
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PART I

p-ADIC L-FUNCTION AND MEASURES

This part is dedicated to the construction of the measure giving the p-adic

Rankin–Selberg L-function Lp( fE ) and to the computation of its Fourier

coefficients.

1. p-adic modular forms

1.1. Hilbert modular forms. — Let us define compact subgroups of GL2(A
∞)

as follows:

– K0(N ) =













a b

c d






∈GL2( bOF ) | c ≡ 0 modN bOF







if N is an ideal of

OF ;

– K1(N , n) =













a b

c d






∈K0(N ) | a ≡ 1 modN/n bOF , d ≡ 1 mod n bOF







if n|N are ideals of OF .

Let k be a positive integer and ψ be a character of F ×A /F × of conductor

dividing N satisfying ψv(−1) = (−1)k for v |∞. A Hilbert modular form

of parallel weight k, level K1(N , n) and character ψ is a smooth function

f : GL2(F )\GL2(AF )→C
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of moderate growth(9) satisfying(10)

f













z

z






g







a b

c d






r (θ)






=ψ(z)ψN/n(a)ψn(d )e∞(kθ) f (g )

for each z ∈ A×F ,







a b

c d






∈ K0(N ) and θ = (θv)v |∞ ∈ F∞, with r (θ) =

∏

v |∞ r (θv) and r (θv) =







cosθv sinθv

− sinθv cosθv






∈ SO2(Fv).

We call f holomorphic if the function on HHom (F ,C) = {x∞+ i y∞ ∈ F ⊗

C | y∞ > 0}

x∞+ i y∞ 7→ (ψ
n)−1(y)|y|−k/2 f













y x

1













is holomorphic; in this case such function determines f .

Petersson inner product. — We define a Haar measure d g on Z(AF )\GL2(AF )

(where Z ∼= Gm denotes the center of GL2) as follows. Recall the Iwasawa

decomposition

GL2(AF ) = B(AF )K0(1)K∞(1.1.1)

where K∞ =
∏

v |∞ SO2(Fv). Let d k = ⊗v d kv be the Haar measure on

K = K0(1)K∞ with volume 1 on each component. Let d x = ⊗v d xv be the

Haar measure such that d xv is the usual Lebesgue measure on R if v |∞, and

OF ,v has volume 1 if v -∞. Finally let d×x =⊗v d×xv on F ×A be the product

(9)That is, for every g the function A× 3 y 7→ f
��

y
1

�

g
�

grows at most polynomi-

ally in |y| as |y| →∞.
(10)Recall the notation ψn =

∏

v |nψv .
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of the measures given by d×xv = |d xv/xv | if v∞ and by the condition that

O ×F ,v has volume 1 if v |∞. Then we can use the Iwasawa decomposition

g =







z

z













y x

1






k to define

∫

Z(A)\GL2(A)
f (g )d g =

∫

F×A

∫

A

∫

K
f













y x

1






k






d k d x

d×y

|y|
.

The Petersson inner product of two forms f1, f2 on GL2(F )\GL2(A) such

that f1 f2 is invariant under Z(A) is defined by

〈 f1, f2〉Pet =
∫

Z(A)\GL2(A)
f1(g ) f2(g )d g

whenever this converges (this is ensured if either f1 or f2 is a cuspform as de-

fined below). It will be convenient to introduce a level-specific inner product

on forms f , g of level N :

〈 f , g 〉N =
〈 f , g 〉Pet

µ(N )
(1.1.2)

where µ(N ) is the measure of K0(N ).

1.2. Fourier expansion. — Let f be a (not necessarily holomorphic) Hilbert

modular form. We can expand it as

f (g ) =C f (g )+
∑

α∈F×
W f













α

1






g






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where

C f (g ) =D−1/2
F

∫

A/F
f













1 x

1






g






d x,

W f (g ) =D−1/2
F

∫

A/F
f













1 x

1






g






e(−x)d x

are called the constant term and the Whittaker function of f respectively.

The form f is called cuspidal if its constant term C f is identically zero. The

functions of y obtained by restricting the constant term and the Whittaker

function to the elements







y

1






are called the Whittaker coefficients of

f . When f is holomorphic, they vanish unless y∞ > 0 and otherwise have

the simple form

C f













y x

1












= ea0( f , y) =ψn(y)|y|k/2a( f , 0),

W f













y x

1












= ea( f , y)e∞(i y∞)e(x) =ψ

n(y)|y|k/2a( f , y∞dF )e∞(i y∞)e(x)

for functions ea0( f , y), ea( f , y) of y ∈ F∞,×
A which we call the Whittaker-

Fourier coefficients of f , and a function a( f , m) of the fractional ideals m of

F which vanishes on nonintegral ideals whose values are called the Fourier

coefficients of f . (We will prefer to study Whittaker-Fourier coefficients

rather than Fourier coefficients when n 6= 1.)

For any Z-submodule A of C, we denote by Mk(K1(N , n),ψ,A) the space

of holomorphic Hilbert modular forms with Fourier coefficients in A of
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weight k, level K1(N , n), and character ψ; and by Sk(K1(N , n),ψ,A) its sub-

space of cuspidal forms. When n = 1, we use the notation Mk(K1(N ),ψ,A)

and Sk(K1(N ),ψ,A) and refer to its elements as modular forms of level N and

character ψ. When the character ψ is trivial we denote those spaces simply

by Mk(K0(N ),A) and Sk(K0(N ),A), whereas linear combinations of forms

of level K1(N ) with different characters form the space Mk(K1(N ),A). The

notion of Whittaker-Fourier coefficients extends by linearity to the spaces

Mk(K1(N ),C).

We can allow more general coefficients: if A is a Z[1/N]-algebra, we de-

fine Sk(K0(N ),A) = Sk(K0(N ),Z[1/N])⊗ A; this is well-defined thanks to

the q -expansion principle, see [20].

p-adic modular forms. — Let N , P be coprime ideals of OF , ψ a character of

conductor dividing N . If f is a holomorphic form of weight k, level K1(N P )

and prime-to-P character ψ (that is, f is a linear combination of forms of

level N P and character ψψ′ with ψ′ a character of conductor dividing P ),

we associate to it the formal q -expansion

∑

m

ap( f , m)q m ∈C[[q]]

where the sum runs over integral ideals of F , and

ap( f , y∞dF ) =ψ
−1(y)|y|−k/2

ea( f , y).

LetA be a complete Zp -submodule of Cp , N an ideal prime to p. The

space

Mk(K1(N ),ψ,A )
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of p-adic modular forms of weight k, tame level K1(N ) and character ψ

(with conductor of ψ dividing N ) is the subspace of formal q -series with

coefficients in A which are uniform limits of q -expansions of modular

forms in Mk(K1(N p∞),A ∩Q) with character whose prime-to- p part is

equal to ψ, the norm being the sup norm on q -expansion coefficients. It

is a a closed Zp -submodule in a p-adic Banach space (a Qp - or Cp -vector

space complete with respect to a norm compatible with that of Qp or Cp ).

We shall view Mk(K1(N p r ,ψ,A ) as a subset of Mk(K1(N ),ψ,A ) via the

q -expansion map.

Similarly we use the notation Sk(K1(N ),ψ,A ), Sk(K0(N ),A ); when k =

2 we simply

SN (A ) = S2(K0(N ),A )

or just SN ifA =Qp orA =Cp (as understood from context). An element

of SN (A ) is called bounded if its Fourier coefficients lie in a bounded subset

ofA .

1.3. Operators acting on modular forms. — There is a natural action

of Q[GL2(A
∞)] on modular forms induced by right translation. Here we

describe several interesting operators arising from this action.

Let m be an ideal of OF , πm ∈ F ×A∞ a generator of m bOF which is trivial at

places not dividing m.

The operator [m] : Mk(K1(N ),ψ)→Mk(K1(N m),ψ) is defined by

[m] f (g ) =N(m)−k/2 f






g







1

πm












.(1.3.1)
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It acts on Fourier coefficients by

a([m] f , n) = a( f , m−1n).

For any double coset decomposition

K1(N )







πm

1






K1(N ) =

∐

i

γi K1(N ),

the Hecke operator T (m) is defined by the following level-preserving ac-

tion on forms f in Mk(K1(N )):

T (m) f (g ) =N(m)k/2−1
∑

i

f (gγi );

For m prime to N , its effect on Fourier coefficients of forms with trivial

character is described by

a(T (m) f , n) =
∑

d |(m,n)

N(d )k/2−1a( f , mn/d 2).

Let TN be the (commutative) subalgebra of End Sk(K0(N )) generated by

the T (m) for m prime to N . A form f which is an eigenfunction of all the

operators in TN is called a Hecke eigenform. It is called a primitive form if

moreover it is a newform (see §1.4 below for the definition) and it is nor-

malised by a( f , 1) = 1.

As usual (cf. [30, Lemme 1.10]) we will need the following lemma to

ensure the modularity of certain generating functions.

Lemma 1.3.1. — Let A be a Z[1/N]-algebra. For each linear form

a : TN →A
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there is a modular form in Sk(K0(N ),A) whose Fourier coefficients are given

by a(T (m)) for m prime to N. Such a form is unique if we require it to be a

newform of some level dividing N (see §1.4 for the definition).

When m divides N , we can pick as double coset representatives the ma-

trices γi =







πm ci

1






for {ci} ⊂ bOF a set of representatives for OF /mOF .

Then the operator T (m) is more commonly denoted U (m) and we will

follow this practice. It acts on Fourier coefficients of forms with trivial

character by

a(U (m) f , n) =N(m)k/2−1a( f , mn).

Ordinary projection. — Denoting U℘ = U (℘) for ℘|p a prime of OF , we

further define the ordinary projection operators

e℘ = lim U n!
℘

: SN (Cp)→ SN p(Cp)

and ep =
∏

℘|p e℘. The image is precisely the direct factor of SN p(Cp) on

which U℘ (respectively Up ) acts by a p-adic unit (the ordinary part). See

[15, §3] for more details.

Atkin-Lehner theory. — For any nonzero ideal M of OF , let WM ∈GL2(A
∞)

be a matrix with components

WM ,v =







1

−πv(M )
v






if v |M , WM ,v =







1

1






if v -M

(1.3.2)
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where πv is a uniformiser at v. We denote by the same name WM the oper-

ator acting on modular forms of level N and trivial character by

WM f (g ) = f (gWM );

it is self-adjoint for the Petersson inner product, and when M is prime to

N it is proportional to the operator [M ] of (1.3.1). On the other hand

when M equals N , or more generally M divides N and is coprime to N M−1,

the operator WM is an involution and its action is particularly interesting.

In this case, extending the definition to forms of level N and character(11)

ψ=ψ(M )ψ(N M−1) with ψ(C ) of conductor dividing C , we have

WM f (g ) =ψ−1
(M )(det g ) f (gWM ).(1.3.3)

The effect of this action on newforms is described by Atkin-Lehner theory;

we summarise it here (in the case M =N ), referring to [9] for the details.

Let π be an irreducbile infinite-dimensional automorphic representation

of GL2(AF ) of central character ψ. Up to scaling, there is a unique newform

f in the space of π. It is characterised by either of the equivalent properties:

(a) it is fixed by a subgroup K1(N ) with N minimal among the N ′ for which

πK1(N
′) 6= 0; (b) its Mellin transform is (a multiple of) the L-function L(π, s)

of π. In the case of a holomorphic cuspform, this is equivalent to requiring

that it belongs to the space of newforms defined in §1.4 below. There is a

functional equation relating the L-function L(s ,π) of π and the L-function

L(1− s , eπ) of the contragredient representation; as eπ∼=ψ−1 ·π, it translates

(11)Notice that a decomposition ofψ as described is only unique up to class group characters
(that is, Hecke characters of level one). We will only be using the operator WM for M a
proper divisor of N in a case in which a decomposition is naturally given.
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into the following description of the action of WN on newforms. Suppose

that the eigenform f ∈ Sk(K1(N ),ψ) is a newform in the representation π it

generates, then we have

WN f (g ) = (−i)[F :Q]kτ( f ) f ρ(g )(1.3.4)

where f ρ is the form with coefficients

a( f ρ, m) = a( f , m)(1.3.5)

and τ( f ) = τ(π) is an algebraic number of complex absolute value 1; it is

the central root number of the functional equation for L(s ,π).

Trace of a modular form. — The trace of a modular form f of level N D and

trivial character is the form of level N

TrN D/N ( f )(g ) =
∑

γ∈K0(N D)/K0(N )

f (gγ ).

It is the adjoint of inclusion of forms of level N for the rescaled Petersson

product:

〈 f ,TrN D/N g 〉N = 〈 f , g 〉N D

if f has level N and g has level D .

Suppose that D is squarefree and prime to N , in which case we can write

TrD = TrN D/N without risk of ambiguity. A set of coset representatives for

K0(N D)/K0(N ) is given by elements γ j ,δ for δ|D , j ∈ OF ,v/δOF ,v , having
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components

γ j ,δ,v =







1 j

1













1

−1






=

1

πv







πv j

1













1

−πv







at places v |δ, and γ j ,δ,v = 1 everywhere else. From the second decomposi-

tion given just above, if f has weight 2 we obtain

a(TrD( f ), m) =
∑

δ|D
a(U (δ) f (δ), m) =

∑

δ|D
a( f δ), mδ)(1.3.6)

where f (δ)(g ) = f (gWδ) with Wδ as in (1.3.2).

Notice that if f is a modular form of level N D and character ψ, then

f (δ)(g ) = f (gWδ) is a modular form of level K1(N D ,δ) of characrers ψ1 =

ψδ =
∏

v -δψv , ψ2 =ψδ =
∏

v |δψv .

Remark 1.3.2. — If D is prime to p, the various trace operators TrN D p r /N p r

extend to a continuous operator TrN D/N on p-adic modular forms of tame

level N D . Similarly the operators [m], T (m) and Wm for m prime to N p

extend to continuous operators on p-adic modular forms of tame level N .

1.4. Fourier coefficients of old forms. — As we will study modular forms

through their Fourier coefficients, we give here a criterion for recognising

the coefficients of certain old forms.(12) Let N , P be coprime ideals of OF .

The space SN -old
N P ⊂ SN P is the space spanned by forms f = [d] f ′ for some

1 6= d |N and some cuspform f ′ of level N ′P with N ′|d−1N . In the case P =

1, we define the space of newforms of level dividing N to be the orthogonal

(12)Cf. [45, §4.4.4].
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to the space of old forms for the Petersson inner product. We denote by

Sold
N ⊂ SN the closed subspace generated by the image of SN -old

N p∞ in SN .

(As above, the coefficient ring will always be Qp or an algebraic extension

of it or Cp as understood from context.)

Let now S be the space of functions f : NF → A modulo those for

which there is an ideal M prime to p such that f (n) = 0 for all n prime

to M . A function f ∈ S is called multiplicative if it satisfies(13) f (mn) =

f (m) f (n) for all (m, n) = 1. For h a multiplicative function, a function f

is called an h-derivative if it satisfies f (mn) = h(m) f (n)+ h(n) f (m) for all

(m, n) = 1.

Let σ1 and r be the multiplicative elements of S defined by

σ1(m) =
∑

d |n
N(d ), r (m) =

∑

d |m
εE/F (d )

(where E is a totally imaginary quadratic extension of F of discriminant

prime to p).(14) We define a subspace DN ⊂ S to be generated by σ1, r ,

σ1-derivatives, r -derivatives, and Fourier coefficients of forms in Sold
N .

Lemma 1.4.1. — The q-expansion map SN/S
old
N →S /DN is injective.

The proof is similar to that of [45, Proposition 4.5.1].

Remark 1.4.2. — The operators U℘ for ℘|p extend to opeators on S via

U℘ f (m) = f (m℘). The ordinary projection operators e℘ and e = ep of

course do not extend, since the limit may not exist; however the kernels

Ker (e),Ker (e ′)⊂S are well-defined.

(13)This relation and the following are of course to be understood to hold in S .
(14)We will see below that σ1 and r are the Fourier coefficients of weight 1 Eisenstein series
and theta series.
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1.5. The functional L f0
. — Recall from the Introduction that we have

fixed a primitive ordinary Hilbert modular form f of level K0(N ), which

is ordinary at all primes ℘ dividing p. If α℘ is the unit root of the ℘th Hecke

polynomial of f (cf. the Introduction) and the operator [℘] is as in (1.3.1),

then the p-stabilisation of f is

f0 =
∏

℘|p

 

1−
N℘

α℘
[℘]

!

f ,

a form of level K0(N p) satisfying U℘ f0 = α℘ f0 for all ℘|p.

We define a functional, first introduced by Hida, which plays the role of

projection onto the f -component. Both sides of our main formula will be

images of p-adic modular forms under this operator.

Let P be an ideal of OF divisible exactly by the primes ℘|p. For a form

g ∈M2(K0(N P )) with r ≥ 1, let

L f0
(g ) =

〈WN P f ρ0 , g 〉
〈WN P f ρ0 , f0〉

.

Lemma 1.5.1. — The above formula defines a bounded linear functional

L f0
: M2(K0(N p∞),Q)→Q

satisfying the following properties:

1. On M2(K0(N )) we have

L f0
=
∏

℘|p

 

1−
N℘

α℘( f )
2

!−1

1 f

where 1 f (g ) = 〈 f , g 〉〈 f , f 〉.
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2. On M2(K0(N℘
r )) we have, for each nonnegative t ≤ r − 1,

L f0
◦U t

℘
= α℘( f )

t L f0
.

3. It admits an extension to p-adic modular forms still denoted

L f0
: MN (Cp)→Cp

which is continuous and factors through the ordinary projection operator

e.

The proof of these facts is similar to the case of elliptic modular forms,

see e.g. [29].

We define spaces SN = SN/(S
old
N +Ker (e)) and S = S /(DN +Ker (e)).

The former injects into the latter, and we denote its image by S N . Note in

passing that elements of S are invariant under Up and therefore are deter-

mined by their values on prime-to- p ideals (or on ideals divisible by p).

By the pevious lemma, the operator L f0
extends to a bounded operator,

still denoted by the same name,

L f0
: S N →Cp .

It is defined over Qp in the sense that it takes Qp -valued elements of S N to

Qp .

2. Theta measure

We construct a measure on the Galois group of the maximal abelian ex-

tension of E unramified outside p with values in p-adic theta series, and

compute its Fourier expansion.
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2.1. Weil representation. — We first define the Weil representation. See

[6, §4.8] for an introduction, and [40] or [43] for our conventions on the

representation for similitude groups.

Local setting. — Let V = (V , q) be a quadratic space over a local field F of

characteristic not 2, with a quadratic form q ; we choose a nontrivial additive

character e of F . For simplicity we assume V has even dimension. For

u ∈ F ×, we denote by Vu the quadratic space (V , uq). We let GL2(F )×

GO(V ) act on the space S (V × F ×) of Schwartz functions as follows (here

ν : GO(V )→Gm denotes the similitude character):

– r (h)φ(t , u) =φ(h−1t , ν(h)u) for h ∈GO(V );

– r (n(x))φ(t , u) = e(x uq(t ))φ(t , u) for n(x) =







1 x

1






∈GL2;

– r













a

d












φ(t , u) = χV (a)|

a
d |

dimV
4 φ(at , d−1a−1u);

– r (w)φ(x, u) = γ (Vu)φ̂(x, u) for w =







1

−1






.

Here χV is the quadratic character associated to V , γ (Vu) is a certain square

root of χ (−1), and φ̂ denotes the Fourier transform in the first variable

φ̂(x, u) =
∫

V
φ(y, u)e(−u〈x, y〉)d y

where 〈·, ·〉 is the bilinear form associated to q and d y is the self-dual Haar

measure.

Global setting. — Given a quadratic space (V , q) over a global field F of

characteristic not 2 (and a nontrivial additive character e : F \AF →C×), the

Weil representation is the restricted tensor product r of the associated local
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Weil representations, with spherical functions φv(t , u) = 1Vv×O ×F ,v
(x, u) for

some choice of lattices Vv ⊂V (Fv).

The case of interest to us is the following: F is a totally real number field,

V = (E ,N) is given by a quadratic CM extension E/F with the norm form

N = NE/F and the lattices OE ,v ⊂ Ev , and the additive character e is the

standard one. We denote G = GL2, H = GSO(V ), two algebraic groups

defined over F ; we have H ∼=ResE/F Gm. In this case we have

χV = εE/F = ε,

where εE/F is the quadratic character of F ×A associated to the extension E/F .

The self-dual measure on Ev is the one giving OE ,v volume |OE ,v/Dv |−1/2

where Dv is the relative inverse different Moreover the constant γ can be

explicitly described (see [7, §§ 38.6, 30.4, 23.5]): in the case v |∆E/F , which

is the only one we will be using, such description is in terms of a local Gauß

sum c(v):(15)

γ (Ev , uN) = εv(u)c(v) = εv(u)|πv |
1
2

∑

x∈(OF ,v/πvOF ,v )
×

ε(x/πv)ev(x/πv).

(2.1.1)

2.2. Theta series. — We define the theta kernel to be

θφ(g , h) =
∑

(t ,u)∈V×F×
r (g , h)φ(t , u)

which is an automorphic form for the group GL2(F )\GL2(AF )×GO(V )\GO(VAF
).

IfW is an automorphic function for H which is trivial at infinity (which

is the same thing as a linear combination of finite order Hecke characters of

(15)Our c(v) is denoted c(v)−1 in [45].
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E ), we define the theta series(16)

θφ(W )(g ) =
∫

H (F )\H (AF )
W (h−1)θφ(g , h)d h

which is an automorphic form on G. Here the measure d h is the product

of the measure on H (A∞) which gives volume 1 to the compact U0 = bO ×E ,

and any fixed measure(17) on H (A∞).

Let us explain how to explicitly compute the integral in our situation. For

each open compact subgroup U ⊂H (A∞F ) = EA∞ , we have exact sequences

1→O ×E ,U\U E×∞→ E×\E×A → E×U\E×A∞→ 1

and

1→µ(U )\U E1
∞→O

×
E ,U\U E×∞

N∞→ N (O ×E ,U )\F
+
∞→ 1.

The notation used is the following: O ×E ,U = E× ∩U ⊃ µ(U ) = the subset of

roots of unity, N∞ : E×∞→ F +∞ is the norm map at the infinite places and E1
∞

is its kernel.

We can choose a splitting ι of the first sequence, for example

ι : E×U\E×A∞
∼= E×U\(E×A )

1,‖ ,→ E×\E×A ,

where (E×A )
1,‖ denotes the set of idèles of adelic norm 1 with infinity com-

ponent h∞ = (h, . . . , h) for some real number h > 0 and the isomorphism

(16)The reason for takingW (h−1) rather thanW (h) is that we want θφ(W ) to be the series
classically denoted Θ(W ) for a suitable choice of φ – this will be clear from the computa-
tions below.
(17)There will be no ambiguity since later we will chooseφ∞ to be again any fixed Schwartz
function, whose integral over H (A∞) with respect to the chosen measure is a specified
function φ∞.



p-ADIC HEIGHTS OF HEEGNER POINTS ON SHIMURA CURVES 33

is the unique one which gives the identity once composed with projection

onto the finite part.

We begin to expand the series, evaluating the integral as explained above

and exploiting the fact that the action of H (F∞) = E×∞ on φ(t , u) factors

through the norm. We take U to be small enough so that W and φ are

invariant under U , and denote

φv(t , u) =
∫

H (Fv )
r (h)φv(t , u)d h if v |∞

and φ =
∏

v -∞φv
∏

v |∞φv . A specific choice of φv will be made shortly:

for the moment we just record, and use in the following computation, that

we will take u 7→φv(t , u) to be supported on R+.

We have

θφ(W )(g ) =
∫

E×\E×A

W (h−1)θφ(g , h)d h

= w−1
U

∫

U

∫

E1
∞

∫

N(O ×E ,U )\F
+
∞

∫

E×U\E×
A∞

W (ι(a)−1)
∑

(t ,u)∈E×F×
r (g , ι(a)h)φ(t , u)da d h

Here wU = |µ(U )| and d h denotes the measure on U × E1
∞ × F +∞ = U ×

H (F∞). We partially collapse the integral over N(O ×E ,U )\F
+
∞ and the sum

over u ∈ F × and use our choice of φ∞ to get

= w−1
U vol(U )

∫

E×U\E×
A∞

W (ι(a)−1)
∑

u∈N(O ×E ,U )\F
+

∑

t∈E

r (g , ι(a))φ(t , u)da

= w−1 h

hU

∫

E×U\E×
A∞

W (ι(a)−1) νU
∑

u∈N(O ×E ,U )\F
+

∑

t∈E

r (g , ι(a))φ(t , u)da

(2.2.1)
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Here in the last step we have defined νU = [N(O ×E ) : N(O ×E ,U )] and com-

puted vol(U ) = vol(U0)(h/hU )(wU/w)ν−1
U , where U0 = bO ×E , hU = |E×U\E×A∞ |,

h = hU0
, w = wU0

. Recall that our measure is such that vol(U0) = 1. The

remaining integral is just a finite sum.

The sum over u is actually finite owing to the integrality constraints im-

posed by φ at finite places.(18)

2.3. Theta measure. — We define a measure with values in p-adic modular

forms on the group

G ′ =Gal(E ′∞/E)∼= lim←−E×Upn\E×A∞

where E ′∞ is the maximal abelian extension of E unramified outside p, that

is, the union of the ray class fields of E of p-power ray Upn =
∏

v{units ≡

1 mod pnOE ,v} and the isomorphism is given by class field theory. The

topology is the profinite topology.

Recall that a measure on a topological space G with values in a p-adic

Banach space M is a Qp -linear functional

µ :C (G ,Cp)→M

on continuous Cp -valued functions, which is continuous (equivalently, bounded)

with respect to the sup norm on C (G ,Cp). The linearity property will be

called distributional property in what follows. The boundedness property

will in each case at hand be verified on the set of p-adic characters of G ,

(18)We will see this in more detail shortly. We are also using the definition of φ∞ in order
to freely replace the sum over u ∈ F × with a sum over u ∈ F + – in fact a slight variation
would be necessary when det g∞ /∈ F +∞, but this is a situation we won’t encounter.
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which in our cases generates the whole of C (G ,Cp) (classically, the conti-

nuity of µ goes under the name of abstract Kummer congruences for µ).

When M =M0⊗Qp
Cp for a p-adic Banach space M0 over Qp , the mea-

sure µ is said to be defined over Qp if µ(W ) ∈M0 ⊗Qp(W ) whenever the

functionW on G has values in Qp(W )⊂Qp ⊂Cp .

Definition 2.3.1. — The theta measure dΘ on G ′ is defined by

Θ(W ) =
∫

G ′
W (σ)dΘ(σ) = θφ(W ),

for any function W : G ′ → Q factoring through a finite quotient of G ′,

where the function φ is chosen as follows:

– for v - p∞, φv(t , u) = 1OE ,v
(t )1d−1,×

Fv
(u);

– for v |p,

φv(t , u) = [O ×E ,v : U ′
v]1U ′v

(t )1d−1,×
Fv
(u),

where U ′
v ⊂ O

×
E ,v is any small enough compact set – that is, U ′

v ⊂ Uv if

W is invariant under U =
∏

v Uv , and the definition does not depend

on the choice of Uv . (In practice, we will choose U ′
v = Uv if Uv is

maximal with respect to the property just mentioned.)

– for v |∞, φv(t , u) is a Schwartz function such that
∫

H (Fv )
r (h)φv(t , u)d h =φv(t , u) = 1R+(u)exp(−2πuN (t )).

(See [43, 4.1] for more details on this choice.)

In Corollary 2.4.3 below we will show that this in fact defines a measure

onG ′ with values in p-adic Hilbert modular forms of weight one, tame level

∆E/F and character ε.
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2.4. Fourier expansion of the theta measure / I. — We compute the

Fourier expansion of the theta measure on G ′, carrying on the calculation

started in §2.2.

In the case where g =







y x

1






with y∞ > 0, the sum over (u, t ) in (2.2.1)

evaluates to

ε(y)|y|1/2
∑

u,t

φ∞(a−1y t ,N(a)y−1u)e∞(i y∞uN (t ))e(x uN(t )).(2.4.1)

Then we compute the sum of this expression over the finite quotient G ′U of

G ′, with G ′U
∼= E×U\E×A∞ .

We assumeW is a character soW (a−1) =W (a) whereW =W −1.

First we pre-compute the product of all the constants appearing in the

theta series of (2.2.1), including the one from φ – we take

φv(t , u) = [O ×E ,v : Uv]1Uv
(t )1O ×F (u),

so:

w
h

hU

νU [O
×

E ,v : Uv] =w[O ×E \ bO
×

E ,v : O ×E ,U\U ]
−1[N(O ×E ) : N(O

×
E ,U )]

−1[ bO ×E : U ]

=w[µ(OE ) :µ(OE ,U ] = w−1
U .

This computation together with (2.2.1), (2.4.1) gives

Θ(W ) =ε(y)|y|
1
2 w−1

U

∑

a∈E×U\E×
A∞

W (a)
∑

t∈E ,u∈N(O ×E ,U )\F
+

φp∞(a−1y t ,N(a)y−1u)

× 1O ×E ,U , p
(a−1y t )1d−1,×

F p
(N(a)y−1u)e∞(i y∞uN(t ))e(x uN(t ))
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=ε(y)W (y)|y|
1
2 w−1

U

∑

a∈E×U\E×
A∞

W (a)
∑

t∈E ,u∈N(O ×E ,U )\F
+

1
ÕOE ,U∩O ×E ,U , p

(a−1t )

× 1[N(a)y uOF = d−1
F ]e∞(i y∞uN(t ))e(x uN(t ))

where we have made the change of variable a→ ay.

Now we make the substitution uN(t ) = ξ and observe that the contribu-

tion to the ξ th term is equal to zero if (ξ ydF , p) 6= 1, and otherwise it equals

W (a) times the cardinality of the set

Ra−1(ξ , y) =
n

(t , u) ∈ OE ,U × F + | uN(t ) = ξ ,N(t/a)OF = ξ ydF

o.

N
�

O ×E ,U

�

,

which admits a surjection π : (t , u) 7→ a−1tOE ,U to the set ra−1(ξ ydF ) of

proper ideals b⊂OE ,U in the U -class a−1, whose norm is N(b) = ξ ydF . The

fibres of π are in bijection with O ×E ,U/N(O
×

E ,U ) which has cardinality wU .

We deduce the following description of the Fourier coefficients of Θ(W ).

Proposition 2.4.1. — The series Θ(W ) belongs to S1(K1(N ),εW|F×A ), where

∆(W ) =∆N(f(W )). Its Fourier coefficients are given by

a(Θ(W ), m) =
∑

b⊂OE ,U
N(b)=m

W (b) = rW (m)

for (m, p) = 1 and vanish for (m, p) 6= 1.

Remark 2.4.2. — IfW is ramified at all places w|p, the Mellin transform of

Θ(W ) is thus precisely the L-function

L(W , s) =
∑

(b, p)=1

W (b)N(b)−s =
∑

m

rW (m)N(m)
−s .
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Therefore by Atkin-Lehner theory Θ(W ) is a newform and according to

(1.3.4) we have a functional equation

W∆(W )Θ(W )(g ) = (−i)[F :Q]τ(W )Θ(W )

where τ(W ) is an algebraic number of absolute value 1 (essentially a Gauß

sum).

Corollary 2.4.3. — The functional Θ of Definition 2.3.1 is a measure on G ′

with values in S1(K1(∆),ε), defined over Qp .

Proof. — The distributional property is obvious from the construction or

can be seen from the q -expansion given above, from which boundedness is

also clear – cf. also [16, Theorem 6.2 ].

2.5. Fourier expansion of the theta measure / II. — For later use in com-

puting the trace of the convolution of the theta measure with the Eisenstein

measure (defined below), we need to consider the expansion ofΘ(W )(δ)(g ) =

Θ(W )(gWδ) for g =







y x

1






; for such a g we have







y x

1






Wδ =







1 x

1













y

πδ






wδ

where πδ is an idèle with components πv at v |δ and 1 everywhere else.

Here πv is a uniformiser chosen to satisfy ε(πv) = 1.
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The modular form Θ(W )δ can be expanded in the same way as in §2.4,

except that for v |δ we need to replace φv(t , u) = 1OE ,v
(t )1d−1,×

F
(u) by

Wδφv(t , u) =







1

πv






γ (u)Ô1OE ,v

(t )1d−1,×
F ,v
(u)

=εv(π
−1
δ

u)c(v)1D−1
v
(t )1d−1,×

F
(π−1

δ
u)

Here recall that D is the relative inverse different of E/F ; and that w acts as

Fourier transform in t with respect to the quadratic form associated to uN,

with the normalising constant γ (u) = γ (Ev , uN) as described in (2.1.1).

The computation of the expansion can then be performed exactly as in

§2.4. We omit the details but indicate that the relevant substitution is now

a → πday, where d is an ideal of OE of norm δ and πd ∈ cOE is a generator

with components equal to 1 away from d.

Proposition 2.5.1. — The seriesΘ(W )(δ) belongs to S1(K1(∆(W ),δ),εW|F×A ).

Its Whittaker-Fourier coefficients are given by

ã(Θ(W )(δ), y) = εW (y)|y|1/2c(δ)W (d)εδ(y)rW (ydF ),

where c(δ) =
∏

v |δ c(v).

3. Eisenstein measure

In this section we construct a measure (cf. §2.3) valued in Eisenstein series

of weight one, and compute its Fourier expansion.

3.1. Eisenstein series. — Let k be a positive integer, M an ideal of OF , and

ϕ : F ×A /F ×→C× a finite order character of conductor dividing M satisfying



p-ADIC HEIGHTS OF HEEGNER POINTS ON SHIMURA CURVES 40

ϕv(−1) = (−1)k for v |∞. Let

LM (s ,ϕ) =
∑

(m,M )=1

ϕ(m)N(m)−s(3.1.1)

where the sum runs over all nonzero ideals of OF .

Let B ⊂ GL2 be the Borel subgroup of upper triangular matrices; recall

the notation from §1.1, and the Iwasawa decomposition (1.1.1); the decom-

position is not unique but the ideal of bOF generated by the lower left entry

of the K0(1)-component is well-defined.

For s ∈C, define a function Hk ,s (g ,ϕ) on GL2(AF ) by

Hk ,s (g = q u r (θ);ϕ) =



















�

�

�

y1
y2

�

�

�

s
ϕ−1(y2d )e∞(kθ) if u =









a b

c d









∈K0(M )

0 if u ∈K0(1) \K0(M0).

where we have written g = q u r (θ)with q =







y1 x

y2






∈ B(AF ), u ∈K0(1),

r (θ) ∈ K∞.

We define two Eisenstein series

E M
k (g , s ;ϕ) =LM (2s ,ϕ)

∑

γ∈B(F )\GL2(F )

Hk ,s (γ g ;ϕ) ,

eE M
k (g , s ;ϕ) =WM E M

k (g , s ;ϕ) = ϕ−1(det g )E M
k (gWM , s ;ϕ)

which are absolutely convergent forℜs > 1 and continue analytically for all

s to (non-holomorphic) automorphic forms of level M , parallel weight k and

characters ϕ−1 for E and ϕ for eE . Here WM is as in (1.3.3). The superscript

M will be omitted from the notation when its value is clear from context.



p-ADIC HEIGHTS OF HEEGNER POINTS ON SHIMURA CURVES 41

3.2. Fourier expansion of the Eisenstein measure. — We specialize to

the case where k is odd, M = ∆P with (∆, P ) = 1, ϕ = εφ with ε = εE/F

and φ a nontrivial character of conductor dividing P , trivial at infinity (in

particular we have ϕv(−1) = εv(−1)φv(−1) = −1 as required). We assume

that∆ is squarefree. For δ|∆ we compute(19) the Whittaker coefficients (cf.

§1.2; we suppress ϕ, M and k from the notation) of eE (δ);

cδs (α, y) =D−1/2
F

∫

AF /F

eE













y x

1






Wδ , s






e(−αx)d x

for α ∈ F and δ dividing ∆; since cs (α, y) = cs (1,αy) for α 6= 0, we can

restrict to α= 0 or 1.

Proposition 3.2.1. — In the case just described, the Whittaker coefficients cδs (α, y)

of the Eisenstein series eE (δ)
k
(g , s ;ϕ) are given by cδs (0, y) = 0, and

cδs (1, y) =
N(δ)s−1/2

D1/2
F N(∆P )s

εφ(y)|y|1−sc(δ)φ(δ)εδ(y)φδ(y
∞dF )|yδdF |

2s−1
δ

σk ,s ,εφ(y)

if ydF is integral, and cδs (1, y) = 0 otherwise,

where c(δ) =
∏

v |δ c(v) with c(v) as in (2.1.1) and

σk ,s ,ϕ(y) =
∏

v -∆M∞

v(ydF )
∑

n=0

ϕv(πv)
n|πv |

n(2s−1)
∏

v |∞
Vk ,s (yv)

with

Vk ,s (y) =
∫

R

e−2πi y x

(x2+ 1)s−k/2(x + i)k
d x.

(19)Cf. [45, §§ 3.5, 6.2 ].
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Proof. — We use the Bruhat decomposition

GL2(F ) = B(F )
∐

B(F )wN (F )

with w =







−1

1






and the unipotent subgroup N (F ) ∼= F via N (F ) 3







1 x

1






← [ x ∈ F , to get

εφ−1(y)cδs (α, y) = L(2s ,ϕ)D−1/2
F

∫

AF /F
Hs













y x

1






WM/δ






e(−αx)d x

+ L(2s ,ϕ)D−1/2
F

∫

AF

Hs






w







y x

1






WM/δ






e(−αx)d x.

At any place v |M/δ, we have the decomposition






yv xv

1






WM/δ,v =







yv πv xv

πv













1

−1







so that the first summand is always zero.

For the second integral, we use the identity

w







y x

1






=







1

y













−1

1 xy−1







and the substitution x→ xy to get

∫

AF

Hs






w







y x

1






WM/δ






e(−αx)d x = |y|1−s

∏

v

V M/δ
s (αv yv)
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where for y ∈ Fv

V M
s (y) =

∫

Fv

Hs













−1

1 x






WM ,v






e(−xy)d x.(3.2.1)

Archimedean places. — As in [45, Proposition 3.5.2].

Nonarchimedean places v -M/δ. — If v is a finite place, we have







−1

1 x






∈

GL2(OF ,v) if x ∈ OF ,v , and otherwise we have the decomposition






−1

1 x






=







x−1 −1

x













1

x−1 1






.

Therefore

Hs ,v













−1

1 x












=



















ϕv(x)|x|−2s if v(x)≤−1;

1 if v -M , v(x)≥ 0;

0 if v |δ, v(x)≥ 0.

(3.2.2)

The case v -M . — We deduce that

V M/δ
s (y) =

∫

OF ,v

e(−xy)d x +
∑

n≥1

∫

O ×F ,v

ϕv(xπ
−n
v )|xπ

−n
v |
−2se(−xyπ−n

v )d (π
−n
v x)

= 1[y ∈ d−1
F ]+

∑

n≥1

ϕv(πv)
n|πv |

n(2s−1)
∫

O ×F ,v

e(−xyπ−n
v )d x.

The integral evaluates to 1− |πv | if v(ydF )≥ n, to −|πv | if v(ydF ) = n− 1,

and to zero otherwise. Therefore we have V M
s (y) = 0 unless v(ydF ) ≥ 0 in
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which case

V M/δ
s (y) = 1+(1− |πv |)

v(ydF )
∑

n=1

�

ϕv(πv)|πv |
2s−1�n − |πv |(ϕv(πv)|πv |

2s−1)v(yd f )+1

=
�

1−ϕv(πv)|πv |
2s�

v(ydF )
∑

n=0

ϕv(πv)
n|πv |

n(2s−1)

= Lv(2s ,ϕ)−1
v(ydF )
∑

n=0

ϕv(πv)
n|πv |

n(2s−1).

The case v |δ. — Again by (3.2.2) we find

V M/δ
s (y) =

∑

n≥1

∫

O ×F ,v

ϕv(xπ
−n
v )|xπ

−n
v |
−(2s−1)e(−xyπ−n

v )d x.

All the integrals vanish except the one with n = v(ydF )+ 1 which gives

εv(yπ
n
v )φv(yπdF ,vπv)|yπdF ,vπv |

2s−1|πv |
1/2c(v);

therefore we have(20)

V M/δ
s (y) = εv(y)φv(yπdF ,vπv)|yπdF ,vπv |

2s−1|πv |
1/2c(v)

if v(ydF )≥ 0 and Vs (y) = 0 otherwise.

Places v |M/δ. — For w







1 x

1













1

−πv(M )
v






=







πv(M )
v

−xπv(M )
v 1







we have the decompositions






πv(M )
v

−xπv(M )
v 1






=







−πv(M )
v

1













−1

−xπv(M )
v 1







(20)Recall that we always choose πv so that εv (πv ) = 1.
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=







x−1 −πv(M )
v

xπv(M )
v













1

−1 x−1π−v(M )
v






:

for v(x)≥ 0 we use the first one to find

Hs













−πv(M )
v

xπv(M )
v −1












= |πv(M )

v |s ;

for v(x) < 0 the second decomposition shows that the integrand vanishes.

We conclude that

V M/δ
s (y) =







|πv(M )
v |s if v(ydF )≥ 0

0 otherwise.

The final formula follows from these computations.

We specialize to the case s = 1/2, k = 1 and consider the rescaled holo-

morphic Eisenstein series:

E∆P
εφ
(g ) =

D1/2
F N(∆P )1/2

(−2πi)[F :Q]
E∆P

1 (g , 1/2;εφ),

eE∆P
εφ
(g ) =

D1/2
F N(∆P )1/2

(−2πi)[F :Q]
eE∆P

1 (g , 1/2;εφ).

Corollary 3.2.2. — The Eisenstein series E∆P
εφ

, eE∆P
εφ

belong to M1(K1(∆P ),εφ−1)

and M1(K1(∆P ),εφ) respectively. The Whittaker-Fourier coefficients cδ(y) of
eEδ
εφ

for δ|∆ are zero if y∞dF is not integral and otherwise given by

cδ(y) = ã(eE(δ)
εφ

, y) = εφ−1(y)|y|1/2c(δ)φ(δ)εδφδ(y
∞dF )σεφ(y

∞dF ),
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where for any integral ideal m of OF [∆
−1P−1],

σεφ(m) =
∑

d |m
εφ(d ),

the sum likewise running over integral ideals of OF [∆
−1P−1].

(If m is an integral ideal of OF prime to P , then σε1(m) = r (m).)

Proof. — This follows from Proposition 3.2.1 once observed that [13, Pro-

postion IV.3.3 (d)]

V1,1/2(t ) =







0 if t < 0

−2πi e−2πt if t > 0.

Definition 3.2.3. — Let F ′∞ be the maximal abelian extension of F unrami-

fied outside p, and let G ′F =Gal(F ′∞/F ). We define(21) the Eisenstein distri-

bution(22)
eEε on G ′F by

eEε(φ) =
D1/2

F N(∆P )1/2

(−2πi)g
eE∆P
εφ

for any character φ of G ′F of conductor dividing P (it does not depend on

the choice of P once we require P to satisfy v |P ↔ v |p). We denote with

the same name the distribution induced on the group G ′ of §2.3 by

eEε(W ) = eEε(W|F×A ).

(21)We do not assume that∆ is squarefree when making the definition.
(22)A distribution on GF is a linear functional on locally constant functions on GF – see
below for why eEε is not a measure.
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It has values in M1(K1(N∆),ε) and is defined over Qp .

Remark 3.2.4. — In the case that φ = 1, the constant term of eEε(φ) is no

longer zero (it is in fact a multiple of L(1,ε), cf. [45, Lemma 6.2.2]) – for

this reason, the constant term of the distribution is unbounded, so that the

distribution is not a measure. This difficulty is easy to circumvent as done

in [30, §2] following [21]: for a suitable choice of a nonzero ideal C , there

is a measure eEC
ε

whose value on a characterφ is a nonzero multiple of eEε(φ);

then one can use eEC
ε

rather than eEε, and remove the factor afterwards from

the formulas. Since this method is by now standard, we will be content with

the present caveat and treat the eEε as if they were measures in what follows.

4. The p-adic L-function

4.1. Rankin–Selberg convolution. — Let f , g be modular forms of com-

mon level M , weights k f , kg , and characters ψ f , ψg respectively. We define

a normalised Dirichlet series

DM ( f , g , s) = LM (2s − 1,ψ fψg )
∑

m

a( f , m)a(g , m)Nm−s ,

where the imprimitve L-function LM (s ,ϕ) of a Hecke character ϕ of con-

ductor dividing M is as in (3.1.1).

When f and g are primitive forms of level N f , Ng (that is, normalized

new eigenforms at those levels), for a prime ℘ - N f denote by α(1)
℘

, α(2)
℘

the

two roots of the ℘th Hecke polynomial of f

P℘, f (X ) =X 2− a( f ,℘)X +ψ f (℘)N℘
k f −1,



p-ADIC HEIGHTS OF HEEGNER POINTS ON SHIMURA CURVES 48

and by β(1)
℘

, β(2)
℘

the analogous quantities for g . Then the degree four

Rankin–Selberg L-function L( f × g , s) with unramified Euler factors at ℘

given by
2
∏

i , j=1

�

1−α(i)
℘
β( j )
℘

N℘−s
�−1

equals the above Dirichlet series

L( f × g , s) =DN f Ng ( f , g , s)

if N f and Ng are coprime.

Suppose now for simplicity that k f = 2, kg = 1, and f is a cusp form (not

necessarily primitive). The Rankin–Selberg convolution method(23) gives

〈 f ρ, g E M
1 (s ;ψ fψg )〉M =D s+1

F

�

Γ(s + 1/2)

(4π)s+1/2

�[F :Q]

DM ( f × g , s + 1/2),

(4.1.1)

where 〈·, ·〉M is the Petersson inner product (1.1.2).

4.2. Convoluted measure and the p-adic L-function. — Consider the

convolution ‘measure’(24)Θ∗eEε,N onG ′ defined byΘ∗eEε,N (W ) = Θ(W )eEε,N (W )

for any characterW : G → Z×p , where eEε,N = [N]eEε. We deduce from it the

‘measure’

Φ(W ) =Tr∆[Θ ∗ eEε,N (W )] =Tr∆[Θ(W )[N]eEε(W )](4.2.1)

(23)See or [19, Ch. V], or [45, Lemma 6.1.3] for a setting close to ours
(24)The same caveat of Remark 3.2.4 applies here. Namely, the convolution Θ∗eEε,N is only
a distribution, but its value on any character W is a simple nonzero multiple of the value
of a measure Θ ∗ eEC

ε,N onW , so that we can “pretend” it to be a measure. Similarly for Φ.
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on G ′, which is a kind of p-adic kernel of the Rankin–Selberg L-function as

will be made precise below. It is valued in S2(K0(N ),Cp).

Definition 4.2.1. — The p-adic Rankin–Selberg L-function is the bounded

element of QpJG K defined by

Lp( fE ,W ) =D−2
F Hp( f )L f0

(Φ(W ))

for any characterW : G → Z×p , where

Hp( f ) =
∏

℘|p

 

1−
1

α℘( f )
2

! 

1−
N℘

α℘( f )
2

!

.(4.2.2)

Functional equation. — Consider the restriction of Lp( fE ) to ZpJG K. Let

Λp( fE )(W ) =W (N )
1/2W (D)Lp( fE ,W ),

where the square root is taken in 1+ pZp . Let ι denote the involution of

ZpJG K defined by λι(W ) = λ(W
c
), whereW c (σ) =W (cσ c).

Then we have a functional equation

Λp( fE )
ι = (−1)gε(N )Λp( fE ),(4.2.3)

which can be proven as in [29, §5.2] using the interpolation property of §4.4

and the functional equation for the complex Rankin–Selberg L-fucntion.

In particular, if ε(N ) = (−1)g−1 and W is an anticyclotomic character

(i.e.,WW c = 1), we have

Lp( fE )(W ) = 0.

4.3. Toolbox. — Here is a collection of technical lemmas that we need

to prove the soundness of our construction of the p-adic L-function. The
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reader is invited to skip to §4.4 where the results are put to use, and return

here as the need arises.

Lemma 4.3.1. — Let P be an ideal of OF such that v |P if and only if v |p. We

have

〈WN P f ρ0 , f0〉N P = αP ( f )(−1)gτ( f )Hp( f )〈 f , f 〉N

with Hp( f ) as in (4.2.2) and

αP ( f ) =
∏

℘|p
α℘( f )

v℘(P )

The proof is similar to that of [29, Lemme 27].

Lemma 4.3.2. — For a character ϕ of conductor dividing M and an ideal N

prime to M , let E M
ϕ
= E M

1 (g , 1/2;ϕ), eE M
ϕ
=WM E M

ϕ
. We have

WM[N] eE
M
ϕ
= E M N

ϕ
+ Eold

where the form Eold is old at N (in particular, it is orthogonal to newforms of

level N ).

Proof. — It is easy to see that WM[N] eE
M
ϕ
= ϕ(N )[N]E M

ϕ
. Then we are

reduced to showing that

[N]E M
ϕ
= ϕ−1(N )E M N

ϕ
+ Eold

which can be done by the calculation appearing in the proof of [45, Lemma

6.1.4]

Lemma 4.3.3. — Let f and f0 be as usual, and let g be a primitive form of

weight 1, level prime to p. If G℘(N℘
−s ) denotes the ℘th of Euler factor of
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L(g , s) at the prime ℘|p, then

D( f0, g , 1) =Gp(α℘( f )
−1)D( f , g , 1).

The proof is identical to that of [29, Lemme 23]. The result will be ap-

plied to the case g =Θ(W ), in which case the Euler factor at ℘ is
∏

p|℘(1−

W (p)N℘−s ) and we use the notation

Vp( f ,W ) =
∏

℘|p

∏

p|℘



1−
W (p)
α℘( f )



(4.3.1)

for Gp(α℘( f )
−1).

Lemma 4.3.4. — With notation as in §4.1, we have

D([∆] f ,Θ(W ), 1) =W (D)D( f ,Θ(W ), 1).

The proof is an easy calculation (cf. [27, § I.5.9]).

4.4. Interpolation property. — We manipulate the definition to show that

the p-adic L-function Lp( fE )(W ) of Definition 4.2.1 interpolates the special

values of the complex Rankin–Selberg L-function L( fE ,W , s) defined in the

Introduction. Notice that ifW is ramified at all places dividing p, then

L( fE ,W , s) = L( f ×Θ(W ), s)

where L( f ×Θ(W ), s) is as in §4.1. (Otherwise, the above equality remains

true for the Dirichlet series associated to f and Θ(W ) after removing from

L( fE ,W , s) the Euler factors at p, and likewise for the interpolation result

just below.)
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Theorem 4.4.1. — Let W : G ′ →Q
×

be a finite order character of conductor

f. Assume that v |f if and only if v |p. Then we have

Lp( fE )(W ) =
τ(W )N(∆(W ))1/2Vp( f ,W )W (D)

αN(f(W ))( f )Ω f

L( fE ,W , 1),

where Ω f = (8π
2)g 〈 f , f 〉N , τ(W ) is as in Remark 2.4.2 and the other factors

are defined in §4.3.

Proof. — Denote P = N(f(W )), ∆(W ) = ∆P , φ = W|F×A . The result fol-

lows from the definition and the following calculation.

L f0
(Φ(W )) =

〈WN P f ρ0 ,Tr∆[Θ(W )eEε,N (W )]〉N P

〈WN P f ρ0 , f0〉N P

(L.4.3.1) =
〈WN∆ f ρ0 ,W∆(W )Θ(W )W∆(W )

eE∆(W )
εφ−1,N

〉N∆(W )
αP ( f )(−1)gτ( f )Hp( f )Ω f

(L.4.3.2) =
(−i)gτ(W )DE

αP ( f )(−1)gτ( f )Hp( f )Ω f

〈WN[∆] f
ρ

0 ,Θ(W )EN∆(W )
εφ−1 〉N∆(W )

=
(−i)gτ(W )

αP ( f )Hp( f )Ω f

〈[∆] f ρ0 ,Θ(W )EN∆(W )
εφ−

〉N∆(W )

(eq. (4.1.1)) =
τ(W )D2

F N(∆(W ))1/2

αP ( f )Hp( f )Ω f

DN∆(W )([∆] f0,Θ(W ), 1)

(L.4.3.3) =
τ(W )D2

F N(∆(W ))1/2Vp( f ,W )
αP ( f )Hp( f )Ω f

DN∆(W )([∆] f ,Θ(W ), 1)

(L.4.3.4) =
τ(W )D2

F N(∆(W ))1/2Vp( f ,W )W (D)
αP ( f )Hp( f )Ω f

L( fE ,W , 1)

where we have used various results from §1.3, and the fact that in our case

f ρ = f as f has trivial character.
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4.5. Fourier expansion of the measure. — Consider the restriction of

Φ to G , the Galois group of the maximal Zp -extension of E unramified

outside . Any character W of G decomposes uniquely as W = W +W −

with (W +)c = W , (W −)c = W (we say that W + is cyclotomic and W −

is anticyclotomic or dihedral). Since we are interested in the case where

ε(N ) = (−1)g−1 in which the Φ is zero on the anticyclotomic characters,

we study the restriction of Φ to the cyclotomic characters. We can write

W + = χ ◦N for a Hecke character χ : F ×\F ×A → 1+ pZp , and we denote

Θχ =Θ(χ ◦N), Φχ =Φ(χ ◦N).

From now on we assume that (∆, 2) = 1 and all primes ℘|p are split in E .

Proposition 4.5.1. — The Fourier coefficients b (m) = ap(Φχ , m) of the p-adic

modular form Φχ are given by

b (m) =
∑

n∈F
0<n<1

n∈N m−1∆−1

χ ((1− n)m)
∏

v |∆

�

1[v(nm) = 0]+ εv((n− 1)n)χ −2
v (nm℘v/N )

�

· r ((1− n)m∆)σεχ−2(nm).

Proof. — By (1.3.6), the Fourier coefficients b (m) ofΦχ =Θχ eEεχ 2,N is given

by

b (m) =
∑

δ|∆
bδ(mδ)

with

bδ(m) = a(Φ(δ)
χ

, m) = |y|−1ã(Φ(δ)
χ

, y) = |y|−1
∑

n∈F

ã(Θ(δ)
χ

, (1− n)y) ã(eE(δ)
εχ 2,N

, ny)

= |y|−1
∑

n∈F

ã(Θδ
χ

, (1− n)y) ã(eE(δ)
εχ 2 , ny/πN )
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if y ∈ F ×A satisfies y∞ > 0 and y∞dF = m.

Then thanks to Proposition 2.5.1 and Corollary 3.2.2, we have(25):

b (m) =
∑

δ|∆

∑

n∈F
0<n<1

εδ((n− 1)n)χ ((1− n)m)χ −2
δ
(nmδ/N )

· r ((1− n)mδ)σεχ−2(nm/N ).

We interchange the two sums and notice that the term corresponding to δ

and n is nonzero only if n ∈N m−1∆−1 and δ0|δ, where

δ0 = δ0(n) =
∏

v |∆
v(nm)=−1

℘v

(℘v being the prime corresponding to v). Now for each n we can rewrite

the sum over δ (omitting the factor χ ((1−n)m) which does not depend on

δ) as

εδ0
((n− 1)n)χ −2

δ0
(nmδ0/N )

∑

δ ′|∆/δ0

εδ ′((n− 1)n)χ −2
δ ′
(nmδ ′/N )

=
∏

v |δ0

εδ ′((n− 1)n) χ −2
v (nm℘v)

∏

v |∆/δ0

[1+ εv((n− 1)n)χ −2
v (nm℘v)].

The asserted formula follows.

Remark 4.5.2. — If v(nm) =−1 then (n−1)πmπv ≡ nπmπv in (OF ,v/πvOF ,v)
×,

so that we actually have

εv((n− 1)n) = εv((n− 1)πmπv)εv(nπmπv) = 1,

where ℘v is the ideal corresponding to v.

(25)Recall that c(v)2 = εv (−1).
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We can now compute the Fourier coefficients of the measure giving the

central derivative of the p-adic L-function in the cyclotomic direction. To

this end, let

ν : Gal(Q/F )→ 1+ pZp ⊂Q×p

be a character of F which is ramified exactly at the primes dividing p, and

for s ∈ Zp denote(26) Φ(s) = Φν s . Let `F =
d
d s ν

s |s=0 : F ×\FA×∞
→ Qp be the

associated p-adic logarithm.

Proposition 4.5.3. — Assume that ε(N ) = (−1)g−1. Then Φ(0) = 0 and the

Fourier coefficients b ′(m) of

Φ′
ν
=Φ′(0) =

∂

∂ s
Φν s |s=0

are nonzero only for m integral and nonzero, in which case

b ′(m) =
∑

v

b ′v(m)

with the sum running over all finite places v of F and b ′v(m) given for p|m by

1. If v =℘ is inert in E, then

b ′v(m) =
∑

n∈N m−1∆−1

(p,nm)=1
εv ((n−1)n)=1∀v |∆

0<n<1

2ω∆(n) r ((1−n)m∆)r (nm∆/N℘)(v(nm/N )+1)`F ,v(πv),

where

ω∆(n) = #{v |(∆, nm∆)}.

(26)No confusion should arise from our recycling the letter s for this p-adic variable, the
complex variable having now exited the scene.
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2. If v =℘|∆ is ramified in E, then

b ′v(m) =
∑

n∈N m−1∆−1

(p,nm)=1
εv ((n−1)n)=−1

εw ((n−1)n)=1∀v 6=w|∆
0<n<1

2ω∆(n) r ((1−n)m∆)r (nm∆/N )(v(nm)+1)`F ,v(πv).

3. If v is split in E, then

b ′v(m) = 0.

Proof. — The vanishing of Φ(0) = Φ1 follows from the functional equation

(4.2.3) and the sign assumption.

By Proposition 4.5.1, the Fourier coefficient bs (m) of Φ(s) = Φν s can be

expressed as bs (m) =
∑

n∈F bn,s (m) with

bn,s (m) = ν
s ((1− n)m)r ((1− n)m∆)

∏

v -p∞
σn

s ,v(m/N )

where, using Remark 4.5.2:

σn
s ,v(m) =























1− ε(nm℘)ν(nm℘)−2s

1− ε(℘)ν(℘)−2s
if v =℘ -∆;

1+ εv(n(n− 1))ν(nm℘)−2s if v =℘|∆ and v(nm) = 0;

ν(nm℘)−2s if v =℘|∆ and v(nm) =−1.

Then b ′(m) =
∑

n b ′n(m) =
∑

n

∑

v b ′n,v(m) with
∑

n b ′n,v(m) = bv(m),

and b ′n(m) can be nonzero only if exactly one of the factors σn
s ,v vanishes

at s = 0. If this happens for the place v0, then the set over which n ranges

accounts for the positivity and integrality conditions and the nonvanishing

conditions at other places, whereas the condition (p, nm) = 1 results from

observing that lims→0 ν
s (a) = 1[(p,a) = 1].
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The values of b ′n,v can then be determined in each case from the above

expressions: for v ramified this is straightforward. For v = ℘ inert, no-

tice that if v(nm/N ) is odd then r (nm∆/N℘) = r ((nm∆/N )(℘)), where

the superscript denotes prime-to-℘ part; whereas if v(nm/N ) is even then

σn
0,v(m/N ) does not vanish so (n, v) does not contribute to b ′(m) and in-

deed r (nm/N℘) = 0.

PART II

HEIGHTS

5. Generalities on p-adic heights and Arakelov theory

5.1. The p-adic height pairing. — Let X be a (smooth, projective) curve

of genus g ≥ 1 over a number field E with good reduction at all places above

p; or let A be an abelian variety of dimension g over E with good reduction

at all places above p. By the work of many authors (Schneider, Perrin-Riou,

Mazur–Tate, Coleman–Gross, Zarhin, Nekovář,. . . ) there are p-adic height

pairings on the group of degree zero divisors on X and on the Mordell-Weil

group of A; we recall their main properties following the construction of

Zarhin [44] and Nekovář [26].

Let ` : E×A/E× → Qp be a homomorphism; we call ` a p-adic logarithm

and assume that it is ramified at all v |p, that is, `v : E×v → Qp does not

vanish identically on O ×E ,v . Let Y denote either AlbX or A, Y ∨ its dual

abelian variety, and let V =VpY = TpY⊗Zp
Qp be the rational Tate module
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of Y , a continuous Gal(E/E)-representation.(27) Let DdR(V ) = H 1
dR(Y

∨ ⊗

Ev/Ev), equipped with the Hodge filtration. For each v |p, let Wv ⊂DdR(V )

be a splitting of the Hodge filtration, that is, a complementary subspace

to Ω1(Y ∨ ⊗ Ev/Ev) ⊂ DdR(V ), which is isotropic(28) for the cup product.

When V is ordinary as a Gal(E v/Ev)-representation, there is a canonical

choice for Wv , the “unit root” subspace – see [18] for a nice discussion.

For the case of interest to us, recall that we have fixed in the Introduction an

ordinary form f and a Shimura curve X /F : then we will study the situation

where Y = AlbX or Y = Af , the ordinary abelian variety associated to

f (see below for the construction of Af ), or their base change to E , and

V f = VpAf ) ⊂ VpAlbX . The subspaces Wv will then be assumed chosen

compatibly with the canonical choices on V f .

Theorem 5.1.1. — Let V be a representation as above, and let V ∗(1) denote

the twisted dual of V (it is in fact isomorphic to V ).

1. There is a bilinear symmetric pairing on the Bloch-Kato Selmer group of

V

〈·, ·〉 : H 1
f (E ,V )×H 1

f (E ,V ∗(1))→Qp ,

depending on the auxiliary choices of ` and (Wv)v |p (which we usually

omit from the notation).

(27)Nekovář [26] defines height pairings for Galois representations in much greater gener-
ality than described here.
(28)The isotropy condition ensures that the resulting height pairing is symmetric [26, The-
orem 4.1.1 (4)]
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2. The above pairing decomposes as the sum

〈x, y〉=
∑

v

〈x, y〉v

of local pairings 〈·, ·〉v for v running over the finite primes of E.

3. (Compatibility.) Let E ′w/Ev be a finite extension, and let TrE ′w/Ev
: H 1

f (E
′
w ,T )→

H 1
f (Ev ,T ) denote corestriction. If x ∈ H 1

f (E
′
w ,V ), y ′ ∈ H 1

f (E
′
w ,V ∗(1)),

we have

〈x,TrE ′w/Ev
(y ′)〉v = 〈x, y ′〉v

where 〈·, ·〉w is the local pairing associated to `w = `v ◦NEw/Ev
and (if v |p)

the splitting Ww induced from Wv .

4. Let E`
v,∞ = ∪n E`

v,n be the ramified(29) Zp -extension of F determined by

the isomorphism

E×v ⊃Ker (`v)∼=Gal(E`
v,∞/E)⊂Gal(E ab

v /E).

induced from class field theory. Assume that V is ordinary as a Galois

representation, and let T be a stable lattice in V . Then the module of

universal norms

N `
∞(H

1
f (Ev ,T )) =

⋂

n

Im
h

TrE`v,n/Ev
: H 1

f (E
`
v,n,T )→H 1

f (Ev ,T )
i

has finite index in H 1
f (Ev ,T ).

5. (Boundedness.) In the above ordinary situation, there is a nonzero con-

stant c ∈ Zp such that

〈x, y〉v,n ∈ p−c`w(E
`,×
v,n )

(29)Recall that we choose `w to be ramified.
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if x ∈ H 1
f (Ev ,T ), y ∈ H 1

f (Ev ,T ∗(1)) and 〈·, ·〉v,n is the local pairing asso-

ciated to the extension E`
v,n/Ev as in 3.

We refer to [27, II.1] and references therein for the proof and more details

on the construction. A more explicit description of the pairing and its local

components will follow from Theorem 5.3.1 below.

Let Div(X ) be the group of divisors on the curve X , Div0(X ) the sub-

group of degree zero divisors, and similarly CH(X ) = Div0(X )/∼, CH(X )0 =

Div0(X )/ ∼ the Chow group of zero-cycles modulo rational equivalence

and its subgroup of degree zero elements. Let V (X ) =VpAlbX .

Via the Abel-Jacobi map

CH(X )0→H 1
f (E ,V (X )),

the above pairing induces a p-adic height pairing

〈·, ·〉 : CH(X )0×CH(X )0→Qp .

In the case of an abelian variety A, via the Abel-Jacobi map A∨(E) ∼=
CH1(A)0 → H 1

f (E ,VpA) and the similar one for A(E), together with the

canonical isomorphism VpA∗(1)∼=VpA∨, we similarly have an induced height

pairing

〈·, ·〉 : A∨(E)×A(E)→Qp .

By construction when A = AlbX this pairing coincides with the one in-

duced from the one on X via the identification AlbX (E) ∼= CH(X )0 and

the canonical autoduality of A.
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5.2. p-adic Arakelov theory – local aspects. — Here and in §5.3 we sum-

marize the main results of Besser [3], who develops the p-adic analogue of

classical Arakelov theory.

Metrized line bundles. — Let Xv be a proper smooth variety over the finite

extension Ev of Qp , and fix a ramified local p-adic logarithm `v : E×v →

Qp which we extend to Q
×

p by `v |E ′×v = `v ◦NE ′v/Ev
for any finite extension

E ′v/Ev .

A metrized line bundle cL = (L , logL ) on Xv is a line bundle on Xv to-

gether with a choice of a log function logL ,v on the total space of Lv =

L |X⊗Ev
minus the zero section (which will also be viewed as a function on

the nonzero sections of Lv ). A log function is the analogue in the p-adic

theory of the logarithm of a metric on the sections ofL on an infinite fibre

of X . It is a Coleman function having a certain analytic property(30) and

the following algebraic property. If the p-adic logarithm `v factors as

`v = tv ◦ logv(5.2.1)

for some logv : E×v → Ev and some Qp -linear tv : Ev → Qp , then for any

nonzero section s ofLv and rational function f ∈ E(Xv) we have

logL ,v( f s) = logv( f )+ logL ,v(s).(5.2.2)

Adding a constant to a log function produces a new log function; this oper-

ation is called scaling.

(30)For which we refer to [3, Definition 4.1].
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One can define a notion of ∂ ∂ -operator on Coleman functions, and at-

tach to any log function logL on L its curvature ∂ ∂ logL ∈ H 1
dR(Xv)⊗

Ω1(Xv); its cup product is the first Chern class ofL .

Log functions on a pair of line bundles induce in the obvious way a log

function on their tensor product, and similarly for the dual of a line bundle.

If π : Xv → Yv is a morphism, then a log function on a line bundle on Yv

induces in the obvious way a log function on the pullback line bundle on X .

If moreover π is a finite Galois cover with Galois group G, and L is a line

bundle on Xv with log function logL and associated curvature β, then the

norm line bundle NπL on Yv with stalks

(NπL )y =
⊗

x 7→y

L ⊗e(x|y)
x

has an obvious candidate log function Nπ logL obtained by tensor product.

The latter is a genuine log function (i.e. it satisfies the analytic property

alluded to above) when there is a form α ∈H 1
dR(Yv)⊗Ω1(Yv) such that

∑

σ∈G

σ∗β=π∗α,

in which case the curvature of Nπ logL is α/degπ ([3, Proposition 4.8]).

The canonical Green function. — Now let Xv/Ev be a curve of genus g ≥ 1

with good reduction above p. Choose a splitting Wv ⊂ H 1
dR(Xv) of the

Hodge filtration as in §5.1, which we use to identify Wv
∼=Ω1(Xv)

∨; we then

define a canonical element

µXv
=

1

g
id ∈ EndΩ1(Xv)∼=Wv ⊗Ω

1(Xv)
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and similarly for the self-product Xv ×Xv (denoting π1, π2 the projections)

Φ=







1
g −1

−1 1
g






∈ End (π∗1Ω

1(Xv)⊕π
∗
2Ω

1(Xv)) ,→H 1
dR(Xv×Xv)⊗Ω

1(Xv⊗Xv).

The first Chern class of Φ is the class of the diagonal∆⊂Xv ×Xv .

Let 1 denote the canonical section of the line bundle O (∆) on Xv ×Xv .

Given any log function logO (∆) on O (∆) with curvature Φ, we can consider

the function G on Xv ×Xv given by

G(P,Q) = logO (∆)(1)(P,Q).

It is a Coleman function with singularities along ∆; we call G a Green func-

tion for Xv .

A Green function G induces a log function on any line bundle O (D) on

Xv by

logO (D)(1)(Q) =
∑

ni G(Pi ,Q)

if D =
∑

ni Pi and 1 is the canonical section of O (D). A log function logL
on the line bundle L and the resulting metrized line bundle (L , logL ) are

called admissible with respect to G if for one (equivalently, any) nonzero

rational section s ofL , the difference logL (s)− logdiv(s) is a constant. Such

a constant is denoted by ιlogL
(s), or ιlogv

(s) in the case of the trivial line

bundle with the log function logv . It is the analogue of the integral of the

norm of s . It follows easily from the definitions that any isomorphism of

admissible metrized line bundles is an isometry up to scaling.

LetωXv
be the canonical sheaf on Xv . The canonical isomorphismωXv

∼=
∆∗O (−∆) gives another way to induce from G a log function logG

ωXv
onωXv

,

namely by pullback (and the resulting metrized line bundle has curvature
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(2g−2)µXv
). The requirement that this log function be admissible, together

with a symmetry condition, leads to an almost unique choice of G.

Proposition 5.2.1 ([3, Theorem 5.10]). — There exists a unique up to con-

stant symmetric Green function G with associated curvatureΦ such that (ωXv
, logG

ωXv
)

is an admissible metrized line bundle with respect to G.

In the following we will arbitrarily fix the constant implied by the Propo-

sition. In our context, the canonical Green function thus determined is, in

a suitable sense, defined over Ev [3, Proposition 8.1].

5.3. p-adic Arakelov theory – global aspects. — Let E be a number field

with ring of integers OE . Let X /OE be an arithmetic surface with generic

fibre X , that is,X →OE is a proper regular relative curve andX⊗OE
E =X .

We assume that X has good reduction at all place v |p, and denote Xv =

X ⊗ Ev . Fix choices of a ramified p-adic logarithm ` and Hodge splittings

Wv as in §5.1.

Arakelov line bundles and divisors. — An Arakelov line bundle on X is a

pair
cL = (L , (logLv

)v |p)

consisting of a line bundle L onX together with admissible (with respect

to the Green functions of Proposition 5.2.1) log functions logLv
on Lv =

L |Xv
. We denote by PicAr(X ) the group of isometry classes of Arakelov

line bundles onX .

The group DivAr(X ) of Arakelov divisors on X is the group of formal

combinations

D =Dfin+D∞
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where Dfin is a divisor onX and D∞ =
∑

v |p λvXv is a sum with coefficients

λv ∈ Ev of formal symbols Xv for each place v |p of E . To an Arakelov line

bundle cL and a nonzero rational section s ofL we associate the Arakelov

divisor
Ódiv(s) = (s)fin+(s)∞

where (s)fin is the usual divisor of s and (s)∞ =
∑

v |p ιlogLv
(sv)Xv . The group

PrinAr(X ) of principal Arakelov divisors on X is the group generated by

the Ódiv(h) for h ∈ E(X )×. The Arakelov Chow group ofX is

CHAr(X ) = DivAr(X )/PrinAr(X ),

and we have an isomorphism

PicAr(X )∼=CHAr(X )

given by cL → [Ódiv(s)] for any rational section s ofL .

The p-adic Arakelov pairing. — Most important for us is the existence of

a pairing on CHAr(X ), extending the p-adic height pairing of divisors of

§5.1. Let (·, ·)v denote the (Z-valued) intersection pairing of cycles on Xv

with disjoint support. The pairing that we consider is the negative of the

intersection pairing defined by Besser.

Theorem 5.3.1 (Besser [3]). — LetX /OE be an arithmetic surface with good

reduction above p. For any choice of ramified p-adic logarithm ` : E×A/E× →

Qp and Hodge splittings (Wv)v |p as above, there is a symmetric bilinear par-

ing(31)

〈·, ·〉Ar : CHAr(X )×CHAr(X )→Qp

(31)The notation of [3] is D1 ·D2 for 〈D1, D2〉Ar.
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satisfying:

1. If D1 and D2 are finite and of degree zero on the generic fibre, and one of

them has degree zero on each special fibre ofX , then

〈D1, D2〉
Ar = 〈D1,E , D2,E〉,

where Di ,E ∈ Div0(X ) is the generic fibre of Di and 〈·, ·〉 denotes the height

pairing of Theorem 5.1.1 associated with the same choices of ` and Wv .

2. If D1,fin, D2,fin have disjoint supports on the generic fibre, then

〈D1, D2〉
Ar =

∑

v

〈D1, D2〉
Ar
v

where the sum runs over all finite places of E, and the local Arakelov

pairings are defined by

〈D1, D2〉
Ar
v =−(D1, D2)v`v(πv)

for v - p and below for v |p.

If moreover we are in the situation of 1., then for each place v

〈D1, D2〉
Ar
v = 〈D1,E , D2,E〉v .

3. In the situation of 2., if moreover D1 =Ódiv(h) is the Arakelov divisor of

a rational function h, then

〈D1, D2〉
Ar
v = `v(h(D2,fin))

for all places v.

For completeness, we give the description of the local pairing at v |p of

divisors with disjoint supports. If `v = tv ◦ logv as in (5.2.1) and Gv is the
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Green function on Xv×Xv , we have 〈D ,Xw〉Ar
v = 0 if v 6= w, 〈Xv ,Xv〉Ar

v = 0,

〈D ,λvXv〉Ar
v = (deg DE )tv(λv) and if D1, D2 are finite divisors with images

D1,v =
∑

ni Pi , D2,v =
∑

m j Q j in Xv then

〈D1, D2〉
Ar
v =−

∑

i , j

ni m j tv(Gv(Pi ,Q j )).

In fact, in [3] it is proved directly that the global Arakelov pairing and

its local components at p coincide with the global and local height pairings

of Coleman–Gross [10]. The latter coincide with the Zarhin–Nekovář pair-

ings by [2].

6. Heegner points on Shimura curves

In this section we describe our Shimura curve and construct Heegner

points on it, following [45, §§1-2], to which we refer for the details (see

also [46, §5], and [8] for the original source of many results on Shimura

curves). We go back to our usual notation, so F is a totally real number field

of degree g , N is an ideal of OF , E is a CM extension of F of discriminant∆

coprime to 2N p, and ε is its associated Hecke character.

6.1. Shimura curves. — Let B be a quaternion algebra over F which is

ramified at all but one infinite place. Then we can choose an isomorphism

B⊗R∼=M2(R)⊕Hg−1, where H is the division algebra of Hamilton quater-

nions. There is an action of B× on H± =C−R by Möbius transformations

via the map B×→GL2(R) induced from the above isomorphism. For each

open subgroup K of bB× = (B ⊗F
bF )× which is compact modulo bF × we then
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have a Shimura curve

MK(C) = B×\H±× bB×/K ,

where H± =C\R. Unlike modular curves, the curves MK do not have a nat-

ural moduli interpretation. However, by the work of Carayol [8], MK(C)

has a finite map(32) to another (unitary) Shimura curve M ′
K ′
(C) which, if the

level K ′ is small enough, has an interpretation as the moduli space of cer-

tain quaternionic abelian varieties with extra structure. As a consequence,

the curve MK(C) has a canonical model MK defined over F (it is connected

but not, in general, geometrically connected), and a proper regular integral

model(33) MK over OF ; if v is a finite place where B is split, then MK is

smooth over OF ,v if Kv is a maximal compact subgroup of Bv and K v is suf-

ficiently small.

The order R and the curve X . — Assume that ε(N ) = (−1)g−1. Then the

quaternion algebra B over AF ramified exactly at all the infinite places and

the finite places v |N such that ε(v) = −1 is incoherent, that is, it does not

arise via extension of scalars from a quaternion algebra over F . On the other

hand, for any embedding τ : F ,→ R, there is a nearby quaternion algebra

B(τ) defined over F and ramified at τ and the places where B is ramified.

Fix any embedding ρ : E → B , and let R be an order of bB = bB(τ) which

contains ρ(OE ) and has discriminant N (this is constructed in [45, §1.5.1]).

Then the curve X over F of interest to us is the (compactification of) the

curve MK defined above for the subgroup K = bF ×bR× ⊂ bB ; that is, for each

(32)Which is an embedding if K ⊃ bF ×.
(33)In the modular curve case F = Q, ε(v) = 1 for all v |N , MK andMK are proper only
after the addition of finitely many cusps. (We caution the reader that Carayol [8] uses the
notationMK to denote instead the set of geometrically connected components of MK .)
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embedding τ : F →C, we have

(6.1.1) X (C) = B(τ)×\H±× bB×/bF ×bR× ∪{cusps}.

The finite set of cusps is nonempty only in the classical case where F =

Q, ε(v) = 1 for all v |N so that X = X0(N ). In what follows we will not

aggravate the notation with the details of this particular case, which poses

no additional difficulties and is already treated in the original work of Perrin-

Riou [30].

We denote byX the canonical model of X over OF .

Hecke correspondences. — Let m be an ideal ofOF which is coprime to N and

the ramification set of B . Let Km (respectively K1) be the the group of those

g ∈ bOB such that gv = 1 away from m and det g generates m (respectively, is

invertible) at the places dividing m. Then the Hecke operator T (m) on X

is defined by

T (m)[(z, g )] =
∑

γ∈Km/K1

[(z, gγ )]

under the complex description (6.1.1).

Let T′N be the algebra generated by the T (m). Then by the Jacquet–

Langlands correspondence, T′N is a quotient of the Hekce algebra on Hilbert

modular forms TN (hence the names T (m) are justified). It acts by cor-

respondences on X ×X , and taking Zariski closures of cycles on X ×X

extends the action toX .

6.2. Heegner points. — The curve X defined above has a distinguished

collection of points defined over algebraic extensions of E : we briefly de-

scribe it, referring the reader to [45, §2] for more details.
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A point y of X is called a CM point with multiplication by E if it can be

represented by (
p
−1, g ) ∈H±× bB× via (6.1.1). The order

End (y) = g bRg−1 ∩ρ(E)

in E = ρ(E) is defined independently of the choice of g , and

End (y) = OE[c] = OF + cOF

for a unique ideal c of OF called the conductor of y. We say that the point

y = [(
p
−1, g )] has the positive orientation if for every finite place v the

morphism t → g−1ρ(t )g is R×v -conjugate to ρ in Hom (OE ,v , Rv)/R×v .(34)

Let Yc be the set of positively oriented CM points of conductor c . By the

work of Shimura and Taniyama, it is a finite subscheme of X defined over

E , and the action of Gal(Q/E) is given by

σ([(
p
−1, g )]) = [(

p
−1, recE (σ)g )],

where recE : Gal(E/E) → Gal(E/E)ab
e→E×\ bE× is the reciprocity map of

class field theory. If y = [(
p
−1, g )] has conductor c , then the action fac-

tors through

Gal(H[c]/E)∼= E×\ bE×/bF × bOE[c]
×

where H[c] is the ring class field of E of conductor c ; the action of this

group on Yc is simply transitive.

(34)This set has two elements only if B is ramified at v (the other element is called the
negative orientation at v); otherwise it has one element the condition at v is empty.
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For each nonzero ideal c of OF , let u(c) = [OE[c]
× : O ×F ] and define the

divisor

ηc = u(c)−1
∑

y∈Yc

y.(6.2.1)

Let η = η1. By the above description of the Galois action on CM points ,

each divisor ηc is defined over E .

A Heegner point y ∈ X (H ) is a positively oriented CM point with con-

ductor 1. We can use the embedding ι : X → J (X )⊗Q to define the point

[z] = ι(η) = [η]− h[ξ ] ∈ J (X )(E)⊗Q

where h is a number such that [z] has degree zero in each geometrically

connected component of X , and [ξ ] is the Hodge class of the Introduction

(see below for more on the Hodge class).

Arakelov Heegner divisors. — The Heegner divisor on X can be refined to

an Arakelov divisor ẑ having degree zero on each irreducible component of

each special fibre. On a suitable Shimura curve eX
π→X of deeper level away

from N∆E/F , we can give an explicit description of the pullback êz of ẑ and

of the Hodge class as follows.

After base change to a suitable quadratic extension F ′ of F , we have an

embedding eX ,→ eX ′ of eX = M
eK into the unitary Shimura curve eX ′ = M ′

fK ′

parametrizing abelian varieties of dimension 4[F : Q] with multiplication

by the ring of integers OB ′ of B⊗F F ′ and some extra structure. Then by the

Kodaira-Spencer map, we have an isomorphism ω
eX ′
∼= det LieA ∨, where

A → eX ′ is the universal abelian scheme and the determinant is that of an
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OF -module of rank 4 (the structure of OF -module coming from the multi-

plication by OB ′ on A ). This gives a way(35) of extending the line bundle

ω
eX ′ to the integral model fX ′ and to a line bundleL on fX . For each finite

place v |p we endow L |
eXv

with the canonical log functions logL ,v coming

from the descriptionL |
eXv
=ω

eXv
and a fixed choice of Hodge splittings on

eX . We define [ êξ ] ∈CHAr( fX )⊗Q to be the class of (L , (logL )v |p) divided

by its degree, [eξ ] to be its finite part, and êξ to be any Arakelov divisor in

its class.

Then the Heegner Arakelov divisor êz ∈ DivAr(X ⊗OE ) is described by

êz = êη− h êξ +Z ,(6.2.2)

where êη is the Zariski closure inX ⊗OE of the pullback of η to eX , and Z is a

finite vertical divisor uniquely determined by the requirement that êz should

have degree zero on each irreducible component of each special fibre.

6.3. Hecke action on Heegner points. — Recall from §1.4 the spaces of

Fourier coefficients DN ⊂S , the arithmetic functions σ1, r ∈ DN , and the

space S which is a quotient of S /DN . The action of Hecke operators on

the Arakelov Heegner divisor is described as follows.

Proposition 6.3.1. — Let m be an ideal of OF coprime to N. We have

1. T (m)η=
∑

c |m r (m/c)ηc .

2. Let η0
c =

∑

OF 6=d |c ηd , and let T 0(m)η =
∑

c |m ε(c)η
0
m/c . Then η and

T 0(m)η have disjoint support and if m is prime to N∆ then T (m)η =

T 0(m)η+ r (m)η.

(35)See [45, §4.1.3, §1] for more details on this construction.
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3. T (m)[ξ ] = σ1(m)[ξ ] and m 7→ T (m)[ êξ ] is zero in S ⊗CHAr( fX ).

4. The arithmetic function m 7→ T (m)Z is zero in S ⊗DivAr(X ).

Proof. — Parts 1., 2. and 4. are proved in [45, §4]. For part 3., we switch to

the curve eX . By definition [ êξ ] is a multiple of the class of the Arekelov

line bundle L = det LieA ∨ on fX with the canonical log functions on

Lv
∼=ω

eXv
, whereA →X is the universal abelian scheme. We view T (m)

as a finite algebraic correspondence of degree σ1(m) induced by the sub-

scheme fXm ⊂ fX × fX of pairs (A,A/D) where D is an ‘admissible submod-

ule’ of A of order m (see [45, §1.4] for the definition and more details). If

p1, p2 : fXm→ fX are the two projections, then we have

T (m)L =Np1
p∗2L ,

and the log functions on T (m)L |
eXv are the ones induced by this descrip-

tion.(36)

Letπ :A1→A2 be the universal isogeny over fXm . As p∗iL = det LieA ∨
i ,

we have an induced a map

ψm =Np2
π∗ : T (m)L →Np2

p∗2L =L
σ1(m),

and [45, §4.3] shows that ψm(T (m)L ) = cmL σ1(m) where cm ⊂ OF is an

ideal with divisor [cm] on SpecOF such that m → [cm] is a σ1-derivative

(§1.4), hence zero in S ⊗Div (SpecOF )⊂S ⊗DivAr(X ).

(36)The necessary conditions on the curvature detailed in §5.2 are met since in this case the
curvature of T (m)Lv is easily seen to be T (m)µ

eXv
= σ1(m)µ eXv

.
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We complete the proof by showing that, for each v |p, the difference of

log functions

ψ∗m logL σ1(m)
v
− logT (m)Lv

(6.3.1)

on the line bundle T (m)Lv on eXv is also a σ1-derivative when viewed as a

function of m. It is enough to show this after pullback via p1 on eXm, where

(denoting pulled back objects with a prime) the map ψ′m decomposes as

ψ′m =⊗Dπ
∗
D : ⊗D det Lie (A ′/D)∨→ det LieA ′′∨⊗σ1(m)

where the tensor product runs over admissible submodule schemes of order

m ofA ′ (since base change via p1 splits the cover p1, there are exactly σ1(m)

of those). Now the difference (6.3.1) is the sum of the σ1(m) differences

(π∗D)
∗ logL − logL ,

which are all the same since they are permuted by the Galois group of p1. As

π∗D acts by multiplication by (degπD)
1/2 = N(m)2, by (5.2.2) each of these

differences is 2 logv N(m) so that (6.3.1) equals

2σ1(m) logv N(m)

which is indeed a σ1-derivative.

Notice that [ êξ ] is only defined as a divisor class. Now we pick any divi-

sor ξ̂ in its class and define the divisor T (m) êξ to be a divisor in the class

T (m)[ êξ ] such that m 7→ T (m) êξ is zero in S ⊗ DivAr(X ). This is legiti-

mate for our purposes since the global Arakelov pairing is defined on divisor

classes.
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7. Heights of Heegner points

Let Ψ be the modular form of level N with Fourier coefficients given by

the p-adic height pairing 〈z,T (m)z〉 (it is a modular form because of Lemma

1.3.1 and the fact that the quaternionic Hecke algebra T′N is a quotient of

TN , as explained at the end of §??). We will compute the heights of Heegner

points, with the goal of showing (in §8) that L f0
(Φ′) and L f0

(Ψ) are equal up

to the action of some Hecke operators. The proof of the main theorem will

follow.

The strategy is close to that of Perrin-Riou, namely we separate the local

contributions to Ψ from primes above p, writing Ψ ∼ Ψfin + Ψp ; using

the computations of [45, 46] we show that Φ′ and Ψfin are “almost” equal,

while the contribution of Ψp is shown to vanish. The absence of cusps

however poses some difficulties, that we circumvent through the use of p-

adic Arakelov theory.

We will work throughout in the spaceS ⊃S N of §1.4, using the simbol

∼ to denote equality there; we abuse notation by using the same name for a

modular form and its image in S N .

The height pairings (and the accompanying Arakelov pairings) on the

base change of X to E that will be considered are the ones associated to

choices of Hodge splittings on Vw = H 1
dR(Xw/Ew) (w|p) compatible with

the canonical choices on the ordinary subrepresentations V f ,w , and to a “cy-

clotomic” p-adic logarithm given by `= `F ◦N : E×\E×A∞→Qp for some

`F : F ×\F ×A∞→Qp .

(These data will be omitted from the notation).
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As mentioned before, the Shimura curve X and its integral model X

may not be fine enough for the needs of Arakelov and intersection theory,

so that we may need to pass to a Shimura curve of deeper level fX π→ X

and consider the pullbacks eη of the divisors η, etc. Then notation such as

〈η̂,T 0(m)η̂〉Ar is to be properly understood as 〈êη,T 0(m)êη〉Ar/degπ.

7.1. Local heights at places not dividing p. — The next two results will

be used to show the main identity.

Lemma 7.1.1. — In the space S N we have

〈z,T (m)z〉= 〈ẑ,T (m)ẑ〉Ar ∼ 〈η̂,T 0(m)η̂〉Ar.

Proof. — First observe that by Lemma 1.3.1, the first member indeed be-

longs to S N . The first equality is a consequence of Theorem 5.3.1.1 and

the construction of ẑ. The second part follows from expanding the second

term for m prime to N∆ according to (6.2.2) and observing that the omitted

terms are zero in S N by Proposition 6.3.1.

We can therefore write

(7.1.1) Ψ∼
∑

w

Ψw =
∑

v

Ψv =Ψfin+Ψp

in S , with the first sum running over the finite places w of E , the second

sum running over the finite places v of F , and

Ψw(m) = 〈η̂,T 0(m)η̂〉Ar
w , Ψv =

∑

w|v
Ψw , Ψfin =

∑

v -p

Ψv , Ψp =
∑

v |p
Ψv .

( We are exploiting the fact that for m prime to N∆ the divisors η̂ and

T 0(m)η̂ have disjoint supports so that we can apply Theorem 5.3.1.2.)
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For each prime ℘ of F above p, we define an operator(37) on S

R℘ = (U℘− 1), Rp =
∏

℘|p
R℘

Proposition 7.1.2. — The arithmetic function R3
pΨp belongs to S N ⊂ S ,

and we have

L f0
(R3

pΨp) = 0.

The proof of this crucial fact will occupy §7.2.

Proposition 7.1.3. — In the space S we have

Ψfin ∼
∑

v -p

Ψv + h,

where h is a modular form which is killed by L f0
; the sum runs over the finite

places of F and the summands are given by:

1. If v =℘ is inert in E, then

Ψv(m) =
∑

n∈N m−1∆−1

εF ,v ((n−1)n)=1∀v |∆
0<n<1

2ω∆(n) r ((1−n)m∆)r (nm∆/N℘)(v(nm/N )+1)`F ,v(πv).

2. If v =℘|∆ is ramified in E, then

Ψv(m) =
∑

n∈N m−1∆−1

εv ((n−1)n)=−1
εw ((n=1)n)=1∀v 6=w|∆

0<n<1

2ω∆(n) r ((1−n)m∆)r (nm∆/N )(v(nm)+1)`v(πv).

3. If v is split in E, then

Ψv(m) = 0.

(37)This is different from the operator bearing the same name in [30].
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Proof. — For m prime to N∆ we have Ψfin(m) =
∑

w-p〈η̂,T 0(m)η̂〉Ar
w (the

sum running over all finite places w of E ). By Theorem 5.3.1.2, up to the

factor `F ,v(πv) (which equals `w(πw) or its half for each place w of E above

v), each term is given by an intersection multiplicity (η̂,T (m)η̂)w , which is

computed by Zhang.

When v(N )≤ 1 for all v which are not split in E , the result is summarised

in [45, Proposition 5.4.8]; in this case, the values obtained there are equiv-

alent to the asserted ones by [45, Proposition 7.1.1 and Proposition 6.4.5],

and there is no extra term h. In fact (and with no restriction on N ), these

values appear also as local components CΦ′v at finite places of a form CΦ′ of

level N which is a kernel of the Rankin–Selberg convolution for the central

derivative L′( fE , 1) of the complex L-function.

In general, [46, Lemma 6.4.3] proves that(38)

Ψv

`F ,v(πv)
∼

CΦ′]v
logN(|πv |−1)

+ v h,(7.1.2)

where v h is a modular form with zero projection onto the f -eigenspace (see

the discussion at the very end of [46]; the forms v h come from intersections

at bad places), and CΦ′] is a form of level N∆ which is a kernel for the com-

plex Rankin–Selberg convolution in level N∆ (in particular, it is modular

and Tr∆(
CΦ′]) = CΦ′). Applying the operator Tr∆ in (7.1.2) we recover the

asserted formula.

(38)We are adapting the notation to our case. In [46], the form f is denoted by φ, the
functions v h are denoted by v f .
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7.2. Local heights at p. — Here we prove Propostion 7.1.2 which shows

that the contirbution of the p-part of the height is negligible. We fix a a

prime ℘ of F dividing p.

Let the divisors ηc be as in (6.2.1), and denote

Hs =H[℘s], us = u(℘s ).

Proposition 7.2.1 (Norm relation). — Let m = m0℘
n be an ideal of F with

m0 prime to ℘N. We have

[T (m℘r+2)− 2T (m℘r+1)+T (m℘r )](η) = u−1
n+r+2T (m0)TrHn+r+2/E ([y

′]),

as divisors on X , where y ′ ∈X (Hn+r+2) is any CM point of conductor ℘n+r+2.

Proof. — By the multiplicativity of Hecke operators it is enough to prove

the statement for m0 = 1. A simple computation based on Proposition 6.3.1

shows that the left-hand side is equal to ηn+r+2. Since the Galois action of

Gal(Hn+r+2/E) is simply transitive on Y℘n+r+2 , the right-hand side is also

equal to ηn+r+2.

Lemma 7.2.2. — Let v a place of E dividing ℘, and let h ∈ Ev(X ) be a ratio-

nal function whose reduction at v is defined and nonzero. Then we have

e℘ ◦R
3
℘
〈Ódiv(h),T 0(m)η̂〉Ar

v = e℘ ◦R
3
℘
〈div(h),T (m)z〉v = 0

Proof. — We will show that U s
℘
R3
℘
〈Ódiv(h),T 0(m)η̂〉Ar

v tends to 0 in the p-

adic topology, thereby proving the vanishing of the first expression; the

proof for the second expression is similar, cf. [30, Lemme 5.4]. We may
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assume m prime to ℘N∆. AsR2
℘

r (m) = 0, Proposition 7.2.1 gives

U s
℘
R2
℘
η= u−1

s+2TrHs+2/E ys+2

where ys+2 ∈ Y℘s+2 . For s large enough the divisor of h is supported away

from ys and its conjugates. Then by Theorem 5.3.1.3 we have

U s
℘
R2
℘
〈Ódiv(h),T 0(m)η̂〉Ar

v = u−1
s+2`v(h(T

0(m)ys+2))

= u−1
s+2

∑

w|v
`v(NHs+2,w/Ev

h(ys+2)),

where w runs over the places of H above v (which are identified with the

places of Hs+2 above v, since Hs+2/H is totally ramified above ℘).

For any w|v we have

R℘`vNHs+2,w/Ev
h(ys+2) = `v ◦NHw/Ev

(NHs+3,w/Hw
(ys+3)/NHs+2,w/H (ys+2)).

Suppose that

(∗) the w-adic valuation of NHs ,w/Hw
(h(ys )) is independent of s .

Then each w-summand in the expression of interest is the product of u−1
s+2

(which is eventually constant in s ) and the p-adic logarithm of a unit which

is a norm from an extension of Ev whose ramification degree grows linearly

in s ; hence its p-adic valuation grows linearly in s , which proves the Lemma.

It remains to prove (∗). This can be done using the moduli interpretation

of CM points on X (see [45, §§1-2]) and a degenerate case of Gross’s theory

of quasi-canonical liftings, parallelling the proof of [30, Lemme 5.5]. As the

generalisation to our case presents no difficulties but a precise exposition
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would require a lengthy discussion of the moduli interpretation which we

do not need elsewhere, we omit the details.

Lemma 7.2.3. — Let e ′
℘

denote the operator e ′
℘
= e℘ ◦R3

℘
on S N .

1. The operator e ′
℘

extends to the subspace of S generated by the functions

m 7→ 〈D ,T (m)z〉v

for D ∈ Div0(X )(Ev). The result only depends on the class [D] ∈ J (X )(Ev),

it is denoted by

e ′
℘
〈[D],T (m)z〉v ,

and is a bounded element of S N .

2. The arithmetic function

Ψv : m 7→ 〈η̂,T 0(m)η̂〉Ar
v

belongs to the subspace defined in 1., and the value of the operator e ′
℘

on it

is

e ′
℘
〈η̂,T 0(m)η̂〉Ar

v = e ′
℘
〈[z],T (m)z〉v .

Proof. — Since the height pairing is bounded and bounded subsets of Qp are

compact, we can find a sequence of integers (rk) such that the sequence of

arithmetic functions U rk
℘
R3
℘
〈D ,T (m)z〉v converges for all D to a bounded

element of S , and this gives the desired extension of e ′
℘

. The independence

on the choice of D in the class [D] follows from Lemma 7.2.2.

To prove that the result is modular, we observe that by Proposition 7.2.1

we have, for each m prime to N℘:

U rk
℘
R3
℘
〈D ,T (m)z〉v ∼U rk

℘
R3
℘
〈 bD ,T (m)η̂〉Ar

v
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= u−1
rk+2〈

bD ,T (m)(ŷrk+3− ŷrk+2
)〉Ar

v

for yn =TrHn/E ŷ ′n ∈ Div(X )with y ′n a CM point of conductor℘n. Therefore

the mth coefficient of e ′
℘
〈[D],T (m)z〉v is the value at T (m) of the linear

form on TN℘

T 7→ lim
k→∞

u−1
rk+2〈

bD ,T (ŷrk+3− ŷrk+2
)〉Ar

v .

Then the modularity follows from Lemma 1.3.1.

For the second part we may argue as in the proof of Lemma 7.1.1: in S

we have

R3
℘
〈η̂,T 0(m)η̂〉Ar

v ∼R
3
℘
〈η̂+Ódiv(h),T 0(m)η̂〉Ar

v

∼R3
℘
〈ẑ +Ódiv(h),T (m)ẑ〉Ar

v =R
3
℘
〈z + div(h),T (m)z〉v .

Proof of Propostion 7.1.2. — Let V = J (X )(E)⊗Q and write [z] = z f + z f ⊥ ,

with z f , z f ⊥ ∈ V such that T (m)z f = a( f , m)z f for m prime to N p and

that the modular q -expansion m 7→ T (m)z f ⊥ ∈SN ⊗V is orthogonal to f .

Let

e ′
℘
Ψv[ f ](m) = e ′

℘
〈z f ,T (m)z〉v , e ′

℘
Ψv[ f

⊥](m) = 〈z f ⊥ ,T (m)z〉v ;

then by Lemma 7.2.3 we have

e ′
℘
Ψv = e ′

℘
Ψv[ f ]+ e ′

℘
Ψv[ f

⊥]

in dS N℘. It is easy to see that

L f0
(e ′
℘
Ψv[ f

⊥]) = 0
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(cf. [30, Lemme 5.9]). We now show that e ′
℘
Ψv[ f ] = 0. The ordinarity

assumption and Theorem 5.1.1.4 (cf. [30, Exemple 4.12]) imply that z f is

“almost” a universal norm in the totally ramified Zp -extension E`
v,∞ of Ev :

that is, after perhaps replacing z f by an integer multiple, for each layer E`
v,n

we have

z f =Trn(zn)

for some zn ∈ J (X )(E`
v,n)⊗Q, where Trn =TrE`v,n/Ev

. Then we have

e ′
℘
Ψv[ f ](m) = e ′

℘
〈Tr(zn),T (m)z f 〉v = e ′

℘
〈zn,T (m)z f 〉v,n.

where 〈·, ·〉v,n is the local height pairing on Div0(X )(E`
v,n) associated to the

logarithm `n,v = `v ◦NE`v,n/Ev
. By Theorem 5.1.1, these height pairings form

a compatible bounded family: the compatibility implies the second equality

just above, and the boundedness means that they take values in c−1Im(`n)⊂

Zp for a uniform nonzero constant c ∈ Zp . As the extension E`
v,n/Ev has

ramification degree pn, we have for some nonzero c ′ ∈ Zp

e ′
℘
Ψv[ f ](m) ∈ c−1Im(`n)⊂ c ′−1 pnZp

for all n; therefore e ′
℘
Ψv[ f ] = 0.

We conclude that

L f0
(R3

pΨv) = L f0
(eR3

pΨv) =
∏

℘′ 6=℘

(α℘′( f )− 1)3L f0
(e ′
℘
Ψv) = 0.

This completes the proof of Propostion 7.1.2.
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PART III

MAIN THEOREM AND CONSEQUENCES

8. Proof of the main theorem

In this section we prove Theorem B. First, notice that when W is anti-

cyclotomic (that is, W c = W ), both sides of the formula are zero: indeed,

Lp( fE )(W s ) vanishes identically by the functional equation (4.2.3), and

〈z f , z f 〉W = 〈z
c
f , z c

f 〉W◦c =−〈z f , z f 〉W

since by the work of Shimura [34], [z]c =WN[z] and WN z f = (−1)gτ( f )z f ,

where τ( f ) =±1. Therefore it suffices to prove the formula when

W =W + = ν ◦N

for some Hecke character ν of F valued in 1+ pZp .

8.1. Basic case. — First we prove the formula when ∆E/F is totally odd

and each prime ℘ of F dividing p is split in E .

LetΨW ∈S N denote the modular form with coefficients 〈[z],T (m)[z]〉W ,

where 〈·, ·〉ν◦N is the height pairing on J (X )(E) associated to the p-adic loga-

rithm `F ◦N, with

`F =
d

d s
ν s |s=0 : F ×\F ×A∞→Qp

We compare the Fourier coefficients of Φ′W and ΨW .
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Lemma 8.1.1. — In the space S N of §1.5, we have






∏

℘|p
U 4
℘
−U 2

℘






Φ′W ∼







∏

℘|p
(U℘− 1)4






ΨW ,fin+ h,

where h is a form killed by L f0
.

Proof. — The coefficients of Φ′W and ΨW ,fin are computed in Proposition

4.5.3 and Proposition 7.1.3. Up to the form h, they look “almost” the same,

in that in each case the mth Fourier coefficient is given by a sum of terms

indexed by n in a certain finite set, except that in the left-hand side we have

the additional restriction (p, nm) = 1. We can rewrite the indexing pa-

rameter n relative to the right-hand side as n0

∏

℘|p℘
t℘ with (p, n0m) = 1

and each t℘ ≥ 0. Now a simple calculation based on the observation that

r (m0℘
t ) = r (m0)(t + 1) when ℘ - m0 shows that the contribution of the

terms with some t℘ > 0 vanishes and that the contribution of the remaining

terms gives the right-hand side. The details are as in [30, Proof of Proposi-

tion 3.20].

To proceed to the conclusion, notice that since the functional L f0
is bounded,

L f0
◦Φ is also a measure. In particular(39), it commutes with limits, so that

L′p,W ( fE )(1) = L f0

�

d

d s
Φ(W s )|s=0

�

.

Since by Proposition 7.1.2 we have

L f0







∏

℘|p
(U℘− 1)4ΨW , p






= 0,

(39)Recall that a measure is a bounded or equivalently continuous functional on continuous
functions.
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we find forW = ν ◦N (with α℘ = α℘( f )):

D2
F

∏

℘

(α4
℘
−α2

℘
)L′p,W ( fE ,1) =

∏

℘

(α4
℘
−α2

℘
)






1−

1

α2
℘












1−

N℘

α2
℘






L f0
(Φ′W )

=
∏

℘

(α℘− 1)4





1−

1

α2
℘












1−

N℘

α2
℘






L f0
(ΨW )

=
∏

℘

(α℘− 1)4





1−

1

α2
℘






〈z f , z f 〉W .

Here, besides the definition of Lp( fE ) (Definition 4.2.1) we have used var-

ious properties of the functional L f0
from Lemma 1.5.1 and the observa-

tion that the projection onto the f -component of the modular form ΨW ∈

S2(K0(N ),Qp) is 1 f (ΨW ) = 〈z f , z f 〉W .

This completes the proof of Theorem B when (∆E/F , 2) = 1 and all primes

℘|p split in E .

8.2. Reduction to the basic case. — The general case, where E is only

assumed to satisfy (∆E/F ,N p) = 1, can be reduced to the previous one under

the assumption

L′p,W ( fE ,1) 6= 0

by the following argument due to Kobayashi [22, Proof of Theorem 5.9] us-

ing the complex Gross–Zagier formula (which is known with no restrictions

on∆) and the factorisation Lp( fE ,χ ◦N)∼ Lp( f ,χ )Lp( fε,χ ).

Indeed, by the factorisation the orders of vanishing at the central point

of the factors of Lp( fE , ν s ◦N), will be one (say for Lp( f )) and zero (say for
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Lp( fε)). Then, by the first part of Theorem C(40), the orders of vanishing

of L( f , s) and L( fε, s) at s = 1 will also be one and zero. Moreover the

Heegner point z f ,E ′ attached to f and any E ′ also satisfying L( fεE ′/F
, 1) 6= 0

is non-torsion, and in fact its trace z f ,F = TrE ′/F (z f ,E ′) is non-torsion and

z f ,E ′ is up to torsion a multiple of z f ,F in J (X )(E ′)⊗Q. Therefore, by the

complex and p-adic Gross–Zagier formulas for a suitable E ′ satisfying the

assumptions of §8.1 and L( fεE ′/F
, 1) 6= 0, we have

L′p,ν( f ,1) =
∏

℘|p

 

1−
1

α℘

!2
L′( f , 1)

Ω+
f
〈z f ,F , z f ,F 〉

〈z f ,F , z f ,F 〉ν

where 〈·, ·〉ν is the p-adic height pairing on J (X )(F ) attached to ν, and 〈·, ·〉

is the Néron–Tate height (the ratio appearing above belongs to M×
f

by the

Gross–Zagier formula). This allows us to conclude

L′p,W ( fE ,1) =
Ω+

f
Ω+

fε

D−1/2
E Ω f

L′p,ν( f ,1)Lp( fε,1)

=D1/2
E

∏

℘|p

 

1−
1

α℘

!2 

1−
ε(℘)

α℘

!2
L′( f , 1)L( fε, 1)

Ω f 〈z f ,F , z f ,F 〉
〈z f ,F , z f ,F 〉ν

=D−2
F

∏

℘|p

 

1−
1

α℘

!2 

1−
ε(℘)

α℘

!2 〈z f ,E , z f ,E〉
〈z f ,F , z f ,F 〉

〈z f ,F , z f ,F 〉ν

=D−2
F

∏

℘|p

 

1−
1

α℘

!2 

1−
ε(℘)

α℘

!2

〈z f ,E , z f ,E〉W .

(40)Which can be proved by using the p-adic Gross–Zagier formula attached to a field E ′

satisfying the assumptions of §8.1.
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Remark 8.2.1. — It is natural to conjecture that when L′p,W ( fE ,1) = 0 we

should have 〈z f , z f 〉W = 0. However in this case the above argument fails be-

cause, without knowledge of the nontriviality of the p-adic height pairing,

the vanishing of Lp( fE ,W s ) to order≥ 2 does not imply a similar high-order

vanishing for L( fE , s).

9. Periods and the Birch and Swinnerton-Dyer conjecture

As seen in the Introduction, the application of our result to the Birch and

Swinnerton-Dyer formula rests on a conjectural relation among the periods

of f and the associated abelian variety A. Here we would like to elaborate

on this conjecture and its arithmetic consequences. We retain the notation

of the Introduction, and set dim A= [M : Q] = d .

9.1. Real periods. — The conjecture on periods stated in the Introduc-

tion can be refined to a conjecture on rationality rather than algebraicity.

First we need to precisely define the automorphic periods Ω+
f σ

, for σ ∈

Hom (M f ,C); they are naturally defined as elements of C×/M× (see [32]

for a modern exposition): one can choose them “covariantly” in order to

have
∏

σ Ω
+
f σ

defined up to Q×, or define directly the product as follows.

Let HN = Z(A)\GL2(A)/K0(N )K∞ be the Hilbert modular variety(41) of

level N . Then the perfect pairing of Q-vector spaces

Hg (HN ,Q)+× S2(K0(N ),Q)→C(9.1.1)

(where “+” denotes the intersection of the +1-eigenspaces for the complex

conjugations) decomposes under the diagonal action of TN into Q-rational

(41)We are ignoring cusps, which only appear in the case F =Q of least interest to us.
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blocks parametrised by the Galois-conjugacy classes of eigenforms. Then

∏

σ

Ω+f σ ∈C×/Q×

is (2πi)d g times the discriminant of the pairing on the rational block cor-

responding to { f σ}σ . (The individual Ω+
f σ
∈ C×/M× are defined as the dis-

criminants of (9.1.1) on Q-rational TN -eigenblocks.)

Conjecture 9.1.1. — We have

ΩA∼
∏

σ

Ω+f σ

in C×/Q×.

The conjecture is also made by Yoshida [41] up to algebraicity. When

A has complex multiplication, it has been proved by Blasius [5]. It is also

known when F =Q; before discussing that, let us translate it into a language

closer to conjectures of Shimura.

For each τ : F → R, let fB(τ) be the Jacquet-Langlands transfer of f to a

rational form on the quaternion algebra B(τ)/F defined in the Introduction

(recall that B(τ) is ramified at all infinite places except τ), and let X be our

Shimura curve. Then A is (up to isogeny) a quotient φ of J (X ), and for each

embedding τ we can write

φ∗ωA= cτ
∧

σ

2πi f σ
B(τ)(z)d z
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as forms in H 0(J (X )(Cτ),Ω
d ), for some cτ ∈ F × (since both are generators

of a rank one F -vector space). Then we have
∫

A(Rτ)
|ωA|τ ∼

∏

σ

Ω+
f σ
B(τ)

in C×/F ×,

where Ω+
f σ
B(τ)

is 2πi times the discriminant of the f σ
B(τ)-part of the analogue of

the pairing (9.1.1) on X (Cτ). When choices are made covariantly in τ, we

then get ΩA∼
∏

σ ,τΩ
+
f σ
B(τ)

in C×/Q×.

Our conjecture, decomposed into its (σ ,τ)-constituents, can then be rewrit-

ten as

Ω+f ∼
∏

τ

Ω+fB(τ) in C×/(M F )×.(9.1.2)

In this form, this is a stronger version of Shimura’s conjecture [37] on the

factorisation of periods of Hilbert modular forms up to algebraic factors in

terms of P -invariants. The reader is referred to [41] for a discussion of this

point.

Notice that (9.1.2) is nontrivial even when F =Q: it asserts that the peri-

ods of the transfers of f to any indefinite quaternion algebra have the same

transcendental (or irrational) parts. However, in this case the conjecture is

known by the work of Shimura [36] (for the algebraicity) and Prasanna [31]

(for the rationality).

For general F , Shimura’s conjecture on P -invariants is largely proved by

Yoshida [42] under an assumption of non-vanishing of certain L-values.

Remark 9.1.2. — It is clear that our conjecture implies that the Birch and

Swinnerton-Dyer conjectural formula is true up to a nonzero rational factor

when A has analytic M -rank zero. By the complex (respectively, the p-adic)
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Gross–Zagier formula, the conjecture for f also implies the complex (re-

spectively, the p-adic) Birch and Swinnerton-Dyer formulas up to a rational

factor when A has ( p-adic) analytic M -rank one.

9.2. Quadratic periods. — We can formulate a conjecture analogous to

Conjecture 9.1.1 for the periods of the base-changed abelian variety AE =

A×Spec F Spec E .

Conjecture 9.2.1. — We have

ΩAE
∼
∏

σ

Ω f σ

in C×/Q×.

Here the period of AE is

ΩAE
=
∏

τ:E→C

∫

A(Cτ)
|ωAE
|τ,

where for a differential form ω = h(z)d z1 ∧ · · · ∧ d zk we have |ω|τ =

|h(z)|2
τ
d z1 ∧ d z1 ∧ · · · ∧ d zk ∧ d zk .

As above, this conjecture can be “decomposed” into

Ω f ∼
∏

τ

Ω fB(τ)
in C×/(M F )×.(9.2.1)

where Ω fB(τ)
is π2 times the Pertersson inner product of fB(τ). This is essen-

tially Shimura’s conjecture on Q-invariants (see [37]). Up to algebraicity it

has been proved by Harris [14] under a local condition (a new proof of the

same result should appear in forthcoming work of Ichino–Prasanna, yield-

ing rationality and removing the local assumption). Since (9.2.1) is implied
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by (9.1.2) for f and fε, Harris’s result can be seen as evidence for the conjec-

ture on real periods.

We take the opportunity to record an immediate consequence of the con-

jecture on quadratic periods and the Gross–Zagier formulas.

Theorem 9.2.2. — If AE has analytic M -rank ≤ 1, then the complex and the

p-adic Birch and Swinnerton-Dyer formulas for AE are true up to a nonzero

algebraic (or rational) factor.
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AFTERWORD (FOR THE LAYMAN)

0. — This concluding part is written for all the friends, relatives, and the

occasional strangers met at parties who have been wondering what, exactly,

I have been doing all these years. The most frequent questions were: is your

thesis going to be just numbers and formulas, or also words? Did you prove

some new theorem or formula? What is your thesis about? Is it useful for

something?

The first question needs no answer at this point. The second question has

a quick and dirty answer – I proved this formula (that’s Theorem B in the

Introduction):

L′p,W ( fE ,1) =D−2
F

∏

℘|p

 

1−
1

α℘

!2 

1−
1

ε(℘)α℘

!2

〈z f , z f 〉W .

This, of course, means nothing without context, which brings me to the

(longer) answer to the third question.(42) Before going there, however, let me

offer two words about whether this is new: yes, and no. No, that is, because

this work is a generalisation of the results of another mathematician. Yes,

in the sense that in this situation those results were not known before (were

they, no doctorate would follow), and although perhaps it is not surprising

(to the experts) that they are true, proving them so has required some “new”

ideas – which were in turn inspired from other people’s work. . . But this is

not an essay in the philosophy of history of scientific ideas.

(42)The more practically-minded reader should jump to the end for an answer to the last
question.
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1. — Esoteric as these pages may look like, the questions they deal with

are much older than all the modern-day musings about gravity, or cells, or

molecules. In fact, the proper name for this subject, Arithmetic, usually

elicits reactions better-known to contemporary artists (“Any child can do

that” – arithmetic is identified with primary school mathematics), so that

we are stuck with the (uglyish) name of “theory of numbers”. The num-

bers in questions are the integers 0,1,2,3, . . . and their negatives, as well as

the fractions (such as 3/4,−7/5, . . .) – which go under the name of ratio-

nal numbers. The founding father is usually recognised in Diophantus of

Alexandria (3rd century A.D.), who in a treatise named, indeed, Arithmetica

listed many problems and solutions to equations to be solved in integers or

rationals. These questions already had a long history by then, starting with

the Pythagorean discovery of the irrationality of the square root of 2 – that

is to say, the non-existence of rational solutions to the quadratic equation

x2 = 2.

The general theory of quadratic equations of one variable is known to

most high schoolers, and reduced to the Pythagorean question of the square-

ness of the discriminant(43) in the system of numbers of interest. Similarly,

the study of equations of degree three or four(44) in one variable was reduced

to the extraction of third and fourth roots by Italian Renaissance mathemati-

cians. That the same cannot be said in general for equations of degree five

or more was the early-Nineteenth-century discovery of Abel and indepen-

dently Galois, who developed a complete theory of the symmetry of those

(43)For those struggling to recollect old memories, the discriminant of ax2 + b x + c is the
(in)famous∆= b 2− 4ac .
(44)Like x3+ x + 1= 0, or 2x4− 5x2+ 7= 0.



p-ADIC HEIGHTS OF HEEGNER POINTS ON SHIMURA CURVES 98

equations. This was the end of a beautiful story – and the beginning of a

new one, but we will not go there.

2. — Many of the equations studied by Diophantus are rather those in two

variables, like x2 + y2 = 1 (more generally one could consider systems of

several equations in several variables, but two variables are still enough to

give us headaches after almost two millennia). The rational solutions to this

equation, like x = 3/5, y = 4/5, correspond to Pythagorean triples – triples

of whole numbers, such as (3,4,5), which can be the sides of a right-angled

triangle(45). Of course x2 + y2 = 1 is also the equation for a circle: more

precisely, this means that the solutions of this equation in the system of

the real numbers (that is, the infinite decimals like 0.7163538902...) form a

circle in the xy-plane. That the same can be said of the real solutions of

x2+ y2 = 3 should convince the reader that solving equations in the system

of rational numbers is considerably more complicated than in the system of

real numbers, once he or she is told that x2+y2 = 3 has no rational solutions

at all!(46)

(45)Because they satisfy the requirements of Pythagorean Theorem on the sum of the squares
of the legs being the square of the hypothenuse: 32 + 42 = 52. There are infinitely many
Pythagorean triples, parametrized by (m2− n2, 2mn, m2+ n2) for any integers m > n.
(46)This fact is by no means obvious, although not difficult to show: writing x = a/c ,
y = b/c with a common denominator c , the problem is equivalent to that of solving

a2+ b 2 = 3c2

in integers a, b , c with c not equal to zero. If there is a solution, then the solution with the
smallest possible positive c can’t have a, b , c all even, since otherwise the halves of a, b and
c would give a smaller solution. Now it is easy to see that the square of an even number
(2k)2 = 4k2 leaves remainder 0 when divided by 4, while the square of an odd number
(2k + 1)2 = 4(k2 + k) + 1 leaves remainder 1. So looking at the remainders of division by
four on either side of our equation, and denoting “≡” the relation of equality up to the
addition of a multiple of 4, we should have 1+ 0 ≡ 3 or 0+ 1 ≡ 3 if only one of a or b is
odd (so that c is too); or 1+ 1≡ 0 if both a and b are odd (so that c is even). This is clearly
not the case, so there is no solution.
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We have thus met the idea of attacking the difficult problem of studying

the solutions to an equation in the system of rational numbers by first studying

them in simpler systems of numbers, such as the real numbers and the systems

of numbers “up to the addition of multiples of a fixed integer”, such as the

system of numbers up to addition of multiples of 4 used in the last foot-

note (these are called simply numbers “modulo 4” – note that this is a finite

number system, containing only the four elements 0,1,2,3: indeed we have

4 ≡ 0, and for example 2+ 3 ≡ 4+ 1 ≡ 1). This idea turns out to be very

fruitful, and in fact it suffices to give a complete treatment of equations of

degree 2 in two variables, such as x2+ 3xy − 7y2+ 5x − 4= 0: there is a so-

lution exactly when there are real solutions(47) and solutions in the numbers

“modulo N” for any integer N ; this can be verified, by a human or a com-

puter, in a finite (and quite short) amount of time, and if there is a solution

then there are infinitely many.

3. — Finally, we can approach the topic of this thesis. For general equa-

tions of degree three or more, the existence of solutions in the real and finite

number systems is not enough to guarantee the existence of a solution in the

system of rational numbers. Even if we know that there is a solution, in gen-

eral we still don’t know whether there are finitely many or infinitely many

others. Actually, for equations of degree at least five, one of the most impor-

tant recent results in the subject, a theorem of the German mathematician

Faltings [12], says that there is always at most a finite number of solutions.

(On the other hand, the study of equations of degree four can be reduced

to the case of degree three.) So in a sense the most important equations to

(47)This may not be the case: consider for example x2 + y2 = −1. When there are real
solutions, they form a conic in the xy-plane: an ellipse, a parabola or a hyperbola.
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be studied are those of degree three, called cubic equations, like for example

x3+ y3 = 1729.(48) Here are the main questions: is there an efficient way (an

algorithm) to detect whether a given cubic equation has a rational solution

or not? If there is a solution, what can be said about how many solutions

there are?

The answer to the first question is not known, and this thesis adds (al-

most) nothing to that. For the second question, it was known to Diophan-

tus that given two solutions one could construct a third one by a geometric

method: picturing the two given solutions as points P and Q on the cubic

curveC in the xy-plane corresponding to the equation, the third one is con-

structed by intersecting the line through P and Q withC – since the degree

is three, there will be three intersections, that is P , Q and the new solution.

One can perform the same construction starting from just one point P and

using the tangent line to that point (this corresponds to the ‘degenerate’ case

P =Q); and then iterate the procedure. Then two things can happen: either

one returns to P after a certain number of iterations (in this case P is called

a torsion point); or one keeps getting new points (i.e. solutions) indefinitely.

A fundamental 1922 theorem of Mordell says the following: all the rational

solutions to the cubic equation of interest can be generated from a finite num-

ber of points by performing the geometric construction just described. The

smallest possible such number of generating points (excluding the torsion

points) is called the rank of the cubic: it is 0 or a positive integer, and it is 0

(48)I am choosing this equation because of its curious history: two famous mathemati-
cians, Hardy and Ramanujan, were once meeting at Ramanujan’s house. Hardy said upon
arriving that his taxicab had a rather unremarkable number, 1729. Ramanujan imme-
diately replied that the number was remarkable indeed, for being the smallest number
expressible in two ways as the sum of two cubes: 1729 = 1000 + 729 = 103 + 93, and
1729= 1+ 1728= 13+ 123.
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precisely when the number of solutions is finite; otherwise, the rank gives

as a basic measure of “how infinite” the set of solutions is.

4. — What does the number of solutions in other number systems tell us

about the rank of a cubic equation? After extensive computer simulations

(a new thing at the time), the mathematicians Birch and Swinnerton-Dyer

found in the 1960s a conjectural answer. Consider for example the equation

x3 + y3 = 1729; we can look at its solutions in the systems of numbers

modulo p for various prime numbers p (we don’t need to restrict to prime

numbers, but they are sufficient, and easier to deal with since one can define

the operation of division on the associated number systems); for example, in

the system of numbers modulo 5 we have 23+13 ≡ 9≡ 5+4≡ 4, and 1729≡

1725+ 4 ≡ 4 so that x = 2, y= 1 is a solution in this system. How many

solutions can we expect, in general, in the system of numbers modulo p? We

are looking at one equation in two variables, so roughly speaking we expect

to have one free variable (for example, if every number modulo p had a

unique cube root, then we could take x as the free variable and then y =
3
p

x3− 1729) – since the free variables can assume the p values 0,1, . . . , p−1

we then expect about p solutions.

The actual number of solution will vary around p, and here is the idea:

if this number is often larger than p, then this should be because of the

existence of rational solutions which “reduce” to solutions in the system of

numbers modulo p.



p-ADIC HEIGHTS OF HEEGNER POINTS ON SHIMURA CURVES 102

How does one make this idea precise? If Np is the number of solutions

modulo p to a fixed cubic, a good measure of the discrepancy with the ex-

pected number of points is its ratio to p, that is Np/p: if there are no ratio-

nal solution (or only finitely many of them) this should always be around

1, while if there are infinitely many then it should often be larger. This

information can be packaged into a function of a variable x (a real number),

L(x) =
N2

2
·

N3

3
·

N5

5
· · ·

Npx

px

where px is the largest prime number smaller than x. Again, if there are

only finitely many rational solutions, each factor should be about 1 so that

we expect that L(x) does not grow when x grows. On the other hand if

there are infinitely many solutions, Birch and Swinnerton-Dyer observed in

their examples that L(x) grew like

L(x)∼C log(x)r ,

for some real constant C and some non-negative integer r ; and that r was

equal to the rank of the curve.(49) They conjectured that the above relation

between the growth rate of L(x) and the rank should hold for all cubic equa-

tions, and moreover they predicted what the value of C should be (in terms

of various quantities associated to this equation).

Fifty years later, this conjecture is still unproven and likely to remain so

for a long time – notwithstanding the prize of one million dollars offered by

(49)To get a sense at why this conjecture could not have been made before the advent of
computers, notice that log(x), the inverse function of the exponential function, grows very
slowlly. So if in the study of the growth of L(x) one wants to see when it surpasses, say,
the value of 9, and if r = 1, then one needs to find the number of solutions to his equation
modulo primes up to 109 = 1,000,000,000.
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a foundation who ranked it among the seven most important unsolved(50)

mathematical problems. This thesis, as part of a wider circle of ideas devel-

oped in the past three decades, makes some progress towards it.

5. — The readers who have followed me to this point now know what we

are talking about – yet they may (and should) complain that after several

pages they still have received no explanation as to how any of the words in

the title of this work relates to the problems I described. In fact, at least two

words make sense: I have tried to explain above how the problem of finding

rational solutions to an equation can be viewed as that of finding points with

rational coordinates on a curve. I will try to explain the other words.

Shimura curves. — Shimura is a Japanese mathematician who studied a cer-

tain class of curves, called indeed Shimura curves, which parametrise certain

other geometric objects (let us call those “Shimura objects”). An example

should illustrate what this means: a circle in the plane can be identified by

three numbers, the two coordinates of its centre (two real numbers) and

the length of its radius (a positive real number); if we consider circles to be

equivalent when they can be rigidly moved to coincide, than the radius is

the only parameter: that is, the positive real numbers parametrise the circles

up to equivalence.

Shimura curves are less concrete than other curves given by explicit equa-

tions, yet they have a crucial advantage: one can find rational points on

them in a natural way, since they correspond to the “rational Shimura ob-

jects” – in the above example, circles with rational radius can be thought

(50)One of the seven has been solved since being included in the list – but the million dollars
offered for it was refused by the winner.
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of as “rational circles” (of course, in the example it is trivial to find ratio-

nal points on the – rather straight – “curve” constituted by the positive real

numbers, but by now my reader will be convinced that for other curves this

is not so). Shimura and others made the striking conjecture that every cubic

curve is related to some Shimua curve, in the precise sense that one can find a

transformation (a function) from a Shimura curve to the cubic curve, which

sends rational points to rational points. (Here is an example to illustrate the

concept: the parabola y = x2 is related to the real line with coordinate t by

the function which sends t to the point (x = t , y = t 2) on the parabola – and

if t is rational then so are x and y.) The proof of this conjecture by Andrew

Wiles in 1993 was the essential ingredient towards his proof of the famous

Fermat’s Last Theorem, which had been waiting for one for four centuries.

Heegner points. — Heegner was a German high school teacher and ama-

teur mathematician, who in 1952 had the brilliant idea of producing ratio-

nal points on cubic curves from the natural rational points on the related

Shimura curve. This is to date the only systematic way of finding solution

to cubic equations.(51) One can raise the question of whether the so-called

Heegner points thus obtained are torsion points or not, and here is the an-

swer:(52) suppose that L(x) grows like C log(x)r ; then the point is torsion

(51)Here is an example of its power – relegated to a footnote in order to avoid scaring any
readers with the size of the numbers involved. The equation 1063y2 = x3− x has rank one,
and the simplest non-torsion solution has the x-coordinate q2/1063, where

q =
11091863741829769675047021635712281767382339667434645

317342657544772180735207977320900012522807936777887
.

(This was found as a Heegner point by Noam Elkies. The reader may make a guess on how
long it would take to find it with a naive search.)
(52)Due to Gross and Zagier [13]: my more attentive followers may recognize in the latter
the name of my laurea thesis advisor.
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exactly when r = 1 (as an exercise, the reader can try to extract what this

implies for the conjecture of Birch and Swinnerton-Dyer). Notice that, since

r is supposed to equal the rank, it is no surprise that the Heegner point is

torsion when r = 0, as in this case every solution is torsion. On the other

hand, when r is at least two, we should expect many (non-torsion) rational

points, yet the only known method for finding them fails, and we are at a

loss.

p-adic heights. — A measure of the complexity of a rational number written

as a reduced fraction m/n is the maximum of the number of digits of m and

n. One can refine this notion to study the complexity of a point on a cubic

curve – and the resulting measure of complexity of the point is called the

height of the point. It is a non-negative real number, which is zero precisely

when the point is torsion. A study of the height of Heegner points is what

has led to the result mentioned just above on the “growth versus rank” part

of the Birch and Swinnerton-Dyer conjecture.

The p-adic height is another measure of the complexity of a point, which

is not a real number but rather a p-adic number, that is an element of a cer-

tain infinite system of numbers obtained by combining together the systems

of numbers modulo p, p2, p3, . . . for a fixed prime number p. Now reading

the title should give some ideas as to what this thesis studies – which is useful

for understanding the constant C in the growth of L(x). (This constant is

important: it is related to the problem of deciding on the very existence of

any points on some other related cubic curves.)
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6. — Finally, a word of explanation on the formula I started this section

with (and which is indeed my main result): the Heegner point being stud-

ied is z f (here f is the name of the corresponding cubic curve on which it

lies), and 〈z f , z f 〉W is its p-adic height; on the left-hand side, the quantity

L′p,W ( fE ,1) is related to the function L(x) introduced above.

As mentioned before, the results of this work are not new in the study of

rational solutions to cubic equations.(53) The novelty here is that they are

proved for a certain class of systems of equations in any number of variables

which share some of the features of cubic equations of one variable (some

of these systems are related to the study of one-variable equations of degree

higher than three), and over systems of numbers which are more general

than the system of rational numbers.

7. — I have thus far escaped the question of what all this is useful for. Ja-

cobi’s noble answer “pour l’honneur de l’esprit humain” may not satisfy every

palate in an era of tight budgets. It is certainly unclear that the world is a bet-

ter place after these pages. Yet the same could be said of the vast majority of

basic research.(54) Si parva licet, nothing could have sounded more abstruse

than antimatter when Dirac suggested its existence in 1928; yet today it is

used daily in PET(55) scans in every modern hospital. More to the point, no

one from Diophantus to Heegner could foresee the advent of the internet;

yet the cryptographic methods that protect our electronic transactions and

communications are using all the arithmetic knowledge developed in the

(53)They are due to the French mathematician Bernadette Perrin-Riou [30].
(54)Not to mention many other more marketable cultural artifacts: opinion pieces, TV ads,
mortgage-backed securities. . .
(55)Positron Emission Tomography (positrons are the antiparticles of electrons).
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past two millennia – and cubic curves have a significant part in it. Whether

the ideas of this work will prove useful for improving on those methods, for

nothing at all, or for something else which has not been invented yet, is as

unclear as it is unpredictable: we will have to wait and see.
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