Academic Commons

Theses Doctoral

Addressing Stability Robustness, Period Uncertainties, and Startup of Multiple-Period Repetitive Control for Spacecraft Jitter Mitigation

Ahn, Edwin S.

Repetitive Control (RC) is a relatively new form of control that seeks to converge to zero tracking error when executing a periodic command, or when executing a constant command in the presence of a periodic disturbance. The design makes use of knowledge of the period of the disturbance or command, and makes use of the error observed in the previous period to update the command in the present period. The usual RC approaches address one period, and this means that potentially they can simultaneously address DC or constant error, the fundamental frequency for that period, and all harmonics up to Nyquist frequency. Spacecraft often have multiple sources of periodic excitation. Slight imbalance in reaction wheels used for attitude control creates three disturbance periods. A special RC structure was developed to allow one to address multiple unrelated periods which is referred to as Multiple-Period Repetitive Control (MPRC).
MPRC in practice faces three main challenges for hardware implementation. One is instability due to model errors or parasitic high frequency modes, the second is degradation of the final error level due to period uncertainties or fluctuations, and the third is bad transients due to issues in startup. Regarding these three challenges, the thesis develops a series of methods to enhance the performance of MPRC or to assist in analyzing its performance for mitigating optical jitter induced by mechanical vibration within the structure of a spacecraft testbed. Experimental analysis of MPRC shows contrasting advantages over existing adaptive control algorithms, such as Filtered-X LMS, Adaptive Model Predictive Control, and Adaptive Basis Method, for mitigating jitter within the transmitting beam of Laser Communication (LaserCom) satellites.

Files

  • thumnail for Ahn_columbia_0054D_11564.pdf Ahn_columbia_0054D_11564.pdf application/pdf 3.28 MB Download File

More About This Work

Academic Units
Mechanical Engineering
Thesis Advisors
Longman, Richard W.
Degree
Ph.D., Columbia University
Published Here
September 13, 2013
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.