2011 Articles
Fractal-like Distributions over the Rational Numbers in High-throughput Biological and Clinical Data
Recent developments in extracting and processing biological and clinical data are allowing quantitative approaches to studying living systems. High-throughput sequencing (HTS), expression profiles, proteomics, and electronic health records (EHR) are some examples of such technologies. Extracting meaningful information from those technologies requires careful analysis of the large volumes of data they produce. In this note, we present a set of fractal-like distributions that commonly appear in the analysis of such data. The first set of examples are drawn from a HTS experiment. Here, the distributions appear as part of the evaluation of the error rate of the sequencing and the identification of tumorogenic genomic alterations. The other examples are obtained from risk factor evaluation and analysis of relative disease prevalence and co-mordbidity as these appear in EHR. The distributions are also relevant to identification of subclonal populations in tumors and the study of quasi-species and intrahost diversity of viral populations.
Files
- srep00191.pdf application/pdf 848 KB Download File
Also Published In
- Title
- Scientific Reports
- DOI
- https://doi.org/10.1038/srep00191
More About This Work
- Academic Units
- Biomedical Informatics
- Pathology and Cell Biology
- Irving Comprehensive Cancer Center
- Published Here
- February 21, 2018