QoS Measurement of Internet Real-Time Multimedia Services

Wenyu Jiang, Henning Schulzrinne
{wenyu,schulzrinne}@cs.columbia.edu
Technical Report CUCS-015-99
Department of Computer Science
Columbia University

December 1999

Abstract

Real-time applications such as IP telephony, Internet radio stations and video conferencing tools
require certain levels of QoS (Quality of Service). Because the Internet is still a best-effort network, the
QoS of these applications must be measured and monitored in order to provide feedbacks to applications
for rate and/or error control, and to both end-users and service providers. A standardized objective
measurement technology makes it possible to compare between service providers in a fair way. We
address the problems of packet delay and loss measurement, since they are the major determining factor
of multimedia quality. We first describe the problems and techniques in obtaining good measurement
results. Then, we discuss the modeling and analysis of delay and loss. Our goal is to establish feasible
metrics that can reliably predict perceived quality. We find that the extended Gilbert model (2-state
being a special case) is a suitable loss model, and the inter-loss distance metric is useful in capturing
the burstiness between loss runs. For delay, besides the autocorrelation metric, a conditional cumulative
distribution function may be useful. We apply these models to some of our Internet packet traces,
and find that losses are generally bursty, and that delays usually have a strong temporal dependency
component. We also find that the final loss pattern after applying playout delay adjustment (and FEC
if used) still corresponds well to the extended Gilbert model.

1 Introduction

1.1 Introduction to Real-time Multimedia Services

Examples of real-time multimedia applications include IP telephony, Internet radio stations, and video
conferencing. Their contents are transmitted via the network as packets at regular intervals and must be
received without significant loss, preferably with a low delay. In addition, these packets must have a small
delay variation (jitter) to prevent late loss, that is, an effective loss because a packet arrives too late.

l H packets with
' .
i media comg | redundant
" Qource signal media ' packets
1{ Source = coder FEC [+
'
| '
'
'
'
'
| '
| '
'

Internet

i
'
packets | added more unrecovered repaired decoded
with loss! | playout | late loss FEC | losses loss signal media .
) . conceal- decoder Receiver
delay recovery ‘ment
Sender Workstation

|
i
|
1 new
|] | playout
|
|
|
|
|

playout
delay Receiver Workstation

control

delay

Figure 1: Loss recovery and concealment in packet audio

In these applications, audio/video signals are digitized before transmission. If every packet is received,
the receiving quality will be perfect. But if a packet is lost, the quality will degrade, unless there is some

error correction mechanism based on Forward Error Correction (FEC) [34] or retransmission. A late loss due
to delay jitter has the same effect as a real packet loss. Finally, a high overall delay may impede interactive
communication such as a phone call. The QoS of multimedia sessions is therefore determined in general by
packet loss and delay. Figure 1 illustrates how media encoding/decoding, FEC coding/recovery and playout
delay adjustment work together in a typical real-time multimedia application. Playout delay adjustment is
explained in the next few paragraphs.

100 T T T i
ideal + ’
| X+5 ---—- i
o 80 I real o
g x+13 —— tsent ideal real
° (ms) treceive treceive
R i (ms) | (ms)
3 30 35 39
o 40 i 40 45 46
GEJ 50 55 57
= 60 65 73
= 20 i 70 75 78
d_play 13 . . 80 85 90
d—mmg C]]]]]

0 20 40 60 80 100
x: time sent (ms)

Figure 2: Illustration of packet delay and playout delay

Figure 2 shows a sample of packet delays. The abscissa is the time at which a packet is sent, the ordinate
is the time at which the packet is received, and the time here is measured by a globally synchronized clock.
In an ideal network such as a circuit-switched network, the delay d for a given path is constant and hopefully
low, so the (x,y) points form a line y = # +d (here d = 5 ms). This means packets can be played out as soon
as they are received without having to pause.

In a packet-switched network such as the Internet, delays are not constant, as queueing delays can vary
significantly over time. An example is the diamond-shaped plot in Figure 2. For audio applications, if the
receiver plays out audio packets as they come in, it will have to generate a pause if the next packet arrives
too late. Therefore, in Figure 2, we must wait at least d,;4, time to prevent this situation. The term dpqy is
called the playout delay. Usually, d,qy is calculated by subtracting the actual play time of the first packet
from its receiving time. In this example, the first packet is sent at 30 ms, received at 39 ms, and played at
43ms. Therefore, dpqy is 4ms, although the actual play times of all packets form a line y = = + 13. An
alternative definition of playout delay is the delay between sending time and playout time. The reader can
choose either of the two definitions as long as its meaning is clear.

Many techniques have been developed for controlling playout delay [13] [36] [28] [7] [6], etc. Simple ones
use a fixed playout delay, either static or determined at the start of a session. More advanced techniques
exploit the existence of talk-spurts (speech) and pauses (silence) [8] in human speech. The length distribution
of talk-spurts and pauses depends on silence detector settings and the speaker, but Brady [8] reported that
the average length of spurts and pauses is on the order of 1 second. Since human perception is less sensitive
to the length of silence, the application can choose a new playout delay at the beginning of each talk-spurt,
effectively squeezing or lengthening silence gaps. This way the playout delay can be kept low when jitter is
small.

Since delay and loss are the determining factors of real-time multimedia quality, we examine the issues of
delay and loss measurement and various solutions. In section 2, we describe the general problems encountered
in delay/loss measurement and some solutions. In section 4 we discuss the analytical modeling of loss. We

find that the distribution of loss burst length is generally heavy tailed, and the n-state extended Gilbert
model [39] is a good choice for loss models. Section 5 continues with the analytical modeling of delay. In
section 6 we use several queueing systems to explain the delay model introduced in section 5. Finally, in
section 7, we examine the effect of playout delay control and Forward Error Correction (FEC) on our delay
and loss models. Our observation is that after applying playout and/or FEC, the final effective losses are
still heavy tailed, and fit well in the extended Gilbert model.

There are other factors affecting the quality of a multimedia session, such as end system delays and jitter
due to the operating system.

1.2 One-Way vs. Two-way Metrics

Both delay and loss can be measured in one-way or two-way. A two-way delay is the Round Trip Time
(RTT). In real-time multimedia applications, one-way characteristics is usually what determines the service
quality. For example, in IP Telephony, if the A — B loss rate is low, and the B — A loss rate is high, B
can still hear A’s voice clearly. For one-way delay, ITU-T G.114 [16] recommends 150 ms as the upper limit
for most applications, 150 to 400 ms as potentially intolerable, and above 400 ms as generally unacceptable
delay. The one-way delay tolerance for video conferencing is in a similar range, 200 to 300 ms [14].

Two-way metrics are also important, especially for interactive applications such as IP telephony. It is
well known that a large RTT (> 600ms) will degrade the interactivity of an application [9]. However, if we
obtain a good estimate of one-way delay in both directions, a simple addition easily yields results for two-way
delay. The two-way loss probability, on the hand, is not a simple addition of one-way loss probabilities in
both directions. If the one-way loss probabilities are py, ps respectively, then the two-way loss probability p
is T — (1 —p1)(1 — p2), assuming the one-way losses are random.

The remainder of the paper will focus on one-way metrics.

1.3 Different Aspects of Delay and Loss

There are many different metrics for packet delay and loss: absolute delay, delay variation (jitter), delay
correlation, that is, how previous delays affect the likely values of the next packet delay, loss rate, and loss
correlation, that is, how previous losses affect the loss probability of the next packet. Section 4 - 6 discuss
the modeling of delay and loss.

1.4 Components of Delay

An end-to-end delay has a number of components. The first is network delay, which consists of transmission
delay, propagation delay, and queueing delay. The second is OS delay due to scheduling behavior of the
operating system in the sender or receiver. The third is hardware input/output delay, for instance, a PC
sound-card typically has 20ms of output delay [22]. The hardware input delay is generally caused by
packetization, for example, a G.729 frame is 10 ms, so the system must wait at least 10 ms before any further
processing. The fourth is look ahead delay, because some multimedia codecs (coder/decoder) needs to look
at information in the near future in order to gain better compression. An example is the G.729 codec, which
uses a bms look ahead time [37]. The fifth is application delay. The best known example is the play out
delay that compensate for delay variation (jitter). Another example is the compression and decompression
time of audio/video.

All of the components above make up the end-to-end delay. In this paper, we are mainly concerned with
the measurment and modeling of network delays.

2 Measurement Problems and Techniques

2.1 General Measurement Technique for One-Way Data

To measure one-way delay and loss, we need some cooperation between two hosts. There are several possi-
bilities:

Rely on receiver’s kernel support only, such as ICMP Timestamp request/reply message [35]. The receiver’s
kernel puts its receipt time in the reply packet, which gives one-way delay if both hosts’ clocks are
synchronized. It requires no human intervention at the receiver side, making it ideal for ad-hoc tests.
But it is not suitable for one-way loss measurement, since the sender cannot tell if an unacknowledged
packet was lost in the outgoing or returning direction. Note that when a message is lost in the returning
direction, its one-way delay value is also lost, since the kernel won’t log any packets.

Run a user-level application on the receiver. When measuring one-way delays, it is effectively the same as
the previous method. But it can measure one-way losses if it keeps a log of received packets.

In both approaches, sequence numbers should be put in the sender packet so that we can detect losses.

2.2 IETF IPPM Specification on Delay and Loss Measurement

The Internet Engineering Task Force’s IPPM Working Group (http://www.ietf.org/html.charters/ippm-
charter.html) has published several specifications for measuring delay and loss. The following table is a
partial summary:

Document Reference Topics Covered

RFC 2679 2 one-way delay measurement

RFC 2680 3 one-way loss measurement

RFC 2681 4 two-way (round-trip) delay measurement
ippm-loss-pattern 20 one-way loss pattern characterization

ippm-ipdv 12 jitter measurement

RFC 2679 has several key characteristics. First, it states that the clock difference and drift at both sender
and receiver must be synchronized or compensated for, but it does not specify how to achieve synchronization.
Second, the inter-packet sending interval should conform to a Poisson process, in order to limit any bias in
the measurements. In fact, the Poisson process is used in nearly all the IPPM specifications. Third, any lost
packet is considered to have infinite delay, which affects median finding. Fourth, it notes that determining
whether a packet is lost can be hard, but it does not provide any particular suggestion except that the tester
should record the policy used (e.g., a 5 second timeout).

The ippm-ipdv draft [12] computes jitter by subtracting one-way delays of two consecutive packets. It is
equivalent to the RTP [40] definition of jitter. This is also the definition we use here for all the tables and
figures in this paper.

The ippm-loss-pattern draft [20] defines several new metrics to capture packet loss patterns. These
include loss distance (sequence difference of current and previous lost packets), loss period (numbering of
loss bursts and their lengths), noticeable loss rate (percentage of lost packets with loss distances smaller
than a threshold) and inter-loss-period-length (distance between loss bursts). In the ippm-loss-pattern draft,
a sending process other than the Poisson is recommended, since the Poisson does not correspond to the
periodic nature of most real-time applications. The loss distance and noticeable loss rate are particularly
useful in capturing the bursty pattern between consecutive loss runs (the modeling of consecutive loss runs
is discussed in section 5.2).

The TPPM specifications provide guidelines in performance measurement, but it does not provide an
explicit solution to certain problems, such as clock synchronization. We address these problems in the
following sections. In addition, only the ippm-loss-pattern draft addresses the problem of loss modeling

using higher order statistics. Therefore we provide more details on the current state of art in loss and delay
modeling.

2.3 Measuring Loss

To detect loss, every probing packet must have a unique sequence number. It is however, difficult to know
whether a packet has been lost if it has not arrived. In practice, a timeout value of 5 second for the round-
trip time is often sufficient. For one-way delays, it is slightly more difficult to use timeout if clocks are not
synchronized, but if several packets with a higher sequence number have arrived but the expected packet
hasn’t, it is almost certain that that packet has been lost.

2.4 Measuring Two-Way Delays

Measuring two-way delays does not need remote clock synchronization. Typically, the sender sends a probing
packet (either UDP or ICMP echo [35]), and waits for the reply packet, and measures the round-trip time.
In case of UDP, the receiver must run as a user-level process, but for ICMP, the echo/reply is handled by
the kernel.

2.5 Measuring End-to-End Delays

The end-to-end delays consist of many components such as OS and playout delay. Many of them are not
easy to measure in a black-box setting, that is, without modifying application software. A solution is to use
another monitoring station to inspect its final output port. An example of a final output port is the audio
line-out or speaker port in the case of IP telephony. Figure 3 illustrates this method. The sender transmits
a signal at global time T3, and the monitor records and detects the signal at global time 75. Then the
end-to-end delay between sender and receiver is 15 — Tj. For the monitor to detect that a signal has arrived,
it can constantly listens on the line-in port, and let the sender transmit a pre-recorded signal such as a short

voice speech.
/\/\/\ time: T2
Receiver
line
out
Sender
W time: T3

time: T1

End-to-End delay = T3 - T1 line in
Assume clocks are synchronized
between Sender and Monitor.

Monitor

Figure 3: Measuring true end-to-end delay

This method assumes that the clocks are synchronized between the sender and the monitor, but not
necessary for receiver. The clock synchronization is achieved with one of the techniques in section 2.6, such
as synchronization by telephone network, or by GPS.

In later sections we focus on network delays, although the same principles can be applied to end-to-end
delays as well.

2.6 Problems in One-Way Delay Measurement
Three potential problems exist in One-Way Delay measurement:

Clock synchronization. Two different hosts (especially remote ones) usually do not have their computer
clocks synchronized. The NTP protocol [25] has been suggested to synchronize remote clocks. The
typical performance of NTP on the Internet is in the order of 10 ms [24]. This is a non-negligible portion
for a typical Internet one-way delay. If we consider the propagation delay to be a main contributor of
one-way delay, then a US coast-to-coast delay is around 30ms, plus some variation.

Clock drift, or clock skew. it is a slow shift of time between two clocks because they operate at slightly
different frequencies. Since no two clocks are identical, the clock drift is inevitable. In computers, the
frequency of a crystal oscillator depends on its shape, size, temperature, etc. Therefore its drift rate
remains mostly constant when surrounding conditions such as temperature are stable. Typical drift
rates of crystal oscillators compared to Universal Coordinated Time (UTC) are on the order of 100 us
per second. An example can be found in page 6 of [42].

Clock resolution. Many old computer systems (SVR4/386, BSD/386 V0.9, Linux x86 kernel V2.0) do not
provide a time resolution higher than 10 ms, either because they do not have better clock hardware or
because their system times are generated by a 10 ms periodic interrupt, as explained in [43] Appendix
B. This can seriously distort the measurement values. One solution is to measure the time every N
loops and divide the time by N. N must be large enough so that the measured time is larger than
the clock resolution. Most new micro-processors such as Pentiums, (Ultra-)Sparcs and SGI MIPS
have special hardware (e.g., the Intel 8253 clock register [43]) that provide 1 us resolution, which is
sufficient for any practical Internet performance measurement. Therefore, we are not concerned with
clock resolution problems in this paper.

A related problem is timer resolution, which controls the granularity of how often an interrupt occurs.
[18] finds that because Windows NT has a coarse timer resolution (1 ms) and an imprecise round-off
mechanism, it can cause timer “glitches”, especially in its multi-processor kernel version. It distorts
the periodic nature of multimedia streams and introduces jitter at the application/OS level. When
using a higher layer transport protocol such as RTP [40], the sender timestamp is always derived from
the theoretical inter-packet interval of the stream, not the actual time when a packet is sent. So the
receiver only sees it as a larger network delay jitter, but this effect should be thought of when writing
multimedia applications.

2.7 Techniques in One-Way Delay Measurement
2.7.1 Assuming Symmetric Delays

By measuring the timestamps when a packet is sent and received, the subtraction gives a “nominal” one-way
delay. As pointed out earlier, it is subject to both the clock synchronization and the drift problems.

A simple way to estimate the clock difference is by measuring the minimum Round Trip Time (RT T})
over a short interval. Assuming a symmetric network, ﬂ:gm_m should be the minimum one-way delay. This is
illustrated in Figure 4. [11] [33] point out, however, that network topologies are often asymmetric. Of course,
a symmetric path does not necessarily mean symmetric delays, if asymmetric links exist [17]. Therefore we
should always examine first whether the assumption of symmetric delays is true.

If the RT'T,,;, is obtained when a packet is sent at T} and received at 75, and echoed back at T3,
where 17,715 are local time measured by the sender, and 15 is local time measured by the receiver, then
one-way delay D = Ty — Ty + 6 = BE—TL, where § is the clock difference between two hosts. Therefore

§="57h — (T, - T)

Receiver

Figure 4: Clock synchronization assuming symmetric delays, 11, Ty, T5 are all local time

Later, for any packet sent at T, and received at T}, both local time. The one-way delay is adjusted as:
D=T. -T,+9¢

If we are only interested in the relative delays such as the jitter, clock synchronization is not necessary.
But clock drift can still be a problem. With a typical drift rate of 100 us/sec, after 100 seconds, the skew
would be 10 ms.

We know from previous section that assuming a stable temperature, clock drift rate is mostly constant.
This corresponds to a linear change in the one-way delay over a long time. Therefore, we can split a long
series of one-way delays into small intervals (e.g. of 1 sec), and extract minimum delays from them, and then
perform a linear regression to calculate the drift rate. How long the time should be is a trade off. A longer
time means better estimate of the drift rate, but it makes the on-line (real-time) analysis harder. There are
also several techniques that improves upon the simple linear regression approach [26].

Apparently, the above method can be applied anywhere the clock drift occurs, for example between any
two personal computers or workstations.

2.7.2 Telephone-Network-Based Synchronization

A traditional telephone network, also known as Public Switched Telephone Network (PSTN), can help to
synchronize clocks as follows: (see Figure 5)
Wime: T2

Receiver

’ line in

Sender End-to-End Delay = T2 - (T3 - D)
line
out

time: T1 time: T3

PSTN One-Way Delay = D

time: T1

Figure 5: Using PSTN for clock synchronization, 13,715, T3 are all local time

1. Call from a telephone near the sender to another telephone near the receiver station.

2. Measure the PSTN delay. Inject a special signal into the sender telephone; short-circuit the receiver
phone’s headphone and microphone, this should echo the signal back; Perform a correlation analysis
of sent vs. echoed signal, we can get a good estimate of the PSTN round trip delay for this phone call.

Since the PSTN can be safely assumed to be asymmetric, its one-way delay is D = %RTTPSTN.

3. Later on, the network delay can be computed as To — (T3 — D), as illustrated in Figure 5. This is
because the packet was sent at 75 — D (receiver clock).

This mechanism works no matter how different paths the Internet and PSTN may traverse, as long as the
telephone and the workstation are close to each other.

After measuring D and the first true packet delay: we can either terminate the PSTN connection or keep
it open. It may be expensive to keep the phone line active for hours. But if we terminate the connection, we
are subject to the clock drift problem again. We can use the techniques developed earlier to estimate and
compensate for the clock drift.

The precision of PSTN clock synchronization is typically on the order of 1ms.

2.7.3 GPS

The Global Positioning System is a U.S. satellite-based navigational system that provides both location and
time services. Among all the methods described, the GPS is the most precise one. The Surveyor project
[32] uses GPS to perform highly accurate one-way delay measurements. Its project page currently advertises
a precision of 50 us for one-way delay measurement [31]. Its main drawback is the cost of equipment and
deployment. The price of GPS receivers has come down to hundreds of dollars for low-end systems, but the
high end ones are still expensive. http://www.cs.columbia.edu/ hgs/internet /ntp.html gives some informal
price quotes. The measurement using GPS is very simple, so we will not repeat it here.

3 General Characteristics of Delay and Loss

3.1 Periodicity

Internet traffic has its cycles. In general, day time means heavier traffic [44] [30], hence higher delay and
loss rates. Similarly, weekend usually has less traffic than weekdays. This has been mentioned in [21] [30]

23] [29].

3.2 Correlation between Delay and Loss

On a long time scale (say, every minute), the daily cycles of delay and loss matches well with each other [21].
This result is intuitive because losses generally occur because of congestion, and congestion leads to higher
delays.

On a short time scale of around 100ms, however, the inter-dependencies of delay and loss are quite
different. Moon et al [27] reports that loss is not very sensitive to (either long or short) delay, either
backward or forward in time, and delay is quite sensitive to loss, generally a loss appears after several high
delays, and it is followed by low delay. The second result is intuitive because a loss in the Internet is mostly
due to congestion, and most routers “drop-tail” when their buffers are full. After loss clears, presumably the
buffers are empty again, leading to low delays.

This correlation effect has certain implications for real-time multimedia applications. Because large delays
are likely followed by one or more losses, the final loss pattern after playout delay compensation will be even
burstier. A burstier loss pattern may lead to lower perceptual quality, and it will affect the performance of
FEC mechanisms.

Furthermore, we will show in later sections that, delay and loss have strong auto-correlation, i.e., depen-
dency on its previous values.

4 Analyzing and Modeling Delay and Loss

Once we collect large amounts of measured data, it is important to analyze them and extract useful infor-
mation from them. By developing (and verifying) various models of delay and loss, we can gain a better
understanding of the network behavior, and help us predict its near-term behavior and service quality.

4.1 Causes of Delay and Loss

First, we examine the causes of network delay and loss. Network delay consists of propagation delay,
processing delay, transmission delay, and queueing delay which is caused by congestion. The propagation
delay is constant at 5 us/km for optical fibers and copper wires. The transmission delay is linear to packet
size. Together they form the network delay, which is part of the end-to-end delay discussed in section 1.4.

Loss is caused by congestion (router buffer overflow), routing instability such as route changes, link
failure, and lossy links such as telephone modems and wireless links. Congestion is the most common cause
of loss. Routing instability and lossy links are less common. Link failure rarely occurs in backbone networks.

In this paper, we are most interested in queueing delay and congestion loss, both of which are common
and not easily predictable.

5 (One-Way) Loss Models

It is generally agreed that packet losses are not approximated well by a Bernoulli model [39], [46], [6]. The
Bernoulli model is a model for a random process that consists of Bernoulli trials. That is, the outcome of
each experiment (e.g., a packet lost or delivered) must be independent of previous trials. In the Internet,
since a packet loss is likely an indication of congestion buildup, the next packet may also be lost with a high
probability, leading to the temporal dependency of loss.

5.1 Spatial Loss Dependency

When multicast is used, loss also exhibits spatial dependency, that is, two or more receivers may lose the
same packet. Yajnik et al [45] and Caceres et al [10] shows that spatial loss dependency sometimes exists
in the MBone, and it is usually attributed to the link between source and the first MBone backbone router.
The formula for estimating the spatial correlation [45] is:

_ E[(X - X)(Y —Y)] Y- XN -Y)
corr(X,Y) = = =5 = —
VEX - X)VEY =Y X (X = X)2 L (Yi = Y)
where X; is 1 if packet ¢ is lost at receiver X, 0 otherwise; Y; is defined similarly; n is total number of

packets sent. X is E[X], the expectation or average loss probability; ¥ is defined similarly.
For the remainder of this paper, we focus on temporal dependency.

(1)

5.2 Temporal Loss Dependency
5.2.1 The Gilbert Model

[39], [46], [6] recommend use of a Markov model to model temporal dependency of loss. All of them analyzed

on:

distribut

10

—
=
S

model.
model.

—

o
i
- o
| Il
N -

x: delay (sec)

[Analysis]

Therefore,

7 1

x: delay (sec)

Q

igure 13

—
=

controls

—

(=2
—
=
=
=1
z
o
=
=19
(<]
0

eling

20

—
7 2

™
™

codec.

March 1993.

1997.

g
™

1996.

7 2

